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Abstract

The concept of Gromov hyperbolicity grasps the essence of negatively curved spaces like the
classical hyperbolic space and Riemannian manifolds of negative sectional curvature. It is remark-
able that a simple concept leads to such a rich general theory. The study of hyperbolic graphs
is an interesting topic since the hyperbolicity of any geodesic metric space is equivalent to the
hyperbolicity of a graph related to it.

In this Ph. D. Thesis we characterize the hyperbolicity constant of interval graphs and circular-
arc graphs. Likewise, we provide relationships between dominant sets and the hyperbolicity con-
stant. Finally, we study the invariance of the hyperbolicity constant when the graphs are trans-
formed by several operators.
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Introduction

Hyperbolicity in Gromov’s sense is a simple concept, but at the same time it leads to a very rich
general theory. This concept captures the qualities of negatively curved spaces like the classical
hyperbolic space, Riemannian manifolds of negative sectional curvature, and discrete spaces like
trees and Cayley graphs of many finitely generated groups. Hyperbolicity is a very useful tool that
helps us in understanding the relationships between graphs and manifolds. It is known from the
works of Gromov and Kanai that graphs can model manifolds and many metric spaces (this is an
interesting result, since it allows to go from working with a continuous structure that could be
complicated to deal with a discrete structure, see, e.g., [43, 47]). In [93, 102, 108] the equivalence
between the hyperbolicity of many surfaces and the hyperbolicity of simple graphs is proved.

One of the first applications of the Gromov hyperbolic spaces was the analysis of finitely gen-
erated groups (see, for example, [87]). Today, the mathematical properties and the applications
of Gromov hyperbolicity are subjects of study with a growing interest within graph theory (see
[11, 12, 13, 14, 20, 22, 25, 41, 42, 61, 63, 64, 71, 80, 81, 92, 93, 94, 95, 100, 101, 108, 112] and the
references therein).

Computer science is another area in which the hyperbolicity of Gromov has been applied in
subjects such as automatic groups (see, for example, [87]), networks and algorithms (see [72] and its
references), random graphs (see, for example, [103, 104, 105]), etc. For example, when considering
the graph that models the routing of the Internet, it adapts better to a hyperbolic space instead
of a Euclidean one (see [106, 109]); in fact, many real networks are hyperbolic (see, for example,
[1, 2, 31, 74, 82]). Recently, algorithmic problems have been considered in hyperbolic spaces.
Hyperbolicity has also been used in issues such as the secure transmission of information through
the network (see [60]) as well as the spread of viruses (see [62], [63]). Other problems that have
been addressed are sensor networks, distance estimation, traffic flow, congestion minimization (see
[7], [65], [66], [84], [106]). This tool has been used even in topics such as large-scale data analysis
(see [83]) and DNA study (see [20]).

There are several definitions of Gromov hyperbolicity which are are equivalent, in the sense
that if X is δ-hyperbolic with respect to the definition A, then it is δ′-hyperbolic with respect to
the definition B for some δ′ (see, e.g., [19, 43]). We will work mainly with the definition of Gromov
hyperbolicity given by the Rips condition (see Definition 1.1.1) for its geometric meaning, but in
some sections we will also use the definition given by the Gromov product (see Definition 1.1.3).

Throughout this work we will study the hyperbolicity of metric graphs. Graph theory is an
interesting field in Discrete Mathematics. Despite being a relatively recent area, it is growing very
rapidly with many results discovered in the last three decades.
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This theory allows to treat, in a simpler way, any problem where there is a binary relationship
between certain objects, so its uses are quite broad. Proof of this is that we can find applications
to areas within the same Mathematics, Engineering, Biology, Sociology, Administration, etc.

Three main problems on Gromov hyperbolic graphs are the following:

I. To characterize the hyperbolicity for some classes of graphs.

II To obtain inequalities that relate the hyperbolicity constant and other parameters of the graph.

III To study the invariance of the hyperbolicity of graphs under appropriate transformations.

In this work, attending to item I, we characterize the hyperbolicity for interval graphs and
circular-arc graphs. To attend item II, we find relationships between the hyperbolicity constant and
several domination numbers associated with different kinds of domination, such as total-domination
number, distance k-domination number, etc. And finally we deal with item III when we study the
hyperbolicity on graphs by considering operators acting on them.

The structure of this work is as follows.

In Chapter 1 we include some definitions, a brief introduction to hyperbolic spaces and some
previous results.

In Chapter 2, we prove some bounds for the hyperbolicity constant of interval graphs.

In Chapter 3, we prove some bounds for the hyperbolicity constant of circular-arc graphs.

In Chapter 4, we obtain several inequalities between the hyperbolicity constant and some domi-
nation numbers, such as k-domination number, total k-domination number, distance k-domination
number, etc. Two of the main results are Theorems 4.2.6 and 4.2.8, since these results deal with
simplest domination parameters.

In Chapter 5, we prove inequalities relating the hyperbolicity constants of a graph G and its
graph operators L(G), S(G), T (G), R(G) and Q(G).
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Chapter 1

Background and previous results

When we work in traditional Euclidean spaces, the use of straight lines is essential to understand
them. In metric spaces it is necessary to consider the “shortest” possible paths, which are called
geodesics (see Figure 1.1). Next, we give the formal definition.

Definition 1.0.1. If γ : [a, b] −→ X is a continuous curve in a metric space (X, d), we can define
the length of γ as

L(γ) := sup
{ n∑
i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < · · · < tn = b
}
.

We say that γ is a geodesic if it is an isometry, i.e., L(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for every
s, t ∈ [a, b] (then γ is equipped with an arc-length parametrization).

The metric space X is said geodesic if for every couple of points in X there exists a geodesic
joining them; we denote by [xy] any geodesic joining x and y; this notation is ambiguous, since
in general we do not have uniqueness of geodesics, but it is very convenient. Consequently, any
geodesic metric space is connected. If the metric space X is a graph, then the edge joining the
vertices u and v will be denoted by uv.

(a) Two geodesics (red) on
a curved surface correspond-
ing to a spherical gravita-
tional field. Image taken
from wikipedia.

(b) Geodesics on a
sphere. Image taken
from wikipedia.

(c) Geodesics joining two vertices
in a metric graph with edges of
length 1.

Figure 1.1: Geodesic spaces.
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1.1 Definitions of Gromov hyperbolicity and examples

A hyperbolic metric space satisfies certain metric relationships between its points. These spaces,
introduced by Mikhael Gromov (see [3, 47]), generalize the metric properties of classical hyperbolic
geometry and trees.

As we mentioned before, there are several definitions for hyperbolic spaces. We give here a few
and some equivalences.

The following definition is attributed to Eliyahu Rips.

Rips condition

Definition 1.1.1. If X is a geodesic metric space and J = {J1, J2, . . . , Jn}, with Jj ⊆ X, we say
that J is δ-thin if for every x ∈ Ji we have that d(x,∪j 6=iJj) ≤ δ. We denote by δ(J) the sharpest
thin constant of J , i.e., δ(J) := inf{δ ≥ 0 : J is δ-thin }. If x1, x2, x3 ∈ X, a geodesic triangle
T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1]; it is usual to write
also T = {[x1x2], [x2x3], [x3x1]} and we will say that x1, x2, x3 are the vertices of the triangle. The
space X is δ-hyperbolic (or satisfies the Rips condition with constant δ) if every geodesic triangle
in X is δ-thin. We define the hyperbolicity constant of X as

δ(X) := sup{δ(T ) : T is a geodesic triangle in X }.

We say that X is hyperbolic if X is δ-hyperbolic for some δ ≥ 0 or, equivalently, if δ(X) < ∞.
If X is hyperbolic, then δ(X) = inf{δ ≥ 0 : X is δ-hyperbolic }. If X has connected components
{Xi}i∈I , then we define δ(X) := supi∈I δ(Xi), and we say that X is hyperbolic if δ(X) <∞.

Note that a geodesic bigon (a geodesic triangle such that two of its vertices are the same point) in
a δ-hyperbolic space is δ-thin. Note also that every geodesic polygon with n sides in a δ-hyperbolic
space is (n− 2)δ-thin.

Figure 1.2: T is δ-thin, if any side of T is contained in a δ-neighborhood of the union of the two
other sides.
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Fine definition

Definition 1.1.2. Let X be a geodesic metric space, and T = {x, y, z} ⊂ X a geodesic triangle;
we can construct in the Euclidean plane a triangle T = {x, y, z} with sides of the same length than
T . Let f : T 7→ T be the map such that f([xy]) = [x y], f([xz]) = [x z], f([yz]) = [y z] and the
restriction of f to each side of T is an isometry. The maximum inscribed circle in T meets the sides
[x y], [y z] and [x z] in pz, px and py respectively such that d(x, py) = d(x, pz), d(y, px) = d(y, pz)
and d(z, px) = d(z, py). We define px = f−1(px), py = f−1(py) and pz = f−1(pz). There exists

a map g from T onto a tripod T0 (a star graph with one vertex p of degree 3, and three vertices
x′, y′, z′ of degree one), such that d(x′, p) = d(x, py) = d(x, pz), d(y′, p) = d(y, px) = d(y, pz) and

d(z′, p) = d(z, px) = d(z, py). Thus, the restriction of g to each side of T is an isometry.
Consider the map h = g ◦ f from T onto T0. We say that the triangle T = {x, y, z} is δ-fine

if for every couple of points q and r in T with h(q) = h(r) we have d(q, r) ≤ δ. We say that the
space X is δ-fine if every geodesic triangle is δ-fine.

Figure 1.3: Given a geodesic triangle T ⊂ X there exists a map from T onto a tripod T0, such that
its restriction to each side of T is an isometry.

Gromov product definition

Definition 1.1.3. Let (X, d) be a metric space and x, y ∈ X. The Gromov product between x and
y, with base point w ∈ X, is defined as

(x, y)w :=
1

2

(
d(x,w) + d(y, w)− d(x, y)

)
≥ 0.

We say that the metric space (X, d) is δ-hyperbolic with respect to the Gromov product, for some
constant δ ≥ 0, if

(x, z)w ≥ min
{

(x, y)w, (y, z)w
}
− δ (1.1)

for every x, y, z, w ∈ X.

This definition will be very useful in Chapters 4 and 5.
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The following result states the equivalence between Rips condition (Definition 1.1.1), fine prop-
erty (Definition 1.1.2) and hyperbolicity with respect to the Gromov product (Definition 1.1.3):

Theorem 1.1.4 ([3] and [43] ). Let X be a geodesic metric space:

1. If X is δ-hyperbolic with respect to the Gromov product, then X is 3δ-hyperbolic and 4δ-fine.

2. If X is δ-hyperbolic, then X is 4δ-hyperbolic with respect to the Gromov product and 4δ-fine.

3. If X is δ-fine, then X is 2δ-hyperbolic with respect to the Gromov product and δ-hyperbolic.

Insize definition

Definition 1.1.5. Let X be a geodesic metric space, T = {x, y, z} ⊂ X a geodesic triangle, and
px, py, pz the internal points in T given in Definition 1.1.2. We define the insize of the geodesic
triangle T to be

insize(T ) := diam{px, py, pz} = max{d(px, py), d(px, pz), d(py, pz)}. (1.2)

The space X is δ-insize if every geodesic triangle in X has insize at most δ.

This definition of insize is also equivalent to hyperbolicity. Besides, we have the following
quantitative result.

Theorem 1.1.6. [43, Proposition 2.21] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-insize.
(2) If X is δ-insize, then it is 2δ-hyperbolic.

Minsize definition

Definition 1.1.7. Let X be a geodesic metric space and T = {x, y, z} ⊂ X a geodesic triangle.
We define the minsize of the geodesic triangle T as

minsize(T ) := min
{

diam{x′, y′, z′} : x′ ∈ [yz], y′ ∈ [zx], z′ ∈ [xy]
}
. (1.3)

The space X is δ-minsize if every geodesic triangle in X has minsize at most δ.

This definition is also equivalent to hyperbolicity:

Theorem 1.1.8. [43, Proposition 2.21] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-minsize.
(2) If X is δ-minsize, then it is 8δ-hyperbolic.
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Geodesics diverge

As usual, we denote by Bk(x) the open ball in a metric space, i.e.,

Bk(x) := {y ∈ X : d(x, y) < k} for any x ∈ X and k > 0.

Definition 1.1.9. Given a geodesic metric space X, we say that e : [0,∞)→ (0,∞) is a divergence
function for X, if for every point x ∈ X and all geodesics γ = [xy], γ′ = [xz], the function e satisfies
the following condition:

For every R, r > 0 such that R + r ≤ min{L([xy]), L([xz])}, if d(γ(R), γ′(R)) ≥ e(0), and α is
a path in X \BR+r(x) from γ(R+ r) to γ′(R+ r), then we have L(α) > e(r) (see Figure 1.4).

Figure 1.4: Geodesics diverge.

We say that geodesics diverge in X if there is a divergence function e(r) such that

lim
r→∞

e(r) =∞.

We say that geodesics diverge exponentially in X if there is an exponential divergence function.
Theorem 1.1 in [91] shows that in a geodesic metric space X, geodesics diverge in X if and only if
geodesics diverge exponentially in X.

It is known that Definition 1.1.9 is also equivalent to hyperbolicity (see [3, 91]).

Examples of hyperbolic spaces

The following are interesting examples of hyperbolic spaces.

� Every bounded metric space X is (1
2 diamX)-hyperbolic.

� The real line R is 0-hyperbolic: In fact, any point of a geodesic triangle in the real line belongs
to two sides of the triangle simultaneously, and therefore any geodesic triangle in R is 0-thin.
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a

b

c

R
a b c a=a'=a'' b

c

b' b''

c'

c''
R2

� The Euclidean plane R2 is not hyperbolic, since the midpoint of a side on a large equilateral
triangle is far from all points on the other two sides.

These arguments can be applied to higher dimensions:

� A normed real vector space is hyperbolic if and only if it has dimension 1.

� Every metric tree with arbitrary edge lengths is 0-hyperbolic, by the same reason that the
real line.

a

b

c

� The unit disk ∂D (with its Poincaré metric) is log(1 +
√

2 )-thin: Consider any geodesic
triangle T in D. It is clear that T is contained in an ideal triangle T ′ with three vertices in ∂D
(and so, the sides of T ′ have infinite length), with δ(T ) ≤ δ(T ′). Since all ideal triangles are
isometric, we can consider just one fixed T ′. Then, a computation gives δ(T ′) = log(1 +

√
2 ).

� Every simply connected complete Riemannian manifold with sectional curvatures verifying
K ≤ −c2 < 0, for some constant c, is hyperbolic (see, e.g., [43, p. 52]).

� The graph Γ of the routing infrastructure of the Internet is also empirically shown to be
hyperbolic (see [6]). One can think that this is a trivial (and then a non-useful) fact, since
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(a) Obtaining the Poincaré disk model.
Image taken from wikipedia.

(b) Geodesic triangle in the
Poincaré model. Image taken from
wikipedia.

Figure 1.5: Poincaré disk.

every bounded metric space X is (1
2 diamX)-hyperbolic. The point is that the quotient

δ(Γ)

diam Γ

is very small, and this makes the tools of hyperbolic spaces applicable to the graph Γ (see,
e.g., [26]).

Finally, note that the hyperbolicity constant δ(X) of a geodesic metric space can be viewed as
a measure of how “tree-like” the space is, since those spaces with δ(X) = 0 are precisely the metric
trees. This is an interesting subject since, in many applications, one finds that the borderline
between tractable and intractable cases may be the tree-like degree of the structure to be dealt
with (see, e.g., [27]).

We would like to point out that deciding whether or not a space is hyperbolic is usually very
difficult. The main problem is that, usually, we do not know the location of geodesics in the space.

Since the hyperbolicity of many geodesic metric spaces is equivalent to the hyperbolicity of
some graphs related to them (see, e.g., [19]), the study of hyperbolic graphs becomes an interesting
topic.
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1.2 Previous results on hyperbolic graphs

We state now some of the main facts about hyperbolic spaces.

First of all, we present some important maps in the theory of hyperbolic spaces, since they
preserve hyperbolicity.

Definition 1.2.1. Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X −→ Y is said to be
an (α, β)-quasi-isometric embedding, with constants α ≥ 1 and β ≥ 0 if for every x, y ∈ X:

α−1dX(x, y)− β ≤ dY (f(x), f(y)) ≤ αdX(x, y) + β.

The function f is ε-full if for each y ∈ Y there exists x ∈ X with dY (f(x), y) ≤ ε.

Definition 1.2.2. A map f : X −→ Y is said to be a quasi-isometry, if there exist constants
α ≥ 1, β, ε ≥ 0 such that f is an ε-full (α, β)-quasi-isometric embedding.

Definition 1.2.3. An (α, β)-quasigeodesic in X is an (α, β)-quasi-isometric embedding between
an interval of R and X.

Example 1.2.4. Every isometric embedding is a (1, 0)-quasi-isometry embedding. Every isometry
is a 0-full (1, 0)-quasi-isometry.

Example 1.2.5. The integer part f : R −→ Z defined by f(x) = [x] is a (1, 1)-quasi-isometry,
although f is not continuous at the points in Z.

Remark 1.2.6. These functions are very flexible (since as we saw in the Example 1.2.5, the
continuity is not requested), and they are also a fundamental tool to determine the hyperbolicity of
a space.

In the study of any mathematical property, the class of maps which preserve that property plays
a central role in the theory. The following result shows that quasi-isometries preserve hyperbolicity.

Theorem 1.2.7 (Invariance of hyperbolicity). Let f : X −→ Y be an (α, β)-quasi-isometric
embedding between the geodesic metric spaces X and Y. If Y is hyperbolic, then X is hyperbolic.

Besides, if f is ε-full for some ε ≥ 0 (a quasi-isometry), then X is hyperbolic if and only if Y
is hyperbolic.

We next discuss the connection between hyperbolicity and geodesic stability. In the complex
plane (with its Euclidean distance), there is only one optimal way of joining two points: a straight
line segment. However if we allow “limited suboptimality”, the set of “reasonably efficient paths”
(quasigeodesics) are well spread. For instance, if we split the circle ∂D(0, R) ⊂ C into its two
semicircles between the points R and −R, then we have two reasonably efficient paths (two (π/2, 0)-
quasigeodesics) between these endpoints such that the point Ri on one of the semicircles is far from
all points on the other semicircle provided that R is large. Even an additive suboptimality can
lead to paths that fail to stay close together. For instance, the union of the two line segments
in C given by [0, R + i

√
R ] and [R + i

√
R , 2R] gives a path of length less than 2R + 1 (since

2
√
R2 +R ≤ 2R+ 1), and so is “additively inefficient” by less than 1 (it is a (1, 1)-quasigeodesic).

10



However, its corner point is very far from all points on the line segment [0, 2R] when R is very
large.

The situation in Gromov hyperbolic spaces is very different, since all such reasonably efficient
paths ((α, β)-quasigeodesics for fixed α, β) stay within a bounded distance of each other:

Definition 1.2.8. Let X be a metric space, Y a non-empty subset of X and ε a positive number.
We call ε-neighborhood of Y in X, denoted by Vε(Y ), to the set {x ∈ X : dX(x, Y ) ≤ ε}. The
Hausdorff distance between two subsets Y and Z of X, denoted by H(Y, Z), is the number defined
by:

inf{ε > 0 : Y ⊂ Vε(Z) and Z ⊂ Vε(Y )}.

Theorem 1.2.9 (Geodesic stability). For any constants α ≥ 1 and β, δ ≥ 0, there exists a constant
H = H(δ, α, β) such that for every δ-hyperbolic geodesic metric space and for every pair of (α, β)-
quasigeodesics g, h with the same endpoints, H(g, h) ≤ H.

The geodesic stability is not just a useful property of hyperbolic spaces; in fact, M. Bonk proved
in [17] that the geodesic stability is equivalent to the hyperbolicity:

Theorem 1.2.10. ([17, p.286]) Let X be a geodesic metric space with the following property: For
each a ≥ 1 there exists a constant H such that for every x, y ∈ X and any (a, 0)-quasigeodesic g in
X starting in x and finishing in y there exists a geodesic γ joining x and y satisfy H(g, γ) ≤ H.
Then X is hyperbolic.

Throughout this work, and unless otherwise is specified, G = (V,E) = (V (G), E(G)) denotes
a (finite or infinite) simple (without loops and multiple edges) graph (not necessarily connected)
such that V 6= ∅ and we have defined a length function, denoted by LG or L, on the edges
LG : E(G)→ R+; the length of a path η = {e1, e2, . . . , ek} is defined as LG(η) =

∑k
i=1 LG(ei). We

assume that `(G) := sup
{
LG(e) | e ∈ E(G)

}
< ∞. In order to consider a graph G as a geodesic

metric space, identify (by an isometry I) any edge uv ∈ E(G) with the interval [0, LG(uv)] in the
real line; then the edge uv (considered as a graph with just one edge) is isometric to the interval
[0, LG(uv)]. If x, y ∈ uv and ηxy denotes the segment contained in uv joining x and y, we define
the length of ηxy as LG(ηxy) = |I(x)− I(y)|. Thus, the points in G are the vertices and, also, the
points in the interior of any edge of G.

In this way, any connected graph G has a natural distance defined on its points, induced by
taking shortest paths in G, and we can see G as a metric graph. We denote by dG or d this distance.
If x, y are in different connected components of G, we define dG(x, y) = ∞. Otherwise, if a graph
has edges with different lengths, then we also assume that it is locally finite (i.e., in each metric ball
there are just a finite number of edges). These properties guarantee that any connected component
of any graph is a geodesic metric space.

Now, we collect some important results which will be useful for the development of our work.

As usual, by cycle we mean a simple closed curve, i.e., a path with different vertices, unless the
last one, which is equal to the first vertex.

Lemma 1.2.11. [102, Lemma 2.1] Let us consider a geodesic metric space X. If every geodesic
triangle in X that is a cycle is δ-thin, then X is δ-hyperbolic.
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This lemma has the following direct consequence.

Corollary 1.2.12. In any geodesic metric space X,

δ(X) = sup
{
δ(T ) | T is a geodesic triangle in X that is a cycle

}
.

In particular, for every graph G, it is satisfied

δ(G) = sup{δ(T ) : T is a geodesic triangle in G that is a cycle}.

The union of the set of the midpoints of the edges of a graph G and the set of vertices, V (G),
will be denoted by J(G). Let T1 be the set of geodesic triangles T in G that are cycles and such
that each vertex of T belongs to J(G). Let us define

δ1(G) := inf{λ : every geodesic triangle in T1 is λ-thin}.

The following result will be used throughout the work.

Theorem 1.2.13. [11, Theorems 2.5 and 2.7] For every graph G we have δ1(G) = δ(G). Further-
more, if G is hyperbolic, then there exists T ∈ T1 with δ(T ) = δ(G).

