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In vain the Sage, with retrospective eye,
Would from th’ apparent What conclude the Why,
Infer the Motive from the Deed, and show,
That what we chanced, was what we meant to do.

Alexander Pope
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Abstract

This thesis is about machine learning and statistical approaches to decision making. How

can we learn from data to anticipate the consequence of, and optimally select, interventions

or actions? Problems such as deciding which medication to prescribe to patients, who

should be released on bail, and how much to charge for insurance are ubiquitous, and

have far reaching impacts on our lives. There are two fundamental approaches to learning

how to act: reinforcement learning, in which an agent directly intervenes in a system and

learns from the outcome, and observational causal inference, whereby we seek to infer the

outcome of an intervention from observing the system.

The goal of this thesis to connect and unify these key approaches. I introduce causal bandit

problems: a synthesis that combines causal graphical models, which were developed for

observational causal inference, with multi-armed bandit problems, which are a subset of

reinforcement learning problems that are simple enough to admit formal analysis. I show

that knowledge of the causal structure allows us to transfer information learned about

the outcome of one action to predict the outcome of an alternate action, yielding a novel

form of structure between bandit arms that cannot be exploited by existing algorithms. I

propose an algorithm for causal bandit problems and prove bounds on the simple regret

demonstrating it is close to mini-max optimal and better than algorithms that do not use

the additional causal information.
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Chapter 1

Introduction

1.1 Motivation

Many of the most important questions in science, commerce and our personal lives are

about the outcomes of doing something. Will asking people to pay upfront at the doctors

reduce long term health expenditure? If we developed a drug to suppress particular genes,

could we cure multiple sclerosis? Would delaying teenage pregnancies improve the outcome

for their children.

These are hard questions because they require more than identifying a pattern in data.

Correlation is not causation. Causal inference has proven so difficult that there is barely

any consensus on even enduring questions like the returns to education or the long-term

consequences of early life events – like teenage pregnancy - despite the fact that the

variables involved are susceptible to human intuition and understanding.

We now live in a world of data. Hours of our lives are spent online, where every click can

be recorded, tiny computers and sensors are cheap enough to incorporate into everything

and where the US Institute of Health is considering if all infants should be genetically

sequenced at birth. Such data gives us a window into many aspects of our lives at an

unprecedented scale and detail but it is messy, complicated and often generated as a by-

product of some other purpose. It does not come from the controlled world of a randomised

experiment.

The rise of big data sets and powerful computers has seen an explosion in the application

of machine learning. From health care, to entertainment and self-driving cars, machine

learning algorithms will transform many industries. It has been suggested that the im-

pressive ability of statistical machine learning to detect complex patterns in huge data sets

heralds the end of theory [10] and that we may be only a short step from “The Singularity”,

where artificial intelligence exceeds our own and then grows exponentially.

However, despite the huge advances in machine learning (in particular deep learning),

machine learning algorithms are effective only within narrow problem settings. Getting

8



them to generalise to even slightly different problems or data sets remains very challenging.

Deciding how we should act or what policies we should implement requires predictions

about how a system will behave if we change it. The correlations detected by standard

machine learning algorithms do not enable us to do this, no matter how many petabytes

of data they are based on. As machine learning algorithms are incorporated into more

and more of the decision making processes that shape the world we live in, it is critical

to ensure we understand the distinction between causality and prediction and that we

develop techniques for learning how to act that are as effective as those we have for

pattern recognition.

1.2 What is causality?

The notion of causality has been widely debated in science and philosophy [83, 112, 124,

120, 106, 175, 75, 39] but is still viewed as poorly defined. This has led to a reluctance

among applied researchers in many fields to make concrete claims about causality in their

work, leading them instead to report that variables are related, correlated or associated.

However, the magnitude, direction and even existence of an association depends on which

variables are controlled for (or included in a regression). Avoiding formalising causation,

which is the real question of interest, requires the reader to determine via “common sense”

the implications of the reported associations.

There are two ways in which an association detected in a data set may be non-causal.

The first is that the variables concerned may not be related at all, and the association has

arisen by chance in that data sample. Given finite data on enough variables, there is a

high probability of finding some that appear correlated even though they are completely

unrelated. For example, based on data from the years 1999 to 2009, the age of Miss

America is strongly correlated with the number of murders (in the US) by steam, hot

vapours and hot objects [170]. However, this correlation is purely due to chance and does

not reflect any real relationship between these variables, direct or indirect. We have no

expectation of observing this association in a new data sample. This form of spurious

correlation also has serious repercussions. It lies at the heart of major problems with the

process of scientific research: researchers are incentivised to detect effects and thus to

explore many possible paths in the process of analysing data and studies that fail to find

an effect are less likely to be published. Consequently, the likelihood that reported effects

have arisen by chance is underestimated, leading to the conclusion that “most published

scientific results are false” [87]. This issue is also highlighted by recent crises in replication

[116]. This issue can be ameliorated by obtaining more data and by separating learning

models from evaluating their performance, for example by evaluating models on a strict

hold-out set or on the extent to which their results can be replicated.

However, a strong association, observed in multiple independent studies may still not be

causal. The correlation can arise because both variables are consequences of some other,

unmeasured factor. For example, the reading ability of children under twelve is strongly
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correlated with their height, because older children are taller and can read better. However

height is not a cause of reading ability because interventions to increase a child’s height, for

example by giving them growth hormones, would not be expected to improve their reading.

Similarly, extra lessons in reading will not make a child grow taller. This problem is

fundamentally different to the issue of spurious correlations arising by chance in finite data

sets. Obtaining more (even infinitely many more) samples without directly intervening

in the system to manipulate the variables does not allow us to separate causation from

correlation.

