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Abstract

In the Rudin-Osher-Fatemi (ROF) image denoising model, Total Variation (TV) is used as a
global regularization term. However, as we observe, the local interactions induced by Total Variation
do not propagate much at long distances in practice, so that the ROF model is not far from being a
local filter. In this paper, we propose to build a purely local filter by considering the ROF model in
a given neighborhood of each pixel. We show that appropriate weights are required to avoid aliasing-
like effects, and we provide an explicit convergence criterion for an associated dual minimization
algorithm based on Chambolle’s work. We study theoretical properties of the obtained local filter,
and show that this localization of the ROF model brings an interesting optimization of the bias-
variance trade-off, and a strong reduction a ROF drawback called “staircasing effect”. We finally
present a new denoising algorithm, TV-means, that efficiently combines the idea of local TV-filtering
with the non-local means patch-based method.

Keywords : Total variation, variational model, local filter, image denoising, non-local means.

1 Introduction

Image denoising/smoothing is one of the most considered issues in image processing, not only because it
plays a key preliminary role in many computer vision systems, but also because it is probably the simplest
way to address the fundamental issue of image modeling, as a starting point towards more complex tasks
like deblurring, demosaicking, inpainting, etc. Among denoising/smoothing methods, several classes arise
naturally. One of them consists in local filters, that is, translation-invariant operators that transform a
gray-level image v : Ω → R into a gray-level image

u : x 7→ T
(
(v(x + z))z∈B

)
,

where B a bounded set (typically, a disc with radius r centered in 0), and T an application from RB to
R. Note that this definition equally holds for images defined on a continuous domain (Ω, B ⊂ R2) or on
a discrete domain (Ω, B ⊂ Z2). Among local filters are the averaging filter, obtained (in a continuous
setting) with the averaging operator

T (w) =
1
|B|

∫
B

w(z) dz,

or more generally convolution filters with finite impulse response (when T is linear). Let us also mention
contrast-invariant operators like, for example, the median filter, or the erosion filter associated to

T (w) = inf
z∈B

w(z).
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Another important example is given by Yaroslavsky’s filter [60], corresponding to

T (w) =
1

C(w)

∫
B

w(z) e−|w(z)−w(0)|2/h2
dz, where C(w) =

∫
B

e−|w(z)−w(0)|2/h2
dz,

and the related (not strictly local) SUSAN [56] and bilateral filters [58] (see [16] for a discussion on the
relationship between these three filters).

Another class of denoising/smoothing methods consists in variational formulations, which transform
an image v into an image u that minimizes some energy functional Eλ(u) depending on v and on a
parameter λ. A typical example is the L2 −H1 minimization, associated to

Eλ(u) = ‖u− v‖2 + λ

∫
Ω

|∇u|2, (1)

where ∇u =
(

∂u
∂x , ∂u

∂y

)T

is the gradient of u. This example is a special case of the Wiener filter, that can

be solved explicitly when Ω = R2 with

∀ξ ∈ R2, û(ξ) =
v̂(ξ)

1 + λ|ξ|2
,

where f̂ denotes the Fourier transform of f : R2 → R. This filter is a convolution, but since the associated
kernel is not compactly supported, it cannot be written as a purely local filter. A more sophisticated
example, avoiding undesirable blur effects caused by (1), is obtained with

Eλ(u) = ‖u− v‖2 + λ

∫
Ω

|∇u|, (2)

which corresponds to the Rudin-Osher-Fatemi (ROF) model for image denoising [54]. This model, which
is the starting point of this work, has been widely used in image processing for various tasks including
denoising [24, 36], deblurring [23, 55], interpolation [40], super-resolution [3, 21], inpainting [25, 26],
cartoon/texture decomposition [8, 51], etc. Dramatic improvements have also been recently made on
accuracy and computation speed for the numerical solving of ROF-derived variational problems [9, 17,
21, 22, 33, 34, 59].

These two classes of methods (not to mention others) correspond to two different points of view. A
local filter can be iterated, which generally results in a Partial Differential Equation (PDE) formulation
with interesting interpretations (the heat equation for positive isotropic averaging filters, the mean cur-
vature motion for the median filter [5], etc.). The amount of smoothing/denoising can also be increased
by changing the size of the neighborhood B, whereas in a variational formulation (energy Eλ), this role is
played by the hyperparameter λ that controls the trade-off between the smoothness of u and its distance
to the original image v. The use of local filters is very natural in a shape recognition context, where the
possibility of occlusions makes long-distance smoothing interactions questionable (it seems more relevant
to smooth the background of a scene mostly independently of the foreground, and vice-versa). In general,
variational formulations do not lead to local filters, because short-distance interactions involved in Eλ(u)
(typically resulting from partial derivatives) cause long-distance interactions due to the minimization
process [12].

In this work, we first study the importance of these long-distance interactions for the ROF model
(Equation 2). We show in Section 2 that most image pixels have a very limited influence zone around
them, which suggests that the ROF model is not far from being a local filter. In Section 3, we follow this
idea and derive a local filter by considering a ROF model on a neighborhood of each pixel. We show in
particular that the introduction of a smooth window (that is, appropriate weights on the neighborhood) is
required to avoid aliasing-like artifacts (that is, the enhancement of particular frequencies). The monotony
of this local TV-filter is investigated in Section 4, and we show that it admits two limiting PDEs: the
Total variation flow [10] and the heat equation. In Section 5, we build a numerical scheme inspired from
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Chambolle’s algorithm [21] to solve the weighted local ROF model on an arbitrary neighborhood, and
give a convergence criterion involving a relationship between the time step and the weighting function.
Experiments performed in Section 6 show in particular two interesting properties of the local TV-filter
compared to the global ROF model: its ability to reach an intermediate bias-variance trade-off for image
denoising, and the elimination of a well-known artifact called “staircasing effect”. To illustrate the
perspectives offered by local TV-filtering, we build in Section 7 a new denoising filter, called TV-means,
that combines in a simple way the strengths of TV-denoising and NL-means denoising [15], and produces
much better results than both of them.

2 How nonlocal is TV-denoising?

In this section we investigate the amount of locality of the ROF denoising model. As we shall see,
even though TV-denoising requires a global optimization on the whole image, local interactions do not
propagate very far, and the gray level of a denoised pixel essentially depends on the pixels lying in its
neighborhood, while other pixels have negligible or null impact.

In the following, a (discrete) image is a function u : Ω → R, where Ω is a subset of Z2 (the set
of pixels) and u(x, y) represents the gray-level at pixel (x, y). If A is subset of Z2, Ac will denote its
complement, and ∂A is the boundary of A, defined as the set of pixels for which at least one neighbor
(for the 4-neighbor topology) does not belong to A. To a subset A of Z2 we associate the set A2 ⊂ R2

defined by

A2 =
⋃

(i,j)∈A

[
i− 1

2
, i +

1
2

]
×
[
j − 1

2
, j +

1
2

]
.

Thus, A2 is obtained by considering grid points of Z2 as 1 × 1 squares of R2. It is interesting to notice
that if a discrete image u : Z2 → R is extended to an image ū : R2 → R using the nearest neighbor
interpolation, then the level sets of ū are obtained by applying the ·2 operator to the level sets of u, that
is,

∀λ ∈ R, {x ∈ R2, ū(x) ≤ λ} = {x ∈ Z2, u(x) ≤ λ}2.

The ·2 operator allows to extend the usual Perimeter operator (defined on Caccioppoli sets of R2) to
discrete sets, with

∀A ⊂ Z2, perA = Perimeter(A2).

Let us first recall the principle of ROF denoising [54]. If u is an image defined on Ω ⊂ Z2, its Total
Variation (TV) is defined by

TV (u) =
∑

(i,j)∈Ω

|∇u(i, j)|, (3)

where |∇u(i, j)| denotes a given scheme of the gradient norm of u at pixel (i, j). If v is a noisy image,
the ROF model proposes to smooth it by selecting the unique image u = T (v) that minimizes

Eλ(u) = ‖u− v‖2 + λTV (u), (4)

where ‖ · ‖ stands for the classical Euclidean norm on RΩ. The positive parameter λ controls the amount
of denoising and should be set accordingly to the noise level.

In the sequel, as in [21], we shall choose for ∇u(i, j) a scheme based on simple differences between
neighbor pixels, that is

(∇u)1i,j =

{
u(i + 1, j)− u(i, j) if (i + 1, j) ∈ Ω
0 else

and (∇u)2i,j =

{
u(i, j + 1)− u(i, j) if (i, j + 1) ∈ Ω
0 else,

(5)
and we shall derive |∇u(i, j)| by considering either the `1-norm or the `2-norm of ∇u(i, j) in R2. Each
choice involves its own specificities :
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• the `1-norm of the gradient, given by

|∇u(i, j)|1 = |(∇u)1i,j |+ |(∇u)2i,j | (6)

is not isotropic (it favors vertical and horizontal directions), but has the advantage of making TV
satisfy the coarea formula [22, 33, 38]

∀u ∈ RΩ, TV (u) =
∫

R
per{x ∈ Ω; u(x) ≤ λ} dλ, (7)

which allows to interpret TV (u) as the cumulated length of the level lines of u.

Furthermore, ROF denoising in that case is monotone, in the sense that

[∀x ∈ Ω, v1(x) ≤ v2(x)] =⇒ [∀x ∈ Ω, T (v1)(x) ≤ T (v2)(x)] (8)

(see [22] for a proof). In this section, these analytic properties will be most useful to study the locality
of TV-denoising; this is why we will consider the `1-norm.

• the `2-norm of the gradient, given by

|∇u(i, j)|2 =
√

((∇u)1i,j)2 + ((∇u)2i,j)2 (9)

is more isotropic, and in practice, the images denoised with this scheme look slightly more natural.
However neither the coarea formula nor the monotony principle (see Section 4) hold any more. This
`2-norm will be used in the numerical experiments (Section 6).

Both `1 and `2 schemes are compatible with two other quite basic properties of operator T . Namely,
they force the TV-denoising operator to preserve the image average, i.e.

∀v ∈ RΩ,
∑
x∈Ω

T (v)(x) =
∑
x∈Ω

v(x) (10)

and to be shift invariant, i.e.

∀v ∈ RΩ, ∀b ∈ R, T (v + b) = T (v) + b, (11)

which will be useful in the sequel.

Let us now discuss the locality of TV-denoising, that is, the influence region of an arbitrary pixel in
the denoising process. We easily observe that the dependence in Eλ of a gray level u(x) brings into play
the pixels y that are neighbors of x only, through their gray levels u(y). But the levels u(y) also depend
on their neighbors and so on, such that the denoising is likely to be indeed global, in the sense that a
change on a pixel in the noisy image might change the value of any other pixel in the denoised image.

For instance, let Ω be a rectangular domain, and x0 be a pixel in Ω \ ∂Ω. If the image v is an impulse
image (discrete Dirac) defined for some A ∈ R by

∀x ∈ Ω, v(x) = A · δx=x0 =
{

A if x = x0,
0 else, (12)

(here δ is the 0 − 1 Kronecker-delta function), then simple calculations show that T (v), computed with
the `1-scheme, satisfies

∀x ∈ Ω, T (v)(x) =


(A− 2λ)δx=x0 + 2λ

|Ω|−1δx6=x0 if A > 2λ,

A/|Ω| if |A| ≤ 2λ,

(A + 2λ)δx=x0 − 2λ
|Ω|−1δx6=x0 if A < −2λ,

(13)
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where |Ω| denotes the cardinal of Ω. This means that any pixel of the domain can be affected by a change
in v(x0). However, one can notice that when |Ω| is large, then the change in any pixel x is negligible
with respect to the change of x0; hence the globality of TV-denoising is rather weak in this example.
Note also that if Ω is finite, the scheme (5) corresponds to Neumann conditions in the minimization of
(4), because the gradient at a pixel lying on the boundary ∂Ω is treated as if its facing neighbors lying
outside Ω had the same gray level. TV-denoising based on these Neumann conditions has the property
of preserving the image average (10), which explains the slight correction of ±2λ/(|Ω| − 1) obtained on
the pixels x 6= x0 in (13).

