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NONPARAMETRIC BAYESIAN MULTI-ARMED BANDITS
FOR SINGLE CELL EXPERIMENT DESIGN

By Federico Camerlenghi∗,†, Bianca Dumitrascu∗, Federico
Ferrari∗, Barbara E. Engelhardt and Stefano Favaro‡

University of Milano - Bicocca, Institute for Advanced Study, Duke
University, Princeton University, University of Torino and Collegio Carlo

Alberto

The problem of maximizing cell type discovery under budget con-
straints is a fundamental challenge for the collection and analysis of
single-cell RNA-sequencing (scRNA-seq) data. In this paper, we in-
troduce a simple, computationally efficient, and scalable Bayesian
nonparametric sequential approach to optimize the budget alloca-
tion when designing a large scale experiment for the collection of
scRNA-seq data for the purpose of, but not limited to, creating cell
atlases. Our approach relies on the following tools: i) a hierarchical
Pitman-Yor prior that recapitulates biological assumptions regard-
ing cellular differentiation, and ii) a Thompson sampling multi-armed
bandit strategy that balances exploitation and exploration to prior-
itize experiments across a sequence of trials. Posterior inference is
performed by using a sequential Monte Carlo approach, which al-
lows us to fully exploit the sequential nature of our species sam-
pling problem. We empirically show that our approach outperforms
state-of-the-art methods and achieves near-Oracle performance on
simulated and scRNA-seq data alike. HPY-TS code is available at
https://github.com/fedfer/HPYsinglecell.

1. Introduction. Technological developments in high-throughput ge-
nomics have generated a wealth of data allowing researchers to measure
and quantify RNA levels of individual cells (Macosko et al., 2015; Zheng
et al., 2017). Benefiting from experimental and computational advances
alike, single-cell RNA-seq (scRNA-seq) allows the characterization of cell
types and cellular diversity, offering invaluable insights at scales unattain-
able in previous bulk gene expression studies (Zhu et al., 2018). In order to
understand the diversity of the thousands of cell types and subtypes across

∗These authors contributed equally to this work.
†Also affiliated to Collegio Carlo Alberto, Torino and BIDSA, Bocconi University, Mi-

lano, Italy.
‡Also affiliated to IMATI-CNR “Enrico Magenes” (Milan, Italy).
Keywords and phrases: cell type discovery, experimental sampling design, hierarchical

Pitman-Yor model, multi-armed bandits, scRNA-seq, sequential Monte Carlo, Thompson
sampling

1
imsart-aoas ver. 2014/10/16 file: main.tex date: September 22, 2020

ar
X

iv
:1

91
0.

05
35

5v
2 

 [
st

at
.A

P]
  2

0 
Se

p 
20

20

http://www.imstat.org/aoas/
https://github.com/fedfer/HPYsinglecell


2 CAMERLENGHI, DUMITRASCU, FERRARI ET AL.

different organisms, recent initiatives aim for molecular profiling of all cell
types of complex organisms such as mouse or human (Regev et al., 2017;
Han et al., 2018). Despite the decreasing cost of technologies for single-cell
sequencing, cell atlases are expensive to collect and hard to coordinate across
species, cells, tissues, organs, diseases, technologies, and labs. A principled
way of collecting data is therefore paramount: given the experimental cost
limiting the number of cells to be sequenced, and given multiple related
experimental scenarios (e.g., developmental time, biological region, tumor
site), how can one allocate the cellular sequencing budget in order to mini-
mize experimental cost and to maximize the number of distinct cells types
obtained? In this paper, we present an effective Bayesian nonparametric
approach to address this fundamental question.

Recent work (Bubeck, Ernst and Garivier, 2013; Battiston, Favaro and
Teh, 2018; Dumitrascu, Feng and Engelhardt, 2018a) proposed the use of
classical multi-armed bandit strategies—upper confidence bounds (UCB)
(Lai and Robbins, 1985; Auer, Cesa-Bianchi and Fischer, 2002) and Thomp-
son sampling (TS) (Thompson, 1933)—for devising sequential approaches
to maximize the number of distinct species discovered by sampling over
multiple populations. In particular, these sampling strategies balance the
exploration of the experimental choices—which populations are sampled—
with the exploitation of populations that maximize current estimates of
the expected rewards–the observed species diversity within a population. In
the classical multi-armed bandit setting, a gambler is presented with slot
machines (one-armed bandits is the colloquial term for a slot machine in
American slang) that each pay out a random reward sampled from an arm-
specific probability distribution. The gambler commits to querying a given
arm for a single trial before switching to another arm, and her goal is to
select a sequence of arms to play in order to maximize her rewards over
subsequent trials. At each step, the gambler estimates the expected rewards
of a single trial from each machine’s arm, both queried and not. She must
then balance exploiting the arm with the current highest estimate of ex-
pected rewards and exploring undersampled arms to improve estimates of
the arms’ expected rewards.

A natural variation of the above multi-armed bandit setting is when the
gambler commits to querying a given arm for a pre-determined number of
consecutive trials before switching to another arm. This variation is read-
ily applicable to the experimental design problem of guiding the sequential
selection of samples through single cell sequencing technologies: We may
sequence some number of cells from one of multiple tissues or sample sites.
In detail, we consider this problem as a set of sequential trials where a sci-
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BAYESIAN NONPARAMETRIC EXPERIMENTAL DESIGN 3

entist may choose a subset of tissue samples to assay. Each organ, tissue
type, sample site, or experimental condition represents an arm to be pulled.
When choosing a specific arm, the scientist commits to sequencing a number
of cells proportional to the maximum number of new cell type discoveries
expected in a future sample from the given experimental condition. The re-
ward of each experimental trial is given by the number of new cell types
uncovered in the sequenced sample. A first attempt to address this prob-
lem, within the context of scRNA-seq data, was proposed in Dumitrascu,
Feng and Engelhardt (2018b) by combining a class of Good-Toulmin (GT)
estimators (Good, 1953; Good and Toulmin, 1956; Efron and Thisted, 1976;
Orlitsky, Suresh and Wu, 2016) with the TS strategy.