The key distinction between a real, but non-causal, association and a causal relationship

is in what happens if we intervene in the system and change one of the variables. In this

thesis, I take an interventionist viewpoint of causality: any model or approach designed

to predict the outcome of intervening in a system is causal. This viewpoint captures the

types of questions that motivate this thesis. How can we change the way we do things to

obtain better outcomes?

Causality is often linked to explanation; understanding how and why things happen. I

view explanation in terms of compression and generalisation: the amount of information

about the world a model can capture. This creates a hierarchy in the degree to which

models are explanatory, rather than a simple binary distinction. A standard predictive

model encodes all the information needed to predict some output given inputs provided

the system generating the data does not change. A high-level causal model might be

able to predict the outcome of a specific intervention holding all else fixed. More detailed

causal models could predict the outcome for a wide range of combinations of interventions

conditional on a range of contexts. By considering conditional interventions within our

definition of causal questions we also capture mediation: the study of pathways through

which one variable causes another [168]. Finally, a model that can distil how elements

interact into mathematical equations like Newton’s laws can be used to predict what will

happen in an astounding range of settings, including many never previously observed.1

Gelman [67], Gelman and Imbens [68] make a distinction between forward causal inference,

the types of “what if” questions I focus on in this thesis, and reverse causal questions,

asking why something occurs. The former aims to identify the effect of a known cause.

The latter can be viewed as identifying causes of an effect. They regard forward causal

inference as well defined within the counterfactual and graphical model frameworks for

causal inference, that we describe in section 2.1. However, they state that “A reverse

causal question does not in general have a well-defined answer, even in a setting where all

possible data are made available.” I view this as overly pessimistic, depending on how “all

possible data” is defined. The goal of identifying the causes of an effect can be formalised

within the graphical causal model framework. Solving this problem is certainly much

more challenging than identifying the effect of a specific intervention on a given outcome,

since it requires us to test or infer the effect of interventions on many different variables.

These practical difficulties may well be overwhelming, particularly in fields such as social

1Although Newton’s laws are not fully general.
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science and economics where data sets are often relatively small, systems are complex, the

variables are difficult to directly manipulate and even relatively simple ”what if” questions

are hard to resolve conclusively. If some variables are fundamentally unobservable then it

may be impossible to determine all the causes of a given effect. However, this does not

mean that the problem of identifying causes of effects is ill-posed in principle. It can be

viewed as a form of causal discovery: the attempt to learn the structure of the causal

relationships between variables, on which there is a rich literature, see Spirtes and Zhang

[154] for a recent review.

There has traditionally been a large gap between researchers in machine learning who focus

on prediction, using largely non-interpretable models and researchers in statistics, social

science and economics who (at least implicitly) aim to answer causal questions and tend to

use highly theory-driven models. However, there is relatively little awareness, particularly

within the machine learning and data science communities, of what constitutes a causal

problem and the implications of this for the training and evaluation of models. In the next

section we emphasise the subtlety that can exist in determining if a problem is causal by

examining some typical examples.

1.3 What makes a problem causal?

Machine learning is in the midst of a boom, driven by the availability of large data sets and

the computation resources to process them. Machine learning techniques are being applied

to a huge range of problems, in both industry and academia. The following examples are

intended to capture the breadth of problems that machine learning algorithms are actively

being applied to. Which, if any, of these problems require causal inference?

� Speech recognition (for systems like Siri or Google Assistant)

� Image classification

� Forecasting the weather

� Identifying spam emails

� Automated essay marking

� Predicting the risk of death in patients with pneumonia.

� Predicting who will re-offend on release from prison

� Customer churn modelling

� Demand prediction for inventory control

� Playing Go

The question is disingenuous because I have not posed the problems in sufficient detail to

determine if causality is an important consideration. In particular, I failed to specify how
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any model we might build would be used: what actions would be taken in response to its

predictions.

Consider speech recognition. You say something, which causes sound waves, which are

converted to a digital signal that Siri maps to words. Whatever action Siri takes is unlikely

to change the distribution of words you use, and even less likely to change the function that

maps sound waves to text (unless she sends you a DVD on elocution). A similar argument

could be made for many applications of machine translation and image classification.

In image classification we do not particularly care about building a strong model for

exactly how the thing that was photographed translates to an array of pixels, provided

we can be fairly confident that the process will not change. If we develop a discriminative

model that is highly accurate at classifying cats from dogs, we do not need to understand

its internal workings (assuming we have strong grounds to believe that the situations in

which we will be using our model will match those under which it was trained).

What about forecasting the weather? If you are using a short term forecast to decide

whether to pack an umbrella, causality can be ignored. Your decision will not affect if it

actually rains. However, longer term climate forecasts might (theoretically) lead to action

on emissions which would then change the weather system. For this we need a (causal)

model that allows us to predict the outcome under various different interventions.

Identifying spam and automated essay marking both involve processing text to determine

an underlying (complex) attribute such as its topic or quality. In both cases, there is

inherent competition between the algorithm and the people generating the text. As a

result, decisions made by the algorithm are likely to change the relationship between the

features it relies on and the true label. Spammers and students will modify their writing

in order to optimise their results. A standard supervised learning approach can only work

if the resulting change in the mapping from features to label is sufficiently gradual. There

are two key ways of ensuring this. The first is to limit people’s ability to observe (and

thus react to) decisions made by the algorithm. The second is to use a model in which the

features are related to the outcome such that they cannot be manipulated independently

so that people’s attempts to modify features in order to obtain a desired prediction also

alter the true label.

This example also highlights a connection between causal models and transparency in ma-

chine learning. If we are using a non-causal model to make decisions affecting people, there

will be a trade-off between the performance and transparency of the model; not because

the requirement for transparency restricts us to simple models, but because revealing how

the model works allows people to change their behaviour to game it.