2.1 Locality and boundary conditions

In the sequel of Section 2, we shall bring evidence to the fact that, with appropriate boundary conditions,
TV-denoising is essentially local, both in exact and in simulated examples. We propose here to consider
boundary conditions other than Neumann conditions. First we consider infinite boundary conditions:
an image is continued by 0 on the entire set Z2, and is viewed as finitely supported function, that is a
function u whose support

supp(u) = {x ∈ Ω, u(x) 6= 0}.

is a finite set.

Proposition 1 (Locality for an infinite domain) Let v ∈ `2(Z2). We consider the variational prob-
lem

minimize
∑
x∈Z2

(u(x)− v(x))2 + λTV (u) for u ∈ `2(Z2), (14)

where TV (u) is computed according to the `1-scheme (6) with Ω = Z2. If v has a finite support, i.e. if
there exists a rectangle Ω0 ⊂ Z2 satisfying supp(v) ⊂ Ω0, then the image T (v) solving the variational
problem (14) is also finitely supported and satisfies supp(T (v)) ⊂ Ω0.

Proof —1) Let A ≥ 0 and v = A1Ω0 , where Ω0 is any rectangle of Z2, and where

∀x ∈ Z2, 1Ω0(x) =

{
1 if x ∈ Ω0,

0 otherwise.
(15)

We prove supp(T (v)) ⊂ Ω0 by showing that {x ∈ Z2, T (v)(x) > 0} ⊂ Ω0 and then that T (v) is
nonnegative. Assume that the upper level set {x ∈ Z2, T (v)(x) > 0}, shortly written {T (v) > 0},
intersects the complement Ωc

0 of Ω0. Consider the image w = T (v) ·1Ω0 . Changing T (v) into w decreases
the data-fidelity term because∑

x∈Z2

(w(x)− v(x))2 =
∑

x∈Ω0

(T (v)(x)− v(x))2 <
∑
x∈Z2

(T (v)(x)− v(x))2.

It also decreases the Total Variation. Indeed a level set {w ≥ λ} satisfies

{w ≥ λ} = {T (v) ≥ λ} ∩ Ω0,

and thanks to the convexity of Ω2
0 we get

per{w ≥ λ} = per({T (v) ≥ λ} ∩ Ω0) = Perimeter({T (v) ≥ λ}2 ∩ Ω2
0 ) ≤ per{T (v) ≥ λ}.

Hence thanks to the coarea formula (7), we get

TV (w) =
∫

R
per{w ≥ λ} dλ <

∫
R

per{T (v) ≥ λ} dλ = TV (T (v)).
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Finally we get

Eλ(w) =
∑
x∈Z2

(w(x)− v(x))2 + λTV (w) ≤
∑
x∈Z2

(T (v)(x)− v(x))2 + λTV (T (v)) = Eλ(T (v)),

and we obtain a contradiction to the optimality of T (v).

Now assume that the lower level set {T (v) < 0} is non-empty. We consider the positive part T (v)+
of T (v), where (y)+ = max(y, 0) for any y. As before, we have ‖T (v)+ − v‖2 < ‖T (v)− v‖2 and

TV (T (v)+) =
∫

R+
per({T (v) < λ}) dλ ≤

∫
R

per({T (v) < λ}) dλ = TV (T (v)).

This contradicts the optimality of T (v) and proves that {T (v) < 0} is empty. The proposition is therefore
proven for v = A1Ω0 .

2) Now if v is an arbitrary image satisfying the conditions of the proposition, then

−A1Ω0 ≤ v ≤ A1Ω0 where A = max
x∈Ω0

|v(x)|.

By monotony of TV-denoising (see Equation 8), the inequalities remain true for the denoised images, i.e.

−T (A1Ω0) ≤ T (v) ≤ T (A1Ω0),

where the leftmost and rightmost terms both have their support included in Ω0, thanks to 1). Conse-
quently, supp(T (v)) ⊂ Ω0, as announced. 2

Now we consider Dirichlet boundary conditions, that impose that the denoised image vanishes on ∂Ω.
Then the same kind of result holds, as shown by the following corollary.

Corollary 1 (Locality for Dirichlet boundary conditions) Let Ω be a subset of Z2, and v : Ω → R.
We consider the variational problem

minimize
∑
x∈Ω

(u(x)− v(x))2 + λTV (u) subject to ∀x ∈ ∂Ω, u(x) = 0. (16)

If there exists a rectangle Ω0 satisfying supp(v) ⊂ Ω0 ⊂ Ω\∂Ω, then the image T (v) solving the variational
problem (16) satisfies supp(T (v)) ⊂ Ω0.

Proof —Let us denote by v̇ the image v continued by 0 on the plane Z2. If u is the solution of (16),
then u is also the solution of the following problem: minimize Eλ(u) for u ∈ `2(Z2) under the constraint

∀x ∈ (Z2 \ Ω) ∪ ∂Ω, u(x) = 0, (17)

with Eλ(u) =
∑

x∈Z2(u(x)− v̇(x))2 +λTV (u). Now consider the solution u′ = T (v) of Problem (14), that
is, the minimizer of Eλ over `2(Z2). Since Eλ(u′) ≤ Eλ(u̇) and u′ satisfies (17) thanks to Proposition 1
(because v = 0 on (Z2 \Ω)∪∂Ω ⊃ Ωc

0), we necessarily have u′ = u̇ and consequently supp(u) = supp(u̇) =
supp(u′) ⊂ Ω0. 2

A consequence of the two results above is that in both cases (infinite domain or Dirichlet boundary
conditions), the TV-denoising of the impulse image (12) remains an impulse image, and the pixels apart
from x0 never change. More generally, if v is finitely supported, then the influence of a pixel x ∈ supp(v)
is limited to a rectangle Ω0 (the smallest rectangle containing supp(v)), in the sense that for any y ∈ Ωc

0,
T (v)(y) does not depend on v(x). This is a first result in favor of the locality of TV-denoising.
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2.2 Locality for explicit solutions (continuous domain)

Literature about exact solutions of TV-denoising in its continuous version (i.e. when Ω is an open subset
of R2) provides valuable examples of locality in TV-denoising. First, Strong and Chan [57] provide exact
solutions to the problem stated in one dimension and also in two dimensions for radially symmetric
images, for either piecewise constant images, or for piecewise constant images with little noise added
and small level of denoising λ. In each of these cases, it is notable that changing the (constant) value
of a region can have repercussions only on this region and on its immediate neighboring regions. The
propagation of the values change cannot go further.

Another case, more interesting here, is treated in [10]. The authors still assume that the images are
defined on a continuous space, and consider an image v writing as a linear combination of characteristic
functions of convex sets Ci, i.e.

v =
n∑

i=1

bi1Ci , (18)

where (bi)1≤i≤n is a sequence of arbitrary real numbers, the sets Ci are assumed to be regular enough
and spaced out enough (see [10] for the exact technical assumptions), and each function 1Ci

is defined as
in (15). Then they prove that the associated denoised image writes

T (v) =
n∑

i=1

fCi
(bi)1Ci

,

where fCi
is a soft-thresholding function (i.e. an odd function defined by fCi

(x) = max(x − τCi
, 0) for

x ≥ 0) whose threshold τCi
only depends on Ci. This means that for such images, the convex sets (Ci)

evolve independently of each other.

As the operator T is monotone in this continuous framework (see [22] and references therein), we can
state a more general property : assume that the image v is null outside convex sets Ci, i.e.

v =
n∑

i=1

vi,

where each vi is a bounded image supported by Ci, and the Ci’s are regular and spaced out enough as
in (18) [10]. The monotony of T implies

T

(
n∑

i=1

(min vi)1Ci

)
≤ T (v) ≤ T

(
n∑

i=1

(max vi)1Ci

)
,

where both leftmost and rightmost terms are exactly computable because the arguments of T are in the
general form (18). Then T (v) satisfies

n∑
i=1

fCi(min vi)1Ci ≤ T (v) ≤
n∑

i=1

fCi(max vi)1Ci ,

which ensures that T (v) vanishes outside from the sets Ci. Hence the minimization of the ROF energy
relative to v holds on the set of images u writing u =

∑n
i=1 ui with supp(ui) ⊂ Ci. On such images, the

ROF energy can be decomposed into

‖u− v‖2 + λTV (u) =
n∑

i=1

(
‖ui − vi‖2 + λTV (ui)

)
,

that is a sum of independent ROF energies, showing that a change in vi will only affect the component
of the energy corresponding to Ci, and that T (v) will then be changed on Ci at most : the components
of v evolve independently.
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2.3 Locality for natural images : influence map of a pixel

Here we focus on real-life natural images, and show locality properties of TV-denoising. To investigate
the locality issue precisely, we shall say that a pixel y is influenced by a pixel x if T (v)(y) depends on
v(x), and we measure this dependency by

Cx(y) = sup
δ 6=0

∣∣∣∣T (v + δ1{x})(y)− T (v)(y)
δ

∣∣∣∣ . (19)

This number measures the maximum relative impact on T (v)(y) caused by a distortion of v(x). Several
properties of the influence map Cx are gathered in the following

Theorem 1 (Properties of the influence map) Let Ω be a bounded subset of Z2, and v : Ω → R.
If TV is computed with the `1-scheme (6) and T is the associated TV-denoising operator, then for any
x ∈ Ω, the influence map Cx defined by (19) satisfies

(1) Cx(x) = 1,

(2) for every y 6= x, Cx(y) < 1.

(3) for any δ 6= 0, ∑
y∈Ω

(
T (v + δ1{x})(y)− T (v)(y)

δ

)2

≤ 1.

Theorem 1 tells us that a distortion of v(x) cannot be amplified by T , and that it is indeed attenuated
for all pixels except x (as we shall see in the experiments, Cx(y) decreases very quickly when y goes away
from x). Property (3) does not bring a direct estimate of the total influence of a pixel x, but shows that
any given distortion δ on v(x) causes a total distortion on T (v) smaller than δ (in `2-norm), since

‖T (v + δ1{x})− T (v)‖2 ≤ δ.

Proof of Theorem 1 — Let x ∈ Ω. For every δ ∈ R, we set ûδ = T (v + δ1{x}), so that

Cx(y) = sup
δ 6=0

|(ûδ(y)− û0(y))/δ|.

We first prove that for every y ∈ Ω, Cx(y) ≤ 1. Indeed, if δ 6= 0,

v − |δ| ≤ v + δ1{x} ≤ v + |δ|,

and the monotony of T , combined with shift invariance (11), implies that

û0 − |δ| ≤ ûδ ≤ û0 + |δ|.

Hence for any pixel y ∈ Ω, ∣∣∣∣ ûδ(y)− û0(y)
δ

∣∣∣∣ ≤ 1,

and Cx(y) ≤ 1 by considering the supremum on δ.

Now we come to the very proof of the theorem, beginning with item (1), then (3) and finally (2).

(1) The Euler equation corresponding to the TV-denoising of image v + δ1{x} is

ûδ − (v + δ1{x}) +
λ

2
∂TV (ûδ) 3 0,
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where ∂TV denotes the subdifferential of TV , defined by

w ∈ ∂TV (u) ⇐⇒ ∀v ∈ RΩ, TV (v) ≥ TV (u) + 〈w, v − u〉

(see [41] for instance). Let sign be the set-valued function defined by

sign(x) =


{1} if x > 0,

{−1} if x < 0,

[−1, 1] if x = 0.

The subdifferential of TV , for the `1-norm of the gradient, is given by

∀u ∈ RΩ,∀x ∈ Ω, ∂TV (u)(x) =
∑

y,|y−x|1=1

sign(u(x)− u(y)),

and is hence included in [−4, 4]. This implies that for each pixel y ∈ Ω, the gray level ûδ(y) satisfies

ûδ(y) ∈ [v(y) + δ1{x}(y)− 2λ, v(y) + δ1{x}(y) + 2λ].