The previous theorem allows to reduce the study of the hyperbolicity constant of a graph G to
study only the geodesic triangles of G, whose vertices are vertices of G (i.e., belong to V (G)) or
midpoints of the edges of G.

Theorem 1.2.14. [11, Theorem 2.6] For every hyperbolic graph G, δ(G) is a multiple of 1
4 .

Given a graph G, we define

diamV (G) := sup
{
dG(v, w) | v, w ∈ V (G)

}
,

diamG := sup
{
dG(x, y) | x, y ∈ G

}
,

i.e, diamV (G) is the diameter of the set of vertices of G, and diamG is the diameter of the whole
graph G (recall that in order to have a geodesic metric space, G must contain both the vertices
and the points in the interior of any edge of G).

It is clear that diamV (G) ≤ diamG ≤ diamV (G) + 1.

The following result is well-known. Since the proof is short, we include it for the sake of
completeness.

Lemma 1.2.15. For any geodesic triangle T in a graph G we have δ(T ) ≤ (diamT )/2 ≤ L(T )/4.

Proof. Let T be a geodesic triangle T = {x, y, z} and p ∈ [xy]. Consider s, t ∈ T with d(s, t) =
diamT . Since T contains two curves joining s and t, we have diamT ≤ L(T )/2 and

d(p, [xz] ∪ [zy]) ≤ d(p, {x, y}) ≤ 1

2
diamT ≤ 1

4
L(T ),

for any p ∈ [xy]. Since we can rename the vertices of T , we conclude δ(T ) ≤ (diamT )/2 ≤
L(T )/4.
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We have the following direct consequence.

Corollary 1.2.16. The inequalities

δ(G) ≤ 1

2
diamG ≤ 1

2

(
diamV (G) + `(G)

)
hold for every graph G.

Throughout this work, and unless otherwise specified, we will consider graphs with edge length
1. Thus the previous result provides the following corollary:

Corollary 1.2.17. In any graph G with edges of length 1 the inequality

δ(G) ≤ 1

2
diamG ≤ 1

2
(diamV (G) + 1)

holds.

If H is a subgraph of G, we always have dH(x, y) ≥ dG(x, y) for every x, y ∈ H. A subgraph
H of G is said isometric if dH(x, y) = dG(x, y) for every x, y ∈ H. Note that this condition is
equivalent to dH(u, v) = dG(u, v) for every vertices u, v ∈ V (H).

The following results appear in [12, Lemma 9] and [101, Theorem 11].

Lemma 1.2.18. If H is an isometric subgraph of G, then δ(H) ≤ δ(G).

From [101, Theorem 11] we have the following result:

Theorem 1.2.19. The following graphs with n vertices have these precise values of δ.
• If Pn is the path graph, then δ(Pn) = 0 for all n ≥ 1.
• If Cn is the cycle graph, then δ(Cn) = 1

4 L(Cn) = n
4 for all n ≥ 3.

• If Kn is the complete graph, then δ(K1) = δ(K2) = 0, δ(K3) = 3/4 and δ(Kn) = 1 for all n ≥ 4.

By [80, Proposition 5 and Theorem 7], we have the following result.

Lemma 1.2.20. If G is any graph with a cycle g with length L(g) ≥ 3, then δ(G) ≥ 3/4. If there
exists a cycle g in G with length L(g) ≥ 4, then δ(G) ≥ 1.

In [10, Theorem 3.2] appears the following result.

Theorem 1.2.21. Given any graph G, we have δ(G) ≥ 5/4 if and only if there exist a cycle g in
G with length L(g) ≥ 5 and a vertex w ∈ g such that degg(w) = 2.

The following result appears in [57, Theorem 4.9].

Theorem 1.2.22. If G is a graph with n vertices and minimum degree n− 3, then δ(G) ≤ 5/4.

If H is a subgraph of G and w ∈ V (H), we denote by degH(w) the degree of the vertex w in
the subgraph induced by V (H). Note that, if C is a cycle, v ∈ V (G) ∩ C and Γ is the subgraph
induced by V (C) then Γ could contain edges that are not contained in C, and thus it is possible
to have degC(v) ≥ 2.
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T-decomposition of a graph

We say that a vertex v in a connected graph G is a cut-vertex if G \ v is not connected. A graph
is biconnected if it is connected and it does not contain cut-vertices. Given a graph G, we say that
a family of subgraphs {Gs}s of G is a T-decomposition of G if ∪sGs = G and Gs ∩ Gr is either
a cut-vertex or the empty set for each s 6= r. The well-known biconnected decomposition of any
graph is an example of T-decomposition.

Figure 1.6: T-decomposition of a graph.

It is known that the hyperbolicity constant of a graph is the supremum of the hyperbolicity
constants of its biconnected components [47]. One can check that the following result also holds
(see, e.g., [12, Theorem 3] for a proof).

Proposition 1.2.23. If G is a graph and {Gs}s is any T-decomposition of G, then

δ(G) = sup
s
δ(Gs).

14



Chapter 2

Interval graphs

For a finite graph with n vertices it is possible to compute δ(G) in time O(n3.69) [40] (this is
improved in [18, 31, 33]). Given a Cayley graph (of a presentation with solvable word problem)
there is an algorithm which allows to decide if it is hyperbolic [90]. However, deciding whether or
not a general infinite graph is hyperbolic is usually very difficult. Therefore, it is interesting to relate
hyperbolicity with other properties of graphs. The papers [20, 112, 9, 24] prove, respectively, that
chordal, k-chordal, edge-chordal and join graphs are hyperbolic. Moreover, in [9] it is shown that
hyperbolic graphs are path-chordal graphs. These results relating chordality and hyperbolicity are
improved in [78]. Some other authors have obtained results on hyperbolicity for particular classes of
graphs: vertex-symmetric graphs, bipartite and intersection graphs, bridged graphs and expanders
[21, 34, 71, 77].

A geometric graph is a graph in which the vertices or edges are associated with geometric
objects. Two of the main classes of geometric graphs are Euclidean graphs and intersection graphs.
A graph is Euclidean if the vertices are points in Rn and the length of each edge connecting two
vertices is the Euclidean distance between them (this makes a lot of sense with the cities and roads
analogy commonly used to describe graphs). An intersection graph is a graph in which each vertex is
associated with a set and in which vertices are connected by edges whenever the corresponding sets
have a nonempty intersection. In this chapter we work with interval graphs (a class of intersection
graphs) and indifference graphs (a class of Euclidean graphs).

An interval graph is the intersection graph of a family of intervals on the real line. It has one
vertex for each interval in the family, and an edge between every pair of corresponding vertices to
intervals that intersect. Usually, we consider that every edge of an interval graph has length 1, but
we also consider interval graphs whose edges have different lengths. Interval graphs are chordal
graphs and hence perfect graphs [38, 45]. Their complements belong to the class of comparability
graphs [44], and the comparability relations are precisely the interval orders [38]. The mathematical
theory of interval graphs was developed with a view towards applications by researchers at the
RAND Corporation’s mathematics department [30, pp. ix-10]. In particular, Cohen applied interval
graphs to mathematical models of population biology, specifically food webs [30, pp. 12–33].

Interval graphs are used to represent resource allocation problems in operations research and
scheduling theory. In these applications, each interval represents a request for a resource (such as a
processing unit of a distributed computing system or a room for a class) for a specific period of time.
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The maximum weight independent set problem for the graph represents the problem of finding the
best subset of requests that can be satisfied without conflicts [5]. An optimal graph coloring of
the interval graph represents an assignment of resources that covers all of the requests with as
few resources as possible; it can be found in polynomial time by a greedy coloring algorithm that
colors the intervals in sorted order by their left endpoints [32]. Other applications include genetics,
bioinformatics, and computer science. Finding a set of intervals that represent an interval graph
can also be used as a way of assembling contiguous subsequences in DNA mapping [114]. Interval
graphs also play an important role in temporal reasoning [46].

An indifference graph is an interval graph that has a set of unit interval graphs on the real
line as vertex set, with two intervals adjacent if and only if they intersect, and the length of the
corresponding edge is the distance between the midpoints of the two intervals. Also, we can see an
indifference graph as a Euclidean graph in R constructed by assigning a real number to each vertex
and connecting two vertices by an edge when their corresponding numbers are within one unit from
each other. Since it is a Euclidean graph, the length of each edge connecting two vertices is the
Euclidean distance between them. Indifference graphs possess several interesting properties. Every
connected indifference graph has a Hamiltonian path [15]. An indifference graph has a Hamiltonian
cycle if and only if it is biconnected [89]. Indifference graphs obey the reconstruction conjecture:
they are uniquely determined by their vertex-deleted subgraphs [110]. In the same direction, we
consider indifference graphs since for these graphs we can remove one of the hypothesis of a main
theorem on interval graphs (compare Theorem 2.1.9 and Corollary 2.1.10).

We would like to mention that the paper [76] collects very rich results, especially those con-
cerning path properties, about interval graphs and unit interval graphs.

It is well-known that interval graphs (with a very weak hypothesis) and indifference graphs are
hyperbolic. One of the main results in this chapter is Theorem 2.1.9, which provides a sharp upper
bound of the hyperbolicity constant of interval graphs verifying a very weak hypothesis. This result
allows to obtain bounds for the hyperbolicity constant of every indifference graph (Corollary 2.1.10)
and the hyperbolicity constant of every interval graph with edges of length 1 (Corollary 2.1.11).
Moreover, Theorem 2.2.2 provides sharp bounds for the hyperbolicity constant of the complement
of any interval graph with edges of length 1. Note that it is not usual to obtain such precise
bounds for large classes of graphs. The main result in this chapter is Theorem 2.1.16, which allows
to compute the hyperbolicity constant of every interval graph with edges of length 1, by using
geometric criteria.

2.1 Interval graphs and hyperbolicity

Recall that a chordal graph is one in which all cycles of four or more vertices have a chord, which
is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every
induced cycle in the graph should have three vertices.

Lemma 2.1.1. [20, Lemma 2.2] Consider a chordal graph G and a cycle C in G with a, v, b ∈
C ∩ V (G) and av, vb ∈ E(G). If ab /∈ E(G), then degC(v) ≥ 3.

Lemma 2.1.1 has the following direct consequence.

16



Corollary 2.1.2. Consider a cycle C in a chordal graph G and v1, v2, v3 consecutive vertices in C.
If degC(v2) = 2, then v1v3 ∈ E(G). Consequently, if C has at least 4 vertices, then degC(v1) ≥ 3
and degC(v3) ≥ 3.

The following result in [80, Theorem 11] will be useful.

Theorem 2.1.3. Let G be a graph. If δ(G) < 1, then we have either δ(G) = 0 or δ(G) = 3/4.
Furthermore,

� δ(G) = 0 if and only if G is a tree.

� δ(G) = 3/4 if and only if G is not a tree and every cycle in G has length 3.

Corollary 2.1.4. A graph G with edges of length 1 satisfies δ(G) ≥ 1 if and only if there exists a
cycle in G with length at least 4.

In order to characterize from a geometric viewpoint the interval graphs with hyperbolicity
constant 1, we need the following result, which is a direct consequence of Theorems 1.2.14 and
2.1.3, and [10, Theorem 4.14].

Theorem 2.1.5. Let G be any graph with edges of length 1. We have δ(G) = 1 if and only if
δ(G) /∈ {0, 3/4} and for every cycle C in G and every x, y ∈ C ∩ J(G) we have d(x, y) ≤ 2.

Theorems 2.1.3 and 2.1.5 have the following consequence.

Corollary 2.1.6. Let G be any graph with edges of length 1. We have δ(G) ≤ 1 if and only if for
every cycle C in G and every x, y ∈ C ∩ J(G) we have d(x, y) ≤ 2.

The following result is a direct consequence of Theorems 1.2.14 and 2.1.3, and [10, Theorems
4.14 and 4.21].

Theorem 2.1.7. Let G be any graph with edges of length 1. If there exists a cycle in G with
p, q ∈ V (G) and d(p, q) ≥ 3, then δ(G) ≥ 3/2.

We will need also this last result.

Theorem 2.1.8. [80, Theorem 30] If G is any graph with edges of length 1 and n vertices, then
δ(G) ≤ n/4.

Given a cycle C in an interval graph G, let {v1, . . . , vk} be the vertices in G with

C = v1v2 ∪ · · · ∪ vk−1vk ∪ vkv1.

Denote by {I1, . . . , Ik} the corresponding intervals to {v1, . . . , vk}. If Ij = [aj , bj ], then let us define
the minimal interval of C as the interval Ij1 = [aj1 , bj1 ] with aj1 ≤ aj for every 1 ≤ j ≤ k and
bj1 > bj if aj = aj1 with 1 ≤ j ≤ k and j 6= j1, and the maximal interval of C as the interval
Ij2 = [aj2 , bj2 ] with bj2 ≥ bj for every 1 ≤ j ≤ k and aj2 < aj if bj = bj2 with 1 ≤ j ≤ k and j 6= j2.
If i ∈ Z \ {1, 2, . . . , k}, 1 ≤ j ≤ k and i = j (mod k), then we define vi := vj and Ii := Ij .
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We say that a graph G is length-proper if every edge is a geodesic. A large class of length-proper
graphs are the graphs with edges of length 1. Another important class of length-proper graphs are
the following geometric graphs: Consider a discrete set V in an Euclidean space (or in a metric
space) where we consider two points connected by an edge if some criterium is satisfied. If we define
the length of an edge as the distance between its vertices, then we obtain a length-proper graph.

It is well-known that every interval graph is chordal. Hence, every length-proper interval graph
is hyperbolic. The following result is one of the main theorems in this chapter, since it provides
a sharp inequality for the hyperbolicity constant of any length-proper interval graph. Recall that
`(G) := sup

{
LG(e) | e ∈ E(G)

}
.

Theorem 2.1.9. Every length-proper interval graph G satisfies the sharp inequality

δ(G) ≤ 3

2
`(G).

Proof. Consider a geodesic triangle T = {x, y, z} that is a cycle in G and p ∈ [xy]. Assume first
that T satisfies the following property:

if a, b ∈ V (G) ∩ [xy] and ab ∈ E(G), then ab ⊆ [xy]. (2.1)

Consider the consecutive vertices {v1, . . . , vk} in the cycle T , and their corresponding intervals
{I1, . . . , Ik}. As before, we denote by Ij1 and Ij2 the minimal and maximal intervals, respectively.

If k < 4, then L(T ) ≤ 3`(G) and Lemma 1.2.15 gives

d(p, [xz] ∪ [zy]) ≤ 1

4
L(T ) ≤ 3

4
`(G). (2.2)

Assume now that k ≥ 4.

Case (A). Assume that p ∈ V (G). Let a, b ∈ V (G) with ap, bp ∈ E(G) and ap ∪ bp ⊂ T .

Case (A.1). If ab /∈ E(G), then Lemma 2.1.1 gives degT (p) ≥ 3, and there exists q ∈ V (G) ∩ T
with pq ∈ E(G) such that pq is not contained in T . By (2.1), q ∈ [xz] ∪ [zy] and so

d(p, [xz] ∪ [zy]) ≤ d(p, q) = L(pq) ≤ `(G). (2.3)

Case (A.2). If ab ∈ E(G), then ab is not contained in T , since T is a cycle and k ≥ 4. By (2.1),
{a, b} is not contained in [xy], and

d(p, [xz] ∪ [zy]) ≤ max
{
d(p, a), d(p, b)

}
= max

{
L(pa), L(pb)

}
≤ `(G). (2.4)

Case (B). Assume that p /∈ V (G). Let a, b ∈ V (G) with p ∈ ab ⊂ T and d(p, a) ≤ L(ab)/2 ≤
`(G)/2. Corollary 2.1.2 gives that we have degT (a) ≥ 3 or degT (b) ≥ 3.

Case (B.1). Assume that degT (a) ≥ 3.

Case (B.1.1). If a /∈ [xy], then

d(p, [xz] ∪ [zy]) ≤ d(p, a) ≤ 1

2
`(G). (2.5)
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Case (B.1.2). Assume that a ∈ [xy]. Since degT (a) ≥ 3, there exists q ∈ V (G) ∩ T with
aq ∈ E(G) such that aq is not contained in T . By (2.1), q ∈ [xz] ∪ [zy] and so

d(p, [xz] ∪ [zy]) ≤ d(p, a) + d(a, [xz] ∪ [zy]) ≤ d(p, a) + d(a, q)

= d(p, a) + L(aq) ≤ 1

2
`(G) + `(G) =

3

2
`(G).

(2.6)

Case (B.2). Assume that degT (a) = 2 and degT (b) ≥ 3. Let α 6= b with α ∈ V (G), αa ∈ E(G)
and αa ⊂ T . Corollary 2.1.2 gives that we have αb ∈ E(G). By (2.1), we have that {α, b} is not
contained in [xy], and

d(p, [xz] ∪ [zy]) ≤ max
{
d(p, α), d(p, b)

}
≤ max

{
d(p, a) + d(a, α), d(p, b)

}
≤ max

{1

2
`(G) + `(G), `(G)

}
=

3

2
`(G).

(2.7)

Inequalities (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7) give in every case d(p, [xz]∪[zy]) ≤ 3`(G)/2.

Consider now a geodesic triangle T = {x, y, z} = { [xy], [xz], [yz]} that does not satisfy Property
(2.1). We are going to obtain a new geodesic γ joining x and y such that the geodesic triangle
T ′ = {γ, [xz], [yz]} satisfies (2.1).

Let us define inductively a finite sequence of geodesics {g0, g1, g2, . . . , gr} joining x and y in the
following way:

If j = 0, then g0 := [xy].
Assume that j ≥ 1. If the geodesic triangle {gj−1, [xz], [yz]} satisfies (2.1), then r = j − 1 and

the sequence stops. If {gj−1, [xz], [yz]} does not satisfy (2.1), then there exist a, b ∈ V (G) ∩ [xy]
such that ab ∈ E(G) and ab is not contained in [xy]. Denote by [ab] the geodesic joining a and b
contained in gj−1. Let us define gj := (gj−1 \ [ab]) ∪ ab. Note that gj ∩ V (G) ⊂ gj−1 ∩ V (G) and
|gj ∩ V (G)| < |gj−1 ∩ V (G)|.

Since |gj ∩ V (G)| < |gj−1 ∩ V (G)| for any j ≥ 1, this sequence must finish with some geodesic
gr such that the geodesic triangle T ′ := {gr, [xz], [yz]} satisfies (2.1). Thus define γ := gr. Hence,

gr ∩ V (G) ⊂ gr−1 ∩ V (G) ⊂ · · · ⊂ g1 ∩ V (G) ⊂ g0 ∩ V (G),

and so γ ∩ V (G) ⊂ [xy] ∩ V (G).

Let us consider p ∈ [xy] ⊂ T .
If p ∈ γ ⊂ T ′, then by applying the previous argument to the geodesic triangle T ′ we obtain

d(p, [xz] ∪ [zy]) ≤ 3`(G)/2. Assume that p /∈ γ.
Since γ ∩ V (G) ⊂ [xy] ∩ V (G), there exist v, w ∈ γ ∩ V (G) with vw ∈ E(G) such that if [vw]

denotes the geodesic joining v and w contained in [xy], then

p ∈ [vw], [vw] ∩ vw = {v, w}.

Since vw and [vw] are geodesics, we have L(vw) = L([vw]). Thus we can define p′ ∈ γ as the
point in vw with d(p′, v) = d(p, v) and d(p′, w) = d(p, w). By applying the previous argument
to p′ and T ′, we obtain d(p′, [xz] ∪ [zy]) ≤ 3`(G)/2. Since p′ belongs to the edge vw, we have
d(p′, [xz] ∪ [zy]) = d(p′, v) + d(v, [xz] ∪ [zy]) or d(p′, [xz] ∪ [zy]) = d(p′, w) + d(w, [xz] ∪ [zy]). By
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symmetry, we can assume that d(p′, [xz]∪ [zy]) = d(p′, v) +d(v, [xz]∪ [zy]). Since d(p′, v) = d(p, v),
we have

d(p, [xz]∪ [zy]) ≤ d(p, v) + d(v, [xz]∪ [zy]) = d(p′, v) + d(v, [xz]∪ [zy]) = d(p′, [xz]∪ [zy]) ≤ 3

2
`(G).

Finally, Corollary 1.2.12 gives δ(G) ≤ 3`(G)/2.

Proposition 2.1.12 below shows that the inequality is sharp.

Note that if we remove the hypothesis `(G) <∞, then there are non-hyperbolic length-proper
interval graphs: If Γ is any graph such that every cycle in Γ has exactly 3 vertices and sup{L(C) | C
is a cycle in Γ} =∞, then Γ is a non-hyperbolic chordal graph. Some of these graphs Γ are length-
proper interval graphs.

An indifference graph is an interval graph that has a set of unit interval graphs on the real
line as vertex set, with two intervals adjacent if and only if they intersect, and the length of the
corresponding edge is the distance between the midpoints of the two intervals. Also, we can see
an indifference graph as a Euclidean graph in R constructed by assigning a real number to each
vertex and connecting two vertices by an edge when their corresponding numbers are within one
unit from each other. As an Euclidean graph, the length of an edge is the Euclidean distance
between the corresponding numbers to the vertices in the edge. Hence, every indifference graph G
is a length-proper graph and `(G) ≤ 1.

Theorem 2.1.9 has the following direct consequence.

Corollary 2.1.10. Every indifference graph G satisfies the inequality

δ(G) ≤ 3

2
`(G) ≤ 3

2
.

In this part we just consider graphs with edges of length 1. This is a very usual class of graphs.
Note that every graph G with edges of length 1 is a length-proper graph with `(G) = 1.

The goal of part of the section is to compute the precise value of the hyperbolicity constant of
every interval graph with edges of length 1 (see Theorem 2.1.16). We wish to emphasize that it is
unusual to be able to compute the hyperbolicity constant of every graph in a large class of graphs.
Let us start with a direct consequence of Theorem 2.1.9.

Corollary 2.1.11. Every interval graph G with edges of length 1 satisfies the inequality

δ(G) ≤ 3

2
.

First of all we characterize the interval graphs with edges of length 1 and δ(G) = 3/2 in
Proposition 2.1.12 below. Furthermore, Proposition 2.1.12 shows that the inequality in Theorem
2.1.9 is sharp.

Let G be an interval graph. We say that G has the (3/2)-intersection property if there exists
two disjoint intervals I ′ and I ′′ corresponding to vertices in a cycle C in G such that there is no
corresponding interval I to a vertex in G with I ∩ I ′ 6= ∅ and I ∩ I ′′ 6= ∅.
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Proposition 2.1.12. An interval graph G with edges of length 1 satisfies δ(G) = 3/2 if and only
if G has the (3/2)-intersection property.