What about predicting the risk of death in patients with pneumonia? Suppose the goal is

to build a model to decide who should be treated in hospital and who can be sent home

with antibiotics. If we assume that in hospital treatment is more effective for serious

cases, this appears to be straightforward prediction. It is not. Depending on how the

decision to admit was previously made and what features are included (or omitted) in
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the model, the relationship between those features and the outcome may change if the

model is used to make admission decisions. Caruana et al. [40] found exactly this effect

in a real data set. The model learned that people suffering asthma were less likely to die

from pneumonia. This was because doctors treated such patients very aggressively, thus

actually lowering their risk. The issue is not with the model; it performed very well at

the task for which it was trained, which is to predict who would be likely to die under the

original admission and treatment protocols. However, using it to decide how to change

these protocols could kill. The actual question of interest in this case is what happens to

patients with characteristics X if they are assigned treatment according to decision rule

(or policy) π(X).

Predicting recidivism among paroled prisoners or customer churn also fit within the class

of problems where the goal is to identify a group for which a problem will occur in order to

target treatment (additional support and monitoring for people on parole, loyalty rewards

to improve customer retention, hospitalisation for the severely ill). Predictive models

can be applied to such problems where the most effective treatment is known for a given

target group, and where deciding who to treat on the basis of the model predictions will

not change the relationship between the features and outcome.

Demand prediction seems like a relatively straightforward prediction problem. Models use

features such as location, pricing, marketing, time of year and weather, to forecast the

demand for a product. It seems unlikely that using the model to ensure stock is available

will itself change demand. However, depending on the way demand is measured, there is

a potential data censoring issue. If demand is modelled by the number of sales, then if a

product is out of stock demand will appear to be zero. Changing availability does then

change demand.

Playing Go (and other games) is a case with some subtleties. At every turn, the AI

agent has a number of actions available. The state of the board following each action

is deterministic and given by the rules of the game. The agent can apply supervised

machine learning, based on millions of previous games, to estimate the probability that

each of these reachable board states will lead to a win.2 Supervised learning can also

be applied to learn a policy P (a|s), the probability of a player selecting action a, given

board state s. This allows the agent to estimate the likelihood of winning from a given

starting state by simulating many times the remainder of the game, drawing actions from

P (a|s) for both players. Google’s Alpha Go, which in May 2017 beat the then strongest

human player [114], incorporates a combination of these approaches [148]. The supervised

learning was enhanced by having the agent play (variants) of itself many times, so that its

estimates of value for each board state and of the likelihood an opponent will play a given

move are based on a combination of replicating the way humans play and on the moves

that led to a win when playing itself.

2This is a challenging pattern recognition problem. There are around 2× 10170 legal board positions in
Go, ([165]), so the algorithm cannot simply memorise the proportion of times each state leads to a win. It
must identify higher level features of the board state that are associated with winning.
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The problem of playing go is causal from the interventionalist perspective. The agent

wishes to learn the probability of a win given an action they take. However, there are some

special characteristics of the go problem that make it amenable to a primarily supervised

learning approach. The actions the agent has to explore are the same ones as human

players explored to generate the training data, and both have the same objective - to win

the game. In addition, the state of the board encapsulates all the information relevant to

selecting a move. These factors make it reasonable to conclude that selecting moves with

an algorithm will not change the value of a board state or the probability of given move

by the opponent by a sufficiently large margin to invalidate the training data.

Having considered these examples we can now identify some general aspects of problems

that require causal (as opposed to purely predictive) inference. A predictive model may be

sufficient if, given the variable(s) being predicted, it is clear which action is optimal and if

selecting actions on the basis of the model does not change the mapping from features to

outcomes. The second requirement is particularly difficult to satisfy when an algorithm is

making important decisions affecting individual people. Think about problems like credit

scoring and parole decisions. There are strong ethical grounds for demanding transparency,

but if the goals of society and the individuals are not perfectly aligned and there is any

possibility that people can manipulate features independently of the outcome, there will

be a conflict between model accuracy and transparency. It is rare to build a model without

any intent to make some kind of decision based on its results. Thus, I argue we should

assume a causal model is required until we can justify otherwise.

1.4 Observe or intervene: two very different approaches to

causal problems

As we have shown, problems involving causality are ubiquitous in many fields. As a result,

techniques for addressing them have developed in parallel within many disciplines, includ-

ing statistics, economics, social science, epidemiology and machine learning. Although

the focus and terminology can differ substantially between fields, these techniques all ad-

dress the underlying goal of estimating the effect of, or optimally selecting, interventions

in some system. Methods for learning about interventions can be usefully categorised

into two broad approaches, based on whether or not the algorithm has control over what

actions are taken, reinforcement learning and observational causal inference.

In reinforcement learning, under which we include traditional randomised experiments, we

learn the outcome of actions by taking them. We take the role of an agent, capable of inter-

vening in the system, and aim to develop algorithms that allow the agent to select actions

optimally with respect to some goal. A particular strand of research within reinforcement

learning are multi-armed bandit problems. They describe settings in which there is a set

of available actions, the agent repeatedly decides which to select and then observes the

outcome of the chosen action. They capture problems, such as a doctor deciding which

treatment to prescribe to a patient or a search engine selecting which advertisement to
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display to a user, where the agent faces the same set of choices repeatedly and is able to

assess the value of the outcome they observe.