For y = x, we get
ûδ(x) ∈ [v(x) + δ − 2λ, v(x) + δ + 2λ],

which yields, when δ goes to +∞,

ûδ(x)− û0(x)
δ

≥ v(x)− û0(x)− 2λ

δ
+ 1 −−−−−→

δ→+∞
1,

so that Cx(x) ≥ 1. Now as Cx(x) ≤ 1 (as shown above), we get the desired result.

(3) The TV-denoising operator T is shown to be non-expansive (in [30, Lemma 2.4] for instance), that
is

∀v1, v2 ∈ RΩ, ‖T (v2)− T (v1)‖2 ≤ ‖v2 − v1‖2. (20)

Applying this inequality to v1 = v and v2 = v + δ1{x} yields∑
y∈Ω

(ûδ(y)− û0(y))2 ≤ δ2,

which proves the desired result.

(2) As T is a proximal operator associated to a convex function (TV ), it is maximal-monotone, which
means that

∀v1, v2 ∈ RΩ, 〈T (v2)− T (v1), v2 − v1〉 ≥ 0,

where 〈f, g〉 =
∑

x∈Ω f(x)g(x) denotes the usual inner product. Let b be an arbitrary real number,
and set v1 = v and v2 = v + δ1{x} + b. The maximal-monotone property and the shift invariance
of T (11) yield 〈

ûδ + b− û0, δ1{x} + b
〉
≥ 0.

Expanding the inner product leads to〈
b1Ω, δ1{x} + b

〉
+ 〈ûδ − û0, b1Ω〉+ δ(ûδ(x)− û0(x)) ≥ 0,

and thanks to the average conservation property (10) of T we get

|Ω|b2 + 2δb + δ(ûδ(x)− û0(x)) ≥ 0.

9



This inequality is true for any value of b, hence the discriminant of the quadratic polynomial is
nonpositive, which leads, after simplifications, to

∀δ 6= 0,

∣∣∣∣ ûδ(x)− û0(x)
δ

∣∣∣∣ ≥ 1
|Ω|

.

Now using item (3) of the theorem, we can write for any δ 6= 0

∑
y 6=x

(
ûδ(y)− û0(y)

δ

)2

≤ 1−
(

ûδ(x)− û0(x)
δ

)2

≤ 1− 1
|Ω|2

.

This implies that for any y 6= x,

Cx(y)2 ≤ 1− 1
|Ω|2

,

which ends the proof. 2

2.4 Experiments

Using numerical experiments, we can investigate some properties of the influence map that are not
considered in Theorem 1. To compute Cx numerically on 8-bits images, we use the approximation

Cx(y) ' max
δ∈{±2n,0≤n≤9}

∣∣∣∣T (v + δ1{x})(y)− T (v)(y)
δ

∣∣∣∣ ,
where the TV-denoising operator T is estimated with a very high precision using Chambolle’s dual
algorithm (the “max” version of [21], mentioned in [22]).

The first striking property of the influence map, shown on Figure 1, is the fast decrease of Cx(y) as
y moves away from x. For typical values of λ and most pixels x, Cx(y) is below 0.01 as soon as ‖y − x‖
is larger than 15 pixels. At this point, a natural question arises: is the support of an influence map
much smaller than the image domain in general? Following the discussion just before Section 2.1, it is
reasonable to think that the answer is no for Neumann boundary conditions (used in practice), in reason
of the average-preserving property of TV-denoising in that case. However, in the case of an infinite
domain or Dirichlet boundary conditions (Section 2.1), there are good reasons to think that in general,
most (not to say all) influence maps have a small support. Since the exact support of Cx is difficult
to compute in numerical experiments, and in order to neglect the slight global effect resulting from the
average preservation induced by Neumann boundary conditions, we propose to consider a significant
support of Cx, defined by

suppε(Cx) = {y ∈ Ω, Cx(y) > ε},

where ε is a small positive threshold (ε = 0.01 in practice). The boundary of this significant support is
displayed on Figure 1 by the largest level line associated to each considered pixel x.

We computed the significant support of 100 random pixels of Lena image, and reported on Figure 2
the histograms of their associated radii (maximum distance from x to a point of the significant support
suppε(Cx)), for three different values of the regularization parameter λ. As we can see, all significant
supports are small, and they tend to grow when λ increases (as for an averaging filter, whose smoothing
effect increases with the size of the neighboring window).

In this part, we have brought theoretical and numerical evidence that TV-denoising is very near to
be a local operator. In particular, we observed that for usual values of the denoising parameter λ, the
influence of a given pixel was generally limited to a range of 10-15 pixels. It could be interesting to
further study the locality of TV-denoising, and in particular possibilities to compute exactly the true
support of the influence map of a given pixel, for appropriate boundary conditions. However, since there

10



Figure 1: Six randomly chosen pixels of a part of Lena image (in black on the left image), and some level
lines of their influence maps (right), corresponding to λ = 20 and levels sampled between 0.01 and 1 on
a regular logarithmic scale. As we can see, the influence map of each pixel is very concentrated, which
suggests that TV-denoising is not far from being a local operator.
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Figure 2: Given a (randomly chosen) pixel x, we numerically compute the significant support suppε

(ε = 0.01) of the influence map Cx, and measure its radius, that is, the maximum Euclidean distance
from x to a point of suppε(Cx). This operation is performed on 100 random pixels of Lena image and
yields a histogram of the 100 observed radii for 3 different values of the denoising level (left column:
λ = 8; middle column: λ = 20; right column: λ = 80). We can notice that as λ increases, most pixels
increase their influence zone (the significant support of Cx gets larger), but the influence never propagate
beyond 15 pixels. Moreover, for λ = 80 (right column), 9 % of the pixels have an influence map with a
1-pixel significant support (radius 0), which means that these pixels do not significantly influence other
pixels than themselves. This phenomenon is likely to be a consequence of the staircasing effect, discussed
in Section 6.3.

probably exists no uniform bound (with respect to pixels and images) on the maximal influence range, it
becomes logical at this point, considering the discussion made in Introduction, to reformulate the original
variational formulation of TV-denoising in the context of local filters, giving birth in the next section to
what we call local TV-denoising.
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3 Local TV-denoising

3.1 Motivation and definition

In this section, we build a purely local filter inspired from TV-denoising: each pixel is processed using
the pixels lying in its neighborhood. As we shall see, this construction opens interesting possibilities,
such as deriving specific properties of local filters for an operator close to classical TV-denoising (Section
4), obtaining a TV-denoising method avoiding the “staircasing” artifact (Section 6), and prefiltering the
patches of an image efficiently before a patch-based denoising method (Section 7).

Definition 1 We shall call neighborhood shape any finite subset W of Z2 that contains 0.

The most usual neighborhood shapes will be connected sets, and in particular rectangles or discrete
balls, but it is interesting to notice that the construction we make here does not require any particular
geometric assumption on the neighborhood used.

For any pixel x ∈ Ω, we write Wx = (x+W)∩Ω the neighborhood of x, and v(Wx) ∈ RWx the image
v restricted to this neighborhood. We propose to consider the denoising operator TWλ defined by

∀v ∈ RΩ, ∀x ∈ Ω, TWλ (v)(x) = ux(x) (21)

where for all x ∈ Ω, ux ∈ RWx minimizes ‖ux − v(Wx)‖2 + λTV (ux). (22)

Of course here, if w ∈ RWx , ‖w‖2 denotes the restricted squared `2-norm
∑

y∈Wx
w(y)2. Hence, TWλ is a

local filter, as it amounts to minimizing a local ROF energy on every neighborhood Wx and keeping the
central pixel value ux(x) only. It is also associated to TV-denoising because letting W = Z2 leads to the
classical global TV-denoising.

3.2 Window weighting for artifact-free local TV-denoising

Experiments carried out on local TV-denoising with large regularizing parameters λ immediately reveal
serious aliasing-like artifacts, that is, the artificial emergence of low frequencies. This phenomenon is
particularly visible on signals (that can be considered as images made of a single row to extend previous
notations). For instance on Figure 3, a chirp signal (left) is denoised using local TV-denoising and the
result (middle) dramatically suffers from this artifact.

This aliasing-like artifact can be explained by the convergence of local TV-denoising towards linear
filtering as the regularity parameter λ tends to infinity. Indeed, as will be seen in Proposition 2 at the
end of this section,

TWλ (v)(x) −−−−→
λ→∞

1
|W|

∑
y∈Wx

v(y),

so that TW,λ is asymptotically equivalent to a discrete convolution with a boxcar function, whose Fourier
transform (cardinal sine function) is very oscillating. This explains the aliasing-like artifact for large λ
(we use the term “aliasing-like” because it is the interference between the boxcar fundamental frequency
and the chirp local frequency that creates a low-frequency envelope).

By analogy with linear filtering, we propose to introduce weights on the window W to attenuate this
artifact.

Definition 2 (local weighted TV-denoising) Let ω = (ωx) ∈ RW be positive weights associated to
the neighborhood shape W, and let ‖ · ‖ω denote the weighted Euclidean norm defined by

∀u ∈ RWx , ‖u‖2ω =
∑

y∈Wx

ωy−x u(y)2. (23)
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Figure 3: Effect of local TV-denoising on the chirp. A chirp signal (left) is denoised with the local TV-filter
associated to a neighborhood of size 13 (discrete interval), with λ = 500 (middle). Contrary to what could be
legitimately expected, frequencies are not attenuated in a monotone way, and low-frequency “waves” (interfer-
ences) can be observed on the right part of the signal. This aliasing-like phenomenon, that would appear in a
similar way with a boxcar convolution, can be strongly reduced by using an appropriate weight function in the
fidelity term (L2 norm) of the variational formulation. This improvement can be observed on the right, where
the weighted local TV-denoising introduced in this section has been applied to the chirp signal with a Gaussian
weight function of variance a2 = 14 (same variance than the hard window) truncated to a large enough window
(21 pixels).

Then, the local weighted TV-denoiser Tω,λ is an operator on RΩ defined by

∀v ∈ RΩ, ∀x ∈ Ω, Tω,λ(v)(x) = ux(x)

where ux ∈ RWx minimizes Eλ,ω,x(ux) = ‖ux − v(Wx)‖2ω + λTV (ux). (24)

Proposition 2 below gives the asymptotic behavior of the local weighted TV-denoiser when λ goes to
+∞.

Proposition 2 For any positive weight function ω ∈ RW , one has

∀v ∈ RΩ, ∀x ∈ Ω, Tω,λ(v)(x) −−−−−→
λ→+∞

∑
y∈Wx

ωy−xv(y)∑
y∈Wx

ωy−x

. (25)

Proof —A point x ∈ Ω being fixed, we write ū the local weighted average around x of an image u, that
is,

∀u ∈ RWx , ū =

∑
y∈Wx

ωy−xu(y)∑
y∈Wx

ωy−x
. (26)

If uλ is the minimizer of Eλ,ω,x, then 0 is the minimizer of J : R → R defined by

J(t) = Eλ,ω,x(uλ + t1) = ‖uλ + t1− v(Wx)‖2ω + λTV (uλ),

(where 1 denotes the constant image equal to 1 everywhere), and writing J ′(0) = 0 immediately leads
to ūλ = v̄. Now, as the norms u 7→ ‖u‖∞ and u 7→ TV (u) + |ū| are equivalent in the finite dimensional
space RWx , there exists a constant C > 0 such that

∀u ∈ RWx , C‖u‖∞ ≤ TV (u) + |ū|.