Proof. Assume that G has the (3/2)-intersection property. Thus there exist two disjoint corre-
sponding intervals I ′ and I ′′ to vertices in a cycle C in G such that there is no corresponding
interval I to a vertex in G with I∩I ′ 6= ∅ and I∩I ′′ 6= ∅. If v′ and v′′ are the corresponding vertices
to I ′ and I ′′, respectively, then v′, v′′ ∈ C and d(v′, v′′) ≥ 3. Thus Theorem 2.1.7 gives δ(G) ≥ 3/2
and, since δ(G) ≤ 3/2 by Corollary 2.1.11, we conclude δ(G) = 3/2.

Assume now that G does not have the (3/2)-intersection property. Seeking for a contradiction
assume that δ(G) = 3/2. By Theorem 1.2.13, there exist a geodesic triangle T = {x, y, z} that
is a cycle in G and p ∈ [xy] such that d(p, [xz] ∪ [zy]) = δ(T ) = δ(G) = 3/2 and x, y, z ∈ J(G).
Since d(p, {x, y}) ≥ d(p, [xz] ∪ [zy]) = 3/2, we have d(x, y) ≥ 3. Since G does not have the (3/2)-
intersection property, for each two disjoint corresponding intervals I ′ and I ′′ to vertices in the cycle
T there exists a corresponding interval I to a vertex in G with I ∩ I ′ 6= ∅ and I ∩ I ′′ 6= ∅. If v′ and
v′′ are the corresponding vertices to I ′ and I ′′, respectively, then v′, v′′ ∈ T and d(v′, v′′) = 2. We
conclude that diam(T ∩ V (G)) ≤ 2 and diamT ≤ 3. Since d(x, y) ≥ 3 with x, y ∈ J(G), we have
diam(T ∩ V (G)) = 2, diamT = 3, d(x, y) = 3, L([xy])/2 = d(p, x) = d(p, y) = d(p, [xz] ∪ [zy]) =
δ(T ) = δ(G) = 3/2 and p is the midpoint of [xy]. Thus x, y ∈ J(G) \ V (G) and p ∈ V (G). If
x ∈ x1x2 ∈ E(G) and y ∈ y1y2 ∈ E(G), then d({x1, x2}, {y1, y2}) = 2. Let Ix1 , Ix2 , Iy1 , Iy2 , Ip
be the corresponding intervals to the vertices x1, x2, y1, y2, p, respectively. We can assume that
x1, y1 ∈ [xy] and thus Ix1 ∩ Ip 6= ∅ and Iy1 ∩ Ip 6= ∅. Since d(x1, y1) = 2, Ix1 ∩ Iy1 = ∅. Thus there
exists ζ ∈ Ip \ (Ix1 ∪ Iy1). Since [xy] ∩ V (G) = {x1, p, y1} and T is a cycle containing x1, p, y1,
by continuity, there exists a corresponding interval J to a vertex v ∈ ([xz] ∪ [zy]) ∩ V (G) with
ζ ∈ J . Thus pv ∈ E(G) and 3/2 = d(p, [xz] ∪ [zy]) ≤ d(p, v) = 1, which is a contradiction. Hence,
δ(G) 6= 3/2.

Corollary 2.1.11 and Theorems 1.2.14 and 2.1.3 give that δ(G) ∈ {0, 3/4, 1, 5/4, 3/2} for every
interval graph G with edges of length 1. Proposition 2.1.12 characterizes the interval graphs with
edges of length 1 and δ(G) = 3/2. In order to characterize the interval graphs with the other values
of the hyperbolicity constant, we need some definitions.

Let G be an interval graph.
We say that G has the 0-intersection property if for every three corresponding intervals I ′, I ′′

and I ′′′ to vertices in G we have I ′ ∩ I ′′ ∩ I ′′′ = ∅.
G has the (3/4)-intersection property if it does not have the 0-intersection property and for

every four corresponding intervals I ′, I ′′, I ′′′ and I ′′′′ to vertices in G we have I ′ ∩ I ′′ ∩ I ′′′ = ∅ or
I ′ ∩ I ′′ ∩ I ′′′′ = ∅.

By a couple of intervals in a cycle C of G we mean the union of two non-disjoint intervals whose
corresponding vertices belong to C. We say that G has the 1-intersection property if it does not
have the 0 and (3/4)-intersection properties and for every cycle C in G each interval and couple of
corresponding intervals to vertices in C are not disjoint.

One can check that every chordal graph that has a cycle with length at least four has a cycle
with length four and, since this cycle has a chord, it also has a cycle with length three.

Next we provide a characterization of the interval graphs with hyperbolicity constant 0. It is
well-known that these are the caterpillar trees (the trees for which removing the leaves and incident
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edges produces a path graph), see [67], but we prefer to characterize them by the 0-intersection
property in Proposition 2.1.13 below, since it looks similar to the other intersection properties.

Proposition 2.1.13. An interval graph G with edges of length 1 satisfies δ(G) = 0 if and only if
G has the 0-intersection property.

Proof. By Theorem 2.1.3, δ(G) = 0 if and only if G is a tree. Since every interval graph is chordal,
G is not a tree if and only if it contains a cycle with length 3, and this last condition holds if and
only if there exist three corresponding intervals I ′, I ′′ and I ′′′ to vertices in G with I ′∩ I ′′∩ I ′′′ 6= ∅.
Hence, G has a cycle if and only if it does not have the 0-intersection property.

Proposition 2.1.14. An interval graph G with edges of length 1 satisfies δ(G) = 3/4 if and only
if G has the (3/4)-intersection property.

Proof. By Theorem 2.1.3, δ(G) = 3/4 if and only if G is not a tree and every cycle in G has length
3. Proposition 2.1.13 gives that G is not a tree if and only if G does not have the 0-intersection
property. Therefore, it suffices to show that every cycle in G has length 3 if and only if for every
four corresponding intervals I ′, I ′′, I ′′′ and I ′′′′ to vertices in G we have I ′ ∩ I ′′ ∩ I ′′′ = ∅ or
I ′ ∩ I ′′ ∩ I ′′′′ = ∅.

Since every interval graph is chordal, G has a cycle with length at least 4 if and only if it has a
cycle C with length 4 and this cycle has at least a chord.

Assume first that there exists such a cycle C. If I ′, I ′′, I ′′′, I ′′′′ are the corresponding intervals
to the vertices in C and I ′, I ′′ correspond to vertices with a chord, then I ′ ∩ I ′′ ∩ I ′′′ 6= ∅ and
I ′ ∩ I ′′ ∩ I ′′′′ 6= ∅.

Assume now that there are corresponding intervals I ′, I ′′, I ′′′, I ′′′′ to the vertices v′, v′′, v′′′, v′′′′

in G with I ′ ∩ I ′′ ∩ I ′′′ 6= ∅ and I ′ ∩ I ′′ ∩ I ′′′′ 6= ∅. Thus v′v′′′, v′′v′′′ ∈ E(G) and v′v′′′, v′′v′′′′ ∈ E(G),
and so v′v′′′ ∪ v′′′v′′ ∪ v′′v′′′′ ∪ v′′′′v′ is a cycle in G with length 4.

Proposition 2.1.15. An interval graph G with edges of length 1 satisfies δ(G) = 1 if and only if
G has the 1-intersection property.

Proof. By Theorem 2.1.5, δ(G) = 1 if and only if δ(G) /∈ {0, 3/4} and for every cycle C in G and
every x, y ∈ C ∩J(G) we have d(x, y) ≤ 2. Propositions 2.1.13 and 2.1.14 give that δ(G) /∈ {0, 3/4}
if and only if G does not have the 0 and (3/4)-intersection properties. Therefore, it suffices to show
that for every cycle C in G, we have d(x, y) ≤ 2 for every x, y ∈ C∩J(G) if and only if each interval
and couple of corresponding intervals to vertices in C are not disjoint.

Fix a cycle C in G. Each interval and couple of corresponding intervals to vertices in C are
not disjoint if and only if d(x, y) ≤ 3/2 for every x ∈ C ∩ V (G) and y ∈ C ∩ (J(G) \ V (G)). Since
every point in C ∩ (J(G) \ V (G)) has a point in C ∩ V (G) at distance 1/2, this last condition is
equivalent to d(x, y) ≤ 2 for every x, y ∈ C ∩ J(G).

Finally, we collect the previous geometric characterizations in the following theorem. Note that
the characterization of δ(G) = 5/4 in Theorem 2.1.16 is much simpler that the one in [10]. Recall
that to characterize the graphs with hyperbolicity 3/2 is a very difficult task, as it was showed in
[10, Remark 4.19].
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Theorem 2.1.16. Every interval graph G with edges of length 1 is hyperbolic and δ(G) ∈ {0, 3/4, 1, 5/4, 3/2}.
Furthermore,

� δ(G) = 0 if and only if G has the 0-intersection property.

� δ(G) = 3/4 if and only if G has the (3/4)-intersection property.

� δ(G) = 1 if and only if G has the 1-intersection property.

� δ(G) = 5/4 if and only if G does not have the 0, 3/4, 1 and (3/2)-intersection properties.

� δ(G) = 3/2 if and only if G has the (3/2)-intersection property.

2.2 Complement of interval graphs

As usual, the complement G of the graph G is defined as the graph with V
(
G
)

= V (G) and such
that e ∈ E

(
G
)

if and only if e /∈ E(G). Note that that G could be disconnected in general, and
recall that for every disconnected graph G we define δ(G) as the supremum of δ(Gi) where Gi
varies in the set of connected components of G.

We consider that the length of the edges of every complement graph is 1.

If Γ is a subgraph of G, we consider in Γ the inner metric obtained by the restriction of the
metric in G, that is

dΓ(v, w) := inf
{
L(γ) | γ ⊂ Γ is a continuous curve joining v and w

}
≥ dG(v, w) .

Note that the inner metric dΓ is the usual metric if we consider the subgraph Γ as a graph.

Since the complements of interval graphs belong to the class of comparability graphs [44], it is
natural to study also the hyperbolicity constant of complements of interval graphs. In order to do
it we need some preliminary results and the following technical lemma.

Lemma 2.2.1. Let G be an interval graph with edges of length 1, V (G) = {v1, . . . , vr} and corre-
sponding intervals {I1, . . . , Ir}. We have diamV (G) = 2 if and only if there exists an interval Ii
with Ij ∩ Ii 6= ∅ for every 1 ≤ j ≤ r and diamV (G′) ≥ 2, where G′ is the corresponding interval
graph to {I1, . . . , Ir} \ Ii. Furthermore, if this is the case, then δ

(
G
)

= δ
(
G′
)
.

Proof. Assume first that diamV (G) = 2. Let [aj , bj ] = Ij for 1 ≤ j ≤ r. Consider integers
1 ≤ i1, i2 ≤ r satisfying

bi1 ≤ bj , aj ≤ ai2 , for every 1 ≤ j ≤ r. (2.8)

Since diamV (G) = 2, we have bi1 < ai2 . Thus dG(vi1 , vi2) = 2 and there exists i with vivi1 , vivi2 ∈
E(G). Hence, Ii1 ∩ Ii 6= ∅ and Ii2 ∩ Ii 6= ∅. Thus (2.8) gives Ij ∩ Ii 6= ∅ for every 1 ≤ j ≤ r, and we
deduce dG(vj , vi) ≤ 1 for every 1 ≤ j ≤ r.

Seeking for a contradiction assume that diamV (G′) ≤ 1. Thus dG(vj , vj′) ≤ dG′(vj , vj′) ≤ 1 for
every 1 ≤ j, j′ ≤ r with j, j′ 6= i. Furthermore, we have proved dG(vj , vi) ≤ 1 for every 1 ≤ j ≤ r.

23



Therefore, dG(vj , vj′) ≤ 1 for every 1 ≤ j, j′ ≤ r and we conclude diamV (G) ≤ 1, which is a
contradiction. Hence, diamV (G′) ≥ 2.

The converse implication is well-known.

Finally, since vjvi ∈ E(G) for every 1 ≤ j ≤ r with j 6= i, we have G = {vi} ∪G′ and

δ
(
G
)

= max
{
δ
(
{vi}

)
, δ
(
G′
)}

= max
{

0, δ
(
G′
)}

= δ
(
G′
)
.

The next theorem provides good bounds for the hyperbolicity constant of the complement of
every interval graph. Note that it is not usual to obtain such close lower and upper bounds for a
large class of graphs. Some inequalities are not difficult to prove; the most difficult cases are the
upper bound when diamV (G) = 2 (recall that this is the more difficult case in the study of the
complement of a graph), and the lower bound when diamV (G) ≥ 4.

Theorem 2.2.2. Let G be any interval graph.

� If diamV (G) = 1, then δ
(
G
)

= 0.

� If 2 ≤ diamV (G) ≤ 3, then 0 ≤ δ
(
G
)
≤ 2.

� If diamV (G) ≥ 4, then 5/4 ≤ δ
(
G
)
≤ 3/2.

Furthermore, the lower bounds on δ
(
G
)

are sharp.

Proof. If diamV (G) = 1, then G is a complete graph. Thus G is a union of isolated vertices and
δ
(
G
)

= 0.
Let us prove now the upper bounds.
It is well-known that if diamV (G) ≥ 3, then G is connected and diamV (G

)
≤ 3. Therefore,

Corollary 1.2.16 gives δ
(
G
)
≤ 2.

If diamV (G) ≥ 4, then [59, Theorem 2.14] gives δ
(
G
)
≤ 3/2.

Assume now that diamV (G) = 2. By Lemma 2.2.1, there exists an interval graph G′ with
|V (G′)| = |V (G)| − 1, diamV (G′) ≥ 2 and δ

(
G
)

= δ
(
G′
)
. Let us define inductively a finite

sequence of interval graphs {G(0), G(1), G(2), . . . , G(k)} with

δ
(
G(0)

)
= δ
(
G(1)

)
= δ
(
G(2)

)
= · · · = δ

(
G(k)

)
,

|V (G(j))| = |V (G(j−1))| − 1, for 0 < j ≤ k,

diamV (G(j)) ≥ 2, for 0 ≤ j ≤ k,

in the following way:
If j = 0, then G(0) := G.
If j = 1, then G(1) := G′.
Assume that j > 1. If diamV (G(j−1)) ≥ 3, then k = j − 1 and the sequence stops. If

diamV (G(j−1)) = 2, then Lemma 2.2.1 provides an interval graph (G(j−1))′ with

|V ((G(j−1))′)| = |V (G(j−1))| − 1, diamV ((G(j−1))′) ≥ 2, δ
(
G(j−1)

)
= δ
(

(G(j−1))′
)
,
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and we define G(j) := (G(j−1))′.
Since |V (G(j))| = |V (G(j−1))| − 1 for 0 < j ≤ k and the diameter of a graph with just a vertex

is 0, this sequence must finish with some graph G(k) satisfying diamV (G(k)) ≥ 3. Thus

δ
(
G
)

= δ
(
G(0)

)
= δ
(
G(1)

)
= · · · = δ

(
G(k)

)
≤ 2.

We prove now that δ
(
G
)
≥ 5/4 if diamV (G) ≥ 4. Let us fix any graph G with diamV (G) ≥ 4.

Thus, there exists a geodesic [v0v4] = v0v1 ∪ v1v2 ∪ v2v3 ∪ v3v4 in G. If Γ is the subgraph of G
induced by {v0, v1, v2, v3, v3, v4}, then E(Γ) = {v0v2, v0v3, v0v4, v1v3, v1v4, v2v4}. Consider the cycle
C := v0v2 ∪ v2v4 ∪ v4v1 ∪ v1v3 ∪ v3v0 in Γ. If p is the midpoint of v0v2, then dΓ(v1, p) = 5/2 and so
Corollary 2.1.6 gives δ(Γ) > 1. Therefore, Theorem 1.2.14 gives δ(Γ) ≥ 5/4. Since Γ is an induced
subgraph of G, if g is a path in G joining vi and vj (0 ≤ i, j ≤ 4) and g is not contained in Γ,
then LG(g) ≥ 2. Since diamG V (Γ) = 2, we have dΓ(vj , vj) = dG(vj , vj) for every 0 ≤ i, j ≤ 4;
consequently, dΓ(x, y) = dG(x, y) for every x, y ∈ Γ, i.e., Γ is an isometric subgraph of G. Hence,
the geodesic triangles in Γ are also geodesic triangles in G, and we have δ

(
G
)
≥ δ(Γ) ≥ 5/4.

Let us show now that the lower bounds on δ
(
G
)

are sharp. Recall that the path graph with n
vertices Pn is a graph with V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {v1v2, v2v3, . . . , vn−1vn}.

Consider the path graph with four vertices G = P4. Since G = P4, we have diamV (G) = 3 and
δ
(
G
)

= 0.
Consider the path graph with five vertices G = P5. Since diamV (G) = 4, we have δ

(
G
)
≥ 5/4.

Note that G has 5 vertices and thus Theorem 2.1.8 gives δ
(
G
)
≤ 5/4. Hence, we conclude

δ
(
G
)

= 5/4.

In 1956, Nordhaus and Gaddum gave lower and upper bounds on the sum and the product of
the chromatic number of a graph and its complement in [85]. Since then, relations of a similar type
have been proposed for many other graph invariants, in several hundred papers. Corollary 2.1.11
and Theorem 2.2.2 provide some Nordhaus-Gaddum type results for the hyperbolicity constant.

Corollary 2.2.3. If G is any interval graph with edges of length 1, then

δ(G) δ
(
G
)
≤


0 if diamV (G) = 1,

3 if 2 ≤ diamV (G) ≤ 3,

9/4 if diamV (G) ≥ 4.

Note that we can not improve the trivial lower bound δ(G)δ(G) ≥ 0, since it is attained if G is
any tree.

Corollary 2.2.4. If G is any interval graph with edges of length 1, then

δ(G) + δ
(
G
)
≤


3/2 if diamV (G) = 1,

7/2 if 2 ≤ diamV (G) ≤ 3,

3 if diamV (G) ≥ 4.

Besides, δ(G) + δ
(
G
)
≥ 5/4 for every graph G with diamV (G) ≥ 4.
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Chapter 3

Circular-arc graphs

In the previous chapter we study the hyperbolicity constant of interval graphs. In this chapter
we work with circular-arc graphs (another important class of intersection graphs). Circular-arc
graphs are useful in modeling periodic resource allocation problems in operations research (each
arc represents a request for a resource for a specific period repeated in time). They also have
applications in different fields such as genetic research, traffic control, computer compiler design
and statistics (see, e.g., [88]).

Of course, every interval graph can be viewed as a circular-arc graph; if a representation of a
circular-arc graph G leaves some point of the unit circle uncovered, it is topologically the same as
an interval representation of G (by cutting the circle and straighten it out to a straight line); we
will use this identification along the chapter.

In this chapter we give sharp bounds for the hyperbolicity constant of circular-arc graphs (see
Theorem 3.1.1). These bounds are improved in Theorem 3.1.2 for proper circular-arc graphs.
Theorem 3.1.5 gives a sufficient condition in order to attain the lower bound of δ(G) in Theorem
3.1.1; in particular, it shows that this bound is sharp. Propositions 3.1.3 and 3.1.4 characterize
the circular-arc graphs with small hyperbolicity constant. In Section 3.2, we obtain bounds in
Theorems 3.2.7 and 3.2.16 for the hyperbolicity constant of the complement and line of a circular-
arc graph, respectively. These theorems improve, for circular-arc graphs, the general bounds for
the hyperbolicity constant of the complement and line graphs. In order to do that, we obtain new
results about regular, chordal and line graphs which are interesting by themselves (see Theorems
3.2.5 and 3.2.15).

3.1 Circular-arc graphs and hyperbolicity

Given a set of arcs of a circle, we obtain its circular-arc graph, as the intersection graph of the set,
i.e., we associate a vertex with each arc and add an edge between two vertices if and only if the
corresponding arcs intersect.
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Figure 3.1: Circular-arc graph. Image taken from Wikipedia.

If G is a circular-arc graph, then a set of vertices K = {v1, . . . , vr} and corresponding arcs
{I1, . . . , Ir} is said total if I1 ∪ · · · ∪ Ir = S1, and we say that r is the size of K.

We say that a circular-arc graph G is NI if it has a total set of vertices. If either G is a finite
circular-arc graph or every arc is open, then G is NI if and only if the union of the corresponding
arcs to vertices in G is S1. Note that a circular-arc graph G is also an interval graph if and only if
it is not NI. In [58] the authors study the hyperbolicity constant of interval graphs.

For any NI circular-arc graph G, let us define the minimum size of G as

%(G) := min
{
size(K) | K is a total set of vertices in G

}
.

If G is an interval graph, then we define %(G) := 0. Hence, a circular-arc graph G is NI if and only
if %(G) ≥ 1. Note that the minimum size is 1 if and only if an arc is the whole unit circle S1.

The minimum size %(G) plays an important role in the study of the hyperbolicity of circular-arc
graphs, as the following result shows. Recall that btc denotes the lower integer part of the real
number t, i.e., the greatest integer less than or equal to t.

Since any NI circular-arc graph is a bounded set, we have that it is hyperbolic. The following
result provides sharp inequalities for the hyperbolicity constant of any circular-arc graph.

Theorem 3.1.1. Let G be a circular-arc graph. If %(G) 6= 1, 2, then G satisfies the sharp inequal-
ities

1

4
%(G) ≤ δ(G) ≤ 1

2

⌊1

2
%(G)

⌋
+

3

2
.

If %(G) = 1, then G satisfies the sharp inequalities

0 ≤ δ(G) ≤ 3

2
.

If %(G) = 2, then G satisfies the sharp inequalities

0 ≤ δ(G) ≤ 2.

Proof. The result is known if G is an interval graph (i.e., if %(G) = 0), see [58, Corollary 6].
Assume now that %(G) ≥ 1. Let us prove the upper bound of δ(G). Fix any set of vertices

K = {v1, . . . , v%(G)} and corresponding arcs {I1, . . . , I%(G)} with I1 ∪ · · · ∪ I%(G) = S1. Thus, every
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arc in S1 intersects some arc in {I1, . . . , I%(G)}. Hence,

diamV (G) ≤ 1 + diamK + 1 =
⌊1

2
%(G)

⌋
+ 2,

diamG ≤ 1

2
+ diamV (G) +

1

2
≤
⌊1

2
%(G)

⌋
+ 3,

and Corollary 1.2.17 gives the upper bound.
Let us prove now that this bound is sharp. Given θ1 < θ2, denote by [eiθ1 , eiθ2 ] the arc

[eiθ1 , eiθ2 ] :=
{
eiθ | θ ∈ [θ1, θ2]

}
.