The approach of learning the outcome of an action by taking it plays a key role in ad-

vancing our knowledge of the world. However, we frequently have access to large bodies

of data that have been collected from a system in which we did not have any control over

what actions were taken, or perfect knowledge of the basis on which those actions were

chosen. Estimating the effect of an action from such observational data sets is the problem

addressed by observational causal inference. Observational causal inference can be viewed

as a form of transfer learning. The goal is to leverage data obtained from one system, the

system we have observed, to estimate key characteristics of another, the system after we

select an action via some policy that may differ from the process driving which actions

occur in the original system. This is impossible without some assumptions about how the

original system and the system after intervention are related to one-another. The key to

observational inference is to model how actions change the state of the world in such a

way that we can map information collected in one setting to another.

Another difference between the reinforcement learning and observational causal inference

communities is the focus on i.i.d vs non i.i.d data. Because reinforcement learning covers

settings where an agent is explicitly intervening in and thus changing the system, algo-

rithms are typically developed with non-i.i.d data in mind. In contrast much of the work

in observational causal inference is applied to cross-sectional data under the assumption

that the system is in some form of equilibrium such that the data can be treated as i.i.d.

However, this difference is not fundamental: Randomised experiments can be viewed as

a special case of reinforcement learning with i.i.d data and there is a substantial body of

work on causal inference from time-series that leverages the assumption that the future

does not cause the past [70]. The problem of off-policy evaluation [100] on data gener-

ated by a non-stationary policy can be viewed as an example of an observational causal

inference problem over non-i.i.d data.

Both multi-armed bandits and observational causal inference can be seen as extensions

to the concept of randomised controlled trials. Bandit algorithms deal with the sequen-

tial nature of the decision making process, and causal inference with problems where

randomisation is not feasible, affordable or ethical. The similarities between the prob-

lems addressed by these techniques raise the question of whether there are problems best

addressed by a combination of these approaches, and if so, how they can be combined.

1.5 This thesis and its contributions

I view causal problems as one of the greatest current challenges for machine learning.

They incorporate a large set of problems of huge practical significance, that require us

to go beyond pattern recognition, but are well short of general artificial intelligence. For

the major advances in representation and pattern recognition developed within machine
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learning to be effectively applied in many areas of medicine, economics, social sciences and

industry, we need to understand how to leverage our improved approaches to prediction

to tackle causal problems.

Contributions The goal of this thesis is to connect and unify the key approaches to

solving causal problems from both the observational and interventional viewpoints. My

major contribution unifies the causal graphical model approach for inference in observa-

tional settings with the sequential experimental approach encapsulated by multi-armed

bandits. This synthesis allows us to represent knowledge of how variables are related to

one-another in a very natural way and induces an interesting and novel form of structure

between the different actions modelled in the bandit problem. I develop a new algorithm

that can exploit this structure as a first step towards a unified approach to decision making

under uncertainty.

I also make a number of additional connective contributions that are not encompassed by

my work on causal bandit problems. I demonstrate the role of a formal causal framework

within Bayesian approaches to inference and show how assigning a prior based on human

causal intuition without considering the causal structure of the problem can introduce bias.

I highlight the connections between approaches to off-policy evaluation in bandit problems,

causal effect estimation from observational data, and covariate shift. Finally, I clarify the

implicit causal structure underlying various bandit settings and the counterfactual nature

of regret - the measure by which bandit algorithms are assessed.

Thesis overview This thesis is divided into three key chapters: learning from obser-

vational data, learning from interventional data and unifying the approaches. Chapter 2

covers learning to act from observational data, where the goal is to learn the outcome of

an external intervention in a system from data obtained by observing it without control

over which actions are selected. In §2.1, I describe the key existing frameworks for causal

inference from observational data, discuss how they relate to one-another and introduce

the notation required to describe causal problems. Section §2.2 describes the key tools

these frameworks provide that enable us to answer causal questions, in particular, the

do-calculus (§2.2.1.2) and, in sections §2.2.2 and §2.2.3, discusses how we define causal

effects, the traditional approaches to estimation and how they relate to covariate shift and

off-policy evaluation. Section §2.3 highlights the role graphical causal models can play in

Bayesian inference.

Chapter 3 deals with the interventionalist viewpoint, including traditional randomised ex-

periments (§3.1) and multi-armed bandit problems. In §3.2, I describe the key problems

and results within the bandit literature, including stochastic bandits (§3.2.1), pure ex-

ploration problems (§3.2.2), adversarial bandits (§3.2.3) and contextual bandits (§3.2.4).

I clarify the causal structure of (stochastic) contextual bandit problems in §3.2.4.1. In

§3.2.5, I review the literature on off-policy evaluation for bandit problems and show how

it is a somewhat special case of causal effect estimation from observational data. Finally,
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in §3.3 I discuss the counterfactual nature of bandit regret.

In chapter 4, I introduce causal bandit problems that unify causal graphical models and

multi-armed bandit problems. Bandit arms are related to interventions in a causal graph-

ical model in a very natural way: each multi-armed bandit arm (or action) corresponds to

a particular assignment of values to variables within the causal graphical model. I show

how the causal bandit framework can be used to describe a number of existing problems

that lie in the intersection between the observational and interventional approaches to

causality and demonstrate when causal bandit problems reduce to different existing ban-

dit settings depending what information is observable and when. I focus on analysing the

simple regret which arises in problems where exploration and exploitation are seperated

into different phases and the goal is to identify an action that is close to optimal with

high probability within the exploration period. I demonstrate that knowlege of the causal

structure reduces the effective number of arms to explore, resulting in faster exploration.

Although I have analysed only the simple regret, causal structure could also be leveraged

to improve cummulative regret.

In §4.2, I focus on causal bandit problems for which the values of variables in the causal

graph are observed after an action is selected. I demonstrate that this leads to a novel

form of structure between the bandit arms that cannot be exploited by existing bandit

algorithms.