Applying this inequality to uλ − ūλ = uλ − v̄, we get

C‖uλ − v̄‖∞ ≤ TV (uλ − v̄) = TV (uλ) ≤ 1
λ

Eλ,ω,x(uλ) ≤ 1
λ

Eλ,ω,x(v̄) =
1
λ
‖v − v̄‖2ω −−−−−→

λ→+∞
0,
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so that in particular Tω,λ(v)(x) = uλ(x) −−−−−→
λ→+∞

v̄. 2

Proposition 2 states that Tω,λ is asymptotically equivalent (when λ goes to +∞) to a linear convolution
by the finitely supported kernel ω̃ : x 7→ ω−x. Another viewpoint is to let the global contrast of the image
go to 0 (which is equivalent to the case λ → +∞ thanks to the change of variable v 7→ αv), and this
leads, for a fixed λ, to

Tω,λ(αv)(x) ∼
α→0

α

∑
y∈Wx

ωy−xv(y)∑
y∈Wx

ωy−x
. (27)

Hence, we expect the local TV-denoising to behave like a linear filter in low-contrasted regions or when λ
is large (indeed, we shall see later in Section 4.4.1 that this linear regime is actually attained for a finite
λ).

Now, coming back to the aliasing-like artifacts noticed before, it is well known that a linear convolu-
tion will avoid aliasing-like artifacts for smooth kernels that have an non-oscillating (unimodal) Fourier
Transform, and in particular for Gaussian weights defined by

∀x ∈ W, ωx = exp
(
−|x|

2

2a2

)
(with a > 0). (28)

Figure 3 (right) shows the result obtained after applying local weighted TV-denoising (with the Gaussian
weights given by Equation 28) on the chirp signal, with an algorithm that will be detailed in Section 5.
As expected, the aliasing-like artifacts are removed.

4 Properties

In this section, we investigate several properties of the above-proposed local TV-denoising filter, in
particular local and global comparison principles and asymptotic behaviors.

4.1 Local comparison

An important interest of having a local filter instead of a global minimization process is to be able to
control the denoising process more locally and more accurately. Among interesting properties are the
local comparison principle, that offers a guarantee of local stability. This principle does not always hold
for global TV-denoising, but the following proposition states that it does for local TV-denoising (weighted
or unweighted).

Proposition 3 (Local comparison principle) Let TV be defined in (3) either with a `1 or a `2 norm
of the gradient (Equation 6 or 9). Then the local filter Tω,λ applied on an image v satisfies

∀x ∈ Ω, min
y∈Wx

v(y) ≤ Tω,λ v(x) ≤ max
y∈Wx

v(y).

The value of the denoised image hence lies in the local dynamic range of the noisy image. This
stability property also echoes the fact that the local TV-denoiser has a more limited denoising level
(when λ → +∞, see Equation 25) than global TV-denoising (for which the most denoised image is a
global constant).

Proof —Assume that there exists x ∈ Ω such that Tω,λ(v)(x) 6∈ [m,M ], where m = miny∈Wx
v(y) and

M = maxy∈Wx
v(y). Let ux ∈ RWx be the patch associated to the denoising of v(Wx) i.e. minimizing

(24). Let now u′x be the patch with saturated values defined by

∀y ∈ Wx, u′x(y) =

 m if ux(y) ≤ m,
ux(y) if m ≤ ux(y) ≤ M,
M if M ≤ ux(y)
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Then ‖u′x − v(Wx)‖2ω < ‖ux − v(Wx)‖2ω since the gray levels ux(y) lying away from [m,M ] are changed
into values which are closer to the noised value v(y). Besides, as

∀y, z ∈ Wx, |u′x(z)− u′x(y)| ≤ |ux(z)− ux(y)|,

(because ux 7→ u′x is 1-Lipschitz), we have TV (u′x) ≤ TV (ux). This implies that Eλ,ω,x(u′x) < Eλ,ω,x(ux),
which contradicts the minimality of Eλ,ω,x(ux). 2

4.2 Monotony

A global comparison principle that is desirable for general image denoising is the following: if two noisy
images v1 and v2 satisfy the inequality v1 < v2 (pointwise), then it would be expected that the related
denoised images satisfy a similar large inequality T (v1) ≤ T (v2). This so-called monotony property is
an interesting property, since it extends the stability behavior from smooth (say, Lipschitz or more) to
non-smooth images, as a non-smooth image can always be bounded from below and above by two smooth
images.

A convolution filter is monotone as soon as its convolution kernel is non-negative. Local filters such as
the bilateral filter or Non-Local means, according to our experiments, are generally not monotone (some
asymptotic behaviors can be monotone, though). Now for global TV-denoising, it has been shown that
the monotony property was true in the continuous framework [3, 4, 18], and in the discrete framework
with a `1 scheme for the gradient norm [22, 34]. However it seems that the monotony does not hold any
more in the discrete framework with a `2 scheme for the gradient norm (Equation 9). This can be seen
on the following numerical example made of 3× 3-pixel images: if we take

v1 =
42 94 254
76 178 18
0 0 0

and v2 =
43 95 255
77 179 19
60 69 105

then after a global TV-denoising with a `2 scheme (λ = 30) we obtain

T (v1) ≈
60.81 98.68 224.78
72.73 140.87 27.89
12.08 12.08 12.08

and T (v2) ≈
63.29 100.49 225.65
83.12 138.65 60.74
76.69 76.69 76.69

.

Hence we have v1 < v2 but T (v1) � T (v2) (because of the central pixel). This counter-example still holds
when the same little images are included in larger constant images set to 0.

Unweighted local TV-denoising directly inherits the possible monotony property of global TV-denoising,
as next proposition states.

Proposition 4 (Global comparison principle) Assume that the global TV-denoising is monotone.
Then the local TV-denoising is monotone. In particular, local TV-denoising defined with a `1 scheme for
the gradient norm (Equation 6) is monotone.

Proof —Let v1 < v2 and let x ∈ Ω. Let p1 and p2 denote the patches which minimize the local
ROF energies associated to v1(Wx) and v2(Wx) respectively. The monotony property of the global TV-
denoising operator on v1(Wx) < v2(Wx) implies that p1 ≤ p2. Hence, denoting pi(0) the central gray
level of the patch pi, we get TW,λv1(x) = p1(0) ≤ p2(0) = TW,λv2(x). 2

The proposed local TV-denoising essentially depends on two parameters : the regularization coefficient
λ and the weights (ωy) which in particular control the locality. As we shall see in the following sections,
ω and λ behave in opposite directions. More specifically, when λ → 0, the denoising becomes equivalent
to the global denoising, and when the neighborhood becomes infinitely small, the denoising becomes
equivalent to a linear filtering, as if λ → +∞.
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4.3 Asymptotics for λ → 0

4.3.1 Asymptotic equivalence to global TV-denoising when λ → 0

In this section we show that local and global TV-denoising have the same asymptotic behavior when
λ → 0.

Theorem 2 Let W be a neighborhood shape, and ω ∈ RW a positive weight function. For any image
v ∈ RΩ and any x ∈ Ω such that Wx contains x and its 8 nearest neighbors, and such that TV is
continuously differentiable in the neighborhood of v(Wx), we have

Tω,λv(x) = v(x)− λ

2ω0
∇TV (v)(x) + o

λ→0
(λ). (29)

Proof —Tω,λv(x) is the central gray level of the patch u ∈ RWx which minimizes the energy Eλ,ω,x in
(24), and whose subdifferential then satisfies

∀y ∈ Wx, 2ωy−x(u(y)− v(y)) + λ∂TV (u)(y) 3 0. (30)

Let us introduce

wλ =
u− v(Wx)

λ
.

Since Eλ,ω,x(v(Wx)) = λTV (v(Wx)) → 0 when λ → 0, we have ‖u − v(Wx)‖2ω → 0 and thus λwλ → 0
since the weight function ω is positive. Now (30) writes, for y = x,

2ω0wλ(x) + ∂TV (v(Wx) + λwλ)(x) 3 0.

As TV is assumed to be continuously differentiable at the neighborhood of v(Wx), when λ is small
enough, ∂TV (v(Wx) + λwλ)(x) is equal to {∇TV (v(Wx) + λwλ)(x)}, and

∇TV (v(Wx) + λwλ)(x) −→
λ→0

∇TV (v(Wx))(x) = ∇TV (v)(x)

since the window Wx contains x and its 8 nearest neighbors (actually 6 neighbors are enough). Finally,

wλ(x) = − 1
2ω0

∇TV (v)(x) + o
λ→0

(1),

so that u(x) = v(x)− λ
2ω0

∇TV (v)(x) + o
λ→0

(λ) and the theorem is proven. 2

Remark: In Theorem 2, TV needs to be continuously differentiable in the neighborhood of v(Wx). As
TV is smooth almost everywhere, this is not a strong assumption in practice, since this is true
for almost every noisy image v (provided that the noise process admits a density with respect to
Lebesgue measure).

In a continuous framework, −∇TV corresponds to the curvature operator

curv (u) = div
(
∇u

|∇u|

)
,

and in this case the result of Theorem 2 would be

Tω,λv(x) = v(x) +
λ

2ω0
curv (v)(x) + o

λ→0
(λ).

This implies that the limiting partial differential equation (PDE) associated to iterated Tω,λ is

∂u

∂t
= curv u,

which is the PDE associated to global TV-denoising [6, 55], that also corresponds to a degenerate case
of Perona-Malik Equation [52].

16



4.3.2 Application to the normalization of weights

If we want to compare the respective influence of two weight functions ω and ω′ for a fixed value of the
parameter λ, we need to impose a normalization procedure for the weight functions. In particular, all
weight functions αω (for α > 0) must be normalized into the same weight function, since the local TV-
denoising obtained with (ω, λ) and (αω, λ/α) are exactly the same. Several constraint equations could be
used for weight normalization, for example

∑
y ωy = 1, or

∑
y ω2

y = 1, or 1
|W|

∑
y ωy = 1, or maxy ωy = 1,

etc. A particular normalization is suggested by Equation (29). Indeed, since the asymptotic behavior of
the local TV-denoising of a given patch only depends (at first order) on λ/ω0 and not on the other weight
coefficients (ωy)y 6=0, it is natural to impose a fixed value of ω0 as a weight normalization, so that the
asymptotic behavior of local TV-denoising only depends on λ (as it is the case for global TV-denoising).
Hence, in the following all weight functions will be normalized according to the constraint ω0 = 1, as was
done in (28).

4.4 Asymptotics for λ → +∞

4.4.1 Linear regime reached for finite λ

Here we extend Proposition 2 by showing that the limiting linear regime is reached for a finite λ. This
can be seen as the finite counterpart of [20, Lemma 2.3] with an elementary proof.

Proposition 5 Let W be a neighborhood shape and ω ∈ RW a positive weight function. For any image
v ∈ RΩ and any x ∈ Ω, there exists a critical value denoted by λc(x) such that

∀λ ≥ λc(x), Tω,λ(v)(x) =

∑
y∈Wx

ωy−xv(y)∑
y∈Wx

ωy−x
.

Proof —Let v̄ =
P

y∈Wx
ωy−xv(y)P

y∈Wx
ωy−x

. We prove that the constant image v̄ achieves the minimum of Eλ,ω,x

(defined in (24)) by considering the behavior of Eλ,ω,x at the neighborhood of v̄. Let u ∈ RWx ; it can be
decomposed into u = δu + v̄ + α where δu is an image with zero weighted mean, α is a scalar.