In this paper, we follow ideas from Battiston, Favaro and Teh (2018) and
Dumitrascu, Feng and Engelhardt (2018b) to introduce a Bayesian non-
parametric counterpart of the previous Good-Toulmin Thompson sampling
(GT-TS) approach (Dumitrascu, Feng and Engelhardt, 2018b). Because of
the purely nonparametric nature of smoothed GT estimators, the GT-TS
approach does not allow us to take into account the structure of cell type
diversity. As cell types arise through cellular differentiation (Rizvi et al.,
2017), they organize themselves in developmental landscapes (Waddington
et al., 1957). Hierarchical structures can be imposed on the cell types through
Bayesian nonparametric priors, as was done for cell trajectory reconstruction
and Bayesian inference on developmental lineages (Heaukulani, Knowles and
Ghahramani, 2014; Shiffman et al., 2018).

A natural choice for a nonparametric prior to model cell type diversity
is the hierarchical Pitman-Yor process (HPY) (Teh, 2006; Teh and Jordan,
2010). The HPY process has previously been used in the context of species
discovery problems in multiple populations, and it has been shown to have
good performance in small data sets (Camerlenghi et al., 2019; Bassetti,
Casarin and Rossini, 2018). Yet, species sampling problems considered in
these recent studies are not sequential problems: a Bayesian nonparametric
model with a HPY prior is fit to the data de novo each time new data become
available. This makes current posterior sampling procedures designed for the
HPY prior infeasible for our sequential species sampling problem of rapidly-
growing single cell data sets.

We propose a simple, computationally efficient, and scalable Bayesian
nonparametric sequential approach for guiding the selection of samples for
single cell sequencing technologies with the goal of maximizing the diversity
of cell types discovered. Our approach has two main contributions. First,
we introduce a multi-armed bandit strategy that combines the TS approach
with a Bayesian nonparametric counterpart of the GT estimator under the
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4 CAMERLENGHI, DUMITRASCU, FERRARI ET AL.

HPY prior, extending previous work that allowed only a single trial to allow
a pre-determined number of consecutive trials before switching arms (Bat-
tiston, Favaro and Teh, 2018). The TS strategy encodes the sequential
exploration-exploitation process associated with data collection from any
given region, whereas the use of the HPY prior incorporates biologically-
relevant information regarding the relationships among cell types to guide
the allocation of resources. Second, we devise an efficient posterior sam-
pling scheme that relies on sequential Monte Carlo methods (West, 1993a;
Liu and West, 2001). Sequential Monte Carlo (SMC) allows us to fully ex-
ploit the sequential nature of our species sampling problem, thus avoiding
the overwhelming computational burden of the Markov chain Monte Carlo
(MCMC) scheme proposed in Battiston, Favaro and Teh (2018). We compare
our method to the previous method (GT-TS) and to an Oracle in simulations
and in a data set based on the Mouse Cell Atlas (Han et al., 2018). Since our
motivation lies in the realm of single cell experimental design, we illustrate
how, given a per-trial budget, the resulting algorithm leverages information
across tissues to inform subsequent experiments in order to maximize cell
type discovery in the Mouse Cell Atlas (Han et al., 2018).

The paper is structured as follows. Section 2 contains preliminaries on i)
the multi-armed bandit setting within the context of prioritizing single cell
sampling across populations, i.e., organs, tissues, regions, and experimental
conditions; ii) the definition of the HPY prior, and some of its marginal
sampling properties. In Section 3, we introduce our Bayesian nonparametric
sequential approach, referred to as the HPY-TS strategy, for guiding the
selection of samples through single cell sequencing technologies. A detailed
description of the sequential Monte Carlo approach for posterior sampling is
presented in Section 4. Section 5 highlights results of our approach through
a simulation study and an application to a data set derived from the Mouse
Cell Atlas. In Section 6, we summarize our work and briefly discuss ex-
tensions to our HPY-TS strategy. Additional simulation studies, posterior
diagnostics, and proofs are deferred to the Supplementary Material (Camer-
lenghi et al., 2020).

2. Preliminaries. Let Y denote the set of labels representing the cell
types of an organism being studied. The cell type composition within each of
the J possible populations (arms, experiments) is characterized by a prob-
ability distribution over Y, such that cell types are shared across the J
populations. Precisely, we denote by Pj the probability distribution on Y in
population j, for j = 1, . . . , J . Let nj be the number of cells (pulls) observed
from the jth population, let Yj = (Yj,1, · · · , Yj,nj ) ∈ Ynj be the vector of
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BAYESIAN NONPARAMETRIC EXPERIMENTAL DESIGN 5

nj observations from the jth population, whereas Y = (Y1, · · · ,YJ) is the
joint sample corresponding to a budget n1 + · · ·+ nJ . Assume now to have
an additional budget M that constraints the number of cells that can be
collected per trial in a future experiment. If J populations are available,
a multi-armed bandit iteratively selects a subset of populations to sample
from as well as the appropriate number of cells to sample in each population.
In other words, at each step, the arm is chosen with the goal of maximizing
the number of novel cell types observed. Therefore, in order to set up our
strategy, the first step consists in estimating the number of thus far unseen
species (cells) that are going to be sampled for every possible arm j, as
j = 1, . . . , J .

A possible strategy to address this sequential problem was first proposed
in the work of Dumitrascu, Feng and Engelhardt (2018a). This approach
relies on a smoothed version of the Good-Toulmin estimator of the num-
ber of unseen species (Orlitsky, Suresh and Wu, 2016). However, while the
smoothed Good-Toulmin estimator presents attractive statistical properties
and provable guarantees in terms of minimax optimality (Orlitsky, Suresh
and Wu, 2016), it is designed for a single population scenario. In this pa-
per, we focus on data coming from multiple related populations. Indeed, we
discover cell types across diverse tissue types assayed in scRNA-seq exper-
iments. It is then important to guarantee two key properties in our model:
i) the model preserves data heterogeneity for different tissues; and ii) the
model allows borrowing of information across the different tissues. Hierar-
chical Bayesian nonparametric priors are tailored for such situations: the
data are divided into distinct populations (according to the tissue they are
derived from), and at the same time the hierarchical construction allows a
borrowing of information across the diverse populations of cell types.

