133 research outputs found

    On Kernelized Multi-armed Bandits

    Full text link
    We consider the stochastic bandit problem with a continuous set of arms, with the expected reward function over the arms assumed to be fixed but unknown. We provide two new Gaussian process-based algorithms for continuous bandit optimization-Improved GP-UCB (IGP-UCB) and GP-Thomson sampling (GP-TS), and derive corresponding regret bounds. Specifically, the bounds hold when the expected reward function belongs to the reproducing kernel Hilbert space (RKHS) that naturally corresponds to a Gaussian process kernel used as input by the algorithms. Along the way, we derive a new self-normalized concentration inequality for vector- valued martingales of arbitrary, possibly infinite, dimension. Finally, experimental evaluation and comparisons to existing algorithms on synthetic and real-world environments are carried out that highlight the favorable gains of the proposed strategies in many cases

    Better Optimism By Bayes: Adaptive Planning with Rich Models

    Full text link
    The computational costs of inference and planning have confined Bayesian model-based reinforcement learning to one of two dismal fates: powerful Bayes-adaptive planning but only for simplistic models, or powerful, Bayesian non-parametric models but using simple, myopic planning strategies such as Thompson sampling. We ask whether it is feasible and truly beneficial to combine rich probabilistic models with a closer approximation to fully Bayesian planning. First, we use a collection of counterexamples to show formal problems with the over-optimism inherent in Thompson sampling. Then we leverage state-of-the-art techniques in efficient Bayes-adaptive planning and non-parametric Bayesian methods to perform qualitatively better than both existing conventional algorithms and Thompson sampling on two contextual bandit-like problems.Comment: 11 pages, 11 figure

    Nonparametric Bayesian multi-armed bandits for single cell experiment design

    Get PDF
    The problem of maximizing cell type discovery under budget constraints is a fundamental challenge for the collection and analysis of single-cell RNA-sequencing (scRNA-seq) data. In this paper, we introduce a simple, computationally efficient, and scalable Bayesian nonparametric sequential approach to optimize the budget allocation when designing a large scale experiment for the collection of scRNA-seq data for the purpose of, but not limited to, creating cell atlases. Our approach relies on the following tools: i) a hierarchical Pitman-Yor prior that recapitulates biological assumptions regarding cellular differentiation, and ii) a Thompson sampling multi-armed bandit strategy that balances exploitation and exploration to prioritize experiments across a sequence of trials. Posterior inference is performed by using a sequential Monte Carlo approach, which allows us to fully exploit the sequential nature of our species sampling problem. We empirically show that our approach outperforms state-of-the-art methods and achieves near-Oracle performance on simulated and scRNA-seq data alike. HPY-TS code is available at https://github.com/fedfer/HPYsinglecell

    An Analysis of the Value of Information when Exploring Stochastic, Discrete Multi-Armed Bandits

    Full text link
    In this paper, we propose an information-theoretic exploration strategy for stochastic, discrete multi-armed bandits that achieves optimal regret. Our strategy is based on the value of information criterion. This criterion measures the trade-off between policy information and obtainable rewards. High amounts of policy information are associated with exploration-dominant searches of the space and yield high rewards. Low amounts of policy information favor the exploitation of existing knowledge. Information, in this criterion, is quantified by a parameter that can be varied during search. We demonstrate that a simulated-annealing-like update of this parameter, with a sufficiently fast cooling schedule, leads to an optimal regret that is logarithmic with respect to the number of episodes.Comment: Entrop

    Learning how to act: making good decisions with machine learning

    Get PDF
    This thesis is about machine learning and statistical approaches to decision making. How can we learn from data to anticipate the consequence of, and optimally select, interventions or actions? Problems such as deciding which medication to prescribe to patients, who should be released on bail, and how much to charge for insurance are ubiquitous, and have far reaching impacts on our lives. There are two fundamental approaches to learning how to act: reinforcement learning, in which an agent directly intervenes in a system and learns from the outcome, and observational causal inference, whereby we seek to infer the outcome of an intervention from observing the system. The goal of this thesis to connect and unify these key approaches. I introduce causal bandit problems: a synthesis that combines causal graphical models, which were developed for observational causal inference, with multi-armed bandit problems, which are a subset of reinforcement learning problems that are simple enough to admit formal analysis. I show that knowledge of the causal structure allows us to transfer information learned about the outcome of one action to predict the outcome of an alternate action, yielding a novel form of structure between bandit arms that cannot be exploited by existing algorithms. I propose an algorithm for causal bandit problems and prove bounds on the simple regret demonstrating it is close to mini-max optimal and better than algorithms that do not use the additional causal information
    • …
    corecore