First, denoting 〈·, ·〉ω the inner product associated to the Hilbert norm ‖ · ‖ω, and 1 the constant
image equal to 1 everywhere on Nx, notice that

Eλ,ω,x(δu + v̄ + α)− Eλ,ω,x(δu + v̄) = ‖α1‖2ω + 2 〈α1, δu + v̄ − v〉ω = ‖α1‖2ω (31)

since δu + v̄ − v has zero weighted mean. Secondly,

Eλ,ω,x(δu + v̄)− Eλ,ω,x(v̄1) = ‖δu‖2ω + 2 〈v̄ − v, δu〉ω + λTV (δu), (32)

and setting m(w) = 1
|W|

∑
x∈W w(x) yields

2 〈v̄ − v, δu〉ω = 2 〈v̄ − v, δu−m(δu)〉ω ≥ −2‖ω(· − x)(v − v̄)‖∞‖δu−m(δu)‖1. (33)

Now, as all the norms are equivalent in finite dimension, there exists C > 0 such that

∀w ∈ RWx , |m(w)|+ TV (w) ≥ C ‖w‖1. (34)

Applying this inequality to w = δu −m(δu), we get TV (δu) ≥ C‖δu −m(δu)‖1, so that with (32) and
(33) we obtain

Eλ,ω,x(v̄ + δu)− Eλ,ω,x(v̄1) ≥ ‖δu‖2ω + (Cλ− 2‖ω(· − x)(v − v̄)‖∞) ‖δu−m(δu)‖1. (35)
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Last, adding (31) to (35) yields

Eλ,ω,x(u)− Eλ,ω,x(v̄1) ≥ ‖α1‖2ω + ‖δu‖2ω + (Cλ− 2‖ω(· − x)(v − v̄)‖∞) ‖δu−m(δu)‖1,

and the right-hand term is nonnegative for any u ∈ RW as soon as λ ≥ 2‖ω(· −x)(v− v̄)‖∞/C. It means
that for large enough values of λ, v̄1 reaches the minimum of Eλ,ω,x. 2

4.4.2 Asymptotic behavior for small neighborhoods

Here we show that in a continuous setting, letting the size of the neighborhood W go to 0 (while keeping
λ constant) is equivalent to letting λ → +∞, hence asymptotically leading to linear filtering.

We first define local TV-denoising in a continuous setting. Let Ω denote an open subset of R2, and
let W be a bounded convex open subset of R2 containing 0, weighted by a positive function ω ∈ L∞(W).
If x ∈ Ω, the set Wx = (x +W) ∩ Ω is a neighborhood of x. The total variation of a patch u ∈ L2(Wx)
is defined by duality by

TV (u) = sup
{∫

Wx

u div p, p ∈ C∞c (Wx, R2), ‖p‖∞ ≤ 1
}

(36)

(see [7]), and its weighted norm ‖u‖ω with

‖u‖2ω =
∫
Wx

ω(y − x)u(y)2 dy. (37)

Given W and λ > 0, we consider the unique function u belonging to

BV (Wx) = {u ∈ L2(Wx), TV (u) < +∞}

that minimizes
Eλ,ω,x(u) = ‖u− v(Wx)‖2ω + λTV (u), (38)

where v(Wx) denotes the restriction of v on the subdomain Wx. Then, the local TV-denoising operator
TW,λ at point x is defined by

TW,λv(x) = lim
r→0+

1
|B(x, r)|

∫
B(x,r)

u, (39)

when the limit exists (B(x, r) is the Euclidean open ball with center x and radius r, and |B(x, r)| its
Lebesgue measure).

Note that in (39), we need to consider a limit (the mean value of u at point x) because the value
u(x) has no meaning by itself (u is defined up to a Lebesgue-negligible function). Since u ∈ BV (Wx),
this limit exists almost surely (that is, for almost any point of Wx), which does not prove that TW,λ is
defined almost everywhere though (even if we believe that it is the case). In the following, the existence
of TW,λv(x) will always be ensured in the asymptotic frameworks we consider.

Now, in order to make the neighborhoodW shrink to a singleton, we consider a dilation parameter h >
0 and the dilated set hW, associated to the weight function ω(·/h), in agreement with the normalization
suggested in Section 4.3.2. The following theorem describes the asymptotic behavior of ThW,λ when h
goes to 0.

Theorem 3 Let Ω be an open subset of R2 and v ∈ C3(Ω). Let W a bounded convex open neighborhood
of 0 in R2 and ω ∈ L∞(W) satisfying

ω > 0,

∫
W

ω(x) x dx = 0, and
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CovW(ω) :=
1∫
W ω

( ∫
W x2

1 ω(x) dx
∫
W x1x2 ω(x) dx∫

W x1x2 ω(x) dx
∫
W x2

2 ω(x) dx

)
= σ2Id

(with the usual convention x = (x1, x2)). For each x ∈ Ω, when h is small enough, the denoising operator
ThW,λ considered by (39) is well defined and satisfies

ThW,λv(x) = v(x) +
h2σ2

2
∆v(x) + O

h→0
(h3), (40)

where ∆v = ∂2v
∂x2

1
+ ∂2v

∂x2
2

denotes the Laplacian of v.

It is quite surprising that a restoration method based on Total Variation, which assigns a finite cost to
contrasted edges but favors piecewise constant structures more than smooth structures (staircasing effect),
could be associated to an isotropic diffusion through the Laplacian operator. Indeed, local TV-denoising
is equivalent to global TV-denoising for large enough neighborhoods (see Section 6.1), but Theorem 3
above points out here that it is equivalent to Gaussian filtering for very small neighborhoods. This can
be linked to the linear behavior of local TV-denoising in low-contrasted regions (Equation 27). Local
TV-denoising with middle-sized neighborhoods hence reaches a compromise between global TV-denoising
and Gaussian filtering.

Lemma 1 Let v ∈ L2(Ω) and x ∈ Ω. Assume that W is an open subset of R2 such that Wx is bounded

and convex, and consider a positive weight function ω ∈ L∞(W). Let v̄x =
R
Wx

ω(y−x)v(y) dyR
Wx

ω(y−x) dy
. If

λ ≥ diam(Wx) · ‖ω(· − x)(v(Wx)− v̄x)‖L∞(Wx) (41)

(where diam(Wx) denotes the diameter of Wx), then the constant image v̄x minimizes Eλ,ω,x.

Remark : The existence of such a bound on λ (Equation 41) above which the constant image minimizes
Eλ,ω,x is proven in [20, Lemma 2.3] in a slightly different framework (the authors consider the eventuality
of a blurring operator, but ω = 1). Here we derive an explicit upper bound and propose a proof directly
inspired from the discrete framework.

Proof of Lemma 1 — The proof is similar to that of the discrete framework in Proposition 5. Only (34)
has to be justified, with C = 2/diam(Wx). Actually, in a continuous framework, the Poincaré inequality
[7] states that for some constant γ > 0, one has

∀u ∈ L1(Wx), ‖u−m(u)‖L1(Wx) ≤ γ TV (u)

where m(u) = 1
|W|

∫
W u(y) dy. In [1], it is shown that ifWx is bounded and convex, the previous inequality

holds with γ = diam(Wx)/2 = 1/C, which completes the proof. 2

Proof of Theorem 3 — For any h > 0 and x ∈ Ω, let Wh,x = (x + hW) ∩ Ω and

v̄h,x =

∫
W ω(y) v(x + ht) dt∫

W ω(t) dt
.

Consider h0 > 0 such that for any h < h0, Wh,x ⊂ Ω (and hence is convex). By Lemma 1,

λc
h,x = diam(Wh,x) · ‖ω((· − x)/h)(v(Wh,x)− v̄h,x)‖L∞(Wh,x)

is a critical value of λ, that is a value above which the denoised version of v(Wh,x) is constant, equal to
v̄h,x. Now we have

λc
h,x ≤ h diam(W) · 2‖ω‖L∞(W)‖v(Wx)‖L∞(Wh0,x) −−−→

h→0
0,
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hence there exists h1 ∈ (0, h0] such that λ ≥ λc
h,x as soon as h < h1. Thus, for any h < h1, the denoising

is linear at point x, and ThW,λv(x) = v̄h,x.

We end the proof by deriving an asymptotic development of v̄h,x when h → 0. As v is C3, we can
write for any h ∈ (0, h1),

∀t ∈ W, −Mh3 ≤ v(x + ht)− v(x)− h∇v(x) · t− h2

2
D2v(x)(t, t) ≤ Mh3, (42)

where M = 1
6 · suph1W ‖D3v‖ · suph1W |t|3 (notice that M < +∞ because D3v is continuous on the closed

set h1W). Multiplying all terms of (42) by ω(t) and integrating on W, we then obtain∣∣∣∣(v̄h,x − v(x))
∫
W

ω − h∇v(x) ·
∫
W

ω(t)t dt− h2

2

∫
W

ω(t)D2v(x)(t, t) dt

∣∣∣∣ ≤ Mh3

∫
W

ω.

Using the fact that CovW(ω) = σ2Id and
∫
W ω(t)t dt = 0, we get∫

W
ω(t)D2v(x)(t, t) dt = σ2∆v(x)

∫
W

ω

and finally

v̄h,x = v(x) +
h2σ2

2
∆v(x) + O

h→0
(h3)

with ThW,λv(x) = v̄h,x for h small enough as noticed above. 2

5 Algorithm

In this section, we propose a dual algorithm based on Chambolle’s work [21], that achieves the minimiza-
tion of the weighted energy

Eλ,ω,v(u) =
∑
x∈W

ωx(u(x)− v(x))2 + λTV (u), (43)

where W is a finite arbitrary domain of Z2, u, v are in RW , and (ωx) ∈ RW are positive weights.

5.1 Characterization of the minimizer

Let W be an arbitrary subset of Z2 (not necessarily a rectangular domain). We assume as in [21] that the
Total Variation is discretized according to (5), using the `2-norm (9). In particular, if y = (y1, y2) ∈ R2,
|y| will denote its modulus, i.e. |y| =

√
(y1)2 + (y2)2. In order to introduce the discrete divergence

operator, let 〈·, ·〉 denote the usual inner product on RW , and 〈·, ·〉Y the inner product on (R2)W defined
by

∀p = (p1, p2) ∈ (R2)W , ∀q = (q1, q2) ∈ (R2)W , 〈p, q〉Y =
∑
x∈W

(p1
xq1

x + p2
xq2

x),

the associated Euclidean norms being written ‖ · ‖ and ‖ · ‖Y respectively. Let δWi,j denote the real 1 if
(i, j) ∈ W and 0 otherwise. If p ∈ (R2)W , the discrete divergence of p is an image div p defined by

∀(i, j) ∈ W, (div p)(i, j) = p1
i,jδ

W
i+1,j − p1

i−1,jδ
W
i−1,j + p2

i,jδ
W
i,j+1 − p2

i,j−1δ
W
i,j−1 (44)

(remark that this formulation holds whatever the convention used to define px when x /∈ W). This
divergence operator div is dual to the gradient, in the sense that

∀u ∈ RW , ∀p ∈ (R2)W , 〈div p, u〉 = −〈p,∇u〉Y .
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We also write ‖p‖∞ = maxx∈W |px|, and consider the (invertible) diagonal operator D defined by

∀u ∈ RW , ∀x ∈ W, (Du)(x) = ωxu(x), (45)

so that for any u ∈ RW we have ‖u‖ω =
√∑

x∈W ωxu(x)2 = ‖D1/2u‖. Next proposition characterizes
the minimizer of (24) as the projection on a convex set.

