573 research outputs found

    Curvelets and Ridgelets

    Get PDF
    International audienceDespite the fact that wavelets have had a wide impact in image processing, they fail to efficiently represent objects with highly anisotropic elements such as lines or curvilinear structures (e.g. edges). The reason is that wavelets are non-geometrical and do not exploit the regularity of the edge curve. The Ridgelet and the Curvelet [3, 4] transforms were developed as an answer to the weakness of the separable wavelet transform in sparsely representing what appears to be simple building atoms in an image, that is lines, curves and edges. Curvelets and ridgelets take the form of basis elements which exhibit high directional sensitivity and are highly anisotropic [5, 6, 7, 8]. These very recent geometric image representations are built upon ideas of multiscale analysis and geometry. They have had an important success in a wide range of image processing applications including denoising [8, 9, 10], deconvolution [11, 12], contrast enhancement [13], texture analysis [14, 15], detection [16], watermarking [17], component separation [18], inpainting [19, 20] or blind source separation[21, 22]. Curvelets have also proven useful in diverse fields beyond the traditional image processing application. Let’s cite for example seismic imaging [10, 23, 24], astronomical imaging [25, 26, 27], scientific computing and analysis of partial differential equations [28, 29]. Another reason for the success of ridgelets and curvelets is the availability of fast transform algorithms which are available in non-commercial software packages following the philosophy of reproducible research, see [30, 31]

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Asymptotic Behavior of Some Parabolic Equations and Application in Image Restoration

    Get PDF
    In this paper, we consider some nonlinear parabolic problem involving the well known p-laplacian and some operator having exponential growth with respect to the gradient. We start by dealing the asymptotic behavior for some evolution equation then we give some numerical results with an application in image processing

    Total Variation as a local filter

    Get PDF
    International audienceIn the Rudin-Osher-Fatemi (ROF) image denoising model, Total Variation (TV) is used as a global regularization term. However, as we observe, the local interactions induced by Total Variation do not propagate much at long distances in practice, so that the ROF model is not far from being a local filter. In this paper, we propose to build a purely local filter by considering the ROF model in a given neighborhood of each pixel. We show that appropriate weights are required to avoid aliasing-like effects, and we provide an explicit convergence criterion for an associated dual minimization algorithm based on Chambolle's work. We study theoretical properties of the obtained local filter, and show that this localization of the ROF model brings an interesting optimization of the bias-variance trade-off, and a strong reduction a ROF drawback called "staircasing effect". We finally present a new denoising algorithm, TV-means, that efficiently combines the idea of local TV-filtering with the non-local means patch-based method

    Order of convergence of the finite element method for the p(x)-Laplacian

    Get PDF
    In this work, we study the rate of convergence of the finite element method for the p(x) Laplacian (⁠1<p1≤p(x)≤p2≤2⁠) in a bounded convex domain in R2⁠.Fil: Del Pezzo, Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Martinez, Sandra Rita. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentin

    Regularisation methods for imaging from electrical measurements

    Get PDF
    In Electrical Impedance Tomography the conductivity of an object is estimated from boundary measurements. An array of electrodes is attached to the surface of the object and current stimuli are applied via these electrodes. The resulting voltages are measured. The process of estimating the conductivity as a function of space inside the object from voltage measurements at the surface is called reconstruction. Mathematically the ElT reconstruction is a non linear inverse problem, the stable solution of which requires regularisation methods. Most common regularisation methods impose that the reconstructed image should be smooth. Such methods confer stability to the reconstruction process, but limit the capability of describing sharp variations in the sought parameter. In this thesis two new methods of regularisation are proposed. The first method, Gallssian anisotropic regularisation, enhances the reconstruction of sharp conductivity changes occurring at the interface between a contrasting object and the background. As such changes are step changes, reconstruction with traditional smoothing regularisation techniques is unsatisfactory. The Gaussian anisotropic filtering works by incorporating prior structural information. The approximate knowledge of the shapes of contrasts allows us to relax the smoothness in the direction normal to the expected boundary. The construction of Gaussian regularisation filters that express such directional properties on the basis of the structural information is discussed, and the results of numerical experiments are analysed. The method gives good results when the actual conductivity distribution is in accordance with the prior information. When the conductivity distribution violates the prior information the method is still capable of properly locating the regions of contrast. The second part of the thesis is concerned with regularisation via the total variation functional. This functional allows the reconstruction of discontinuous parameters. The properties of the functional are briefly introduced, and an application in inverse problems in image denoising is shown. As the functional is non-differentiable, numerical difficulties are encountered in its use. The aim is therefore to propose an efficient numerical implementation for application in ElT. Several well known optimisation methods arc analysed, as possible candidates, by theoretical considerations and by numerical experiments. Such methods are shown to be inefficient. The application of recent optimisation methods called primal- dual interior point methods is analysed be theoretical considerations and by numerical experiments, and an efficient and stable algorithm is developed. Numerical experiments demonstrate the capability of the algorithm in reconstructing sharp conductivity profiles

    Continuous Multiclass Labeling Approaches and Algorithms

    Get PDF
    We study convex relaxations of the image labeling problem on a continuous domain with regularizers based on metric interaction potentials. The generic framework ensures existence of minimizers and covers a wide range of relaxations of the originally combinatorial problem. We focus on two specific relaxations that differ in flexibility and simplicity -- one can be used to tightly relax any metric interaction potential, while the other one only covers Euclidean metrics but requires less computational effort. For solving the nonsmooth discretized problem, we propose a globally convergent Douglas-Rachford scheme, and show that a sequence of dual iterates can be recovered in order to provide a posteriori optimality bounds. In a quantitative comparison to two other first-order methods, the approach shows competitive performance on synthetical and real-world images. By combining the method with an improved binarization technique for nonstandard potentials, we were able to routinely recover discrete solutions within 1%--5% of the global optimum for the combinatorial image labeling problem

    Inverse problems in high pressure processes and food engineering

    Get PDF
    Depto. de Análisis Matemático y Matemática AplicadaInstituto de Matemática Interdisciplinar (IMI)Fac. de Ciencias MatemáticasTRUEpu
    corecore