Fix any even integer % ≥ 6 with % ≡ 2 ( mod 4) and consider the family of arcs{
[e2πi(j−1)/%, e2πij/%]

}%
j=1

Denote by Ij the arc [e2πi(j−1)/%, e2πij/%]. Let z1, z2, z3 be the points eπi/(2%), e2πi/(2%), e3πi/(2%) in I1,
respectively, z4, z5 the points e2πi/%+2πi/(3%), e2πi/%+4πi/(3%) in I2, respectively, and zj the midpoint
of Ij−3 with 6 ≤ j ≤ %/2 + 3. Let z%/2+4, z%/2+5, z%/2+6 be the points −eπi/(2%),−e2πi/(2%),−e3πi/(2%)

in I%/2+1, respectively, z%/2+7, z%/2+8 the points −e2πi/%+2πi/(3%),−e2πi/%+4πi/(3%) in I%/2+2, respec-
tively, and zk the midpoint of Ik−6 with %/2 + 9 ≤ k ≤ %+ 6.

Consider the circular-arc graph G% defined as the intersection graph of the family of arcs{
[e2πi(j−1)/%, e2πij/%]

}%
j=1
∪
{

[zj , zj+1]
}%+6

j=1
∪
{

[z%+6, z1]
}
.

Let x (respectively, y) be the midpoint of the edge of G% with endpoints corresponding to the arcs
[z1, z2] and [z2, z3] (respectively, [z%/2+4, z%/2+5] and [z%/2+5, z%/2+6]).

We have dG%(x, y) = 3/2 + %/2 + 3/2 = %/2 + 3. Let γ1 and γ2 be two geodesics in G% joining x

and y such that γ1 contains the corresponding vertices to the arcs
{

[zj , zj+1]
}%/2+4

j=2
and γ2 contains

the corresponding vertices to the arcs
{

[zj , zj+1]
}%+6

j=%/2+5
∪
{

[z%+6, z1]
}
∪
{

[z1, z2]
}

. Consider the

geodesic bigon {γ1, γ2}. If p is the midpoint of γ1, then dG%(p, γ2) = dG%(x, y)/2 = %/4 + 3/2.
Hence, %/4 + 3/2 = dG%(p, γ2) ≤ δ(G%) ≤ %/4 + 3/2, and we conclude δ(G%) = %/4 + 3/2.

If %(G) = 1, then this upper bound is also attained. The wheel graph with seven vertices W7 is
a circular-arc graph with %(G) = 1, and [101, Theorem 11] gives that δ(W7) = 3/2.

If %(G) = 2, then this upper bound is attained by the circular-arc graph G corresponding to
the arcs

[e0i, eπi] ∪ [eπi, e2πi] ∪ [e0i, eπi/4] ∪ [eπi/4, eπi/2] ∪ [eπi/2, e3πi/4] ∪ [e3πi/4, eπi]

∪ [eπi, e5πi/4] ∪ [e5πi/4, e3πi/2] ∪ [e3πi/2, e7πi/4] ∪ [e7πi/4, e2πi].

In order to prove δ(G) = 2, let x (respectively, y) be the midpoint of the edge in G with endpoints
[eπi/4, eπi/2] and [eπi/2, e3πi/4] (respectively, [e5πi/4, e3πi/2] and [e3πi/2, e7πi/4]). One can check that
there are two geodesics γ1 and γ2 such that the midpoint p of γ1 satisfies dG(p, γ2) = 2. If we
consider the geodesic bigon {γ1, γ2}, then 2 = dG(p, γ2) ≤ δ(G) ≤ 2, and we conclude δ(G) = 2.
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In order to prove the lower bound of δ(G), we deal first with the case %(G) ≥ 3. As above, fix any
set of vertices K = {v1, . . . , v%(G)} and corresponding arcs {I1, . . . , I%(G)} with I1 ∪ · · · ∪ I%(G) = S1.
The definition of %(G) gives that the subgraph ΓK of G induced by K is an isometric subgraph of
G. Since %(G) ≥ 3, the subgraph ΓK is isomorphic to the cycle graph C%(G). Therefore, Lemma
1.2.18 and Theorem 1.2.19 give δ(G) ≥ δ(ΓK) = %(G)/4.

Any circular-arc graph isomorphic to the cycle graph C% attains this lower bound.
Finally, the lower bounds for the cases %(G) = 1, 2 are trivial, and they are attained by the

graphs G1 with just a vertex and G2 with just an edge, respectively.

An important subset of circular-arc graphs are proper circular-arc graphs. A circular-arc graph
G is said proper if there is a representation of G where none of the arcs contains another. The
following result improves Theorem 3.1.1 for this kind of graphs.

Theorem 3.1.2. Let G be a proper circular-arc graph. If %(G) ≥ 3, then G satisfies the sharp
inequalities

1

4
%(G) ≤ δ(G) ≤ 1

2

⌊1

2
%(G)

⌋
+ 1.

If %(G) = 1, then δ(G) = 0. If %(G) = 2, then G satisfies the sharp inequalities 0 ≤ δ(G) ≤ 5/4.

Proof. Assume first that the minimum size of G is 1. Since S1 is a corresponding arc to a vertex
of G and G is a proper circular-arc graph, we have that it has just a vertex, and δ(G) = 0.

Assume now that %(G) ≥ 2. The lower bounds are a consequence of Theorem 3.1.1 (note that
the examples in the proof of Theorem 3.1.1 attaining the lower bounds are proper circular-arc
graphs). Let us prove the upper bound of δ(G). Fix any set of vertices K = {v1, . . . , v%(G)} and
corresponding arcs {I1, . . . , I%(G)} with I1 ∪ · · · ∪ I%(G) = S1. Thus, every arc in S1 intersects
two arcs in {I1, . . . , I%(G)}. Given any u,w ∈ V (G) \ K, there are v1,u, v2,u, v1,w, v2,w ∈ K with
uv1,u, uv2,u, wv1,w, wv2,w, v1,uv2,u, v1,wv2,w ∈ E(G). Thus,

dG(v1,uv2,u, v1,wv2,w) ≤
⌊1

2
(%(G)− 2)

⌋
=
⌊1

2
%(G)

⌋
− 1.

Hence,

diamV (G) ≤ 1 +
(⌊1

2
%(G)

⌋
− 1
)

+ 1 =
⌊1

2
%(G)

⌋
+ 1,

diamG ≤ 1

2
+ diamV (G) +

1

2
≤
⌊1

2
%(G)

⌋
+ 2,

and Corollary 1.2.17 gives the upper bound for %(G) ≥ 3, and δ(G) ≤ 3/2 if %(G) = 2.
Let us prove now that the upper bound for %(G) ≥ 3 is sharp. Fix any even integer % ≥ 4 and

0 < ε < π/%, and consider the proper circular-arc graph Γ% defined as the intersection graph of the
family of arcs{

[e2πi(j−1)/%, e2πij/%]
}%
j=1
∪
{

[eεi+2πi(j−1)/%, eεi+2πij/%]
}%/2−1

j=1
∪
{

[eεi+πi+2πi(j−1)/%, eεi+πi+2πij/%]
}%/2−1

j=1

∪ [e−εi+πi−2πi/%, e−εi+πi] ∪ [e−εi+2πi−2πi/%, e−εi+2πi]

∪ [e−εi/2, eεi] ∪ [e−εi/2+πi, eεi+πi]

∪ [e−εi+πi, eεi/2+πi] ∪ [e−εi+2πi, eεi/2+2πi].
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Let x (respectively, y) be the midpoint of the edge of Γ% with endpoints corresponding to the arcs
[e−εi/2, eεi] and [e−εi+2πi, eεi/2+2πi] (respectively, [e−εi/2+πi, eεi+πi] and [e−εi+πi, eεi/2+πi]). We have
dΓ%(x, y) = %/2 + 2. Let γ1 and γ2 be two geodesics in Γ% joining x and y such that γ1 contains the
corresponding vertices to the arcs

[e−εi/2, eεi] ∪
{

[eεi+2πi(j−1)/%, eεi+2πij/%]
}%/2−1

j=1
∪ [e−εi+πi−2πi/%, e−εi+πi] ∪ [e−εi+πi, eεi/2+πi]

and γ2 contains the corresponding vertices to the arcs

[e−εi/2+πi, eεi+πi] ∪
{

[eεi+πi+2πi(j−1)/%, eεi+πi+2πij/%]
}%/2−1

j=1
∪ [e−εi+2πi−2πi/%, e−εi+2πi]

∪ [e−εi+2πi, eεi/2+2πi].

Consider the geodesic bigon {γ1, γ2}. If p is the midpoint of γ1, then dΓ%(p, γ2) = dΓ%(x, y)/2 =
%/4 + 1. Hence, %/4 + 1 = dΓ%(p, γ2) ≤ δ(Γ%) ≤ %/4 + 1, and we conclude δ(Γ%) = %/4 + 1.

Assume that %(G) = 2. We have proved δ(G) ≤ 3/2. Seeking for a contradiction assume that
δ(G) = 3/2. By Theorem 1.2.13, there exist T = {x, y, z} ∈ T1 and p ∈ [xy] with dG(p, [xz]∪[yz]) =
δ(G) = 3/2. Since we have proved diamV (G) ≤ 2 and diamG ≤ 3, we have dG(x, y) = 3,
dG(p, {x, y}) = dG(p, [xz]∪[yz]) = 3/2, x, y ∈ J(G)\V (G) and p ∈ V (G). Hence, x (respectively, y)
is the midpoint of u1u2 ∈ E(G) with u1, u2 ∈ V (G)\K and corresponding arcs H1, H2 (respectively,
the midpoint of w1w2 ∈ E(G) with w1, w2 ∈ V (G) \K and corresponding arcs J1, J2). Note that
each arc H1, H2, J1, J2 intersects I1 ∩ I2 and it is different from I1 and I2. Since G is a proper
circular-arc graph, we have that both H1 and H2 contain the same connected component Λ of
I1 ∩ I2; also, both J1 and J2 contain the other connected component Λ′ of I1 ∩ I2. Denote by
I the corresponding arc to p. Since G is a proper circular-arc graph, we have that I contains
either Λ or Λ′. Assume that I contains Λ (if I contains Λ′, then the argument is similar). Thus,
dG(p, u1) = dG(p, u2) = 1. Without loss of generality we can assume that u1 ∈ [xy]. Therefore,
u2 ∈ [xz] ∪ [yz] and we conclude 3/2 = dG(p, [xz] ∪ [yz]) ≤ dG(p, u2) = 1, a contradiction. Hence,
δ(G) < 3/2 and Theorem 1.2.13 gives δ(G) ≤ 5/4.

Finally, we show that the proper circular-arc graph Γ (with %(G) = 2) corresponding to the
arcs

[e0i, eπi] ∪ [eπi, e2πi] ∪ [e−πi/8, eπi/4] ∪ [e−πi/4, eπi/8] ∪ [eπi−πi/8, eπi+πi/4] ∪ [eπi−πi/4, eπi+πi/8],

satisfies δ(Γ) = 5/4. Let x (respectively, y) be the midpoint of the edge in Γ with endpoints
[e−πi/8, eπi/4] and [e−πi/4, eπi/8] (respectively, [eπi−πi/8, eπi+πi/4] and [eπi−πi/4, eπi+πi/8]). We have
dΓ(x, y) = 3. One can check that there are two geodesics γ1 and γ2 such that the midpoint q of γ1

is a vertex of Γ and dΓ(q, γ2) = 1. If p is a point in γ1 with dΓ(p, q) = 1/4, then dΓ(p, γ2) = 5/4.
If we consider the geodesic bigon {γ1, γ2}, then 5/4 = dΓ(p, γ2) ≤ δ(Γ) ≤ 5/4, and we conclude
δ(Γ) = 5/4.

Note that Theorem 3.1.5 below gives a sufficient condition in order to attain the lower bound of
δ(G) in Theorem 3.1.1. This sufficient condition is, in fact, a characterization when 3 ≤ %(G) ≤ 4.

Next, we are going to characterize the circular-arc graphs with the two smallest possible values
for the hyperbolicity constant: 0 and 3/4.
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We say that a circular-arc graph G has the 0-property if we have either:
(1) G is an interval graph with the 0-intersection property.
(2) %(G) = 1 and given two corresponding arcs I, J to vertices in G with I, J 6= S1, we have

I ∩ J = ∅.
(3) %(G) = 2 and there exist two corresponding arcs I1, I2 to vertices in G with I1 ∪ I2 = S1

such any other corresponding arc to some vertex in G intersects just one of the arcs I1, I2, and if
Gj is the interval graph corresponding to the arcs intersecting Ij then Gj has the 0-intersection
property for j = 1, 2.

Proposition 3.1.3. A circular-arc graph G satisfies δ(G) = 0 if and only if G has the 0-property.

Proof. If G is an interval graph, then Theorem 2.1.16 gives the result. Assume now that G is a NI
circular-arc graph.

If G satisfies (2) in the definition of 0-property, then G is a tree (in fact, it is a star graph) and
we have δ(G) = 0.

If G satisfies (3) in the definition of 0-property, then G is a tree and we have δ(G) = 0.
Assume that δ(G) = 0. Theorem 3.1.1 gives that %(G) ≤ 2.
Assume that %(G) = 1. Seeking for a contradiction assume that there exist two corresponding

arcs I, J to vertices in G with I, J 6= S1 and I ∩ J 6= ∅. Therefore, there exists a cycle with length
three corresponding to the arcs I, J, S1, and Lemma 1.2.20 gives 0 = δ(G) ≥ 3/4, a contradiction.
Thus, we have I ∩ J = ∅ and G has the 0-property.

Assume that %(G) = 2. Thus, there exist two corresponding arcs I1, I2 to vertices in G with
I1 ∪ I2 = S1. Seeking for a contradiction assume that there exists a corresponding arc I to
some vertex in G intersecting both arcs I1 and I2. Therefore, there is a cycle of length 3 in G
corresponding to I, I1, I2, and we have δ(G) ≥ 3/4 by Lemma 1.2.20, which is a contradiction.
So, any other corresponding arc to some vertex in G intersects just one of the arcs I1, I2. Let
Gj be the interval graph corresponding to the arcs intersecting Ij for j = 1, 2. Since δ(G) = 0,
Proposition 1.2.23 gives that δ(G1) = δ(G2) = 0. Thus, Theorem 2.1.16 gives that G1 and G2 have
the 0-intersection property.

We say that a circular-arc graph G has the (3/4)-property if we have either:
(1) G is an interval graph with the (3/4)-intersection property.
(2) %(G) = 1, there exist two corresponding arcs I ′, I ′′ 6= S1 to vertices in G with I ′ ∩ I ′′ 6= ∅,

and for every three corresponding arcs I, J,K 6= S1 to vertices in G, we have either I ∩ J = ∅ or
I ∩K = ∅.

(3) %(G) = 2 and there exist two corresponding arcs I1, I2 to vertices in G with I1 ∪ I2 = S1

such any other corresponding arc to some vertex in G intersects just one of the arcs I1, I2, and if
Gj is the interval graph corresponding to the arcs intersecting Ij then G1 has the (3/4)-intersection
property and G2 has either the 0- or the (3/4)-intersection property.

(4) %(G) = 2 and there exist three corresponding arcs I, I1, I2 to vertices in G with I1 ∪ I2 = S1

and I ∩ Ij 6= ∅ for j = 1, 2, such that any other arc corresponding to some vertex in G intersects
just one of the arcs I1, I2 and does not intersect I, and if Gj is the interval graph corresponding
to the arcs intersecting Ij except for I then Gj has either the 0- or the (3/4)-intersection property
for each j = 1, 2.
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(5) %(G) = 3 and there exist three corresponding arcs I1, I2, I3 to vertices in G with I1∪I2∪I3 =
S1 such any other corresponding arc to some vertex in G intersects just one of the arcs I1, I2, I3,
and if Gj is the interval graph corresponding to the arcs intersecting Ij then Gj has either the 0-
or the (3/4)-intersection property for each j = 1, 2, 3.

Proposition 3.1.4. A circular-arc graph G satisfies δ(G) = 3/4 if and only if G has the (3/4)-
property.

Proof. If G is an interval graph, then Theorem 2.1.16 gives the result. Assume now that G is a NI
circular-arc graph.

If G satisfies either (2), (3), (4) or (5) in the definition of (3/4)-property, then Theorems 2.1.3
and 2.1.16 and Proposition 1.2.23 give that δ(G) = 3/4.

Assume that δ(G) = 3/4. Theorem 3.1.1 gives %(G) ≤ 3.
Assume that %(G) = 3. Thus, there exist three corresponding arcs I1, I2, I3 to vertices in G

with I1 ∪ I2 ∪ I3 = S1 Seeking for a contradiction assume that there exists a corresponding arc I to
some vertex in G intersecting at least two arcs in {I1, I2, I3}. Therefore, there is a cycle of length 4
in G corresponding to I, I1, I2, I3 and we have δ(G) ≥ 1 by Lemma 1.2.20, which is a contradiction.
So, any other corresponding arc to some vertex in G intersects just one of the arcs I1, I2, I3. Let
Gj be the interval graph corresponding to the arcs intersecting Ij for j = 1, 2, 3. Let us denote
by G0 the subgraph of G induced by the corresponding vertices to I1, I2, I3 (G0 is a cycle graph
with three vertices). Note that {G0, G1, G2, G3} is a T-decomposition of G. Since δ(G) = 3/4,
Proposition 1.2.23 gives that δ(Gj) ≤ 3/4 for j = 1, 2, 3. Thus, Theorem 2.1.16 gives that Gj has
either the 0- or the (3/4)-intersection property for each j = 1, 2, 3, and we obtain condition (5).

Assume that %(G) = 2. Thus, there exist two corresponding arcs I1, I2 to vertices in G with
I1 ∪ I2 = S1.

Assume that any other corresponding arc to some vertex in G intersects just one of the arcs
I1, I2. Let Gj be the interval graph corresponding to the arcs intersecting Ij for j = 1, 2, and let
G0 be the subgraph of G induced by the corresponding vertices to I1, I2 (G0 has just an edge).
Since {G0, G1, G2} is a T-decomposition of G, Proposition 1.2.23 gives

3

4
= δ(G) = max

{
δ(G0), δ(G1), δ(G2)

}
= max

{
δ(G1), δ(G2)

}
.

Hence, a subgraph, say G1, has hyperbolicity constant 3/4 and δ(G2) ≤ 3/4. Thus, Theorems
2.1.3 and 2.1.16 give that G1 has the (3/4)-intersection property and G2 has either the 0- or the
(3/4)-intersection property, and we obtain condition (3).

Assume that there exist corresponding arcs I, I1, I2 to vertices in G with I ∩ Ij 6= ∅ for j = 1, 2.
Seeking for a contradiction assume that there exists another corresponding arc J to some vertex
in G intersecting both arcs I1 and I2. Hence, there is a cycle of length four in G corresponding
to I, I1, I2, J and we have δ(G) ≥ 1 by Lemma 1.2.20, which is a contradiction. Thus, any other
corresponding arc to some vertex in G intersects just one of the arcs I1, I2. A similar argument
gives that any other corresponding arc to some vertex in G does not intersect I. Let Gj be the
interval graph corresponding to the arcs intersecting Ij except for I. Let us denote by G0 the
subgraph of G induced by the corresponding vertices to I, I1, I2 (G0 is a cycle graph with three
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vertices). Since {G0, G1, G2} is a T-decomposition of G, Proposition 1.2.23 gives

3

4
= δ(G) = max

{
δ(G0), δ(G1), δ(G2)

}
= max

{3

4
, δ(G1), δ(G2)

}
.

This equation holds if and only if δ(Gj) ≤ 3/4 for j = 1, 2. Thus, Theorems 2.1.3 and 2.1.16
give that Gj has either the 0- or the (3/4)-intersection property for each j = 1, 2, and we obtain
condition (4).

Finally, assume that %(G) = 1.
Seeking for a contradiction assume that for every two corresponding arcs I ′, I ′′ 6= S1 to vertices

in G, we have I ′ ∩ I ′′ = ∅. Thus, G is a star graph and δ(G) = 0, a contradiction. Hence, there
exist two arcs I ′, I ′′ 6= S1 with I ′ ∩ I ′′ 6= ∅.

Seeking for a contradiction assume that there exist three corresponding arcs I, J,K 6= S1 to
vertices in G with I ∩ J 6= ∅ and I ∩ K 6= ∅. Therefore, there exists a cycle with length four
corresponding to the arcs I, J,K,S1, and Lemma 1.2.20 gives δ(G) ≥ 1, a contradiction. Thus,
for every three arcs I, J,K 6= S1 we have either I ∩ J = ∅ or I ∩K = ∅, and we obtain condition
(2).

We say that a circular-arc graph G with minimum size at least 3 has the %(G)-property if there
exist %(G) corresponding arcs I1, . . . , I%(G) to vertices in G with I1∪ · · · ∪ I%(G) = S1 such any other
corresponding arc to some vertex in G intersects just one of the arcs I1, . . . , I%(G), and if Gj is the
interval graph corresponding to the arcs intersecting Ij for 1 ≤ j ≤ %(G) and %(G) ≤ 5 then:

(1) Gj has either the 0- or (3/4)-intersection property for 1 ≤ j ≤ %(G) if %(G) = 3.
(2) Gj has either the 0-, (3/4)- or 1-intersection property for 1 ≤ j ≤ %(G) if %(G) = 4.
(3) Gj does not have the (3/2)-intersection property for 1 ≤ j ≤ %(G) if %(G) = 5.

The next result gives a sufficient condition in order to attain the lower bound of δ(G) in Theorem
3.1.1. We also prove that this sufficient condition is, in fact, a characterization when 3 ≤ %(G) ≤ 4.

Theorem 3.1.5. Let G be a circular-arc graph with %(G) ≥ 3. If G has the %(G)-property, then
G satisfies δ(G) = %(G)/4. Furthermore, if δ(G) = %(G)/4 with 3 ≤ %(G) ≤ 4, then G has the
%(G)-property.

Proof. Assume first that G has the %(G)-property. Let us denote by G0 the subgraph of G induced
by the corresponding vertices to I1, . . . , I%(G) (G0 is a cycle graph with %(G) vertices). Since
{G0, G1, . . . , G%(G)} is a T-decomposition of G, Theorems 3.1.1 and 1.2.19 and Proposition 1.2.23
give

%(G)

4
≤ δ(G) = max

{
δ(G0), δ(G1), . . . , δ(G%(G))

}
= max

{%(G)

4
, δ(G1), . . . , δ(G%(G))

}
. (3.1)

Since Gj is an interval graph for 1 ≤ j ≤ %(G), if %(G) ≥ 6, then Theorem 2.1.16 gives δ(Gj) ≤
3/2 ≤ %(G)/4 for 1 ≤ j ≤ %(G).