Proposition 6 The minimizer of (43) writes

Tωv = v − πλ
2 K(v)

where
K =

{
D−1(div p), p ∈ (R2)W , ‖p‖∞ ≤ 1

}
(46)

is closed and convex, and πλ
2 K denotes the projection operator on λ

2 K = {λ
2 k, k ∈ K}. Furthermore, if

p ∈ (R2)W is such that πλ
2 K(v) = λ

2 D−1(div p), then p is characterized by

∀x ∈ W,

∣∣∣∣(∇(λ

2
D−1(div p)− v

))
x

∣∣∣∣ px =
(
∇
(

λ

2
D−1(div p)− v

))
x

. (47)

For the sake of completeness, a proof derived from [21] is detailed in the Appendix . Again following
[21], we can now derive an iterative scheme for the numerical minimization of (43) by considering a
semi-implicit gradient descent with step τ > 0, given by

∀x ∈ W, pn+1
x = pn

x + τ

[
∇
(

D−1div pn − v

λ/2

)
−
∣∣∣∣∇(D−1div pn − v

λ/2

)∣∣∣∣ pn+1

]
x

, (48)

which leads to

∀x ∈ W, pn+1
x =

pn
x + τ(∇(D−1div pn − v

λ/2 ))x

1 + τ |∇(D−1div pn − v
λ/2 )x|

. (49)

5.2 Convergence

5.2.1 Main result

When W is a rectangle and ωx = 1 for all x ∈ W (i.e. D = Id), the iterative scheme (49) converges,
provided that τ ≤ 1/8 [21, Theorem 3.1]. In the case of arbitrary domain W and arbitrary positive
weights (ωx)x∈W , the scheme still converges, but the condition over the step size is modified, as stated in

Theorem 4 Let (ωx)x∈W be positive weights on W, and

τmax =
1

4 max
{

max∗i,j
(

1
ωi,j

+ 1
ωi+1,j

)
,max∗i,j

(
1

ωi,j
+ 1

ωi,j+1

)} , (50)

the ∗ symbol in max∗i,j f(i, j) meaning that only the indices (i, j) for which f(i, j) is defined are considered.
Let D be the linear diagonal invertible operator defined by (45), v ∈ RW , and λ > 0. For any τ ∈ (0, τmax],
if (pn) is arbitrarily initialized (with ‖p0‖∞ ≤ 1) and recursively defined by (49), then v − λ

2 D−1(div pn)
converges to the minimizer of (43).

Proof: We follow the proof of [21, Theorem 3.1]. For convenience, let L denote the linear operator
L = D−1/2div , and L∗ = −∇D−1/2 the dual operator. Letting X = RW and Y = (R2)W , note that
L ∈ L(Y, X) (linear operators mapping Y into X) and that L∗ ∈ L(X, Y ).
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First, notice that ‖pn‖∞ ≤ 1 for all n ∈ N, by induction on n in (49). Now, denoting v = D1/2v
λ/2 ,

we prove that the sequence ‖Lpn − v‖2 is decreasing for a certain range of values of τ . Writing η =
(pn+1 − pn)/τ , we have

‖Lpn+1 − v‖2 − ‖Lpn − v‖2

= 2τ 〈Lη,Lpn − v〉+ τ2‖Lη‖2

≤ −2τ 〈η,−L∗(Lpn − v)〉Y + τ2κ2‖η‖2Y , (51)

where κ denotes the operator norm of L (an upper bound for κ will be given at the end of the proof).
Now since ∇(D−1div pn − v

λ/2 ) = −L∗(Lpn − v), we get from (48) that

∀x ∈ W, ηx = − (L∗ (Lpn − v))x − |(L
∗ (Lpn − v))x| p

n+1
x , (52)

and consequently, for any pixel x, the splitting

2ηx · (−L∗(Lpn − v))x

= |ηx|2 + |(L∗(Lpn − v))x|
2 − |ηx + (L∗(Lpn − v))x|

2

= |ηx|2 + |(L∗(Lpn − v))x|
2 − |(L∗(Lpn − v))x|

2 |pn+1
x |2,

implies that
2 〈η,−L∗(Lpn − v)〉Y ≥ ‖η‖2Y , (53)

because ‖pn+1‖∞ ≤ 1. Thus, gathering (51) and (53) yields∥∥Lpn+1 − v
∥∥2 − ‖Lpn − v‖2 ≤ −τ

(
(1− τκ2)‖η‖2Y

)
which is negative as soon as τ < 1/κ2. This proves that the sequence ‖Lpn − v‖2 is decreasing, unless
η = 0, which anyway ensures that pn+1 = pn. When τ = 1/κ2, the result remains true, because if
‖Lpn+1 − v‖ = ‖Lpn − v‖, then (53) is an equality, which requires that

∀x ∈ W, |(L∗(Lpn − v))x||pn+1
x | = |(L∗(Lpn − v))x|,

so that for a given x ∈ W, either |pn+1
x | = 1 or (L∗(Lpn − v))x = 0. In both cases, pn+1 = pn thanks to

(49).

Let m be the limit of ‖Lpn − v‖, and p̄ be the limit of a converging subsequence (pnk) of (pn). Then
by (49), (pnk+1) converges to a certain p̄′ such that

∀x ∈ W, p̄′x =
p̄x + τ(L∗(Lp̄− v))x

1 + τ |(L∗(Lp̄− v))x|
,

and repeating the former computations leads, thanks to the fact that m = ‖Lp̄ − v‖ = ‖Lp̄′ − v‖, to
η̄ = (p̄′ − p̄)/τ = 0, that is, p̄ = p̄′. Thus, taking the limit (n = nk, k → +∞) in (52), we get

∀x ∈ W, −(L∗(Lp̄− v))x = |(L∗(Lp̄− v))x| p̄x,

which precisely characterizes the minimizer of (43), as shown in Proposition 6. Hence, λ
2 D−1div p̄ is the

projection πλ
2 K(v). Since this projection is unique, we deduce that the whole sequence (λ

2 D−1div pn)n

tends to the desired projection, and consequently, thanks to Proposition 6, that (v − λ
2 D−1div pn)n

converges towards the minimizer of (43).

Now we compute an upper bound for the norm κ of the operator L. We have, for any η,

‖Lη‖2 = ‖D−1/2div η‖2 =
∑

(i,j)∈W

1
ωi,j

(η1
i,jδ

W
i+1,j − η1

i−1,jδ
W
i−1,j + η2

i,jδ
W
i,j+1 − η2

i,j−1δ
W
i,j−1)

2

≤
∑

(i,j)∈W

4
ωi,j

[
(η1

i,jδ
W
i+1,j)

2 + (η1
i−1,jδ

W
i−1,j)

2 + (η2
i,jδ

W
i,j+1)

2 + (η2
i,j−1δ

W
i,j−1)

2
]

≤ 4
∑
i,j

∗
(

1
ωi,j

+
1

ωi+1,j

)
(η1

i,j)
2 + 4

∑
i,j

∗
(

1
ωi,j

+
1

ωi,j+1

)
(η2

i,j)
2,
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where the notation
∑∗

i,j f(i, j) means, as in Theorem 4, that only the indices (i, j) for which f(i, j) is
defined are considered. This provides the upper bound

κ2 ≤ 4 max
{

max
i,j

∗
(

1
ωi,j

+
1

ωi+1,j

)
,max

i,j

∗
(

1
ωi,j

+
1

ωi,j+1

)}
, (54)

so that, taking τ ≤ τmax (with τmax as in (50)) yields the announced result. 2

Remark 1 (maximum upper bound). In Section 4.3.2, we decided to normalize the weights by taking
ω0 = 1. If in addition we suppose that ω0 is the maximum weight (which is quite natural), then
we have maxx∈W ωx = 1 and consequently τmax ≤ 1/8. Note that the equality τmax = 1/8 (which
is the bound given in [21]) is only reached for uniform weights (ω ≡ 1).

Remark 2 (practical convergence). In numerical experiments where ω ≡ 1, the effective maximal
step size allowing convergence is 1/4 [21], that is, twice the limit τmax predicted by the theory
(Aujol [9] gives an explanation for this, derived from Bermúdez-Moreno’s algorithm). For Gaussian
weights (28), we observed that the effective maximum step size τ eff

max satisfied

τ eff
max ∈ [2τmax, 4τmax]. (55)

The value τ eff
max ' 4τmax is found when W is much larger than the kernel’s bandwidth, so that the

Gaussian kernel is hardly truncated by the boundary of W. Conversely, when W is much smaller
than the kernel bandwidth, the weights are virtually uniform on W, and τ eff

max ' 2τmax. In the latter
case, however, aliasing-like effect is to be expected (as shown in Section 3.2), so that a trade-off has
to be found between the complete removal of the artifact and the speed of the algorithm.

5.2.2 Pointwise convergence control

Adapting Chambolle’s criterion [22] to our case, we are able to explicitly control the weighted L2-distance
between the optimum denoised patch and the patch coming from the iterations of the algorithm. Indeed,
let un = v − λ

2 D−1div pn be the image obtained after the n-th iteration. Let also p̄ denote the limit of
pn, and ū = v − λ

2 D−1div p̄. Then,

‖un−ū‖2ω =
〈

λ

2
D−1(div p̄− div pn), D(un − ū)

〉
=

λ

2
〈div p̄− div pn, un − ū〉 =

λ

2
〈pn − p̄,∇un −∇ū〉Y .

Now | 〈p,∇u〉Y | ≤ TV (u) for every u ∈ RW and for every p ∈ (RW)2 satisfying ‖p‖∞ ≤ 1. But as
〈p̄,∇ū〉Y = −TV (ū) (consider Equation 47 with λ

2 D−1div p̄ = v − ū), we get

‖un − ū‖2ω ≤
λ

2
(TV (un) + 〈pn,∇un〉Y ) ,

which is a computable local convergence bound (the right-hand term going to 0 as n → +∞), that entails
the pointwise convergence criterion

∀x ∈ W, |un − ū|2(x) ≤ λ

2
(TV (un) + 〈pn,∇un〉Y ) (56)

since ω0 = 1.

5.2.3 Interest of considering an arbitrary neighborhood shape

The first main interest of an arbitrary neighborhood shape is to speed up the algorithm. Indeed, the
pixels x corresponding to negligible values of the weight ωx can be removed from the neighborhood shape
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without changing much the associated local TV-filter, and this results in an arbitrary neighborhood shape
with an increased value of τmax (which speeds up the algorithm).

A second important interest is to be able to deal with adaptive neighborhoods. A typical shape to
be used for W is a discrete ball with a fixed radius, so that the algorithm becomes more isotropic. But
the neighborhoods can also be designed adaptively with respect to the image: not only the radius can be
adapted to the local scale of the image, but also the shape could be distorted along the geometry of the
image as in [42]. We shall focus on different applications in the remaining part of this paper, but these
ideas could be interesting directions to explore.

6 Experiments with local TV-denoising

In this section, the local TV-filter considered in Definition 2 is directly used as a denoising filter. All
denoising experiments that follow are computed with the iterative algorithm described in Section 5.
Basically, this algorithm is not very fast because it requires the minimization of a local energy for each
pixel. Hopefully, we can take advantage of the photometric similarity between successive image patches
(according to the lexicographic order on pixels) to speed up the minimization process. Indeed, as TV-
denoising is non-expansive (20), the spatial coherence of the image implies that the solution associated to
a given pixel is necessarily close to the solution associated to its four adjacent pixels. Thus, by initializing
the algorithm for each pixel with the solution found for the previous pixel, we start the iterative process
with a much better initial guess than a classical initialization (e.g. a constant image), and the convergence
is attained much more quickly.

Concerning the processing of image borders, we adopted a classical solution that consists in extending
the image domain with a symmetry convention. This permits to maintain, for each pixel of the original
image domain, the same neighborhood shape. Another solution would have been to intersect the theo-
retical neighborhood of each pixel with the image domain, but such a process is likely to artificially favor
a linear denoising near the image borders in reason of the decrease of the neighborhood area (see Section
4.4.2).

6.1 Locality of global TV

Now that a local version of TV-denoising has been proposed, we are able to confirm by numerical ex-
periments that global TV-denoising is mainly ruled by local interactions (see Section 2). In Figure 4,
several images denoised by local TV are compared using the L2 norm to the ones denoised by global
TV, for all sizes of square neighborhoods W smaller than 19 × 19 (and constant weight functions in all
neighborhoods). As predicted in Section 2, the locally denoised images quickly converge to the globally
denoised ones, when the neighborhood size increases: in practice a 11× 11 patch is sufficient to capture
most of the interactions, which means that long-range interactions caused by global TV-denoising are
globally negligible in these ordinary images. It is also interesting to notice that the curves more or less
coincide. This relative stability among images is likely to make the choice of the window size easier.