In §4.2.1, I describe and develop an algorithm for a special case of the causal bandit

problem, which I refer to as the parallel bandit problem. I demonstrate via upper and lower

bounds on the regret that the algorithm is close to optimal for these problems and that

the introduction of the causal structure leads to substantially faster learning. In §4.2.2, I

develop and prove regret bounds for an algorithm that can be applied to arbitrary causal

graphs, albeit with stronger assumptions on what must be known a priori, and introduce a

measure that captures the underlying difficulty of causal bandit problems, which depends

on the causal graph and can be viewed as an “effective number of arms”. I also show how

this measure can be used to quantify the value of optimised interventional data over purely

observational data. Section 4.2.3 provides experiments demonstrating the performance of

both the parallel and general causal bandit algorithms on causal bandit problems. Finally

in §4.2.4, I discuss extensions and potential future work.
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Chapter 2

Learning from observational data

The goal of causal inference is to learn the effect of taking an action. We can do this

directly via experimental approaches, however any given agent only has a limited capacity

to manipulate the world. We are generating and storing data on almost every aspect

of our lives at an unprecedented rate. As we incorporate sensors and robotics into our

cities, homes, cars, everyday products and even our bodies, the breadth and scale of this

data will only increase. However, only a tiny fraction of this data will be generated in a

controlled way with the specific goal of answering a single question. An agent that can

only learn from data when it had explicit control (or perfect knowledge of) the process

by which that data was generated will be severely limited. This makes it critical that

we develop effective methods that enable us to predict the outcome of an intervention in

some system by observing, rather than acting on it. This is the problem of observational

causal inference. The key feature that distinguishes observational from interventional data

is that the learning agent does not control the action about which they are trying to learn.

2.1 Causal models

Observational causal inference aims to infer the outcome of an intervention in some system

from data obtained by observing (but not intervening on) it. As previously mentioned, this

is a form of transfer learning; we need to infer properties of the system post-intervention

from observations of the system pre-intervention. Mapping properties from one system

to another requires some assumptions about how these two systems are related, or in

other words, a way of describing actions and how we anticipate a system will respond to

them. Three key approaches have emerged: counterfactuals, structural equation models

and causal Bayesian networks.

Counterfactuals [138] were developed from the starting point of generalising from ran-

domised trials to less controlled settings. They describe causal effects in terms of differ-

ences between counterfactual variables, what would happen if we took one action versus

what would happen if we took another. Counterfactual assertions can be expressed very
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naturally in human languages and are prevalent in everyday conversations; “if I had worked

harder I would have got better grades” and “she would have been much sicker if she hadn’t

taken antibiotics”. Structural equation models have been developed and applied primarily

within economics and related disciplines. They can be seen as an attempt to capture key

aspects of the people’s behaviour with mathematics. Questions around designing policies

or interventions play a central role in economics. Thus they have transformed simulta-

neous equations into a powerful framework and associated set of methods for estimating

causal effects. The is also a rich strand of work on using the assumptions that can be

encoded in structural equation models, also known as functional causal models to discover

the structure and direction of causal relationships - see for example [113, 125]. Causal

Bayesian networks [120] are a more recent development and arise from the addition of

a fundamental assumption about the meaning of a link to Bayesian networks. They in-

herit and leverage the way Bayesian networks encode conditional independencies between

variables to localise the impact of an intervention in a system in a way that allows for-

malisation of the conditions under which causal effects can be inferred from observational

data.

An understanding of causal Bayesian networks and their properties (in particular the do

calculus, see section 2.2.1.2) is sufficient to appreciate my main technical contributions in

chapter 4, as well as the importance of formal causal reasoning in Bayesian inference that

I highlight in section 2.3. However, the literature on causal inference techniques remains

split between the different frameworks. Much of the recent work on estimating causal

effects within machine learning, as well as widely used methodologies such as propensity

scoring, are described using the counterfactual framework. Methods developed within

economics, in particular instrumental variable based approaches, or those requiring para-

metric or functional assumptions, are often based around structural equation models. This

makes it worthwhile for researchers interested in causality to develop an understanding of

all these viewpoints.

In the next sections, we describe causal Bayesian networks, counterfactuals and structural

equation models: the problems they allow us to solve, the assumptions they rely on and

how they differ. By describing all three frameworks, how they relate to one-another, and

when they can be viewed as equivalent, we will make it easier for researchers familiar with

one framework to understand the others and to transfer ideas and techniques between

them. However, sections 2.1.3 (Structural Equation models), and 2.1.4 (Unifying the

models) are not crucial to understanding my technical contributions and may be safely

skipped. In order to demonstrate the notation and formalisms each framework provides,

we will use them to describe the following simple examples.

Example 1. Suppose a pharmaceutical company wants to assess the effectiveness of a

new drug on recovery from a given illness. This is typically tested by taking a large group

of representative patients and randomly assigning half of them to a treatment group (who

receive the drug) and the other half to a control group (who receive a placebo). The

goal is to determine the clinical impacts of the drug by comparing the differences between

19



the outcomes for the two groups (in this case, simplified to only two outcomes - recovery

or non-recovery). We will use the variable X (1 = drug, 0 = placebo) to represent the

treatment each person receives and Y (1 = recover, 0 = not recover) to describe the

outcome.

Example 2. Suppose we want to estimate the impact on high school graduation rates of

compulsory preschool for all four year olds. We have a large cross-sectional data set on a

group of twenty year olds that records if they attended preschool, if they graduated high

school and their parents socio-economic status (SES). We will let X ∈ {0, 1} indicate if

an individual attended preschool, Y ∈ {0, 1} indicate if they graduated high school and

Z ∈ {0, 1} represent if they are from a low or high SES background respectively.1

2.1.1 Causal Bayesian networks

Causal Bayesian networks are an extension of Bayesian networks. A Bayesian network is

a graphical way of representing how a distribution factorises. Any joint probability dis-

tribution can be factorised into a product of conditional probabilities. There are multiple

valid factorisations, corresponding to permutations of variable ordering.