If %(G) = 3, then Theorem 2.1.16 gives δ(Gj) ≤ 3/4 = %(G)/4 for 1 ≤ j ≤ %(G).
If %(G) = 4, then Theorem 2.1.16 gives δ(Gj) ≤ 1 = %(G)/4 for 1 ≤ j ≤ %(G).
If %(G) = 5, then Theorem 2.1.16 gives δ(Gj) ≤ 5/4 = %(G)/4 for 1 ≤ j ≤ %(G).
These inequalities and (3.1) give δ(G) = %(G)/4 in every case.
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Assume now that δ(G) = %(G)/4 with 3 ≤ %(G) ≤ 4.
Seeking for a contradiction assume that there exists a corresponding arc I to some vertex in

G intersecting at least two arcs in {I1, . . . , I%(G)}. Denote by {v1, . . . , v%(G)} their corresponding
vertices in G, and by C the cycle in G with vertices {v1, . . . , v%(G)}. Let vI be the corresponding
vertex in G to I.

If %(G) = 3, then there is a cycle in G with vertices {v1, v2, v3, vI}, and Lemma 1.2.20 gives
δ(G) ≥ 1, a contradiction.

If %(G) = 4, then we show now that there is a cycle in G with vertices {v1, v2, v3, v4, vI}. The
definition of %(G) gives that vI is neighbor of at most three vertices in {v1, v2, v3, v4}. Without
loss of generality we can assume that v1v2, v2v3, v3v4, v4v1, v1vI , v2vI ∈ E(G) and v4vI /∈ E(G).
Consider the cycle g := v1vI ∪ vIv2 ∪ v2v3 ∪ v3v4 ∪ v4v1 in G. Since L(g) = 5 and degg(v4) = 2,
Theorem 1.2.21 gives δ(G) ≥ 5/4, a contradiction.

Thus, any corresponding arc to some vertex in G intersects just one of the arcs {I1, . . . , I%(G)}.
Let Gj be the interval graph corresponding to the arcs intersecting Ij for 1 ≤ j ≤ %(G). Let us
denote by G0 the subgraph of G induced by the corresponding vertices to I1, . . . , I%(G) for 1 ≤ j ≤
%(G) (G0 is a cycle graph with %(G) vertices). Since {G0, G1, . . . , G%(G)} is a T-decomposition of
G, Proposition 1.2.23 and Theorem 1.2.19 give

%(G)

4
= δ(G) = max

{
δ(G0), δ(G1), . . . , δ(G%(G))

}
= max

{%(G)

4
, δ(G1), . . . , δ(G%(G))

}
.

This equation holds if and only if δ(Gj) ≤ %(G)/4 for 1 ≤ j ≤ %(G).
If %(G) = 3, then Theorem 2.1.16 gives δ(Gj) ≤ 3/4 = %(G)/4 for 1 ≤ j ≤ %(G) if and only if

(1) holds.
If %(G) = 4, then Theorem 2.1.16 gives δ(Gj) ≤ 1 = %(G)/4 for 1 ≤ j ≤ %(G) if and only if (2)

holds.
Hence, G has the %(G)-property.

Example 3.1.6. The second statement in Theorem 3.1.5 does not hold for % ≥ 5, as the following
example shows. Consider the graph G% obtained from the cycle graph C% with % vertices and an
additional vertex vI connected by an edge with just three consecutive vertices in C%. We have that
G% is a circular-arc graph without the %-property. [80, Theorem 30] gives that the hyperbolicity
constant of any graph with n vertices is at most n/4. Hence, %/4 ≤ δ(G%) ≤ (% + 1)/4. By using
the characterization in [80, Theorem 30] of the graphs with n vertices and hyperbolicity constant
n/4, we obtain δ(G%) < (%+ 1)/4. Since δ(G) is a multiple of 1/4 by Theorem 1.2.13, we conclude
δ(G%) = %/4.

3.2 Complement and line graph

In this section we obtain bounds for the hyperbolicity constant of the complement and line of
a circular-arc graph, respectively. These theorems improve, for circular-arc graphs, the general
bounds for the hyperbolicity constant of the complement and line graphs.

The following result in [14, Theorem 2.2] gives a sharp bound for the hyperbolicity constant of
the complement of a graph.
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Theorem 3.2.1. If G is a graph with diamV (G) ≥ 3, then its complement graph G satisfies
0 ≤ δ(G) ≤ 2.

We will need the following result in [58, Theorem 10] that improves Theorem 3.2.1 for interval
graphs (recall that the most difficult case in the study of the complement of a graph is the set of
graphs G with diamV (G) = 2).

Theorem 3.2.2. If G is an interval graph, then 0 ≤ δ(G) ≤ 2.

Now, we are interested in the hyperbolicity of the complement of circular-arc graphs. Let us
start with two technical results.

Lemma 3.2.3. Let G be a circular-arc graph with %(G) ≥ 1. If two vertices u and v are not
neighbors and have two common neighbors v1, v2, such that v1 and v2 are not neighbors, then their
corresponding arcs satisfy Iu ∪ Iv ∪ Iv1 ∪ Iv2 = S1.

Proof. Since %(G) ≥ 1, Iu ∩ Iv = ∅, Iv1 ∩ Iv2 = ∅, Iu ∩ Ivj 6= ∅ and Iv ∩ Ivj 6= ∅ for j = 1, 2, we have
Iu ∪ Iv ∪ Iv1 ∪ Iv2 = S1.

Lemma 3.2.4. Let G be a circular-arc graph with %(G) > 4. If two vertices u and v have two
common neighbors v1, v2, such that v1 and v2 are not neighbors, then u and v are neighbors.

Proof. Seeking for a contradiction, assume that u and v are not neighbors. Lemma 3.2.3 gives
Iu ∪ Iv ∪ Iv1 ∪ Iv2 = S1, and thus %(G) ≤ 4, a contradiction. So, u and v are neighbors.

Recall that a graph is s-regular if every vertex has degree s, i.e., has s neighbors. In order to
prove Theorem 3.2.7 below we need the following surprising result about regular graphs which is
interesting by itself.

Theorem 3.2.5. Let G be a (n − 3)-regular graph with n ≥ 5 vertices. Then δ(G) = 1 if G is a
union of cycle graphs with three vertices, and δ(G) = 5/4 otherwise.

Proof. Assume first that G is a union of cycle graphs with three vertices (thus, n ≥ 6). [56, Lemma
5.7] gives that δ(G) ≤ 1. Since n ≥ 6, we have n − 3 ≥ n/2 and there exists a Hamiltonian cycle
with n ≥ 6 vertices; thus, Lemma 1.2.20 gives that δ(G) ≥ 1.

Assume now that G is not a union of cycle graphs with three vertices. If n = 5, then G is a
cycle graph with five vertices and δ(G) = 5/4. Assume that n ≥ 6. Hence, there exists v ∈ V (G)
such that the connected component of G containing v is not a cycle graph with three vertices. Let
v1, v2 be the vertices with v1v, v2v /∈ E(G). Seeking for a contradiction assume that v1v2 /∈ E(G).
Thus, the connected component of G containing v is the cycle graph with vertices v, v1, v2, a
contradiction. Hence, v1v2 ∈ E(G). Since n ≥ 6, we have 2(n− 3) ≥ n and there are at least two
common neighbors of v and vj for each j = 1, 2. Therefore, there exist two different vertices v3, v4

with v3v, v4v, v3v1, v4v2 ∈ E(G), and we have the cycle g given by v, v3, v1, v2, v4, v in G. Since
L(g) = 5 and degg(v) = 2 (recall that v1v, v2v /∈ E(G)), Theorem 1.2.21 gives δ(G) ≥ 5/4. Finally,
Theorem 1.2.22 gives δ(G) ≤ 5/4.

Theorem 3.2.5 has the following direct consequence.
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Corollary 3.2.6. If G is a (n− 3)-regular graph with n ≥ 5 vertices and n is not a multiple of 3,
then δ(G) = 5/4.

The following result provides sharp bounds for the hyperbolicity constant of the complement
of any circular-arc graph (even the circular-arc graphs G with diamV (G) = 2). Note that it
improves Theorem 3.2.1 for circular-arc graphs; recall that the most difficult case in the study of
the complement of a graph are the graphs G with diamV (G) = 2 (this is the case if %(G) = 4 or
%(G) = 5), and that Theorem 3.2.1 does not deal with these graphs.

Theorem 3.2.7. Let G be a circular-arc graph. If %(G) = 0, then 0 ≤ δ(G) ≤ 2. If %(G) > 4, then
5/4 ≤ δ(G) ≤ 3/2. If %(G) = 4, then 0 ≤ δ(G) ≤ 7/2. Furthermore, the lower bounds are sharp;
in particular, they are attained by the cycle graphs for %(G) ≥ 4.

Proof. If %(G) = 0, then Theorem 3.2.2 gives the result.
Assume now that %(G) > 4. We are going to prove that diamG ≤ 3 (note that it is possible to

have diamV (G) = 2, and that the inequality diamG ≤ 3 is stronger than diamV (G) ≤ 3). Seeking
for a contradiction assume that diamG > 3.

Assume first that diamV (G) ≥ 4. Thus, there exist v, w ∈ V (G) with dG(v, w) = 4. Let
v0 = v, v1, v2, v3, v4 = w ∈ V (G) such that vj−1vj ∈ E(G) for 1 ≤ j ≤ 4. Therefore, v0 and v1 have
two common neighbors v3, v4 in G with v3v4 /∈ E(G), and Lemma 3.2.4 gives that v0 and v1 are
neighbors in G. This contradicts v0v1 ∈ E(G).

Assume that diamV (G) = 3. Thus, there exist v ∈ V (G) and a midpoint x of an edge v3v
′
3

in G with dG(v, x) = 7/2. Hence, there exist v0 = v, v1, v2 ∈ V (G) such that vj−1vj ∈ E(G) for
1 ≤ j ≤ 3. Therefore, v3 and v′3 have two common neighbors v0, v1 in G with v0v1 /∈ E(G), and
Lemma 3.2.4 gives that v3 and v′3 are neighbors in G. This contradicts v3v

′
3 ∈ E(G).

Hence, diamG ≤ 3 and Corollary 1.2.17 gives δ(G) ≤ 3/2.
In order to prove the lower bound, consider a cycle C in G given by v1, v2, . . . , v%(G), v1 such that

the subgraph induced by this vertices is C. Consider the cycle g in G given by v3, v5, v2, v4, v1, v3.
Since L(g) = 5 and degg(v3) = 2 (recall that v3v2, v3v4 /∈ E(G)), Theorem 1.2.21 gives δ(G) ≥ 5/4.

Consider now the cycle graph with % vertices C%. Since % > 4, C% is (% − 3)-regular and its
complement is C%, Theorem 3.2.5 gives δ

(
C%
)

= 5/4 and the bound is attained.

Finally, assume that %(G) = 4 and consider a geodesic triangle T = {x, y, z} in G and p ∈ [xy].
By Theorem 1.2.13, we can assume that x, y, z ∈ J(G). If dG(x, y) ≤ 4, then dG(p, [xz] ∪ [yz]) ≤
2 < 7/2. Assume that dG(x, y) > 4. Since x, y, z ∈ J(G), we have dG(x, y) ≥ 9/2. Thus, there exist
u, v ∈ V (G) ∩ [xy] with dG(u, v) = 4 and vertices v0 = u, v1, v2, v3, v4 = v ∈ V (G) ∩ [xy] such that
vj−1vj ∈ E(G) for 1 ≤ j ≤ 4 and dG(p, v2) ≤ 1/2. Therefore, v0 and v1 have two common neighbors
v3, v4 in G, and v0v1, v3v4 /∈ E(G). Hence, Lemma 3.2.3 gives that their corresponding arcs satisfy
Iv0 ∪ Iv1 ∪ Iv3 ∪ Iv4 = S1. Seeking for a contradiction assume that there exists a vertex w0 ∈ V (G)
with corresponding arc Iw0 such that Iw0 ∩ Ivj 6= ∅ for j = 0, 1, 3, 4. Since Iv0 ∪ Iv1 ∪ Iv3 ∪ Iv4 = S1,
there exist i, j ∈ {0, 1, 3, 4} with Iw0 ∪ Ivi ∪ Ivj = S1. This contradicts %(G) = 4, and so every

vertex w0 ∈ V (G) has at most three neighbors in {v0, v1, v3v4} in G. Thus, given any vertex
w0 ∈ V (G) ∩ ([xz] ∪ [yz]), there exists k ∈ {0, 1, 3, 4} with w0vk /∈ E(G), and

dG(p, [xz] ∪ [yz]) ≤ dG(p, w0) ≤ dG(p, v2) + dG(v2, vk) + dG(vk, w0) ≤ 1

2
+ 2 + 1 =

7

2
.
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So, δ(G) ≤ 7/2.
The lower bound δ(G) ≥ 0 trivially holds. If we consider the cycle graph G = C4, then G is the

union of two disjoint edges and δ(G) = 0. Hence, the lower bound is attained.

Remark 3.2.8. Note that Theorems 1.2.13 and 3.2.7 give that if G is a circular-arc graph with
%(G) > 4, then we have either δ(G) = 5/4 or δ(G) = 3/2.

Theorems 3.1.1 and 3.2.7 have the following consequence.

Corollary 3.2.9. If G is a circular-arc graph with %(G) ≥ 7, then δ(G) < δ(G).

In 1956, Nordhaus and Gaddum gave lower and upper bounds on the sum and the product of
the chromatic number of a graph and its complement in [85]. Since then, relations of a similar type
have been proposed for many other graph invariants, in several hundred papers (see, e.g., [4]).

Also, Theorems 3.1.1 and 3.2.7 provide some Nordhaus-Gaddum type results.

Corollary 3.2.10. If G is a circular-arc graph, then

5%(G)

16
≤ δ(G)δ(G) ≤ 3%(G)

8
+

9

4
,

%(G) + 5

4
≤ δ(G) + δ(G) ≤ %(G)

4
+ 3, if %(G) > 4,

0 ≤ δ(G)δ(G) ≤ 7%(G)

8
+

21

4
,

%(G)

4
≤ δ(G) + δ(G) ≤ %(G)

4
+ 5, if %(G) = 4,

0 ≤ δ(G)δ(G) ≤ %(G)

2
+ 3,

%(G)

4
≤ δ(G) + δ(G) ≤ %(G)

4
+

7

2
, if %(G) = 0.

If G is a graph with edges E(G) = {ei}i∈I , the line graph L(G) of G is a graph which has a
vertex vei ∈ V (L(G)) for each edge ei of G, and an edge joining vei and vej when ei ∩ ej 6= ∅. The
line graph of G is interesting in the theory of geometric graphs, since it is the intersection graph of
E(G).

A graph is chordal if all cycles of length at least four have a chord, which is an edge that is
not part of the cycle but connects two vertices of the cycle (i.e., it does not have induced cycles of
length greater than three).

The following result appears in [20, Lemma 2.2].

Lemma 3.2.11. Suppose that G is chordal, and that x1, x2, . . . , xn, x1 is a cycle in G, where n ≥ 4.
If d(x1, x3) = 2, then there exists i ∈ {4, 5, . . . , n} such that xix2 ∈ E(G).

We want to prove a similar result for L(G). In order to do it we need some background.
Given ve ∈ V (L(G)), let us define h(ve) as the midpoint of the edge e ∈ E(G) and H(ve) = e.

Thus, h and H are maps with h : V (L(G))→ G and H : V (L(G))→ E(G).
[23, Remark 3.3] gives that the map h is an isometry:

Lemma 3.2.12. For every x, y ∈ V (L(G)), we have

dL(G)(x, y) = dG(h(x), h(y)).

Lemma 3.2.13. Suppose that G is chordal, and that u1, u2, . . . , un, u1 is a cycle in L(G), where
n ≥ 6. If dL(G)(u1, u4) = 3, then there exists i ∈ {4, 5, . . . , n} and u ∈ V (L(G)) such that
u2u, u3u, uiu, ui+1u ∈ E(L(G)), where un+1 = u1.
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Proof. Denote by C the cycle u1, u2, . . . , un, u1 and by C0 its corresponding cycle in G. Lemma
3.2.12 gives dG(h(u1), h(u4)) = dL(G)(u1, u4) = 3. Thus, the vertices H(u1) ∩H(u2) and H(u3) ∩
H(u4) in C0 satisfy dG(H(u1) ∩ H(u2), H(u3) ∩ H(u4)) = 2, and Lemma 3.2.11 gives that there
exists i ∈ {4, 5, . . . , n} with dG(H(u2) ∩ H(u3), H(ui) ∩ H(ui+1)) = 1. If we denote by u the
corresponding vertex in L(G) to the edge in G with endpoints H(u2)∩H(u3) and H(ui)∩H(ui+1),
then u2u, u3u, uiu, ui+1u ∈ E(L(G)).

The following result in [23, Corollary 3.12] relates the hyperbolicity constants of G and L(G).

Theorem 3.2.14. For any graph G we have

δ(G) ≤ δ(L(G)) ≤ 5δ(G) +
5

2
.

In order to study the line of circular-arc graphs (see Theorem 3.2.16 below) we need the following
result about the line of chordal graphs which is interesting by itself, and improves the upper bound
δ(L(G)) ≤ 5δ(G) + 5/2 in Theorem 3.2.14 for chordal graphs (since δ(G) ≤ 3/2 for every chordal
graph G, see [20]).

Theorem 3.2.15. If G is a chordal graph, then

δ(L(G)) ≤ 5

2
.

Proof. Let us consider a geodesic triangle T = {x, y, z} in L(G) and p ∈ [xy]. By Theorem 1.2.13,
we can assume that T is a cycle.

We are going to prove dL(G)(p, [xz] ∪ [yz]) ≤ 3. Without loss of generality we can assume that
dL(G)(p, [xz] ∪ [yz]) ≥ 2. If we denote the vertices of the cycle T by u1, u2, . . . , un, u1, then we can
assume that p ∈ u2u3. Since dL(G)(p, {x, y}) ≥ dL(G)(p, [xz]∪[yz]) ≥ 2, we have u1u2∪u2u3∪u3u4 ⊂
[xy] and so, dL(G)(u1, u4) = 3. By Lemma 3.2.13, there exist j ∈ {2, 3}, k ∈ {4, 5, . . . , n} and u ∈
V (L(G)) such that u2u, u3u, uku ∈ E(L(G)) and dT (uj , uk) ≥ 3. Since uj ∈ [xy], dL(G)(uj , uk) = 2
and dT (uj , uk) ≥ 3, we have uk ∈ [xz] ∪ [yz] and

dL(G)(p, [xz] ∪ [yz]) ≤ dL(G)(p, uk) ≤ dL(G)(p, {u2, u3}) + dL(G)({u2, u3}, u) + dL(G)(u, uk) ≤
5

2
.

Hence, δ(L(G)) ≤ 5/2.

The following result improves the upper bound in Theorem 3.2.14 for circular-arc graphs.

Theorem 3.2.16. Let G be a circular-arc graph. If %(G) ≥ 3, then

1

4
%(G) ≤ δ(L(G)) ≤ 1

2

⌊1

2
%(G)

⌋
+

5

2
.

If %(G) = 0, 2, then

0 ≤ δ(L(G)) ≤ 5

2
.

If %(G) = 1, then
0 ≤ δ(L(G)) ≤ 2.
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Proof. Theorems 3.1.1 and 3.2.14 give the lower bounds.
If %(G) = 0, then Theorem 3.2.15 gives the upper bound, since every interval graph is chordal.
Assume that %(G) > 0 and let us prove the upper bounds of δ(L(G)). Fix any set of vertices

K = {v1, . . . , v%(G)} and corresponding arcs {I1, . . . , I%(G)} with I1 ∪ · · · ∪ I%(G) = S1.
Assume first %(G) ≥ 3, and denote by C the cycle in G with V (C) = K and by C ′ the

corresponding cycle in L(G) to C. Since every vertex in G is at distance at most 1 from C, every
vertex in L(G) is at distance at most 2 from C ′, and

diamV (L(G)) ≤ 2 + diamV (C ′) + 2 =
⌊1

2
%(G)

⌋
+ 4,

diamL(G) ≤
⌊1

2
%(G)

⌋
+ 5,

and Corollary 1.2.17 gives the upper bound.
If %(G) = 2, then the previous argument gives the desired upper bound, by taking vv1v2 (with

diameter zero) instead of C ′.
If %(G) = 1, then every vertex in G is a neighbor of v1 and the set of edges in G incident on

v1 corresponds with a complete graph in L(G). Hence, diamV (L(G)) ≤ 3, diamL(G) ≤ 4 and
δ(L(G)) ≤ 2.
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Chapter 4

Domination and hyperbolicity

The idea of domination in graphs was mathematically formalized by Berge [8] and Ore [86] in 1962.
Currently, this topic has been detailed in the two, well-known, books by Haynes, Hedetniemi,
and Slater (see [52]). The theory of domination in graphs is an area of increasing interest in
discrete mathematics and combinatorial computing. Besides of the mathematical and combinatorial
importance of the theory, it has been applied successfully in different practical problems such as:
analysis of social networks [68], efficient identification of web communities [39], bioinformatics [51],
foodwebs [69]. Another application of the concept of domination is the study of the transmission
of information in the network associated with defense systems [96].

4.1 Domination on graphs

In 1998 Haynes, Hedetniemi and Slater published a book about domination in graphs (see [52])
which list 1222 papers in this area. There are several variations for domination, usually imposing
additional conditions on the set of vertices, the dominant set or the set difference from these. At
least 75 such variations are mentioned in [52].

A historical root of domination is the following chess problem. Consider an 8 × 8 chessboard
on which we can move a queen vertically, horizontally or diagonally. We are interested in finding
the minimum number of queens with which we can dominate all squares, i.e., every square is
either occupied or can be attacked by a queen. To model this problem, consider a graph whose
vertices represent the squares of the chess board and two vertices are adjacent if and only if the
corresponding squares are separated by a number of squares vertically, horizontally or diagonally.
The vertices that correspond to the squares in which these queens would be placed represent a
dominating set.

Dominating set and k-dominating set

Given a graph G = (V,E), we say that a subset S of vertices is dominating if every vertex in
V (G) \ S has a neighbour in S. A graph can have several dominating sets, we are interested in
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Figure 4.1: Two dominating sets for the same graph G. γ(G) = 5 .

those with minimal cardinality. We define the domination number of G as

γ(G) := min
{
|S| : S is a dominating set of G

}
.

To determine the size of the minimum dominant set is NP-complete, even though we restrict
ourselves to certain kinds of graphs such as bipartite graphs and chordal graphs. However, there
are certain families of graphs such as trees or interval graphs, for which γ(G) can be calculated in
polynomial time.

In [29], Cockayne, Gamble and Shepherd defined a generalization of domination in graphs as
follows: given a graph G, a set S ⊆ V is a k-dominating set if every vertex v ∈ V \ S satisfies
δS(v) ≥ k. The k-domination number γk(G) is the minimum cardinality among all k-dominating
sets.