2.1. The Pitman-Yor process. The Bayesian nonparametric (BNP) ap-
proach relies on the choice of a prior distribution for the cell type labels. The
Dirichlet process (DP) (Ferguson, 1973) is a well-known Bayesian nonpara-
metric distribution. In this paper, we make use of a generalization of the
DP, the Pitman-Yor (PY) process (Pitman and Yor, 1997). The PY process
P is a random probability measure that depends on two parameters (σ, θ),
respectively called the concentration and the mass parameter, with a base
measure P0 on the space of labels Y. The admissible values we consider here
for these parameters are σ ∈ (0, 1) and θ > 0. The most simple way to define
the PY process uses a stick-breaking procedure (Sethuraman, 1994). More
specifically, P is a discrete random probability measure P =

∑
k≥1 πkδyk
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6 CAMERLENGHI, DUMITRASCU, FERRARI ET AL.

such that
π1 = V1

and

πk = Vk

k−1∏
h=1

(1− Vh), for h ≥ 2,

where (yk)k≥1 is a sequence of i.i.d. random variables as P0, and (Vk)k≥1 is a
collection of independent beta-distributed random variables with parameters
(θ + kσ, 1 − σ). The two sequences (yk)k≥1 and (Vk)k≥1 are assumed to be
independent. We write P ∼ PY (σ, θ;P0) to denote the distribution of P .
The classical DP prior can be found as a limiting case of the PY process,
letting σ → 0.

It is worthwhile to highlight the differences between the PY process
and the DP with respect to the predictive distributions they induce. In
both cases, the predictive distribution may be represented in terms of the
celebrated Chinese restaurant process (CRP); see Pitman and Yor (1997)
for a comprehensive account and references. Consider a random sample

Y1, . . . , Yn|P
iid∼ P of size n from the PY process. The almost sure discrete-

ness of the random probability measure P allows for ties within the sample.
Then, let Kn be the number of distinct values within the sample (Y1, . . . , Yn),
denoted as (Y ∗1 , . . . , Y

∗
Kn

) and having multiplicities (n1, . . . , nKn). Then, the
predictive distribution of the n + 1st observation Yn+1 given past observa-
tions is

(2.1) Yn+1|(Y1, . . . , Yn), P0, σ, θ ∼
Kn∑
k=1

nk − σ
θ + n

δY ∗k +
θ +Knσ

θ + n
P0.

In other words, Equation (2.1) tells us that the probability of observing a
previously observed value Y ∗k is proportional to nk−σ. Intuitively, the more
samples of a species we observe, the higher the probability of sampling it
again in future trials; this is referred to as “the rich get richer” behavior.
Alternatively, the probability of sampling a new observation from the base
measure P0 is proportional to θ+Knσ. Notice that the clustering structure of
the PY process depends on two parameters, σ and θ, whereas in the DP it is
governed only by θ. This more complex parametrization offers more flexible
clustering rates and cluster size tail behaviors for the PY process (Ishwaran
and James, 2001).

2.2. Hierarchies of Pitman-Yor processes. When considering observa-
tions sampled from multiple populations, it is natural in the Bayesian frame-
work to model the group structure with a hierarchical framework. Here we
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BAYESIAN NONPARAMETRIC EXPERIMENTAL DESIGN 7

use a hierarchical structure based on the PY process. We denote the distri-
bution of cell type labels across all of the populations (experimental design
conditions) by P . The probability distribution P is almost surely discrete
with an unknown number of atoms, and we select a PY process prior to
model the distribution of cell type labels with parameters (σ, θ) and non-
atomic base measure P0 on the space of labels. Then each population-specific
distribution Pj is modeled using a PY process prior with parameters (σj , θj),
and we further suppose that the common base measure for all the Pjs is the
PY process P . Summing up, we have specified the following hierarchical PY
(HPY) process prior:

P |σ, θ, P0 ∼ PY (σ, θ;P0)

Pj |σj , θj , P
ind∼ PY (σj , θj ;P ) ∀j = 1, 2, . . . , J

Yj,i|Pj
iid∼ Pj ∀j = 1, 2, . . . , J, ∀i = 1, 2, . . . , nj .

(2.2)

The above hierarchical specification introduces dependencies among differ-
ent populations (experimental conditions or arms), thus allowing the sharing
of information across populations since the base measure P is common to the
different collections of observations (Teh, 2006; Camerlenghi et al., 2019).
In particular, conditional on the base measure P , the Pjs are independent
PY processes with base measure P . In particular, the interpretation of the
parameters (σj , θj) is the same as in the single population case described
above.

The predictive distribution and the combinatorial structure induced by
hierarchical processes can be thought of in terms of the Chinese restau-
rant franchise (CRF) metaphor (Teh and Jordan, 2010). According to this
culinary metaphor, each sample Yj := (Yj,1, . . . , Yj,nj ) identifies the dishes
chosen by the nj customers of restaurant (group) j, for any j = 1, . . . , J .
People sitting at the same table eat the same dish, and the same dish can be
served within the same restaurant or across different restaurants, since we
use the same a.s. discrete base measure P for all of the groups. We denote
by Y ∗∗1 , . . . , Y ∗∗K the K distinct dishes across the J samples, whereas nj,k ≥ 0
represents the number of customers in restaurant j eating dish k. Finally,
the vector nj := (nj,1, . . . , nj,nj ) encodes all of the frequencies for a specific
population j.

The combinatorial structure induced by the HPY process is formally de-
scribed by the so called partially exchangeable partition probability function
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8 CAMERLENGHI, DUMITRASCU, FERRARI ET AL.

(pEPPF) defined by

(2.3) Π
(n)
k (n1, . . . ,nJ) := E

∫
YK

J∏
j=1

K∏
k=1

P
nj,k

j (dY ∗∗k ).