P (X1, X2, X3, ...) = P (X1)P (X2|X1)P (X3|X1, X2)... (2.1)

We can represent this graphically by drawing a network with a node for each variable

and adding links from the variables on the right hand side to the variable on the left for

each conditional probability distribution, see figure 2.1. If the factorisation simplifies due

to conditional independencies between variables, this is reflected by missing edges in the

corresponding network. There are multiple valid Bayesian network representations for any

probability distribution over more than one variable, see figure 2.2 for an example.

X1

X2 X3

Figure 2.1: A general Bayesian network for the joint distribution over three variables.
This network does not encode any conditional independencies between its variables and
can thus represent any distribution over three variables.

The statement that a given graph G is a Bayesian network for a distribution P tells us

that the distribution can be factorised over the nodes and edges in the graph. There can

be no missing edges in G that do not correspond to conditional independencies in P , (the

converse is not true: G can have extra edges). If we let parentsXi represent the set of

1There has been substantial empirical work on the effectiveness of early childhood education including
a landmark randomised trial, the Perry Preschool project, which ran from 1962-1967 [172].
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(a)

X1

X2

X3

(b)

X1

X2

X3

(c)

X2

X1 X3

(d)

X2

X1 X3

Figure 2.2: Some valid Bayesian networks for a distribution P over (X1, X2, X3) in which
X3 is conditionally independent of X1 given X2, denoted X3 ⊥⊥ X1|X2. Graphs (a), (b)
and (c) are all a perfect map for P as the graphical structure implies exactly the same
set of independencies exhibited by the distribution. Graph (d), like figure 2.1 does not
imply any conditional independencies, and is thus a valid (but not very useful) Bayesian
network representation for any distribution over three variables.

variables that are parents of the variable Xi in G then we can write the joint distribution

as;

P (X1, ..., XN ) =
∏

i=1...N

P (Xi|parentsXi) (2.2)

A causal Bayesian network is a Bayesian network in which a link Xi → Xj , by definition,

implies Xi directly2 causes Xj . This means an intervention to change the value of Xi

can be expected to affect Xj , but interventions on Xj will not affect Xi. We need some

notation to describe interventions and represent distributions over variables in the network

after an intervention. In this thesis, I use the do operator introduced by Pearl [120].

Definition 3. The do-notation

� do(X = x) denotes an intervention that sets the random variable(s) X to x.

� P (Y |do(X)) is the distribution of Y conditional on an intervention that sets X. This

notation is somewhat overloaded. It may be used to represent a probability distri-

bution/mass function or a family of distribution functions depending on whether

the variables are discrete or continuous and whether or not we are treating them as

fixed. For example, it could represent

– the probability P (Y = 1|do(X = x)) as a function of x,

– the probability mass function for a discrete Y : P (Y |do(X = x)),

– the probability density function for a continuous Y : fY (y|do(X = x)),

2Whether a causal link is direct or intermediated by another variable, as if figure 2.2a depends on the
set of variables under consideration.
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– a family of density/mass function for Y parameterised by x.

Where the distinction is important and not clear from context we will use one of the

more specific forms above.

Theorem 4 (Truncated product formula [120]). If G is a causal network for a distri-

bution P defined over variables X1...XN , then we can calculate the distribution after an

intervention where we set Z ⊂ X to z, denoted do(Z = z) by dropping the terms for each

of the variables in Z from the factorisation given by the network. Let PaXi denote the

parents of the variable Xi in G.

P (X1...XN |do(Z = z)) = 1{Z = z}
∏
Xi /∈Z

P (Xi| PaXi) (2.3)

Theorem 4 does not hold for standard Bayesian networks because there are multiple valid

networks for the same distribution. The truncated product formula will give different

results depending on the selected network. The result is possible with causal Bayesian

networks because it follows directly from the assumption that the direction of the link

indicates causality. In fact, from the interventionist viewpoint of causality, the truncated

product formula defines what it means for a link to be causal.

Returning to example 1, and phrasing our query in terms of interventions; what would

the distribution of outcomes look like if everyone was treated P (Y |do(X = 1)), relative

to if no one was treated P (Y |do(X = 0))? The treatment X is a potential cause of Y ,

along with other unobserved variables, such as the age, gender and the disease subtype

of the patient. Since X is assigned via deliberate randomisation, it cannot be affected

by any latent variables. The causal Bayesian network for this scenario is shown in figure

2.3. This network represents the (causal) factorisation P (X,Y ) = P (X) P (Y |X), so from

equation (2.3), P (Y |do(X)) = P (Y |X). In this example, the interventional distribution

is equivalent to the observational one.

X (Treatment) Y (Outcome)

Figure 2.3: Causal Bayesian network for example 1

In example 2 we are interested in P (Y |do(X = 1)), the expected high-school graduation

rate if we introduce universal preschool. We could compare it to outlawing preschool

P (Y |do(X = 0)) or the current status quo P (Y ). It seems reasonable to assume that

preschool attendance affects the likelihood of high school graduation 3 and that parental

socio-economic status would affect both the likelihood of preschool attendance and high

school graduation. If we assume that socio-economic status is the only such variable

(nothing else affects both attendance and graduation), we can represent this problem with

the causal Bayesian network in figure 2.4. In this case, the interventional distribution is not

3The effect does not have to be homogeneous, it may depend non-linearly on characteristics of the child,
family and school.
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Z (SES)

X (Pre-school) Y (Graduated)

Figure 2.4: Causal Bayesian network for example 2

equivalent to the observational one. If parents with high socio-economic status are more

likely to send their children to preschool and these children are more likely to graduate

high school regardless, comparing the graduation rates of those who attended preschool

with those who did not will overstate the benefit of preschool. To obtain the interventional

distribution we have to estimate the impact of preschool on high school graduation for

each socio-economic level separately and then weight the results by the proportion of the

population in that group,

P (Y |do(X = 1)) =
∑
z∈Z

P (Y |X = 1, Z) P (Z) (2.4)

We have seen from these two examples that the expression to estimate the causal effect

of an intervention depends on the structure of the causal graph. There is a very powerful

and general set of rules that specifies how we can transform observational distributions

into interventional ones for a given graph structure. These rules are referred to as the

Do-calculus [120]. We discuss them further in section 2.2.1.2.