(a) 2-dominating set (b) 3-dominating set

Figure 4.2: k-dominating sets of the same graph.
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Total dominating set and Total k-dominating set

Given a graph G, we say that a subset of vertices S ⊂ V (G) is total dominating if every vertex in
V (G) has a neighbour in S. We define the total domination number of G as

γt(G) := min
{
|S| : S is a total dominating set of G

}
.

Again the problem of calculating γt(G) is NP-complete.

A set S ⊆ V (G) is a total k-dominating set if every vertex v ∈ V (G) satisfies δS(v) ≥ k.
The total k-domination number γkt(G) is the minimum cardinality among all total k-dominating

sets (see [37, 49, 53]). Note that, γt(G) = γ1t(G) (see [28, 37]).

(a) Total dominating set (b) Total 2-dominating set.

Figure 4.3: Total k-dominating sets of the same graph.

Distance k-dominating set

In [55] is introduced the concept of distance domination (see also [48], [54], [79]). Given a graph
G and k ≥ 1, we say that a subset of vertices S ⊂ V (G) is distance k-dominating if for any vertex
v ∈ V (G) there is w ∈ S with dG(v, w) ≤ k. Since dG(w,w) = 0 ≤ k, we can replace the condition
“dG(v, w) ≤ k for any v ∈ V (G)” by “dG(v, w) ≤ k for any v ∈ V (G) \ S”. Given a graph G, we
define the distance k-domination number of G as

γk(G) := min
{
|S| : S is a distance k-dominating set of G

}
.

Figure 4.4: A distance 3-dominating set.
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Dominating cycles

Given a cycle C in a graph G, we say that C is a dominating cycle if every vertex is in the
neighbourhood of some vertex on the cycle C.

Figure 4.5: Dominating cycle of a graph.

The concept of dominant cycle was introduced by Lesniak and Williamson (see [75]). To find
a dominant cycle is a NP-complete problem, even reducing it to planar graphs; however, for a few
graph classes, such as circular-arc graphs, there are polynomial time algorithms. Not all graphs
have dominating cycles.

4.2 Domination and hyperbolicity

In Section 1.1 and in the classical references on this work (see, e.g., [19, 43]) appear several different
definitions of Gromov hyperbolicity, which are equivalent in the sense that if X is δ-hyperbolic with
respect to one definition, then it is δ′-hyperbolic with respect to another definition (for some δ′

related to δ). We have chosen the Rips definition by its deep geometric meaning [43], however, it
is sometimes very useful to use another definition.

Let’s recall that if G is a Gromov hyperbolic graph and (x, z)w denote the Gromov product of
x, y ∈ G with base point w ∈ G (see Definition 1.1.3), it holds

(x, z)w ≥ min
{

(x, y)w, (y, z)w
}
− δ

for every x, y, z, w ∈ G and some constant δ ≥ 0 (see e.g. [3, 43]). Let us denote by δ∗(G) the
sharp constant for this inequality, i.e.,

δ∗(G) := sup
{

min
{

(x, y)w, (y, z)w
}
− (x, z)w : x, y, z, w ∈ G

}
. (4.1)

From Theorem 1.1.4 (see too [3, 43]) we known that (1.1) is, in fact, equivalent to our definition
of Gromov hyperbolicity; furthermore, we have δ∗(G) ≤ 4 δ(G) and δ(G) ≤ 3 δ∗(G). In [107,
Proposition II.20] we found the following improvement of the previous inequality δ∗(G) ≤ 2 δ(G).

The following result is elementary (the proof follows the same argument as the Lemma 1.2.18).

Lemma 4.2.1. If Γ is an isometric subgraph of G, then δ∗(Γ) ≤ δ∗(G).
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In particular, every isometric graph is connected.
We say that a subgraph Γ of G is distance k-dominating if V (Γ) is distance k-dominating.

Theorem 4.2.2. Let G be a graph, k ≥ 1 and Γ an isometric distance k-dominating subgraph of
G. Then

δ∗(Γ) ≤ δ∗(G) ≤ δ∗(Γ) + 6k + 3.

Proof. Lemma 4.2.1 gives the first inequality.
Let f be a projection map f : G → Γ, i.e., a map such that dG(x, f(x)) = dG(x,Γ) for every

x ∈ G (in particular, f |Γ is the identity map). Since Γ an isometric distance k-dominating subgraph,
we have dG(x, f(x)) ≤ k + 1/2 and

(f(x), f(y))f(w) =
1

2

(
dΓ(f(x), f(w)) + dΓ(f(y), f(w))− dΓ(f(x), f(y))

)
=

1

2

(
dG(f(x), f(w)) + dG(f(y), f(w))− dG(f(x), f(y))

)
≤ 1

2

(
dG(x,w) + 2k + 1 + dG(y, w) + 2k + 1− dG(x, y) + 2k + 1

)
= (x, y)w + 3k +

3

2
.

We obtain in a similar way

(f(x), f(y))f(w) ≥ (x, y)w − 3k − 3

2
,

and thus

(x, z)w ≥ (f(x), f(z))f(w) − 3k − 3

2

≥ min
{

(f(x), f(y))f(w), (f(y), f(z))f(w)

}
− δ∗(Γ)− 3k − 3

2

≥ min
{

(x, y)w − 3k − 3

2
, (y, z)w − 3k − 3

2

}
− δ∗(Γ)− 3k − 3

2
= min

{
(x, y)w, (y, z)w

}
− δ∗(Γ)− 6k − 3.

Hence, we conclude
δ∗(G) ≤ δ∗(Γ) + 6k + 3.

Theorem 4.2.2 has the following consequence.

Theorem 4.2.3. Let G be a graph, k ≥ 1 and Γ an isometric distance k-dominating subgraph of
G. Then

δ(Γ) ≤ δ(G) ≤ 6 δ(Γ) + 18k + 9.

Proof. Lemma 1.2.18 gives the first inequality.
Using the inequalities relating δ∗(G) and δ(G) and Theorem 4.2.2, we conclude

δ(G) ≤ 3 δ∗(G) ≤ 3
(
δ∗(Γ) + 6k + 3

)
≤ 6 δ(G) + 18k + 9.
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The following example shows that it is not possible to have the inequality

δ(G) ≤ Ψ
(
δ(Γ)

)
,

for every graph G and distance k-dominating subgraph Γ (not necessarily isometric) and some func-
tion Ψ. For each integer n > 2k consider the cycle graph Cn with vertices V (Cn) = {v1, v2, . . . , vn−1, vn}
and edges E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1} and the subgraph Γn induced by {v1, . . . , vn−2k}.
It is clear that V (Γn) is a distance k-dominating set. Since Γn is a tree, δ(Γn) = 0. However,
δ(Cn) = n/4.

It is well-known (see [36, Theorem 4]) that

γt(G) ≥ diamV (G) + 1

2
.

Thus, Corollary 1.2.17 gives the following result.

Proposition 4.2.4. If G is a graph, then

δ(G) ≤ γt(G) .

Proposition 4.2.4 can be improved for graphs with small maximum degree.

Theorem 4.2.5. If G is a graph with maximum degree ∆, then

δ(G) ≤ ∆

4
γt(G) .

Proof. Let S ⊆ V (G) be a total dominating set with |S| = γt(G), and n := |V (G)|. Denote by S
the complement S := V (G) \ S of the set S, and by ES,S the set of edges joining a vertex in S

with a vertex in S. Since S is a dominating set,
∣∣S∣∣ ≤ ∣∣ES,S∣∣. Since S is a total dominating set,∣∣ES,S∣∣ ≤ (∆− 1)|S|, and we conclude

n− |S| =
∣∣S∣∣ ≤ ∣∣ES,S∣∣ ≤ (∆− 1)|S|, n ≤ ∆γt(G).

The inequality δ(G) ≤ n/4 (see [80, Theorem 30]) gives δ(G) ≤ ∆γt(G)/4.

We have similar results for γk(G).

Theorem 4.2.6. Let G be a graph and k ≥ 1. Then

γk(G) ≥ diamV (G) + 1

2k + 1
, γk(G) ≥ 2δ(G)

2k + 1
.

Proof. Let S be a distance k-dominating set of G with |S| = γk(G), and σ = [uv] a geodesic in G
with u, v ∈ V (G) and dG(u, v) = diamV (G). Since S is distance k-dominating, there exists s1 ∈ S
with dG(u, s1) ≤ k.
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Let {u1, u2, . . . , ur, ur+1} = V (G)∩σ with u1 = u, ur+1 = v, r = diamV (G) and uiui+1 ∈ E(G)
for 1 ≤ i ≤ r. Define

t1 := max
{

1 ≤ t ≤ r + 1 : dG(ut, s1) ≤ k
}
.

Since σ is a geodesic and the diameter of the closed ball BG(u1, k) is at most 2k, we have t1 ≤ 2k+1.
If r + 1 > 2k + 1, then there exists s2 ∈ S with dG(ut1+1, s2) ≤ k. Define

t2 := max
{
t1 + 1 ≤ t ≤ r + 1 : dG(ut, s2) ≤ k

}
.

Thus, t2 ≤ 4k + 2.
If r+1 > 4k+2, then we can repeat this process obtaining two finite sequences {s1, . . . , sj} ⊆ S

and 1 ≤ t1 < t2 < · · · < tj ≤ r + 1 with r + 1 ≤ (2k + 1)j. Hence, we obtain

diamV (G) + 1

2k + 1
=

r + 1

2k + 1
≤ j =

∣∣{s1, . . . , sj}
∣∣ ≤ |S| = γk(G),

and Corollary 1.2.17 gives the second inequality.

We recall that given a graph G, we say that a subset of vertices S ⊂ V (G) is k-total-dominating
(k ≥ 1) if every vertex v ∈ V (G) has k neighbors in S. Denote by 〈S〉 the subgraph of G induced by
S. We say that S is k-total-connected-dominating if it is k-total-dominating and 〈S〉 is connected.
We define the k-total-connected-domination number of G as

γktc(G) := min
{
|S| : S is a k-total-connected-dominating set of G

}
.

As usual, we denote by btc the lower integer part of t, i.e., the largest integer least than or equal
to t.

Theorem 4.2.7. If G is a graph and k ≥ 2, then

δ(G) ≤ 1

2
max

{
5,

⌊
3 γktc(G)− 2

k + 1

⌋
+ 1

}
.

Proof. Given a graph G, fix a k-total-connected-dominating set S with |S| = γktc(G). Define
s := diam〈S〉 S and choose u, v ∈ V (S) with dS(u, v) = s. For each 0 ≤ j ≤ s, let nj := |Sj | with
Sj := {w ∈ S : dS(w, u) = j}. Note that a vertex of Sj and a vertex of S0 ∪ S1 ∪ · · · ∪ Sj−2 can
not be neighbors for 2 ≤ j ≤ s. Since 〈S〉 is connected, we have

∑s
j=0 nj = |S| = γktc(G), n0 = 1,

n1 ≥ k and nj ≥ 1 for each 2 ≤ j ≤ s.
Since S is a k-total-connected-dominating set S, if s < 3, then diamG V (G) ≤ s + 2 ≤ 4 and

Corollary 1.2.17 gives δ(G) ≤ 5/2. Hence, we can assume that s ≥ 3.
Define ns+1 := 0 and

as :=
s∑
j=3

(
nj−1 + nj + nj+1

)
=


n2 + 2n3 + 3

∑s−1
j=4 nj + 2ns, if s > 4,

n2 + 2n3 + 2n4, if s = 4,
n2 + n3, if s = 3.
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Note that for any 3 ≤ j ≤ s, we have nj−1 + nj + nj+1 ≥ k + 1 and so, as ≥ (s− 2)(k + 1). Thus,

3|S| = 3
s∑
j=0

nj = 3 + 3n1 + 2n2 + n3 + ns + as

≥ 3 + 3k + 2 + 1 + 1 + (s− 2)(k + 1) = (s+ 1)(k + 1) + 4,

3|S| − 4

k + 1
≥ s+ 1,

diam〈S〉 S ≤
⌊

3|S| − 4

k + 1

⌋
− 1 =

⌊
3 γktc(G)− 4

k + 1

⌋
− 1.

Since S is a k-total-connected-dominating set, we have that diamG V (G) ≤ diam〈S〉 S + 2. Let
us assume that diamG V (G) = diam〈S〉 S+2. Hence, there exist u′, v′ ∈ V (G)\S and u, v ∈ S with
uu′, vv′ ∈ E(G) and diamG V (G) = dG(u′, v′) = dS(u, v) + 2.

For each −1 ≤ j ≤ s + 1, let nj := |Sj+1| with Sj := {w ∈ S : dS(w, u′) = j}. Using the
previous argument, since S is a k-total-connected-dominating set, we have in this case n0, ns ≥ k
and n1, n2, n3 ≥ 1. Therefore, we deduce

3|S| = 3n0 + 3n1 + 2n2 + n3 + ns + as

≥ 3k + 3 + 2 + 1 + k + (s− 2)(k + 1) = (s+ 2)(k + 1) + 2,

diam〈S〉 S ≤
⌊

3 γktc(G)− 2

k + 1

⌋
− 2,

diamG V (G) ≤
⌊

3 γktc(G)− 2

k + 1

⌋
.

If diamG V (G) < diam〈S〉 S + 2, then

diamG V (G) ≤ diam〈S〉 S + 1 ≤
⌊

3 γktc(G)− 4

k + 1

⌋
≤
⌊

3 γktc(G)− 2

k + 1

⌋
.

Hence, we have

diamG V (G) ≤ max

{
4,

⌊
3 γktc(G)− 2

k + 1

⌋}
,

and Corollary 1.2.17 gives

δ(G) ≤ 1

2
max

{
5,

⌊
3 γktc(G)− 2

k + 1

⌋
+ 1

}
.

The two following results improve Proposition 4.2.4.
Given s ∈ R, denote by dse the upper integer part of s, i.e., the smallest integer greater than

or equal to s.
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Theorem 4.2.8. If G is a graph, then

δ(G) ≤

{
1
2 γt(G) + 1, if γt(G) ≤ 3,
1
2 γt(G) + 3, if γt(G) ≥ 4.

Proof. Fix a total dominating set S ⊂ V (G) with |S| = γt(G).
Assume first that γt(G) ≤ 3. Thus, S is a connected set, and we deduce diamG S ≤ γt(G) − 1

and diamG V (G) ≤ γt(G) + 1. Thus, Corollary 1.2.17 gives δ(G) ≤ γt(G)/2 + 1.
Assume now that γt(G) ≥ 4.
By Theorem 1.2.13, there exist a triangle T = {x, y, z} that is a cycle with x, y, z ∈ J(G) and p ∈

[xy] such that dG(p, [xz]∪[zy]) = δ(G). Let V (G)∩[xy] = {a1, a2, . . . , ar} with ajaj+1 ∈ E(G)∩[xy]
for 1 ≤ j < r, dG(a1, x) ≤ 1/2 and dG(ar, y) ≤ 1/2. Let V (G) ∩ ([xz] ∪ [zy]) = {b1, b2, . . . , bβ}
with bjbj+1 ∈ E(G) ∩ ([xz] ∪ [zy]) for 1 ≤ j < β, dG(b1, x) ≤ 1/2 and dG(bβ, y) ≤ 1/2 (note
that r ≤ β, since [xy] is a geodesic and x, y ∈ J(G)). Let 1 ≤ α ≤ α′ ≤ β be such that
V (G) ∩ [xz] = {b1, b2, . . . , bα} and V (G) ∩ [zy] = {bα′ , bα′+1, . . . , bβ} (note that α = α′ if and only
if z ∈ V (G); otherwise, α′ = α+ 1).

If aj ∈ S, then we define sj := aj ; since S is a total dominating set, if aj /∈ S, then there exists
sj ∈ N(aj)∩ S. If bj ∈ S, then we define sj := bj ; since S is a total dominating set, if bj /∈ S, then
there exists sj ∈ N(bj) ∩ S.

We are going to define subsets S1, S2 ⊂ S associated to [xy] and [xz] ∪ [zy], respectively.
Since [xy] is a geodesic, if si = sj , then |i− j| ≤ 2. Let I be the set

I :=
{

1 ≤ i ≤ r − 2 : si = si+1 = si+2

}
.

If I = ∅, then ∣∣{s1, s2, . . . , sr}
∣∣ ≥ ⌈r

2

⌉
.

Hence, the set S1 := {s1, s2, . . . , sr} satisfies |S1| ≥ dr/2e.
Since S is a total dominating set, if I 6= ∅ and i ∈ I, then there exists s′i ∈ N(si) ∩ S.

Assume that i, j ∈ I with i 6= j (without loss of generality we can assume that i < j, and thus
i+ 3 ≤ j); then s′i 6= s′j , since otherwise 5 = i+ 3 + 2− i ≤ j + 2− i = dG(ai, aj+2) ≤ dG(ai, si) +
dG(si, s

′
i) + dG(s′j , sj+2) + dG(sj+2, aj+2) ≤ 4, a contradiction. Note that s′i /∈ {ai, ai+1, ai+2}; also,

s′i /∈ {a1, a2, . . . , ar}, since otherwise si ∈ N(ai) ∩ N(ai+1) ∩ N(ai+2) ∩ N(s′i), a contradiction.
Besides, s′i 6= sj if sj = sj+1 and {i, i+ 1, i+ 2} ∩ {j, j + 1} = ∅. Furthermore, there exists at most
one j with s′i = sj , j /∈ {i, i+ 1, i+ 2} and sj−1 6= sj 6= sj+1. Thus,∣∣ ∪i∈I {s′i} ∪ {s1, s2, . . . , sr}

∣∣ ≥ ⌈r
2

⌉
.

Therefore, the set S1 := ∪i∈I{s′i} ∪ {s1, s2, . . . , sr} satisfies |S1| ≥ dr/2e in both cases.
Next, we define a similar set associated to [xz] ∪ [zy].
Given v1, v2, . . . , vk ∈ V (G) such that for each 1 ≤ j < k we have either vjvj+1 ∈ E(G) or

vj = vj+1, we denote by v1v2 · · · vk the path containing the edges (or vertices) vjvj+1 for 1 ≤ j < k.
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Let us consider the sets

Γ0 :=
{
γ path ⊂ G : γ = b1b2 · · · bβ

}
,

Γ1 :=
{
γ path ⊂ G : γ = b1b2 · · · bisibj · · · bβ if si = sj

}
,

Γ2 :=
{
γ path ⊂ G : γ = b1b2 · · · bisisjbj · · · bβ if sisj ∈ E(G)

}
,

Γ3 :=
{
γ path ⊂ G : γ = b1b2 · · · bisis0sjbj · · · bβ if ∃ s0 ∈ S ∩N(si) ∩N(sj)

}
,

Γ := Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3.

Let us choose σ ∈ Γ with
L(σ) = min

{
L(γ) : γ ∈ Γ

}
.

Since σ joins b1 and bβ, we have that |σ ∩ V (G)| ≥ r. Let i0, j0 be the integers such that 1 ≤ i0 ≤
α ≤ α′ ≤ j0 ≤ β, b1, . . . , bi0 , bj0 , . . . , bβ ∈ σ, bi0+1 /∈ σ ∩ [xz] and bj0−1 /∈ σ ∩ [zy].

Let us define the set

I :=
{

1 ≤ i ≤ i0 − 2 : si = si+1 = si+2

}
∪
{
j0 ≤ i ≤ β − 2 : si = si+1 = si+2

}
. (4.2)

Since S is a total dominating set, if i ∈ I, then there exists s′i ∈ N(si).

Case A. Assume that σ /∈ Γ0.
Since σ /∈ Γ0, the minimality of σ gives si0 6= si for every 1 ≤ i < i0 and sj0 6= sj for every

j0 < j ≤ β; in particular, this gives i0 − 2, j0 /∈ I, and we can write

I =
{

1 ≤ i < i0 − 2 : si = si+1 = si+2

}
∪
{
j0 < i ≤ β − 2 : si = si+1 = si+2

}
. (4.3)

If i, j ∈ I with i 6= j and either 1 ≤ i, j < i0 − 2 or j0 < i, j ≤ β − 2, then the argument in the
case of S1 gives s′i 6= s′j . If 1 ≤ i < i0−2 and j0 < j ≤ β−2, then the minimality of σ gives s′i 6= s′j .

Also, the minimality of σ gives s′i 6= sj if i ∈ I with 1 ≤ i ≤ i0 − 2 and j0 ≤ j ≤ β, and si 6= s′j
if j ∈ I with 1 ≤ i ≤ i0 and j0 ≤ j ≤ β − 2.

If 1 ≤ i < i0 and j0 < j ≤ β, then the minimality of σ also gives si 6= sj , si0 6= sj and
si 6= sj0 . Note that in the paths bisibj (if σ ∈ Γ1 and si = sj), bisisjbj (if σ ∈ Γ2 and sisj ∈ E(G)),
and bisis0sjbj (if σ ∈ Γ3 and there exists s0 ∈ S ∩ N(si) ∩ N(sj)), the cardinal of the vertices
in S plus 1 is greater than or equal to the cardinal of the points in V (G) \ S. Thus, the set
S2 := ∪i∈I{s

′
i} ∪ {s1, s2, . . . , sr} satisfies |S2| ≥ d(r − 1)/2e.

Case B. Assume that σ ∈ Γ0.
Note that I is defined by (4.2); since σ ∈ Γ0, (4.3) can be false.
As in Case A, let us define S2 := ∪i∈I{s

′
i} ∪ {s1, s2, . . . , sr}.

Assume that z /∈ V (G), since the argument when z ∈ V (G) is analogous. Thus, i0 = α and
j0 = α′ = α+ 1.

The minimality of σ gives the following six facts:
si 6= sj for every 1 ≤ i < i0 and j0 < j ≤ β.
si0 6= sj for every j0 + 2 ≤ j ≤ β and sj0 6= si for every 1 ≤ i ≤ i0 − 2.
s′i 6= s′j if i, j ∈ I with i 6= j and either 1 ≤ i, j ≤ i0 − 2 or j0 ≤ i, j ≤ β − 2.

s′i 6= s′j if i, j ∈ I with 1 ≤ i ≤ i0 − 2 and j0 ≤ j ≤ β − 2.

s′i 6= sj if i ∈ I with 1 ≤ i ≤ i0 − 2 and j0 < j ≤ β.
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si 6= s′j if j ∈ I with 1 ≤ i < i0 and j0 ≤ j ≤ β − 2.

Case B.1. If si 6= sj for every 1 ≤ i ≤ i0 and j0 ≤ j ≤ β, s′i 6= sj for every i ∈ I with
1 ≤ i ≤ i0− 2 and j0 ≤ j ≤ β, and si 6= s′j for every j ∈ I with 1 ≤ i ≤ i0 and j0 ≤ j ≤ β − 2, then
|S2| ≥ dr/2e.