6.2 Local versus global denoising, bias-variance trade-off

Consider the local TV-filter associated to a Gaussian weight function with standard deviation a (written
ωa), as in Equation (28). When the locality parameter a is small, local TV-denoising is approximately
equivalent to linear filtering; inversely, it is equivalent to global TV-denoising when a is large (see para-
graph at the end of Section 4.2). For intermediate values of a, local TV-denoising may achieve an
interesting compromise between these two extreme behaviors, as illustrated in Figure 5 on a synthetic
triangle signal. Indeed, the intermediate local TV-denoising model is able to combine a good restoration
of intensity gaps (edges) with a regular smoothing of the regular parts while limiting the cropping of the
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Figure 4: From local to global denoising. For each of the 4 classical images Cameraman, Lena, Barbara and
Goldhill, degraded by an additive white Gaussian noise (σ = 10), the graph shows the quick decrease of the
L2-distance between the globally denoised image and the locally denoised one using increasing window sizes (hard
window, and constant λ = 20). Despite the fact that the image contents are very different (miscellaneous textures
and different scales), the convergence curves above seem quite independent of the image.

extrema. It also avoids the staircasing artifact occurring in global TV-denoising, as we shall see more
precisely in Section 6.3.

From a statistical viewpoint, this compromise can be seen as a bias-variance trade-off with respect to
the locality parameter a ∈ (0,∞), the regularization parameter λ being fixed. Indeed, if ε is a (white)
noise process, the mean square error made by local TV-denoising can be classically decomposed into

Eε‖Tωa,λ(u + ε)− u‖2 = ‖Eε[Tωa,λ(u + ε)]− u‖2︸ ︷︷ ︸ + Eε‖Tωa,λ(u + ε)− Eε[Tωa,λ(u + ε)]‖2︸ ︷︷ ︸ .

squared bias variance

When a is close to 0, local TV-denoising is close to the identity operator, whose bias is zero but whose
variance is equal to the noise variance. Conversely, when a is large, local TV-denoising is close to global
TV-denoising, that has a much smaller variance but a large bias (in particular because it kills extrema,
as shown in Figure 5, up-right). The bias and variance terms do not seem to follow a simple law with
respect to a, but in general the best compromise is found for a finite (non-zero) value of a, as illustrated
in Figure 5.

6.3 Reduction of the staircasing effect

In this paragraph we show how local TV-denoising is able to circumvent a strong drawback of global
TV-denoising. Indeed, an image denoised by global TV-denoising tends to contain blocks with constant
gray level, separated by intensity gaps (edges), even in what should be smooth areas. This so-called
“staircasing effect” also occurs in other methods such as denoising by neighborhood filters [16], and in
image or video compression methods.

The staircasing effect in global TV-denoising was first reported by Dobson and Santosa [35] and used
to denoise piecewise constant images. The first mathematical proofs for its existence were successively
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Figure 5: A triangle signal corrupted by an additive white Gaussian noise with σ = 10 (top, left) is denoised by
three different algorithms, that all correspond to particular cases of local TV-denoising. The global TV method
(top row), which corresponds to a = +∞, preserves the original “discontinuity” (that is, the presence of an
intensity gap) but largely destroys the maximum intensity zone and creates staircasing artifacts. The Gaussian
filtering (first column), which corresponds to λ = +∞, avoids staircasing and extrema killing but introduces a lot
of blur that completely loses the original intensity gap. An interesting compromise between these two methods
can be obtained by using local TV-denoising with finite values of a and λ, as can be seen on the four bottom-right
images (2× 2 square), and in particular the two rightmost images (λ = 1000).

given by Nikolova [48, 49] and Ring [53] in different contexts. Theoretical research about the staircasing
artifact is active, as show [47] and [19] for instance. Several methods were proposed to address this issue:
Chambolle and Lions [20], Blomgren et al. [13] and Levine et al. [44] propose to consider modifications
of TV for small gradient intensities. Chan et al. [24, 27] propose to use higher-order terms to capture
the smooth regions. In [45], the authors propose to use the ROF energy in a mean-square error sense,
which annihilates the staircasing effect.

The local TV-filter we proposed here is naturally free from staircasing, because thanks to Proposition
5 (Section 4.4.1), when v is locally flat enough, local TV-denoising is equivalent to a blur by a low-pass
filter, which naturally avoids the creation of spurious edges in smooth regions. In Figure 6, we can observe
in the denoised images that contrasted edges are well preserved as in global TV-denoising, while smooth
regions are much more faithfully reconstructed.

Despite the fact that local TV-denoising visually improves global TV-denoising in a significant way,
it still suffers from the inability of Total Variation to cope with textures, that are not distinguished from
noise and hence systematically “washed out” by TV-based methods. Even if this drawback can be ignored
for some kinds of images (in particular scientific images aiming at measuring geometrical features), it
puts TV-based denoising methods a step behind state-of-the-art denoising methods. However, as we shall
see now, having transformed TV-denoising into a local filter opens interesting perspectives for efficient
image denoising, in particular in combination with the recent NL-means algorithm [15].
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Figure 6: Removal of the staircasing artifact. On each column, the noisy image (σ = 10) of the first row is
denoised using global TV (second row) and local TV (third row) with a = 2 (smooth 13× 13 window), both for
λ = 40. As we can see, the staircasing effects (artificial edges) that appear with global TV-denoising completely
disappear with local TV. This is confirmed on rows 4 and 5 (that display the level lines of the images of rows 2
and 3 respectively): instead of being artificially grouped together due to the staircasing effect (row 4), the level
lines in smooth areas are much more regularly spaced in the case of local TV-denoising (row 5).
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7 Application to a hybrid TV-NLmeans denoising filter

In this part, we show how the local TV-filter we studied and the Non-Local means (NL-means) denoising
algorithm [15] can be combined together to build a new denoising filter that significantly improves the two
methods taken separately. The NL-means algorithm, recently introduced in the continuity of the bilateral
filter [58, 60] and patch-based models for inpainting or texture synthesis [29, 37], has shown how the
redundancy of image patches could be used to achieve very interesting denoising performances, especially
in textured areas. For that reason, its combination with TV-denoising, whose principal drawback is
its inability to deal with textures, seems natural. Note that our goal here is simply to show that the
combination of two very different principles (patch-based denoising and TV-regularization) can lead to
interesting new denoising algorithms; finding the best possible combination would require a dedicated
study that cannot be done here.

7.1 NL-means

Whereas classical local filters build an estimate of the true (that is, noise-free) gray level at a given pixel
x by averaging gray levels of pixels y that are located near x (that is, for which |y − x| is small), the
NL-means algorithms uses pixels y that are similar to x, in the sense that the image patches u(Nx) and
u(Ny) are similar (here N is a fixed patch shape, typically a 7 × 7 square). More precisely, an image
v ∈ RΩ is denoised by

NLmeans(v)(x) =

∑
y∈Ω ωx,yv(y)∑

y∈Ω ωx,y
, (57)

where each weight

ωx,y = exp
(
−d(v(Nx), v(Ny))2

2h2

)
(58)

is a similarity measure between the patches v(Nx) and v(Ny), based on the Gaussian-weighted Euclidean
distance

d(v(Nx), v(Ny)) =
(∑

k∈N αk (v(x + k)− v(y + k))2∑
k∈N αk

) 1
2

(59)

with αk = e−|k|
2/(2a2) and a ∈ (0,+∞] (the case a = ∞ corresponds to the unweighted case). Using a

weighted norm in the patch comparisons is a small improvement that permits to give more importance
to values in the center of the patch. A reasonable choice for a is a = s−1

4 for a s × s patch, so that the
Gaussian weight varies in [e−4, e−2] ' [0.018, 0.05] on the patch boundary. For computational reasons,
the exploration domain of y occurring in the sums of (57) is generally restricted to a (not so large)
neighborhood Wx of x. This makes the NL-means algorithms less “non-local”, but brings a significant
improvement, in terms of computational time and denoising performances.

The efficiency of the NL-means method comes from the fact that most image pixels of a natural image
have similar image pixels (in the sense defined above). Let us be a little more precise and say that a
patch v(Ny) is a replica of v(Nx) if they both come from the same original (noise-free) patch to which
independent noises have been added. If the patch v(Ny) is a replica of v(Nx) and Nx ∩Ny = ∅, then we
have

d(v(Nx), v(Ny))2 = 2σ2

∑
k∈N αkZ2

k∑
k∈N αk

, (60)

where (Zk) are i.i.d. random variables with distribution N (0, 1). In particular we have

E
[
d(v(Nx), v(Ny))2

]
= 2σ2,

and the classical choice h = σ ensures that most replicas have a non-negligible weight ωx,y.
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The main weakness of NL-means denoising is probably the way it handles exceptional patches, that is,
image patches v(Nx) for which d(v(Nx), v(Ny))2 � 2σ2 for almost all pixels y. In reason of the definition
of the weights ωx,y (Equation 58) and the fact that ωx,x = 1, the NL-means algorithm will either leave a
lot of noise (for small values of h) or produce an exaggerated blur (for larger values of h). This last effect
comes from the fact that the averaging is done with pixel values coming from quite different patches,
leading to a “patch jittering” blur effect. In practice, this phenomenon is commonly observed on images
processed with the NL-means algorithm: a significant amount of noise is left around edges (and other
local image structures like corners, T-junctions,etc.), and several image parts suffer from a noticeable
blur effect. An appropriate choice of the parameter h permits to reduce any of these two effects, but
not both simultaneously. Another consequence of this “patch jittering” blur effect is the fact that when
the patch size gets larger, the NL-means filter tends to produce more blurry images (see Figure 7, right
column), although intuitively, the decreasing number of similar patches should lead to a lower level of
denoising, producing a noise effect.

7.2 A new filter: TV-means

In order to take care of exceptional patches, we propose to change the NL-means strategy in two ways:

(A) select only patches that could be replica of the current patch;

(B) if the number of selected patches is too small, apply TV-regularization.

The step (A) was proposed before in [14, 31, 46, 50], and, in a different way, in [43]. Notice that the
strategy (A)+(B) we propose simply consists in smoothing exceptional patches with a well-established
method (TV-denoising) instead of using the indirect “patch jittering” smoothing effect. This combination
of local (patch) TV-denoising and NL-means yields the following algorithm called TV-means.

For a given patch shape N , a given search window W (as in NL-means), and a threshold τ (that will
be specified afterwards), let us define, for every λ ≥ 0, the set

Ω(x, λ) =
{

y ∈ Wx, d
(
Tλ(v(Nx)), Tλ(v(Ny))

)2

< τ

}
,

estimating the location of possible replicas of v(Nx) after TV-filtering with parameter λ. Let now (nλ)λ≥0

denote a nonincreasing sequence (this sequence controls the level of denoising and will be discussed
afterwards). To every x ∈ Ω, we associate

λ̂(x) = min{λ ≥ 0, |Ω(x, λ)| ≥ nλ},

which represents the minimal TV-filtering parameter for which Tλ(v(Nx)) has enough (that is, at least
nλ) replicas. We finally denoise the pixel x by averaging the local TV-denoising estimates, that is

TVmeans(v)(x) =
1

|Ω(x, λ̂(x))|

∑
y∈Ω(x,λ̂(x))

TN
λ̂(x)

v(y).

Threshold on the patch distance. The threshold τ is chosen such that a patch v(Nx) and one of its
replicas v(Ny) have a probability of 0.99 to be considered as similar. Remembering that v(Ny)− v(Nx)
is a Gaussian random variable and assuming that the patch size is large enough, we can use a result from
Fisher [39] giving a central limit theorem on weighted i.i.d. random variables and write, as (Z2

x − 1)/
√

2
are centered and normalized i.i.d. random variables,∑

x∈N αx
Z2

x−1√
2√∑

x∈N α2
x

∼ N (0, 1). (61)
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Hence, combining (60) and (61) yields

d(v(Nx), v(Ny))2 ∼ 2σ2

(
1 +

√
2s2

s1
N (0, 1)

)
where sp =

∑
k∈N

αp
k (p = 1, 2).

A look on the cumulative function of the normal distribution tables gives

P(d(v(Nx, v(Ny))2 < τ) = 0.99 ⇐⇒ τ ≈ 2σ2

(
1 + 2.33

√
2s2

s1

)
,

which is the value of τ that we choose to define Ω(x, λ).