A causal Bayesian network represents much more information than a Bayesian network

with identical structure. A causal network encodes all possible interventions that could be

specified with the do-notation. For example, if the network in figure 2.4 were an ordinary

Bayesian network and all the variables were binary, the associated distribution could

be described by seven parameters. The equivalent causal Bayesian network additionally

represents the post-interventional distributions for six possible single variable interventions

and twelve possible two variable interventions. Encoding all this information without the

assumptions implicit in the causal Bayesian network would require an additional thirty

parameters.4

Causal Bayesian networks are Bayesian networks, so results that apply to Bayesian net-

works carry directly across: the local Markov property states that variables are inde-

pendent of their non-effects given their direct causes. The global Markov property and

d-separation also hold in causal networks. D-separation, which characterises which con-

ditional independencies must hold in any distribution that can be represented by a given

Bayesian network G, is key to many important results and algorithms for causal inference.

4After each single variable intervention we have a distribution over two variables, which can be repre-
sented by three parameters. After each two variable intervention, we have a distribution over one variables
which requires one parameter. This takes us to a total of 6× 3 + 12× 1 = 30 additional parameters.
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We include a brief review of D-separation in section 2.2.1.1.

2.1.1.1 Limitations of causal Bayesian networks

A number of criticisms have been levelled at this approach to modelling causality. One

is that the definition of an intervention only in terms of setting the value of one or more

variables is too precise and that any real world intervention will affect many variables in

complex and non-deterministic ways [132, 39]. However, by augmenting the causal graph

with additional variables that model how interventions may take effect, the deterministic

do operator can model more complex interventions. For example, in the drug treatment

case, we assumed that all subjects complied, taking the treatment or placebo as assigned

by the experimenter. But, what if some people failed to take the prescribed treatment? We

can model this within the framework of deterministic interventions by adding a node rep-

resenting what they were prescribed (the intervention) which probabilistically influences

the treatment they actually receive (figure 2.5). Note that the fact that we no longer di-

rectly assign the treatment opens the possibility that an unobserved latent variable could

affect both the actual treatment taken and the outcome.

Prescribed Treatment

Actual Treatment Outcome

U

Figure 2.5: Randomised treatment with imperfect compliance

Another key issue with causal Bayesian networks is that they cannot handle cyclic de-

pendencies between variables. Such feedback loops are common in real-life systems, for

example the relationship between supply and demand in economics or predator and prey

in ecology. We might regard the underlying causal mechanisms in these examples to be

acyclic; the number of predators at one time influences the number of prey in the next pe-

riod and so on. However, if our measurements of these variables must be aggregated over

time periods that are longer than the scale at which these interactions occur, the result is

a cyclical dependency. Even were we able to measure on shorter timescales, there might

then not be sufficient data on each variable for inference. Such problems have mostly been

studied within the dynamical systems literature, typically focusing on understanding the

stationary or equilibrium state of the system and making very specific assumptions about

functional form in order to make problems tractable. Poole and Crowley [127] compare the

equilibrium approach to reasoning about cyclic problems with structural equation models,

which we discuss in section 2.1.3 and that can be seen as Bayesian causal networks with

additional functional assumptions.
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2.1.2 Counterfactuals

The Neyman-Rubin model [138, 139, 136, 140, 141] defines causality in terms of potential

outcomes, or counterfactuals. Counterfactuals are statements about imagined or alternate

realities, are prevalent in everyday language and may play a role in the development of

causal reasoning in humans [173]. Causal effects are differences in counterfactual variables:

what the difference is between what would have happened if we did one thing versus what

would have happened if we did something else.

In example 1, the causal effect of the drug relative to placebo for person i is the difference

between what would have happened if they were given the drug, denoted yi
1 versus what

would have happened if they got the placebo, yi
0. The fundamental problem of causal

inference is that we can only observe one of these two outcomes, since a given person can

only be treated or not treated. The problem can be resolved if, instead of people, there are

units that can be assumed to be identical or that will revert exactly to their initial state

some time after treatment. This type of assumption often holds to a good approximation

in the natural sciences and explains why researchers in these fields are less concerned with

causal theory.

Putting aside any estimates of individual causal effects, it is possible to learn something

about the distributions under treatment or placebo. Let Y 1 be a random variable repre-

senting the potential outcome if treated. The distribution of Y 1 is the distribution of Y

if everyone was treated. Similarly Y 0 represents the potential outcome for the placebo.

The difference between the probability of recovery, across the population, if everyone was

treated and the probability of recovery if everyone received the placebo is P
(
Y 1
)
−P

(
Y 0
)
.