In other words, this is the probability of observing a specific configuration
of the dishes across the restaurants. A tractable expression of the pEPPF
(2.3) was found in Camerlenghi et al. (2019), resorting to auxiliary latent
variables, which may be seen as tables in the CRF language. More specifi-
cally, each observation (customer) is associated with a latent tag identifying
the table of the restaurant at which the specific customer is seated. We have
the constraints

nj,k =

mj,k∑
t=1

nj,t,k,

where mj,k is the number of tables in restaurant j serving dish k, i.e., Y ∗∗k ,
and nj,t,k is the number of customers in restaurant j sitting at table t, eating
dish k. In the sequel it will be useful to denote by Kj the number of distinct
values in the jth group Yj , indicated by (Y ∗j,1, . . . , Y

∗
j,Kj

), which is a subset

of {Y ∗∗1 , . . . , Y ∗∗K }.
The introduction of auxiliary variables leads to a refinement of the par-

tition of the observations Y defined in Equation (2.3). Indeed, now we can
look for the probability that the observations are partitioned into a set of m·,·
distinct groups according to both tables and dishes. Such a probability coin-
cides with an augmented version of Equation (2.3) derived in Camerlenghi
et al. (2019), i.e.,

Π
(n)
k (n1, . . . ,nJ ; (nj,t,k)j,t,k, (mj,k)j,k)

= Φ
m·,·
K (m·,1, . . . ,m·,K)

J∏
j=1

Φ
(nj)
mj,·,j

(nj,·,1, . . . , nj,·,K),
(2.4)

where the functions Φ
m·,·
K and Φ

(nj)
mj,·,j

denote the so-called exchangeable par-

tition probability function (EPPF) induced by P and Pj , respectively. Then
we have

Φ
m·,·
K (m·,1, . . . ,m·,K) =

∏K−1
i=1 (θ + σi)

(θ)m·,·

K∏
i=1

(1− σ)m·,i−1,

where (a)n := Γ(n + a)/Γ(a) is the Pochhammer symbol for the rising fac-
torial, and where mj,· represents the total number of tables in group j, and
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BAYESIAN NONPARAMETRIC EXPERIMENTAL DESIGN 9

m·,· is the number of tables across restaurants. An analogous explicit formula

holds for the probability Φ
(nj)
mj,·,j

as well. Furthermore, one can then obtain

an expression for Equation (2.3) by integrating out the tables in Equation
(2.4).

The CRF provides a simple and meaningful interpretation of the pre-
dictive distributions for observed species within and across populations. In
particular, conditional on Pj , the predictive distribution for a new obser-
vation Yj,nj+1 of the jth population is the same as the CRP in the single
population case. On the other hand, by integrating out Pj , we obtain the
predictive distribution for the new species in population j with respect to
the unique species in the joint sample (across populations). That is, we can
write

Y ∗j,mj,·+1|Y ∗1,1, · · · , Y ∗J,mJ,· , P ∼
K∑
k=1

m·,k − σ
θ +m·,·

δY ∗∗k
+
θ +Kσ

θ +m·,·
P,

where (Y ∗∗1 , · · · , Y ∗∗K ) are the distinct species in the joint sample from J
populations, and mj,k is the number of observations in population j from
species Y ∗∗k . Notice that m·,k is the number of times that species Y ∗∗k has
been observed in the joint sample. Intuitively, a high value of m·,k leads to a
high probability of observing Y ∗∗k in all populations, even if Y ∗∗k has not yet
been sampled in some of the J populations. In particular, this probability
is proportional to m·,k − σ: the number of times that we observe Y ∗∗k minus
the discount parameter of the base distribution P . In other words, the pair
of parameters (θ, σ) allow us to control the total number of species in the
joint sample and the extent of sharing of species across different populations.
More precisely, we have that: i) if θ is low then, in expectation, the total
number of distinct species in the joint sample will be low in expectation; ii)
if σ is high then, in expectation, the distinct populations will share fewer
species.

3. The HPY-TS strategy. In this section, we present our Bayesian
nonparametric sequential approach, referred to as HPY-TS, for guiding the
selection of samples for single cell sequencing technologies. HPY-TS is a
multi-armed bandit strategy that combines the TS strategy with a Bayesian
nonparametric counterpart of the GT estimator under the HPY process
prior. Our HPY-TS strategy may be viewed as an extension of the strategy
that has been recently proposed by Battiston, Favaro and Teh (2018) from a
single trial before switching arms to a pre-determined number of consecutive
trials before switching arms. It also may be viewed as a Bayesian nonpara-
metric counterpart of the GT-TS strategy proposed in Dumitrascu, Feng

imsart-aoas ver. 2014/10/16 file: main.tex date: September 22, 2020



10 CAMERLENGHI, DUMITRASCU, FERRARI ET AL.

and Engelhardt (2018b), where the smoothed GT estimator is replaced by
the Bayesian nonparametric alternative under the HPY prior including a
hierarchical structure on the species.

Consider M cells that are simultaneously observed from multiple popula-
tions. Populations, i.e., organs, tissues, regions, or experimental conditions,
represent arms to be selected for experimentation. Under the HPY prior
assumption for the unknown composition of the populations, the HPY-TS
strategy prescribes to select the population in such a way as to maximize the
number of new distinct cell types that we expect to observe in M additional
cells from the selected population. We define the set of hitherto unobserved

cells as A = {y ∈ Y : y /∈ Y }, and we denote by K
(M)
j |Y the random

number of new distinct cell types that will be observed in an additional
sample of size M collected from population (or arm) j. In such a situation
the reward distribution for each arm j is the distribution of the random vari-

able E(K
(M)
j |Y ), whose randomness is due to the fact that Pj is random.

We remark that, conditioning on Pj |Y , then E(K
(M)
j |Y ) becomes a num-

ber. The HPY-TS strategy computes draws from the posterior distribution

of (E(K
(M)
1 |Y ), . . . ,E(K

(M)
J |Y )), and to select the arm j that corresponds

to the maximum value of E(K
(M)
j |Y ). This strategy usually outperforms

with respect to the so-called greedy strategy, which selects the arm with the

highest posterior point estimate of E(K
(M)
j |Y ). Indeed, the HPY-TS better

balances the exploration step as clearly explained in Battiston, Favaro and
Teh (2018).