Case B.2. Assume that we are not in Case B.1. We have five different cases:

Case B.2.1. i0 − 2 ∈ I and s′i0 = sj0 . The minimality of σ gives si 6= sj for every 1 ≤ i ≤ i0
and j0 ≤ j ≤ β, and si 6= s′j for every j ∈ I with 1 ≤ i ≤ i0 and j0 ≤ j ≤ β − 2. Besides, the two
vertices si0 and s′i0 = sj0 in S2 are associated to the four vertices bi0−2, bi0−1, bi0 , bj0 . Hence, we
also conclude that |S2| ≥ dr/2e.

Case B.2.2. j0 ∈ I and s′j0 = si0 . A symmetric argument to the one in the previous case also
gives |S2| ≥ dr/2e.

Case B.2.3. si0 = sj0+1 and si0−1 6= sj0 . The minimality of σ gives si 6= si0 for every 1 ≤ i < i0
and sj0+1 6= sj for every j0 + 2 ≤ j ≤ β. Thus, i0 − 2, j0 /∈ I and we conclude s′i 6= sj if i ∈ I with
1 ≤ i ≤ i0 − 2 and j0 ≤ j ≤ β, and si 6= s′j if j ∈ I with 1 ≤ i ≤ i0 and j0 ≤ j ≤ β − 2. The vertex
si0 = sj0+1 ∈ S2 is associated to the three vertices bi0 , bj0 , bj0+1, and so, twice the cardinal of the
vertices in S2 plus 1 is greater than or equal to the cardinal of the points in {b1, b2, . . . , bβ}. Hence,
|S2| ≥ d(r − 1)/2e.

Case B.2.4. si0−1 = sj0 and si0 6= sj0+1. A symmetric argument to the one in the previous case
also gives |S2| ≥ d(r − 1)/2e.

Case B.2.5. si0−1 = sj0 and si0 = sj0+1. The minimality of σ gives si0−1 6= sj0+1. A similar
argument to the one in Case B.2.3 (now, with the two vertices si0−1 = sj0 , si0 = sj0+1 ∈ S2

associated to the four vertices bi0−1, bi0 , bj0 , bj0+1) gives |S2| ≥ dr/2e.

Hence, we have in every case |S2| ≥ d(r − 1)/2e.

We consider several cases.

(1) Assume first that S1 ∩ S2 = ∅. Thus,

γt(G) = |S| ≥ |S1|+ |S2| ≥
⌈r

2

⌉
+
⌈r − 1

2

⌉
= r.

Since x, y ∈ J(G) and | [xy] ∩ V (G)| = r, we conclude L([xy]) ≤ r ≤ γt(G), and

δ(G) = dG(p, [xz] ∪ [zy]) ≤ dG(p, {x, y}) ≤ 1

2
L([xy]) ≤ 1

2
γt(G) .

(2) Assume now that S1 ∩ S2 6= ∅.
(2.1) Assume that dG(p, [xz] ∪ [zy]) ≤ 5. Thus,

δ(G) = dG(p, [xz] ∪ [zy]) ≤ 4

2
+ 3 ≤ 1

2
γt(G) + 3,

since γt(G) ≥ 4.

(2.2) Assume that dG(p, [xz]∪ [zy]) > 5. If p = al ∈ V (G), then S2 does not intersect the subset
of S1 associated to {al} (i.e., sl and perhaps s′l); and if p /∈ V (G), then p ∈ alal+1 ∈ E(G) and

51



S2 does not intersect the subset of S1 associated to {al, al+1} (i.e., sl, sl+1 and perhaps s′l and/or
s′l+1). Thus, there exists a maximal connected subset A := {ai1 , ai1+1, . . . , ai2−1, ai2} of [xy]∩V (G)
(with respect to the inclusion) such that p ∈ [ai1ai2 ] and S1(A)∩S2 = ∅, where S1(A) is the subset
of S1 associated to A.

Fix a positive integer u.

(2.2.1) If i1 ≥ u+ 1 and i2 ≤ r − u, then |σ ∩ V (G)| ≥ r ≥ |A|+ 2u and

γt(G) = |S| ≥ |S1(A)|+ |S2| ≥
⌈1

2
|A|
⌉

+
⌈1

2

(
|A|+ 2u− 1

)⌉
≥
⌈1

2
|A|
⌉

+
⌈1

2

(
|A| − 1

)⌉
+ u = |A|+ u.

The maximality of A gives dG(ai1−1, [xz] ∪ [zy]) ≤ 4 and dG(ai2+1, [xz] ∪ [zy]) ≤ 4. Let g1 (re-
spectively, g2) be a geodesic in G joining ai1−1 (respectively, ai2+1) and [xz] ∪ [zy], and ρ the
curve

ρ := g1 ∪ ai1−1ai1 · · · ai2ai2+1 ∪ g2.

Since ρ joins two points in [xz] ∪ [zy], p ∈ ρ and L(ρ) ≤ 4 + |A|+ 1 + 4, we have

δ(G) = dG(p, [xz] ∪ [zy]) ≤ 1

2
L(ρ) ≤ 1

2
|A|+ 9

2
≤ 1

2
γt(G) +

9− u
2

.

(2.2.2) If i1 ≤ u and i2 ≥ r − u+ 1, then |σ ∩ V (G)| ≥ r ≥ |A|+ 1 (since S1 ∩ S2 6= ∅) and

γt(G) = |S| ≥ |S1(A)|+ |S2| ≥
⌈1

2
|A|
⌉

+
⌈1

2
|A|
⌉
≥ |A|.

We also have

dG(ai1 , x) ≤ dG(ai1 , a1) + dG(a1, x) ≤ u− 1 +
1

2
,

dG(ai2 , y) ≤ dG(ai2 , ar) + dG(ar, y) ≤ u− 1 +
1

2
,

L([xy]) = dG(x, ai1) + |A| − 1 + dG(ai2 , y) ≤ γt(G) + 2u− 2 ,

δ(G) = dG(p, [xz] ∪ [zy]) ≤ dG(p, {x, y}) ≤ 1

2
L([xy]) ≤ 1

2
γt(G) + u− 1.

(2.2.3) If i1 ≤ u and i2 ≤ r − u, then |σ ∩ V (G)| ≥ r ≥ |A|+ u and

γt(G) = |S| ≥ |S1(A)|+ |S2| ≥
⌈1

2
|A|
⌉

+
⌈1

2

(
|A|+ u− 1

)⌉
≥
⌈1

2
|A|
⌉

+
⌈1

2

(
|A| − 1

)⌉
+
⌊u

2

⌋
= |A|+

⌊u
2

⌋
.

The maximality of A gives dG(ai2+1, [xz] ∪ [zy]) ≤ 4. Let g be a geodesic in G joining ai2+1 and
[xz] ∪ [zy], and ρ the curve

ρ := [xai1 ] ∪ ai1 · · · ai2ai2+1 ∪ g.
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Thus,

dG(ai1 , x) ≤ dG(ai1 , a1) + dG(a1, x) ≤ u− 1 +
1

2
,

L(ρ) ≤ u− 1 +
1

2
+ |A|+ 4 = u+

7

2
+ |A|.

Since ρ joins two points in [xz] ∪ [zy] and p ∈ ρ, we have

δ(G) = dG(p, [xz] ∪ [zy]) ≤ 1

2
L(ρ) ≤ 1

2

(
u+

7

2
+ |A|

)
≤ 1

2
γt(G) +

1

2

( 7

2
+ u−

⌊u
2

⌋)
.

(2.2.4) If i1 ≥ u+ 1 and i2 ≥ r − u+ 1, then a similar argument to the previous one in (2.2.3)
gives the same inequality for δ(G).

Since the function

F (u) := max
{ 9− u

2
, u− 1,

1

2

( 7

2
+ u−

⌊u
2

⌋)}
,

with u ∈ Z+, attains its minimum value 3 for u = 3 and u = 4, we have

δ(G) ≤ 1

2
γt(G) + 3.

The following example shows that Theorem 4.2.8 is asymptotically sharp.
For each integer k ≥ 1 consider the cycle graph C4k with vertices V (C4k) = {v1, v2, . . . , v4k−1, v4k}

and edges E(C4k) = {v1v2, v2v3, . . . , v4k−1v4k, v4kv1}. Given points x, y /∈ V (C4k), let Gk be the
graph with

V (Gk) = {x, y} ∪ V (C4k),

E(Gk) = {xv1, xv4k, yv2k, yv2k+1} ∪ E(C4k).

Consider the geodesics g1, g2 in Gk joining x and y with g1 ∩ g2 = {x, y}. If p is the midpoint of
g1, then Corollary 1.2.17 gives

1

2
diamGk ≥ δ(Gk) ≥ dGk

(p, g2) = dGk
(p, {x, y}) =

1

2
L(g1) = k +

1

2
=

1

2
diamGk,

and we conclude δ(Gk) = k + 1/2. [70] gives γt(C4k) = 2k, and one can check that γt(Gk) =
γt(C4k) = 2k. Hence, δ(Gk) = k + 1/2 = γt(Gk)/2 + 1/2.

One can think that perhaps it is possible to obtain an upper bound of γt(G) in terms of δ(G),
i.e., the inequality

γt(G) ≤ Ψ
(
δ(G)

)
, (4.4)

for every graph G and some function Ψ. However, this is not possible, as the following example
shows. For each integer n ≥ 2 consider the path graph Pn. Since Pn is a tree, δ(Pn) = 0, but
limn→∞ γt(Pn) =∞.

However, we can obtain (4.4) for a kind of graphs.
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Theorem 4.2.9. If G is a graph with an isometric dominating cycle C, then

γt(G) ≤ 4δ(G).

Proof. Since C is a dominating cycle, C∩V (G) is a total dominating set and γt(G) ≤ |C∩V (G)| =
L(C) = 4δ(C). Since C is an isometric subgraph of G, Lemma 1.2.18 gives the inequality.

Theorem 4.2.10. If G is a graph with a dominating cycle C, then

δ(G) ≤ 1

2

⌊L(C)

2

⌋
+

3

2
,

and the inequality is sharp.

Proof. Since C is a dominating cycle, we have

diamV (G) ≤ diamV (C) + 2 =
⌊L(C)

2

⌋
+ 2,

and Corollary 1.2.17 gives the inequality. [99, Theorem 3.1] gives that the inequality is sharp.

Proposition 4.2.11. If G is a graph with no induced C4 or P4, then

δ(G) ≤ 3

2
.

Proof. Since G is a graph with no induced C4 or P4, [111] (see also [35, Theorem 1]) gives that G
has a dominating vertex. Thus, diamV (G) ≤ 2 and Corollary 1.2.17 gives the inequality.

This result can be improved as follows.

Theorem 4.2.12. If G is a graph with no induced P4, then

δ(G) ≤ 5

4
,

and the inequality is sharp.

Proof. Seeking for a contradiction assume that diamV (G) > 2. Thus, there exist u, v ∈ V (G) with
dG(u, v) = 3. Let u′, v′ ∈ V (G) with uu′, u′v′, v′v ∈ E(G). Since uu′v′v is a P4 on G, it is not
induced and so, dG(u, v) < 3, a contradiction. Hence, diamV (G) ≤ 2, diamG ≤ 3 and Corollary
1.2.17 gives δ(G) ≤ 3/2.

Seeking for a contradiction assume that δ(G) > 5/4. Thus, Theorem 1.2.14 gives δ(G) = 3/2.
By Theorem 1.2.13, there exists a geodesic triangle T = {x, y, z} that is a cycle with x, y, z ∈ J(G)
and δ(T ) = 3/2 = dG(p, [yz]∪ [zx]) for some p ∈ [xy]. Then dG(p, {x, y}) ≥ dG(p, [yz]∪ [zx]) = 3/2
and dG(x, y) ≥ 3. Therefore, diamG = 3, diamV (G) = 2, x, y ∈ J(G) \ V (G) and p ∈ V (G).
Thus, x ∈ uxvx ∈ E(G) and y ∈ uyvy ∈ E(G), with ux, uy ∈ [xy] and dG(uy, {ux, vx}) = 2, and
so, uyux, uyvx /∈ E(G). Since vxuxp uy is a P4 on G, it is not induced and so, vxp ∈ E(G) (recall
that uyux, uyvx /∈ E(G)); thus, 3/2 = dG(p, [yz] ∪ [zx]) ≤ dG(p, vx) = 1, a contradiction. Hence,
δ(G) ≤ 5/4.
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Let K4 be a complete graph with vertices {v1, v2, v3, v4}. We denote by G the graph obtained
from K4 by adding a new vertex v5 and two edges v5v1, v5v2. Denote by y the midpoint of v3v4. Let
us consider the geodesic bigon {v5, y} which is the union of the geodesics γ1 = v5v1 ∪ v1v4 ∪ [v4y]
and γ2 = v5v2 ∪ v2v3 ∪ [v3y]. If p is the midpoint of γ1, then we have δ(G) ≥ dG(p, γ2) = 5/4. Since
diamG = 5/2, Corollary 1.2.17 gives δ(G) ≤ 5/4, and we conclude δ(G) = 5/4.
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Chapter 5

Operators on graphs and
hyperbolicity

In [73], J. Krausz introduced the concept graph operators. A graph operator is a mapping F :
Γ → Γ′, where Γ and Γ′ are families of graphs. The different kinds of graph operators are an
important research topic in Discrete Mathematics and its applications. In particular, in the studies
on graph dynamics (see [50, 97]) and topological indices (see [16, 98, 113]). Some large graphs are
composed from some existing smaller ones by using graph operators, and many properties of such
large graphs are strongly associated with that of the corresponding smaller ones. Motivated from
the above works, we study here the hyperbolicity constant of some graph operators.

Given an edge e = uv ∈ E(G) with endpoints u and v, we write V (e) = {u, v}. Next, we recall
the definition of some of the main graph operators.

The line graph, denoted by L(G), is the graph whose vertices correspond to the edges of G with
two vertices being adjacent if and only if the corresponding edges in G have a vertex in common.

The subdivision graph, denoted by S(G), is the graph obtained from G by replacing each of its
edge by a path of length two, or equivalently, by inserting an additional vertex into each edge of
G.

The total graph, denoted by T (G), has as its vertices the edges and vertices of G. Adjacency in
T (G) is defined as adjacency or incidence for the corresponding elements of G.

The graph R(G) is obtained from G by adding a new vertex corresponding to each edge of
G, then joining each new vertex to the end vertices of the corresponding edge. Another way to
describe R(G) is to replace each edge of G by a triangle.

The graph Q(G) is the graph obtained from G by inserting a new vertex into each edge of G
and by joining edges those pairs of these new vertices which lie on adjacent edges of G.

Given G = (V (G), E(G)), we may define two other sets that we use frequently:

EE(G) := {{e, e′} : e, e′ ∈ E(G), e 6= e′, |V (e) ∩ V (e′)| = 1}.

EV (G) := {{e, v} : e ∈ E(G), v ∈ V (e)}.
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We may then write the subdivision operators above as follows:
L(G) := (E(G), EE(G)).
S(G) := (V (G) ∪ E(G), EV (G)).
T (G) := (V (G) ∪ E(G), E(G) ∪ EV (G) ∪ EE(G)).
R(G) := (V (G) ∪ E(G), E(G) ∪ EV (G)).
Q(G) := (V (G) ∪ E(G), EV (G) ∪ EE(G)).

In this chapter we prove inequalities relating the hyperbolicity constants of a graph G and its
graph operators L(G), S(G), T (G), R(G) and Q(G).

5.1 Hyperbolicity on subdivision operator

Let us consider hyperbolicity with the Gromov product(see Definition 1.1.3). In Chapter 4 we
denote by δ∗(G) the sharp constant for the Inequality 1.1, i.e.,

δ∗(G) := sup
{

min
{

(x, y)w, (y, z)w
}
− (x, z)w : x, y, z, w ∈ G

}
.

Theorem 1.1.4 gives δ∗(G) ≤ 4δ(G) and δ(G) ≤ 3δ∗(G). In [107, Proposition II.20] we found the
following improvement of the previous inequality: δ∗(G) ≤ 2δ(G).

We denote by δ∗v(G) the constant of hyperbolicity of the Gromov product restricted to the
vertices of G, i.e.,

δ∗v(G) := sup
{

min
{

(x, y)w, (y, z)w
}
− (x, z)w : x, y, z, w ∈ V (G)

}
.

The following result is immediate from the definition of S(G).

Proposition 5.1.1. Let G be a graph. Then

δ(S(G)) = 2δ(G), δ∗(S(G)) = 2δ∗(G).

We remark that the equality is not true for δ∗v(G) (e.g., S(C5) = C10 but 2δ∗v(C5) = 1 6= 2 =
δ∗v(S(G))), but there are inequalities. In order to obtain these inequalities, we need the following
result [34, Theorem 4].

Theorem 5.1.2. Let B = (V0∪V1, E) be a bipartite graph. We have δB(Vi) ≤ δ∗v(B) ≤ δB(Vi) + 2,
where

δB(Vi) = sup{min
{

(x, y)w, (y, z)w
}
− (x, z)w : x, y, z, w ∈ Vi}

for every i ∈ {1, 2}.

Corollary 5.1.3. Let G be a graph. Then

2δ∗v(G) ≤ δ∗v(S(G)) ≤ 2δ∗v(G) + 2.

Proof. Observe that S(G) can be considered as a bipartite graph, where V (S(G)) = V (G) ∪
V (L(G)). Theorem 5.1.2 gives δS(G)(V (G)) ≤ δ∗v(S(G)) ≤ δS(G)(V (G)) + 2. Since δS(G)(V (G)) =
2δ∗v(G), the desired inequalities hold.
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Proposition 5.1.4. Let G be a graph. Then

δ∗v(G) ≤ δ∗(G) ≤ δ∗v(G) + 3.

Proof. The inequality δ∗v(G) ≤ δ∗(G) is direct. Let us prove the other inequality.
For every x0, x1, x2 ∈ G there are x′0, x

′
1, x
′
2 ∈ V (G) such that d(xi, x

′
i) ≤ 1/2 for i = 0, 1, 2.

Then∣∣(x1, x2)x0 − (x′1, x
′
2)x′0

∣∣ =
1

2

∣∣d(x0, x1) + d(x0, x2)− d(x1, x2)− d(x′0, x
′
1)− d(x′0, x

′
2) + d(x′1, x

′
2)
∣∣

≤ 1

2

∣∣d(x0, x1)− d(x′0, x
′
1)
∣∣+

1

2

∣∣d(x0, x2)− d(x′0, x
′
2)
∣∣+

1

2

∣∣d(x1, x2)− d(x′1, x
′
2)
∣∣

≤ 3

2
.

Given x0, x1, x2, x3 ∈ G, let x′0, x
′
1, x
′
2, x
′
3 ∈ V (G), with d(xi, x

′
i) ≤ 1/2 for i = 0, 1, 2, 3. We have

(x1, x3)x0 ≥ (x′1, x
′
3)x′0 −

3

2
≥ min

{
(x′1, x

′
2)x′0 , (x

′
2, x
′
3)x′0

}
− δ∗v(G)− 3

2

≥ min
{

(x1, x2)x0 −
3

2
, (x2, x3)x0 −

3

2

}
− δ∗v(G)− 3

2
= min{(x1, x2)x0 , (x2, x3)x0} − δ∗v(G)− 3,

and we conclude δ∗(G) ≤ δ∗v(G) + 3.

5.2 Hyperbolicity on operators Q, R and T

We will need the following well-know result. We include a proof for the sake of completeness.

Lemma 5.2.1. If Γ is an isometric subgraph of G, then δ(Γ) ≤ δ(G), δ∗(Γ) ≤ δ∗(G) and δ∗v(Γ) ≤
δ∗v(G).

Proof. Note that by hypothesis dΓ(x, y) = dG(x, y) for every x, y ∈ Γ; therefore, every geodesic
triangle in Γ is a geodesic triangle in G. Hence, δ(Γ) ≤ δ(G). Similarly, we have δ∗(Γ) ≤ δ∗(G)
and δ∗v(Γ) ≤ δ∗v(G).

Since G is an isometric subgraph of T (G) and R(G), and L(G) is an isometric subgraph of T (G)
and Q(G), we have the following consequence of Lemma 5.2.1.

Corollary 5.2.2. For any graph G, we have

δ(G) ≤ δ(T (G)), δ∗(G) ≤ δ∗(T (G)), δ∗v(G) ≤ δ∗v(T (G)),

δ(G) ≤ δ(R(G)), δ∗(G) ≤ δ∗(R(G)), δ∗v(G) ≤ δ∗v(R(G)),

δ(L(G)) ≤ δ(T (G)), δ∗(L(G)) ≤ δ∗(T (G)), δ∗v(L(G)) ≤ δ∗v(T (G)),

δ(L(G)) ≤ δ(Q(G)), δ∗(L(G)) ≤ δ∗(Q(G)), δ∗v(L(G)) ≤ δ∗v(Q(G)).
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The hyperbolicity of the line graph has been studied previously (see [23, 25, 34]). We have the
following results.

Theorem 5.2.3. [23, Corollary 3.12] Let G be a graph. Then

δ(G) ≤ δ(L(G)) ≤ 5δ(G) + 5/2.

Furthermore, the first inequality is sharp: the equality is attained by every cycle graph.

Theorem 5.2.4. [34, Theorem 6] Let G be a graph. Then

δ∗v(G)− 1 ≤ δ∗v(L(G)) ≤ δ∗v(G) + 1.

Theorem 5.2.5. Let G be a graph. Then

δ∗(G)− 4 ≤ δ∗(L(G)) ≤ δ∗(G) + 4.

Proof. Theorem 5.2.4 and Proposition 5.1.4 give δ∗(G) ≤ δ∗v(G)+3 ≤ δ∗v(L(G))+4 ≤ δ∗(L(G))+4,
and δ∗(L(G)) ≤ δ∗v(L(G)) + 3 ≤ δ∗v(G) + 4 ≤ δ∗(G) + 4.

Proposition 5.1.1, and Theorems 5.2.3 and 5.2.5 have the following consequence.

Corollary 5.2.6. Let G be a graph. Then

δ(S(G)) ≤ 2δ(L(G)) ≤ 5δ(S(G)) + 5,

δ∗(S(G))− 8 ≤ 2δ∗(L(G)) ≤ δ∗(S(G)) + 8.

Corollary 5.2.2 and Theorems 5.2.3, 5.2.4 and 5.2.5 have the following consequence.

Corollary 5.2.7. Let G be a graph. Then

δ(G) ≤ δ(Q(G)),

δ∗v(G) ≤ δ∗v(Q(G)) + 1,

δ∗(G) ≤ δ∗(Q(G)) + 4.

Note that Theorem 5.2.5 improves the inequality δ∗(L(G)) ≤ δ∗(G) + 6 in [25].

Given a graph G with multiple edges, we define B(G) as the graph (without multiple edges)
obtained from G by replacing each multiple edge by a single edge with the minimum length of the
edges corresponding to that multiple edge. From [12, Theorem 8] we have the following result.