Required number of patches for each scale. Here we explain how the sequence (nλ)λ≥0 (the
minimum number of replicas required for a TV-filtering scale λ) can be defined in a generic way. The
first term n0 represents the minimal number of replicas to be found in order to avoid TV-filtering.
It is a parameter of the TV-means algorithm, that sets the balance between the TV and NL-means
combination. In practice a small value is convenient, and we chose n0 = 10 in all experiments (and
n0 = 6 in the aggregated case explained in the next section).

Then, we set the other terms nλ (λ > 0) in order to approximately keep the same level of denoising,
whatever λ, that is,

∀λ ≥ 0,
1
n0

E
[(

v(x)− u(x)
)2
]

=
1
nλ

E
[(

TNλ v(x)− u(x)
)2
]

where u denotes the original noise-free image (recall that averaging n replicas divides the noise variance
by n). Now, simulations show that the approximation

E
[(

TNλ v(x)− u(x)
)2
]
≈ σ2(1− rλ),

where r ∈ [0.05, 0.1], usually holds for relatively small values of λ, and is quite stable with respect to σ.
This justifies the choice of

nλ = n0(1− rλ),

with r = 0.1, since we do not want to oversmooth exceptional patches. This formula was taken in all
experiments of Section 7.4.

7.3 Aggregated TV-means

A very simple improvement that can be brought to the TV-means algorithm consists in taking advantage
of the fact that for each pixel x, we can use the algorithm described in Section 5 to estimate not only a
value for the pixel x, but a complete denoised patch

ûx : k ∈ N 7→ 1

|Ω(x, λ̂(x))|

∑
y∈Ω(x,λ̂(x))

Tλ̂(x)(v(Ny))(y + k).

All these estimate of u0(x) (the non-observed noise-free image at point x), obtained for all patches
containing the pixel x, can then be aggregated to define the denoised image

x 7→
∑

k∈N αk ûx+k(−k)∑
k∈N αk

,

that significantly improves the denoising process. We call this variant “aggregated TV-means”.

Since the effect of the weights αk was very small (and not systematically improving the results), we
chose constant weights (αk = 1 for all k) in all experiments, both for the aggregated and non-aggregated
variants of TV-means. In addition to a simpler formulation (and the removal of the a parameter), it
has the advantage of speeding up a little the algorithms (with no weight, the same kind of denoising is
obtained with a smaller patch size).
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7.4 Experiments

The TV-means and aggregated TV-means methods are straightforward to implement. However, it is
worth mentioning that a considerable acceleration can be obtained by avoiding redundant computations
of local TV-filtering. For a given patch Nx and a given scale λ, the computation of Tλ(v(Nx)) is done at
most once, and the smoothed patch is stored until it is out of range of the remaining potential patches
(the image is processed by increasing line numbers, so that the pixel x cannot be part of a search window
after a certain line index is reached). Using this implementation (in C language), the application of the
aggregated TV-means filter takes 12 seconds on a recent PC desktop for a 256×256 image (for the patch
and search window sizes specified below).

We tested the effect of TV-means denoising (in both original and aggregated variants) on the five
classical images used in [43]: Barbara, Lena, Boats, House and Peppers. These five images were corrupted
with a white Gaussian noise (standard deviation σ = 20), then processed with the algorithms considered
above. Concerning the choice of the parameters, we tried to find, for each algorithm, a set of values that
yielded good results (in terms of PSNR, see below) for all five images:

• for global TV (ROF) denoising, we used the value λ = 28;

• for NL-means, we used 7 × 7 patches on a 11 × 11 search window, a patch norm coefficient a =
s−1
4 = 1.5, and a weight decay h = 18;

• for TV-means (without aggregation), we used 11 × 11 patches on a 15 × 15 search window, with
n = 10;

• for aggregated TV-means, we used n = 6 (since the aggregation process is a smoothing process, it
is logical to be less demanding on n) and the other parameters as in the non-aggregated case.

These 4 algorithms are compared visually on Figure 7 and 8, where a part of the images Barbara
and Lena is shown. The interest of the combination of global TV-denoising and NL-means denoising
clearly appears: the TV-means method, in both variants, manages to capture the best features of its two
basic components: the patch redundancy used in NL-means, and the nice denoising of edges of global
TV-denoising.

We also systematically evaluated the algorithms in terms of their ability to restore the original image.
In each case, we computed the Peak Signal to Noise Ratio (PSNR) between the groundtruth image u0

and the denoised image v, defined by

PSNR = 10 log10

(
2552∑

x

(
v(x)− u0(x)

)2
)

.

The values are reported on Table 1. As we can observe, in terms of denoising efficiency (high PSNR), the
aggregated TV-means method performs significantly better than global TV (ROF) and NLmeans, and
yield performances similar to Kervrann et al. [43] results (better for Barbara, House and Peppers, and a
little bit worse for Lena and Boats). Knowing that contrary to Kervrann et al. algorithm, the method we
propose does not try to optimize locally the patch size, this is a promising result, since there probably
are several interesting ways to combine in a more sophisticated manner the local TV and NL-means
filtering. On Table 1, we also mentioned another recent method, BM3D [31], that shows state-of-the-art
performances. It could be interesting to build an algorithm using the TV-means basic idea in combination
with several ingredients of BM3D (two-pass denoising, collaborative stack patch filtering, etc.). Even the
idea of any-shape patches, used in the recent Shape-Adaptive PCA BM3D [32], could be combined with
local TV-denoising thanks to the general framework we used in Section 3 to define local TV-filtering on
an arbitrary neighborhood shape.
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noisy TV-means (11× 11) NL-means (11× 11)

global TV (ROF) aggregated TV-means (11× 11) NL-means (7× 7)

Figure 7: Denoising of Barbara image (detail). The classic Barbara image, corrupted with a Gaussian white noise
with standard deviation σ = 20 (top, left), is denoised using several methods compared in this paper. The ROF
method (bottom, left) does not manage to handle well the smooth and textured parts: most textures parts (scarf,
basket chair) are poorly reconstructed, while a non-negligible amount of noise remains in the originally smooth
regions (cheek, hand). The NL-means method (right column, top and bottom rows) performs better, but some
regions are oversmoothed (eye, basket chair) due to the patch-jittering effect mentioned in the end of Section 7.1.
This effect is particularly strong for 11× 11 patches (top row); it can be reduced by using smaller patches (7× 7
on bottom row), which leads to a better image but with a noticeable loss of denoising in some parts (hand, cheek).
The TV-means algorithm we propose (middle column) manages to find an interesting compromise: it avoids the
patch-jittering effect without reducing too much the amount of denoising in other regions, thanks to the use of
local TV-denoising. The aggregated version (middle column, bottom row) yields a balanced restoration, visually
nicer and significantly better than other methods in terms of PSNR (see Table 1). Note that all images above
were enhanced by a same affine contrast change for an easier visualization.

8 Conclusion

The aim of this work was to transform the well-known ROF (TV-L2) filter into a local filter. This
transformation is interesting for several reasons, and in particular because, as we showed, most image
pixels have a very limited influence zone in the ROF model, so that such a local filter is expected to
inherit the good behavior of the ROF model. We built a local TV-filter with an arbitrary neighborhood
shape, and discovered that the introduction of an appropriate weight function (typically Gaussian) was
necessary to avoid aliasing effects, which is quite intuitive considering the linear regime in which the local
TV-filter falls for large values of the scale λ. Aside from interesting properties of this new local TV-filter
(in particular a limiting PDE, allowing weight normalization), we established convergence conditions for
the algorithms we built, inspired from Chambolle’s previous works. We illustrated the interest of local
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noisy TV-means (11× 11) NL-means (11× 11)

global TV (ROF) aggregated TV-means (11× 11) NL-means (7× 7)

Figure 8: Denoising of Lena image (detail). As in Figure 7, global TV-denoising simultaneously leaves noise
(and staircasing) on the smooth parts and erases some texture (hat, feathers). The NL-means method performs
better, but either leaves noticeable noise (7× 7 patches), or introduces too much blur (11× 11 patches). A more
balanced treatment of edges, flat areas and textures is obtained with aggregated TV-means, yielding a better
global impression and a more precise recovery of textures (see, e.g., the feathers and the thin stripes of the hat).

Barbara Lena Boats House Peppers
512× 512 512× 512 512× 512 256× 256 256× 256

noisy (σ = 20) 22.1 22.1 22.1 22.1 22.1
TV (ROF) [54] 26.69 30.89 29.21 31.22 29.62
NL-means [15] 29.59 31.50 29.32 32.05 30.12
TV-means 29.94 31.80 29.34 32.34 29.73
agg. TV-means 30.93 32.48 30.00 33.10 30.63
Kervrann et al. [43] 30.37 32.64 30.12 32.90 30.59
BM3D [31] 31.78 33.05 30.88 33.77 31.29

Table 1: PSNR values obtained with different denoising algorithms. We can observe that the aggregated TV-

means algorithm (in bold) shows similar performance than Kervrann et al. method, and systematically improves

both TV and NL-means filtering. The simple combination of TV and NL-means we propose cannot compete

directly with BM3D, but it could probably be integrated in a more sophisticated algorithm that could attain

closer performances.
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TV-denoising in two directions. First, we showed that it brings an interesting bias-variance trade-off,
compared to its linear regime (Gaussian filtering) and global TV-denoising. One illustration of this is
the fantastic reduction of the well-known staircasing effect, that makes ROF-processed images look like
oil paintings. Second, we used local TV-filtering to build a new filter that combines TV-denoising and
NL-means into a simple but efficient denoising method called aggregated TV-means. This new filter brings
interesting perspectives, in particular because it shows that although the ROF model is not any more a
state-of-the-art denoising algorithm for most images, the idea of TV-denoising can still be used to build
efficient denoising filters.

Acknowledgements

We thank Antonin Chambolle for fruitful discussions.

Appendix: proof of Proposition 6

We follow Chambolle’s proof [21] and generalize it to the case of a non-rectangular and weighted domain.

1) First, we prove that the minimizer u ∈ RW of Eλ,ω,v(u) = ‖D1/2(u− v)‖2 +λTV (u) (Equation 43)
satisfies u = v − πλ

2 K(v). Euler’s equation for the minimization of Eλ,ω,v(u) writes

2D(u− v) + λ∂TV (u) 3 0,

that is,
D(v − u)

λ/2
∈ ∂TV (u).

Denoting TV ∗ the Legendre-Fenchel transform of TV , we get, thanks to the Moreau decomposition (see
[41]),

u ∈ ∂TV ∗
(

D(v − u)
λ/2

)
.

Now setting w = v−u
λ/2 , this yields

w − 2
λ

v +
2
λ

∂TV ∗(Dw) 3 0, (62)

whose left-hand term is the subdifferential of the energy Ẽλ,ω,v(w) = 1
2‖w − 2

λv‖2 + 2
λTV ∗(Dw), and

(62) implies that w minimizes Ẽλ,ω,v. Moreover, if K is defined by (46), which makes sense since D is
invertible, from [21] we have

TV ∗(Dw) =

{
0 if w ∈ K

+∞ else,

which holds whatever the domain W as the operators ∇ and div are dual one to the other. Hence the
minimization of Ẽλ,ω,v amounts to project v onto λ

2 K, which is closed and convex because p 7→ D−1p is
linear. This precisely writes u = v − πλ

2 K(v).

2) Recalling the definition of K (Equation 46), step 1) enables us to write w = D−1div p, where p
minimizes ‖ 2

λv − D−1div p‖2 among all p such that ‖p‖∞ ≤ 1. The necessary and sufficient Karush-
Kuhn-Tucker conditions hold and there exists α ∈ RW such that

∀x ∈ W, −∇(
λ

2
D−1div p− v)x = αxpx (63)

with αx ≥ 0 and αx(|px|2 − 1) = 0 for all x ∈ W. Then either αx > 0 and |px| = 1, or |px| < 1 and
αx = 0. In both cases αx = |∇(λ

2 D−1div p − v)|x, and replacing this value of αx in (63) concludes the
proof of (47). 2
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