Under the HPY process prior, E(K
(M)
j |Y ) provides the natural Bayesian

nonparametric counterpart of the smoothed GT estimator proposed in Du-
mitrascu, Feng and Engelhardt (2018b). An explicit expression for the poste-

rior expectation E(K
(M)
j |Y ) appeared in Proposition 2 of Battiston, Favaro

and Teh (2018). In the next proposition, we simplify this expression. We
denote by beta(· | a, b) the beta distribution with parameters (a, b). Let Pj

be the unknown cell type proportions of population j. Let Pj(A) represent
the unknown cell type proportions for the collection of cells that have not
yet been sampled A from population j.

Proposition 3.1. Let the unknown cell type proportions Pj of popu-
lation j be modeled according to the HPY process (Equation (2.2)). Condi-
tional on random variables β0|Y ∼ beta(β0|θ+Kσ,m··−σK) and Pj(A)|Y , β0 =
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BAYESIAN NONPARAMETRIC EXPERIMENTAL DESIGN 11

pj, where

Pj(A)|Y , β0

∼ beta(pj | (θj +mj,·σj)β0, (θj +mj,·σj)(1− β0) + nj,·· − σjmj,·),

one has

E(K
(M)
j |Y , β0, pj) =

θ +Kσ

σ

[ M∑
i=1

(
M

i

)
pij(1− pj)M−i

× E
[

(θ +Kσ + σ)Ji
(θ +Kσ)Ji

]
− (1− (1− pj)M )

](3.1)

with

E
[

(θ +Kσ + σ)Ji
(θ +Kσ)Ji

]
=

i∑
m̃=1

F (i, m̃, σ, (θ +mj·)β0)
(θ +Kσ + σ)m̃

(θ +Kσ)m̃
.

Here, random variable Ji, for any i = 1, . . . ,M , counts the number of dis-
tinct values in a random sample of size i from a PY process with updated
parameters (σ, (θ+mj,·)β0), and F (n, k, σ, θ) is the probability that {Ji = m̃}.

The proof of Proposition 3.1 is deferred to the Supplementary Material.

Based on Proposition 3.1, one can recover an explicit formula for E(K
(M)
j |Y )

by simply integrating Equation (3.1) with respect to the distribution of pj
and the distribution of β0. Then, we can infer that the computational com-

plexity of computing the formula for E(K
(M)
j |Y , β0, pj) is proportional to

M . Having found the posterior expectation of K
(M)
j |Y for all populations

j in Proposition 3.1, our HPY-TS strategy selects the population with the
highest expected rewards, computed from a posterior sample. More specif-
ically, we sample β0|Y and Pj(A)|Y , β0 from the distribution described
in Proposition 3.1. Then, conditional on these realizations, we compute

E(K
(M)
j |Y , β0, pj) according to Equation (3.1). Finally, we select the popu-

lation with the highest realized value. Details of the HPY-TS strategy are
described in Section 4. Our HPY-TS strategy is based on the Thompson’s
sampling approach (Algorithm 1), with parameters updated sequentially ac-
cording to Algorithm 2.

With regards to the choice of the prior distributions for the hyperparam-
eters of the HPY process, we assume a Uniform prior on (0, 1) for both
parameters σ and σj . Moreover, we assume a Gamma prior with parameters
(1, 1) for both parameters θ and θj . All prior distributions are assumed to
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12 CAMERLENGHI, DUMITRASCU, FERRARI ET AL.

be independent. Note that Algorithm 1 depends on the following collection
of parameters

η = (θ, σ, σj , θj ; j = 1, · · · , J),

and on the table counts of the CRF, which are encoded by the vector mJ =
(mj,·; j = 1, · · · , J). Here it is worth stressing that the collection of table
counts mJ are latent variables, that is quantities that have not been observed
in the initial sample. Therefore, before running Algorithm 1, we estimate
these latent variables. This is done by using a Gibbs sampling algorithm that
relies on the explicit expression of the pEPPF from the work of Camerlenghi
et al. (2019). Specifically, we exploit the sequential structure of our species
sampling problem to update the vector of parameters η: we describe the
novel and efficient algorithm for the updating of η in the next section.

4. Sequential parameter updates. The multi-armed bandit problem
is described as a sequential allocation problem, where the goal is to find
the best allocation strategy to sample new observations from J different
populations at every experimental time step. Whenever the new M cells
are sampled from a population, one has to update the parameters of the
HPY process in a computationally feasible way. A possible approach to this
problem was first suggested in Battiston, Favaro and Teh (2018), where the
authors propose a Markov chain Monte Carlo (MCMC) in order to estimate
the posterior distributions of the hyperparameters of the HPY. However,
such an approach does not take advantage of the sequential nature of the
species sampling problem and, more importantly, is not computationally
feasible with large data sets. The computational burden of the approach
of Battiston, Favaro and Teh (2018) makes its direct application almost
impossible, except for toy examples with small numbers of arms. In this
section, we suggest a computationally tractable approach that leverages the
sequential structure of the problem (Algorithm 1) and is based on a filtering
algorithm of Liu and West (2001).

The HPY-TS strategy selects the arm to sample from, then one sequen-
tially samples the batch of M cells from the selected arm. After that, one
updates the model parameters with the new observation encoded by η to
select the new arm to sample from. We then consider discrete time points
t = 1, 2, . . ., and we clarify how to sequentially update the parameters of our
model in a computationally feasible way. Let us fix some notation: yt is the
vector of observations from the arm selected at time t, and Dt = {yt, Dt−1}
is the set of observations available at time t. Thus, we can think of a model
that is described by a distribution p(yt|η) evolving in time and depending
on a vector of model parameters η. At each iteration, we select an arm and
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Algorithm 1 HPY-TS

for i ∈ 1:number of new samples do

draw β0 ∼ beta(θ + σK,m·,· − σK)

for j ∈ 1 : J do

draw pj ∼ beta((θj +mj,·σj)β0, (θj +mj,·σj)(1− β0) + nj,·,· − σjmj,·)

Compute E(K
(M)
j |Y , β0, pj) according to Proposition 3.1

end for

Compute j∗ = argmax{E(K
(M)
j |Y , β0, pj), j = 1, · · · , J};

Draw the next sample from population j∗;