Theorem 5.2.8. If G is a graph with multiple edges, then G is hyperbolic if and only if B(G) is
hyperbolic and J := sup{L(β) : β is an edge contained in a multiple edge of G} is finite. Besides,
if j := inf{d(x, y) : x, y are joined by a multiple edge of G}, then

max
{
δ(B(G)),

J + j

4

}
≤ δ(G) ≤ max

{
δ(B(G)) +

J − j
2

, J
}
.
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Remark 5.2.9. The argument in the proof of [12, Theorem 8] has the following direct con-
sequence: If in each multiple edge there is at most one edge with length greater than j, then

δ(G) ≤ max
{
δ(B(G)) + J−j

2 , J+j
4

}
.

Corollary 5.2.10. Let G be a graph. Then

max
{
δ(G),

3

4

}
≤ δ(R(G)) ≤ max

{
δ(G) +

1

2
,
3

4

}
.

Proof. Note that R(G) can be obtained by adding an edge of length 2 to each pair of adjacent
vertices in G, so the graph becomes a graph with multiple edges, with j = 1 and J = 2. Then
Theorem 5.2.8 and Remark 5.2.9 give the result.

Given any graph G which is not a tree, we define its girth g(G) as the infimum of the lengths
of the cycles in G.

From [80, Theorem 17] we have the following result.

Theorem 5.2.11. Let G be a graph which is not a tree. Then

δ(G) ≥ g(G)

4
.

We have the following consequence.

Corollary 5.2.12. Let G be a graph which is not a tree. Then

δ(G) ≥ 3

4
.

Corollary 5.2.13. Let G be a graph which is not a tree. Then

δ(G) ≤ δ(R(G)) ≤ δ(G) +
1

2
.

Proof. Since G is not a tree, Corollary 5.2.12 gives δ(G) ≥ 3/4, and so

max
{
δ(G),

3

4

}
= δ(G), max

{
δ(G) +

1

2
,
3

4

}
= δ(G) +

1

2
,

and Corollary 5.2.10 gives the inequalities.

Theorem 5.2.3 and Corollary 5.2.13 have the following consequence.

Corollary 5.2.14. Let G be a graph which is not a tree. Then

δ(R(G))− 1

2
≤ δ(L(G)) ≤ 5δ(R(G)) +

5

2
.

Proposition 5.1.1 and Corollary 5.2.13 have the following consequence.
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Corollary 5.2.15. Let G be a graph which is not a tree. Then

δ(S(G)) ≤ 2δ(R(G)) ≤ δ(S(G)) + 1.

Theorem 5.2.16. Let G be a graph. Then

δ∗(L(G)) ≤ δ∗(Q(G)) ≤ δ∗v(L(G)) + 6 ≤ δ∗(L(G)) + 6,

δ∗v(L(G)) ≤ δ∗v(Q(G)) ≤ δ∗v(L(G)) + 6,

δ∗(L(G)) ≤ δ∗(T (G)) ≤ δ∗v(L(G)) + 9 ≤ δ∗(L(G)) + 9,

δ∗v(L(G)) ≤ δ∗v(T (G)) ≤ δ∗v(L(G)) + 6,

δ∗(G) ≤ δ∗(R(G)) ≤ δ∗v(G) + 6 ≤ δ∗(G) + 6,

δ∗v(G) ≤ δ∗v(R(G)) ≤ δ∗v(G) + 6,

δ∗(G) ≤ δ∗(T (G)) ≤ δ∗v(G) + 9 ≤ δ∗(G) + 9,

δ∗v(G) ≤ δ∗v(T (G)) ≤ δ∗v(G) + 6.

Proof. The lower bounds follow from Corollary 5.2.2. We consider the map P : Q(G)→ L(G) such
that P (x) = x if x ∈ L(G), P (x) = vx if x 6∈ L(G), where vx ∈ V (L(G)) and dQ(G)(x, vx) ≤ 1. If
x0, x1, x2, x3 ∈ Q(G), then∣∣dQ(G)(xi, xj)− dL(G)(P (xi), P (xj))

∣∣ =
∣∣dQ(G)(xi, xj)− dQ(G)(P (xi), P (xj))

∣∣ ≤ 2,

since L(G) is an isometric subgraph of Q(G)) and∣∣(xi, xj)x0 − (P (xi), P (xj))P (x0)

∣∣
=

1

2

∣∣dQ(G)(x0, xi) + dQ(G)(x0, xj)− dQ(G)(xi, xj)

−dL(G)(P (x0), P (xi))− dL(G)(P (x0), P (xj)) + dL(G)(P (xi), P (xj))
∣∣ ≤ 3,

for i, j ∈ {1, 2, 3}. Thus,

(x1, x3)x0 ≥ (P (x1), P (x3))P (x0) − 3

≥ min{(P (x1), P (x2))P (x0), (P (x2), P (x3))P (x0)} − δ∗v(L(G))− 3

≥ min{(x1, x2)x0 − 3, (x2, x3)x0 − 3} − δ∗v(L(G))− 3

= min{(x1, x2)x0 , (x2, x3)x0} − δ∗v(L(G))− 6.

Therefore,
δ∗(L(G)) + 6 ≥ δ∗v(L(G)) + 6 ≥ δ∗(Q(G)) ≥ δ∗v(Q(G)).

These inequalities give the upper bounds of δ∗(Q(G)) and δ∗v(Q(G)). We obtain the other upper
bounds in a similar way.

Corollary 5.2.7 and Theorems 5.2.4 and 5.2.16 have the following consequence.
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Corollary 5.2.17. Let G be a graph. Then

δ∗v(G)− 1 ≤ δ∗v(Q(G)) ≤ δ∗v(G) + 7,

δ∗(G)− 4 ≤ δ∗(Q(G)) ≤ δ∗v(G) + 7 ≤ δ∗(G) + 7.

The inequalities δ(G) ≤ 3δ∗(G) and δ∗(G) ≤ 2δ(G), Theorem 5.2.16 and Corollaries 5.2.2, 5.2.7
and 5.2.17 have the following consequence.

Corollary 5.2.18. Let G be a graph. Then

δ(L(G)) ≤ δ(Q(G)) ≤ 6δ(L(G)) + 18,

δ(L(G)) ≤ δ(T (G)) ≤ 6δ(L(G)) + 27,

δ(G) ≤ δ(T (G)) ≤ 6δ(G) + 27,

δ(G) ≤ δ(Q(G)) ≤ 6δ(G) + 21.

Proof. Corollaries 5.2.2 and 5.2.7 give the lower bounds. On the other hand, Theorem 5.2.16 gives
δ(Q(G)) ≤ 3δ∗(Q(G)) ≤ 3δ∗(L(G)) + 18 ≤ 6δ(L(G)) + 18, δ(T (G)) ≤ 3δ∗(T (G)) ≤ 3(δ∗(L(G)) +
9) ≤ 6δ(L(G)) + 27; we obtain the third upper bound in a similar way. Corollary 5.2.17 gives
3δ∗(Q(G)) ≤ 3(δ∗(G) + 7) ≤ 6δ(G) + 21, obtaining the last upper bound.

The following results improve the inequality δ(Q(G)) ≤ δ(L(G)) + 18 in Corollary 5.2.18.

Theorem 5.2.19. Let G be a graph. If G is a path graph, then

0 = δ(L(G)) ≤ δ(Q(G)) ≤ 3/4.

Proof. Since G is a path graph, L(G) is also a path graph, and so 0 = δ(L(G)) ≤ δ(Q(G)).
Consider the T -decomposition {Gn} of Q(G). Since each connected component Gn is either a

cycle C3 or a path of length 1, we have δ(Q(G)) = supn{δ(Gn)} ≤ 3/4, by Theorem 1.2.19 and
Proposition 1.2.23.

Theorem 5.2.20. Let G be a graph. If G is not a path graph, then

δ(L(G)) ≤ δ(Q(G)) ≤ δ(L(G)) + 1/2.

Proof. Corollary 5.2.2 gives the first inequality. Let us prove the second one. If δ(Q(G)) = ∞,
then Theorem 5.2.16 gives δ(L(G)) = ∞, and the second inequality holds. Assume now that
δ(Q(G)) <∞ (and so, δ(L(G)) <∞ by Theorem 5.2.16). Since G is not a path graph, L(G) is not
a tree and Corollary 5.2.12 gives δ(L(G)) ≥ 3/4.

For each v ∈ V (G), let us define Vv := {u ∈ V (Q(G)) : uv ∈ E(Q(G))} = {u ∈ V (L(G)) :
uv ∈ E(Q(G))}. Denote by Gv and G∗v the subgraphs of Q(G) induced by the sets Vv ∪ {v}
and Vv, respectively. Note that both Gv and G∗v are complete graphs for every v ∈ V (G), and if
G∗ is a complete graph with r vertices, then Gv is a complete graph with r + 1 vertices. Also,
Q(G) = L(G) ∪ (∪v∈V (G)Gv).
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By Theorem 1.2.13 there exists a geodesic triangle T ∈ T1 in Q(G) with δ(T ) = δ(Q(G)).
Denote by γ1, γ2, γ3 the sides of T . Without loss of generality we can assume that there exists
p ∈ γ1 with dQ(G)(p, γ2 ∪ γ3) = δ(T ) = δ(Q(G)). Thus, T is a cycle and each vertex of T is either
a vertex of Q(G) or the midpoint of some edge of Q(G).

If T is contained in Gv for some v ∈ V (G), then δ(Q(G)) = δ(T ) ≤ δ(Gv) ≤ 1 < 3/4 + 1/2 ≤
δ(L(G)) + 1/2 by Theorem 1.2.19, since Gv is an isometric subgraph of Q(G).

If T is contained in L(G), then δ(Q(G)) = δ(T ) ≤ δ(L(G)) by Lemma 5.2.1, since L(G) is an
isometric subgraph of Q(G).

Assume that T is not contained neither in L(G) nor Gv with v ∈ V (G).

Note that if T ∩ (Gv \G∗v) 6= ∅ for some v ∈ V (G), then there exists at least one vertex of T in
Gv \ L(G). We are going to construct a triangle T ∗ ⊂ L(G) from T .

We define γ∗i := γi∩L(G). Note that, for i ∈ {1, 2, 3}, γ∗i is a geodesic, since L(G) is a isometric
subgraph of Q(G).

We denote by xi,j the common vertex of γi and γj and by ui and uj the other vertices of γi and
γj respectively.

We consider the following cases:

Case A. We assume that exactly one vertex of T belongs to Q(G) \ L(G).

Without loss of generality we can assume that xi,j ∈ T \L(G). Denote by v the vertex v ∈ V (G)
with xi,j ∈ Gv \ L(G). Let xi (respectively, xj) be the closest point of γ∗i (respectively, γ∗j ) to
xi,j . Thus, xixj ∈ E(L(G)). Let us define v∗ as the midpoint of the edge xixj . Let us denote by
T1 the connected component of T \ L(G) joining xi and xj . Note that L(T1) = 2. We have two
possibilities:

Case A1. Assume that xi,j ∈ V (Q(G)). Let us define σi := γ∗i ∪ [xiv
∗] and σj := γ∗j ∪ [xjv

∗].
We are going to prove that σi and σj are geodesics in L(G). In fact, we prove now that if γ∗j =
[zjxj ], then dQ(G)(zj , xj) ≤ dQ(G)(zj , xi). Seeking for a contradiction assume that dQ(G)(zj , xj) >
dQ(G)(zj , xi). Thus,

dQ(G)(zj , xi) + dQ(G)(xi, xi,j) = dQ(G)(zj , xi) + 1 ≤ dQ(G)(zj , xj) + dQ(G)(xj , xi,j)

and this implies that γj is not a geodesic. This is the contradiction we were looking for, and we
conclude dQ(G)(zj , xj) ≤ dQ(G)(zj , xi). Hence, σi is a geodesic in L(G).

Case A2. If xi,j is the midpoint of some edge of E(Q(G)) \ E(L(G)), then without loss of
generality we can assume that it is the midpoint of xiv, and we define σi := γ∗i and σj := γ∗j ∪xjxi.
Thus, σi is a geodesic in L(G).

Note that γ∗j ∪ xjv ∪ [vxi,j ] and σj ∪ [xixi,j ] = γ∗j ∪ xjxi ∪ [xixi,j ] have the same endpoints and
length; therefore, σj is also a geodesic in L(G).

Case B. Assume that there are two vertices of T in some connected component of T \ L(G).
Without loss of generality we can assume that ui, uj ∈ Gv \ G∗v for some v. We denote by x′i
(respectively, x′j) the closest point in γ∗i (respectively, γ∗j ) to ui (respectively, uj); then x′ix

′
j ∈

E(L(G)). Let us define v′ as the midpoint of the edge x′ix
′
j . Let us denote by T2 the connected

component of T \ L(G) joining x′i and x′j . Note that L(T2) = 2.
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Since each vertex of T is a vertex of V (Q(G)) or the midpoint of an edge of E(Q(G)), we have
two possibilities again:

Case B1. The vertices ui, uj of T are the midpoints of x′iv and x′jv. Thus, σi := γ∗i , σj := γ∗j
and σk := x′ix

′
j are geodesics in L(G).

Case B2. Otherwise, we can assume without loss of generality that uj = v and ui is the midpoint
of xiv. We have dQ(G)(ui, xj) = dQ(G)(ui, xi) + 1 and so, σi := γ∗i and σj := γ∗j ∪ x′jx′i are geodesics
in L(G). In this case we define σk := {x′i}.

By repeating this process at most three times we obtain a geodesic triangle T ∗ in L(G) with
sides γ′1, γ′2 and γ′3 containing γ∗1 , γ∗2 and γ∗3 , respectively.

If p ∈ L(G), then one can check that δ(Q(G)) = dQ(G)(p, γ2 ∪ γ3) ≤ dQ(G)(p, γ
′
2 ∪ γ′3) + 1/2 ≤

δ(L(G)) + 1/2. If p 6∈ L(G), then δ(Q(G)) = dQ(G)(p, γ2 ∪ γ3) ≤ 5/4; since δ(L(G)) ≥ 3/4, we have
δ(L(G)) + 1/2 ≥ 5/4 ≥ δ(Q(G)). This finishes the proof.

Proposition 5.1.1, Theorems 5.2.3 and 5.2.20, and Corollary 5.2.6 have the following conse-
quence.

Corollary 5.2.21. Let G be a graph. If G is not a path graph, then

δ(S(G)) ≤ 2δ(Q(G)) ≤ 5δ(S(G)) + 6.
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Conclusions

In this work the hyperbolicity constant was studied. Bounds and characterizations were given for
families of graphs. Relationships between the hyperbolic constant and some domination numbers
were provided and, finally, the hyperbolicity constant was studied by considering operators in
graphs.

Interval graphs

In Chapter 2 bounds and characterizations were provided for interval graphs.
By Corollary 2.1.11, we have that every interval graph G with edges of length 1 satisfies the

inequality

δ(G) ≤ 3

2
.

Let G be an interval graph, the following properties was defined for G:

� We say that G has the 0-intersection property if for every three corresponding intervals I ′,
I ′′ and I ′′′ to vertices in G we have I ′ ∩ I ′′ ∩ I ′′′ = ∅.

� G has the (3/4)-intersection property if it does not have the 0-intersection property and for
every four corresponding intervals I ′, I ′′, I ′′′ and I ′′′′ to vertices in G we have I ′∩ I ′′∩ I ′′′ = ∅
or I ′ ∩ I ′′ ∩ I ′′′′ = ∅.

� By a couple of intervals in a cycle C of G we mean the union of two non-disjoint intervals
whose corresponding vertices belong to C. We say that G has the 1-intersection property if it
does not have the 0 and (3/4)-intersection properties and for every cycle C in G each interval
and couple of corresponding intervals to vertices in C are not disjoint.

� Let G be an interval graph. We say that G has the (3/2)-intersection property if there exists
two disjoint corresponding intervals I ′ and I ′′ to vertices in a cycle C in G such that there is
no interval I (corresponding to a vertex in G) with I ∩ I ′ 6= ∅ and I ∩ I ′′ 6= ∅.

The characterizations for interval graphs are given in the Theorem 2.1.16: Every interval graph
G is hyperbolic and δ(G) ∈ {0, 3/4, 1, 5/4, 3/2}. Furthermore,

� δ(G) = 0 if and only if G has the 0-intersection property.
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� δ(G) = 3/4 if and only if G has the (3/4)-intersection property.

� δ(G) = 1 if and only if G has the 1-intersection property.

� δ(G) = 5/4 if and only if G does not have the 0, 3/4, 1 and (3/2)-intersection properties.

� δ(G) = 3/2 if and only if G has the (3/2)-intersection property.

Circular-arc graphs.

In Chapter 3, we study the hyperbolicity constant of circular-arc graphs, and we obtained bounds
and characterizations. Some inequalities are:

� If G is a circular-arc graph and %(G) 6= 1, 2, then

1

4
%(G) ≤ δ(G) ≤ 1

2

⌊1

2
%(G)

⌋
+

3

2
.

� If G is a proper circular-arc graph and %(G) = 1, then

δ(G) = 0.

� If G is a proper circular-arc graph and %(G) = 2, then

0 ≤ δ(G) ≤ 5/4.

� If G is a proper circular-arc graph and %(G) ≥ 3, then

1

4
%(G) ≤ δ(G) ≤ 1

2

⌊1

2
%(G)

⌋
+ 1.

Here, the parameter %(G) is defined as

%(G) := min
{
size(K) | K is a total set of vertices in G

}
.

In addition, we characterize the circular-arc graphs with the two smallest possible values for
the hyperbolicity constant: 0 and 3/4.

Nordhaus and Gaddum type results were obtained, such as

5%(G)

16
≤ δ(G)δ(G) ≤ 3%(G)

8
+

9

4
,

%(G) + 5

4
≤ δ(G) + δ(G) ≤ %(G)

4
+ 3, if %(G) > 4,

0 ≤ δ(G)δ(G) ≤ 7%(G)

8
+

21

4
,

%(G)

4
≤ δ(G) + δ(G) ≤ %(G)

4
+ 5, if %(G) = 4,

0 ≤ δ(G)δ(G) ≤ %(G)

2
+ 3,

%(G)

4
≤ δ(G) + δ(G) ≤ %(G)

4
+

7

2
, if %(G) = 0.
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Finally there are relations for the line graph

� If %(G) ≥ 3, then
1

4
%(G) ≤ δ(L(G)) ≤ 1

2

⌊1

2
%(G)

⌋
+

5

2
.

� If %(G) = 0, 2, then

0 ≤ δ(L(G)) ≤ 5

2
.

� If %(G) = 1, then
0 ≤ δ(L(G)) ≤ 2.

Domination and hyperbolicity

In Chapter 4, we study the relationship of hyperbolicity with some types of domination on graphs,
and we obtain inequalities relating the hyperbolicity constant and the total-domination number,
distance k-domination number, and other parameters. Some of these results are the following.

� If G is a graph with maximum degree ∆, then

δ(G) ≤ ∆

4
γt(G) .

� Let G be a graph and k ≥ 1. Then

γk(G) ≥ diamV (G) + 1

2k + 1
, γk(G) ≥ 2δ(G)

2k + 1
.

� If G is a graph and k ≥ 2, then

δ(G) ≤ 1

2
max

{
5,

⌊
3 γktc(G)− 2

k + 1

⌋
+ 1

}
.

� If G is a graph, then

δ(G) ≤

{
1
2 γt(G) + 1, if γt(G) ≤ 3,
1
2 γt(G) + 3, if γt(G) ≥ 4.

� If G is a graph with an isometric dominating cycle C, then

γt(G) ≤ 4δ(G).

� If G is a graph with an isometric dominating cycle C, then

γt(G) ≤ 4δ(G).
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� If G is a graph with no induced C4 or P4, then

δ(G) ≤ 3

2
.

� If G is a graph with no induced P4, then

δ(G) ≤ 5

4
,

and the inequality is sharp.

The importance of the results lies in the fact that it is interesting to obtain relations between
the hyperbolic constant of a graph and its domination parameters. Since both parameters are
computationally complicated problems, to calculate one of their allows to obtain information about
the other one.

Operators on graphs and hyperbolicity

In Chapter 5, we studied the hyperbolicity constant of a graph G and how it was related to
the hyperbolic constant of the graph obtained by applying an operator T to G, i. e., we found
relationships between δ(G) and δ(T (G)). The operators studied were: L(G), S(G), T (G), R(G)
and Q(G). Some relationships are the following:

� For any graph G, we have

δ(G) = δ(S(G))/2,

δ(G) ≤ δ(T (G)),

δ(G) ≤ δ(R(G)),

δ(G) ≤ δ(Q(G)),

δ(L(G)) ≤ δ(T (G)),

δ(L(G)) ≤ δ(Q(G)),

δ(S(G)) ≤ 2δ(L(G)) ≤ 5δ(S(G)) + 5.

� Let G be a graph. Then

max
{
δ(G),

3

4

}
≤ δ(R(G)) ≤ max

{
δ(G) +

1

2
,
3

4

}
.
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� Let G be a graph. Then

δ(L(G)) ≤ δ(Q(G)) ≤ 6δ(L(G)) + 18,

δ(L(G)) ≤ δ(T (G)) ≤ 6δ(L(G)) + 27,

δ(G) ≤ δ(T (G)) ≤ 6δ(G) + 27,

δ(G) ≤ δ(Q(G)) ≤ 6δ(G) + 21.

� Let G be a graph which is not a tree. Then

δ(G) ≤δ(R(G)) ≤ δ(G) +
1

2
,

δ(R(G))− 1

2
≤δ(L(G)) ≤ 5δ(R(G)) +

5

2
,

δ(S(G)) ≤ 2δ(R(G)) ≤ δ(S(G)) + 1.

� Let G be a graph. If G is a path graph, then

0 = δ(L(G)) ≤ δ(Q(G)) ≤ 3/4.

If G is not a path graph, then:

δ(L(G)) ≤ δ(Q(G)) ≤ δ(L(G)) + 1/2.

δ(S(G)) ≤ 2δ(Q(G)) ≤ 5δ(S(G)) + 6.
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[95] A. Portilla and E. Touŕıs. A characterization of Gromov hyperbolicity of surfaces with variable
negative curvature, Publ. Mat. 53(1) (2009), 83–110. DOI: 10.5565/PUBLMAT 53109 04

[96] M. Powel. Alliance in graph, Proc. on th 255 of the USA Military Academy (2004), 1350–1415.

[97] E. Prisner. Graph dynamics, Chapman and Hall/CRC 338 (1995).

[98] P. S. Ranjini and V. Lokesha. Smarandache-Zagreb Index on Three Graph Operators, Inter-
national J. Math. Combin. 3 (2010), 1–10.
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