Update the HPY parameters according to Algorithm 2;

end for

observe yt+1, and we sample the updated parameters from the posterior dis-
tribution p(η|Dt+1), as t = 1, 2, . . .. Note that this posterior distribution is
proportional to

p(yt+1|η,Dt)p(η|Dt),

due to Bayes’ theorem. We can think of p(η|Dt) as the density function of η
at time t. Our aim is to sample a new set of parameters from the posterior
distribution of η in the presence of a new observation yt+1. The key idea
is to approximate the distribution of η|Dt with a mixture of N Gaussian
kernels, i.e.,

p(η|Dt) ≈
N∑
i=1

ω
(i)
t N (η|m(i)

t , h2Vt),

where {ω(1)
t , . . . , ω

(N)
t } is the set of importance sampling weights for {η(i)

t :
i = 1, 2, . . . , N} at time t, N is the number of importance samples at each
time step, and N (η|m,V ) is the density function of a Gaussian distribution
with mean m and covariance V . Moreover, Vt is the estimate of the covari-
ance with respect to the Monte Carlo posterior, and h is a smoothing param-
eter. Liu and West (2001) suggest to choose h as a decreasing function of the
number of importance samples. In our simulations, we set h = 1

N . In order to
avoid “loss of information” over time, earlier work (West, 1993a,b) proposes

shrinkage kernel locations and suggests setting m
(i)
t = aη

(i)
t + (1− a)η̄t and

a =
√

1− h2, where η̄t is the mean of the Monte Carlo sample of size N at
time t. With these choices, we preserve the covariance Vt over time.

In our framework, one only needs to evaluate the conditional distribution
p(yt+1|η,Dt), which may be recovered from the expression of the pEPPF in
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14 CAMERLENGHI, DUMITRASCU, FERRARI ET AL.

Algorithm 2 Filtering algorithm

Evaluate m
(i)
t for each i = 1, 2, . . . , N :

m
(i)
t = aη

(i)
t + (1− a)η̄t,

which are the prior point estimates of η. Construct a posterior approximation of
p(Θ|Dt+1) with weights ω

(i)
t+1 and samples η

(i)
t+1, for i = 1, . . . , N , as follows.

for i ∈ 1 : N do

1) Sample an auxiliary integer variable k from the set {1, 2, . . . , N} with proba-
bility proportional to:

g
(i)
t+1 ∝ ω

(i)
t p(yt+1|m(i)

t , Dt)

2) Sample a new parameter vector η
(k)
t+1 from the kth normal component of the

kernel density, namely:

η
(k)
t+1 ∼ N(m

(k)
t , h2Vt)

3) Evaluate the corresponding weights

ω
(k)
t+1 ∝

p(yt+1|η(k)t+1, Dt)

p(yt+1|m(k)
t , Dt)

where

p(yt+1|η,Dt) ∝ Π
(n)
k (n1, . . . ,nJ ; (nj,t,k)j,t,k, (mj,k)j,k).

In other words p(yt+1|η,Dt) is proportional to the pEPPF defined in (2.4),
depending on the parameters η and on information available up to time t+ 1.

end for

Resample according to the importance weights ω
(k)
t+1 to obtain a set of parameters with

equal weights–in other words, a Monte Carlo approximation of the posterior.
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Equation (2.4). In particular, we initially run a Gibbs sampler (Camerlenghi
et al., 2019) to obtain a collection of random samples for the latent table
counts and parameters η. Then, the output of the initial sample may be re-
garded as an importance sample of η with equal weights at time t = 0. More
precisely, we used the Gibbs sampling scheme described in Camerlenghi et al.
(2019) to initialize the values of all of the parameters η, conditionally on the
data D0, which contains the observations Y . In fact, we run the MCMC
procedure of Camerlenghi et al. (2019), and we used the output of the last
N runs to initialize all the parameters for the particle filtering algorithm.
We also assign uniform importance sampling weights to all of the initial

particles, i.e., ω
(i)
0 = 1/N as i = 1, . . . , N . Then, we use Algorithm 2 to

sequentially update the parameters of the HPY.

5. Applications.

5.1. Simulation study. We first demonstrate the performance of our HPY-
TS algorithm in the context of simulated data. Additional simulation studies
are presented in Section ?? of the Supplementary Material. We consider a
setup with 100 arms, representing a sample corresponding to 20000 different
species. The true distribution of each arm follows Zipf’s law, such that the
mass assigned to the kth most common species in a population j is

pj(k; sj) =
1/ksj∑Nj

i=1 1/isj
,

where Nj > 0 is the number of species in population j, and sj > 1 is a
real parameter that controls the distribution of mass among the support–
a large sj indicates that the total mass is concentrated on a few points,
and a small value indicates that the mass is shared across many points.
Hence, an arm with a low sj is a ‘winning arm,’ or an arm with high species
diversity. Among the 100 arms, we consider 4 winning arms (Zipf parameter
sj = 1.3), and 96 less diverse arms (Zipf parameter sj = 2). An optimal
strategy should balance exploration and exploitation, and query the less
diverse arms occasionally, while focusing on the winning arms.

We evaluate the performance of our TS strategy by comparing it with
three baselines: the Oracle strategy, the Uniform strategy, and the Good-
Toulmin Thompson sampling (GT-TS) strategy proposed by Dumitrascu,
Feng and Engelhardt (2018a). In particular, the Oracle strategy is used to
compare the performance with the optimal behavior; the Oracle strategy is
allowed to see into the future or pre-sample from all the arms and make
the optimal decision at every iteration. More precisely, the Oracle strategy
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16 CAMERLENGHI, DUMITRASCU, FERRARI ET AL.

selects the arm having the highest probability of observing a new cell, where
such a probability is evaluated numerically assuming knowledge of the true
distribution of the data (i.e., a Zipf distribution in our experiments). The
Uniform strategy allocates the budget uniformly across the arms, whereas
the GT-TS strategy is based on a smoothed version of the Good-Toulmin
estimator. More precisely, the smoothed Good-Toulmin estimator (Orlitsky,
Suresh and Wu, 2016) estimates the number of new species that will be
sampled in an additional sample of size M for a fixed population j. This
estimator is defined as

Û
(M)
j (Yj) = −

∞∑
i=1

(−M/nj)
iP(L > cj)Φij ,

whereM/nj is referred to as the extrapolation factor, Φij denotes the number
of species occurring with frequency i in Yj , the random sample from the jth
population, and L is an independent random nonnegative integer. Common
choices for the distribution of the random variable L include the Poisson
distribution and the binomial distribution (Orlitsky, Suresh and Wu, 2016).
The Good-Toulmin diversity estimator can be incorporated into the multi-
armed bandit framework as follows. At each sampling step, an arm is chosen
based on its probability of yielding the greatest number of novel species. The
probability that the jth population is chosen during a trial is based on the

weight of its Good-Toulmin estimator Û
(M)
j (Yj). Upon collecting M new

samples from the chosen arm, the reward (the number of novel cell types) is
observed, and the parameters of the Good-Toulmin estimator for the chosen
population are reestimated with the new samples and reward (Dumitrascu,
Feng and Engelhardt, 2018a).

In implementing our HPY-TS strategy, we use an initial sample of 20 ob-
servations from each of the 100 arms, with M = 50 observations sampled at
each iteration. We use 500 sampling steps, and the results are averaged over
50 runs. The computations are performed in parallel, and the code is avail-
able at https://github.com/fedfer/HPYsinglecell. We observe that the
HPY-TS algorithm performs better than the GT-TS strategy and the Uni-
form strategy; the latter two methods explore, but fail to exploit the most
diverse arms (Fig. 1). As expected, the HPY algorithm discovers fewer new
species than the Oracle strategy, but the HPY approach comes close to Or-
acle behavior. The results show similarities with the performance previously
reported in the work of Battiston, Favaro and Teh (2018) for a simulation
scenario with a small number of arms (8 arms), with the added benefit of
scalability to an order of magnitude more arms. The good performance of
the algorithm has been assessed in Section ?? of the Supplementary Mate-

imsart-aoas ver. 2014/10/16 file: main.tex date: September 22, 2020

https://github.com/fedfer/HPYsinglecell


BAYESIAN NONPARAMETRIC EXPERIMENTAL DESIGN 17

rial through posterior diagnostics for the simulation scenario considered in
this section.

Fig 1. Simulation results. We consider a multi-armed bandit setting for population
sampling with 100 arms in which the species diversity follows Zipf’s law with parameters
1.3 (4 high diversity, winning arms) and 2 (96 low diversity arms). An initial sample
of 20 cells were collected from each of the 100 arms, with 50 additional cells sampled at
each iteration. We used 100 sampling steps and averaged the results over 50 runs. We
compared HPY-TS (red, dashed) to two baselines—the GT-TS sampler (black, dotted) and
a Uniform sampling strategy (green, dot-dashed line)—and to an Oracle estimator (blue,
solid). The shaded bands are within one standard deviation of the average performance,
computed as the mean across simulations.

5.2. Application to single cell RNA-seq experimental design. We further
illustrate the advantage of our approach in the context of a simulation study
based on the Mouse Cell Atlas data (Han et al., 2018). The Mouse Cell
Atlas aims to provide the first high-throughout transcriptome-based single-
cell atlas in a mammalian system. The project assayed over 400, 000 cells
from all of the major mouse organs and identified previously uncharacter-
ized cell populations (Fig. 2). Following technical noise correction, 60, 000
high-quality cells were sequenced, representing 43 distinct tissues and 98
major cell types across four developmental stages – embryo, fetal, newborn,
and adult. In the collection process, equal numbers of cells were sampled
uniformly across organs and developmental stages. We show that our exper-
imental design approach achieves similar cell type diversity while requiring
substantially fewer samples when compared to related methods. We follow
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the simulation setup developed in prior work (Dumitrascu, Feng and Engel-
hardt, 2018a), outlined below.

Distribution of cell types across experimental regionsA

N
um

be
r o

f c
el

ls

Cell type distributions aggregated
across developmental stagesB

Number of cells

Developmental Stage (number of samples)

Fig 2. Summary figure from Dumitrascu, Feng and Engelhardt (2018a) of the single cell
RNA-seq data from the Mouse Cell Atlas (Han et al., 2018). The different colors represent
different cell types. Panel A: Cell type distributions across tissues together with the corre-
sponding cells and specimens. Panel B: Cell type distributions per arm: aggregated tissue
types and developmental stages.

In our simulation study, we envision a setting in which the cells were
assayed in smaller batches than in the actual experiments. In particular,
smaller batches are common in single cell experiments that use technologies
that are less noisy but more expensive; thus experimental design plays an
important role in minimizing cost (Angerer et al., 2017). Moreover, larger
batches would quickly saturate the available data, so we evaluate on batch
sizes that are typically smaller than are used. The 43 mouse organs were
aggregated across the four developmental stages—embryo, fetal, newborn,
and adult—resulting in a heterogeneous data set. Cells were sampled with
replacement from each of the four experimental categories (arms), repre-
senting the four developmental stages. An experimental round corresponds
to an allocation step in which the cell budget is distributed across the four
experimental conditions.

We consider two ways of allocating samples: the incidence case and the
delayed abundance case. In the incidence case (see Fig. 3), a single most
informative experimental condition is chosen, and M samples come from
that single condition. In the delayed abundance case (see Fig. 4), samples
are allocated across all of the available experimental conditions in parallel. In
both cases, the budget allocation step is applied using the HPY-TS strategy
as follows. In the incidence case, we allocate more cells to the experiment
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(i.e., developmental stage) with a higher probability of yielding new cell
types based on previous trials. Following the initial sampling step with M =
50 samples from each arm, 20 additional trials were performed. At each
time step, all M = 25 cells were sampled from one chosen experiment. In
the delayed abundance case, after the initial M = 50 samples from each
arm, a budget of M = 100 cells were distributed across arms according to
the HPY-TS estimated probabilities, across 20 sequential trials. The results
were averaged over 100 runs for each algorithm, and the HPY-TS sequential
Monte Carlo strategy used 500 sampling steps. We compare HPY-TS to
three other approaches–the GT-TS sampler, a Uniform sampling strategy,
and an Oracle estimator.

Fig 3. Performance of HPY-TS on the Mouse Cell Atlas data (incidence case).
An initial sample of M = 50 cells were collected from each of four populations: embryo,
fetal, newborn and adult. Following the initial sampling step with M = 50 samples, 20
sequential trials were performed. At each time step, all M = 25 cells were sampled from
one chosen experiment. The results were averaged over 100 runs of each algorithm. We
compared HPY-TS (red, dashed) to two baselines—the GT-TS sampler (black, dotted) and
a Uniform sampling strategy (green, dot-dashed line)—and to an Oracle estimator (blue,
solid). The shaded bands are within one standard deviation of the average performance,
computed as the mean across simulations.

Our results show that the HPY-TS approach achieves substantial im-
provement in efficiency as compared to the baseline GT-TS estimator and
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20 CAMERLENGHI, DUMITRASCU, FERRARI ET AL.

to the Uniform sampling strategy (Fig. 3). Moreover, the HPY-TS approach
shows nearly optimal performance, as compared with the performance of
the Oracle strategy. When compared to the Uniform strategy, our HPY-TS
approach leads to, on average, as much as 50% more distinct cell types iden-
tified, with an average consistent margin of 10 additional distinct cell types
identified across trials (Fig. 3, 4). The baseline GT-TS approach approx-
imates the probability of observing a new cell type according to a model
that assumes the cell types are distributed according to a Poisson process
(Orlitsky, Suresh and Wu, 2016). In contrast, the HPY-TS algorithm as-
sumes that all arms share a baseline distribution given by the base measure,
information that is diffused across the developmental landscape to generate
the developmental stage-specific cell type distributions. Sharing information
across experiments using this prior appears to substantially improve perfor-
mance by allowing updates of the parameters governing experiments similar
the chosen experiment at each iteration, instead of only updating the chosen
experiment’s parameters.

6. Discussion. We propose the HPY-TS multi-armed bandit strategy,
which uses the Thompson sampling strategy and a hierarchical Pitman-
Yor process prior to optimize species discovery in experimental design. The
HPY-TS strategy was shown to substantially improve cell type discovery in
the setting of experimental design for single cell sequencing experiments. In
particular, the HPY-TS strategy readily applies to cases where the number
of arms corresponding to experimental conditions have substantial structure
across those conditions. In particular, as cell atlases emerge, the strategy de-
veloped here is crucial to efficiently and effectively study cell type variability
across new and growing experimental conditions including many thousands
of simultaneous cellular perturbations (e.g., Perturb-seq (Dixit et al., 2016))
and combinatorial interventions (Horlbeck et al., 2018). The improvements
that the HPY-TS strategy achieves over uniform experimental design strate-
gies in both simulated and real data justify incorporating these types of
methods in the data collection pipeline during the experimental process.

From a statistical standpoint, our work proposed a sequential Monte Carlo
scheme that, unlike the previous work of Battiston, Favaro and Teh (2018),
scales to a multi-sample setting and allows for inference across a large num-
ber of experiments as one finds in cell atlas development or Perturb-seq ex-
periments. This makes our HPY-TS strategy appropriate for experimental
setups with a large and growing number of arms. In this paper we demon-
strate a number of advantages in using Bayesian experimental design to max-
imize cell type discovery within a budget during single cell RNA-sequencing
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Fig 4. Performance of HPY-TS on the Mouse Cell Atlas data (delayed abun-
dance). An initial sample of M = 50 cells were collected from the four populations: em-
bryo, fetal, newborn and adult. Following the initial sampling step, 20 additional trials were
performed. At each time step, M = 100 samples were distributed across the arms following
a diversity estimation step. The results were averaged over 100 runs of each algorithm. We
compared HPY-TS (red, dashed) to two baselines—the GT-TS sampler (black, dotted) and
a Uniform sampling strategy (green, dot-dashed line)—and to an Oracle estimator (blue,
solid). The shaded bands are within one standard deviation of the average performance,
computed as the mean across simulations.

experiments. We further show evidence that modeling the cell type structure
of single cell data using an HPY prior captures the developmental constraints
guiding cell type diversity and allows each sample to inform all of the arms,
leading to near-Oracle behavior.

As mentioned in Section 5.2, the optimization of cell type discovery in
a multi-tissue setting was proposed in Dumitrascu, Feng and Engelhardt
(2018a), which uses a strategy based on the Good-Toulmin estimator. How-
ever, the approach of Dumitrascu, Feng and Engelhardt (2018a) is empirical
rather than model-based. Indeed, some paramount statistical challenges re-
main unsolved: i) how to model both dependence and heterogeneity across
tissues in a principled statistical way? ii) how to incorporate uncertainty
quantification across experimental conditions (arms) to guide arm selection
at each step? iii) does a suitable statistical model, answering i)–ii), funda-
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mentally improve performance? Our Bayesian nonparametric approach takes
into account all these challenges: the hierarchical structure allows informa-
tion to be shared across similar tissues or experimental conditions, and the
uncertainty in estimated rewards across experimental conditions is incorpo-
rated in the strategy through fast posterior computations (see Proposition
3.1). Finally, the experiments in Section 5 and Section 2 of the Supplemen-
tary Material show that our model, which answers i)–ii), is able to discover
more cell types sampling fewer cells with respect to the competing strategies.

In conclusion, the proposed HPY-TS strategy outperforms the current
state-of-the-art strategies, and our contribution paves the way for future re-
search in the field. We first emphasize that the number of cells that can be
collected per trial M has been assumed to be fixed, since this is typically the
case in cell experiments. A possible alternative, which we do not consider
in our paper, would focus on optimizing each time for how many samples
M should be collected over a total fixed available budget. Secondly, a nat-
ural question stemming from our analysis is understanding the effect that
batch correction and cell type matching have on optimal budget allocation.
In order to distinguish new cell types in a true online fashion, appropri-
ate algorithms are needed to cluster data from new experiments, as well as
reconcile the identified clusters with previously discovered ones (batch cor-
rection), in the likely presence of experiment-specific noise. In this paper, we
focus on optimal experimental design under the assumption that a precise
label is available at the time of the experiment. Understanding the effect
of a suboptimal, possibly incorrect, or time-delayed label has on optimal
experimental design is an additional area of focus for future work.
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