We can estimate (from an experimental or observational study):

� P (Y = 1|X = 1), the probability that those who took the treatment will recover

� P (Y = 1|X = 0), the probability that those who were not treated will recover

Now, for those who took the treatment, the outcome had they taken the treatment Y 1 is

the same as the observed outcome. For those who did not take the treatment, the observed

outcome is the same as the outcome had they not taken the treatment. Equivalently stated:

P
(
Y 0|X = 0

)
= P (Y |X = 0)

P
(
Y 1|X = 1

)
= P (Y |X = 1)

If we assume X ⊥⊥ Y 0 and X ⊥⊥ Y 1:

P
(
Y 1
)

= P
(
Y 1|X = 1

)
= P (Y |X = 1)

P
(
Y 0
)

= P
(
Y 0|X = 0

)
= P (Y |X = 0)
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This implies the counterfactual distributions are equivalent to the corresponding condi-

tional distributions and, for a binary outcome Y , the causal effect is,

P
(
Y 1
)
− P

(
Y 0
)

= P (Y |X = 1)− P (Y |X = 0)

The assumptions X ⊥⊥ Y 1 and X ⊥⊥ Y 0 are referred to as ignorability assumptions [136].

They state that the treatment each person receives is independent of whether they would

recover if treated and if they would recover if not treated. This is justified in example 1 due

to the randomisation of treatment assignment. In general the treatment assignment will

not be independent of the potential outcomes. In example 2, the children from wealthy

families could be more likely to attend preschool but also more likely to do better in school

regardless, i.e X 6⊥⊥ Y 0 and X 6⊥⊥ Y 1. A more general form of the ignorability assumption

is to identify a set of variables Z such that X ⊥⊥ Y 1|Z and X ⊥⊥ Y 0|Z.

Theorem 5 (Ignorability [136, 120]). If X ⊥⊥ Y 1|Z and X ⊥⊥ Y 0|Z,

P
(
Y 1
)

=
∑
z∈Z

P (Y |X = 1, Z) P (Z) (2.5)

P
(
Y 0
)

=
∑
z∈Z

P (Y |X = 0, Z) P (Z) (2.6)

Assuming that within each socio-economic status level, attendance at preschool is indepen-

dent of the likelihood of graduating high-school had a person attended, then the average

rate of high-school graduation given a universal preschool program can be computed from

equation 2.5. Note, that this agrees with the weighted adjustment formula in equation

2.4.

Another assumption introduced within the Neyman-Rubin causal framework is the Sta-

ble Unit Treatment Value Assumption (SUTVA) [139]. This is the assumption that the

potential outcome for one individual (or unit) does not depend on the treatment assigned

to another individual. As an example of a SUTVA violation, suppose disadvantaged four

year olds were randomly assigned to attend preschool. The subsequent school results of

children in the control group, who did not attend, could be boosted by the improved be-

haviour of those who did and who now share the classroom with them. SUTVA violations

would manifest as a form of model misspecification in causal Bayesian networks.

There are objections to counterfactuals arising from the way they describe alternate uni-

verses that were never realised. In particular, statements involving joint distributions over

counterfactual variables may not be able to be validated empirically Dawid [46]. One way

of looking at counterfactuals is as a natural language short hand for describing highly

specific interventions like those denoted by the do-notation. Rather than talking about

the distribution of Y given we intervene to set X = x and hold everything else about the
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system constant we just say what would the distribution of Y be had X been x. This

is certainly convenient, if rather imprecise. However, the ease with which we can make

statements with counterfactuals that cannot be tested with empirical data warrants care-

ful attention. It is important to be clear what assumptions are being made and whether

or not they could be validated (at least in theory).

2.1.3 Structural Equation models

Structural equation models (SEMs) describe a deterministic world, where some underlying

mechanism or function determines the output of any process for a given input. The

mechanism (but not the output) is assumed to be independent of what is fed into it.

Uncertainties are not inherent but arise from unmeasured variables. Linear structural

equation models have a long history for causal estimation [177, 71]. More recently, they

have been formalised, generalised to the non-linear setting and connected to developments

in graphical models to provide a powerful causal framework [120].

Mathematically, each variable is a deterministic function of its direct causes and a noise

term that captures unmeasured variables. The noise terms are required to be mutually

independent. If there is the possibility that an unmeasured variable influences more than

one variable of interest in a study, it must be modelled explicitly as a latent variable.

Structural equation models can be represented visually as a network. Each variable is a

node and arrows are drawn from causes to their effects. Figure 2.6 illustrates the SEM for

example 1.

X = fx(εx) Y = fy(X, εy)

εyεx

Figure 2.6: SEM for example 1

This model encodes the assumption that the outcome yi for an individual i is caused solely

by the treatment xi they receive and other factors εyi that are independent of X. This is

justifiable on the grounds that X is random. The outcome of a coin flip for each patient

should not be related to any of their characteristics (hidden or otherwise). Note that the

causal graph in figure 2.6 is identical to that of the Bayesian network for the same problem

(figure 2.3). The latent variables εx and εy are not explicitly drawn in figure 2.3 as they

are captured by the probabilistic nature of the nodes in a Bayesian network.

Taking the action X = 1 corresponds to replacing the equation X = fx(εx) with X = 1.

The function fy and distribution over εy does not change. This results in the interventional

distribution, 5

5We have assumed the variables are discrete only for notational convenience
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P (Y = y|do(X = 1)) =
∑
εy

P (εy)1{fy(1, εy) = y} (2.7)

The observational distribution of Y given X is,

P (Y = y|X = 1) =
∑
εx

∑
εy

P (εx|X = 1) P (εy|εx)1{fy(1, εy) = y} (2.8)

=
∑
εy

P (εy)1{fy(1, εy) = y} , as εx ⊥⊥ εy (2.9)

The interventional distribution is the same as the observational one. The same argument

applies to the intervention do(X = 0), and so the causal effect is simply the difference

in observed outcomes as found via the causal Bayesian network and counterfactual ap-

proaches.

The SEM for example 2 is shown in figure 2.7. Intervening to send all children to preschool

replaces the equation X = fx(Z, εx) with X = 1, leaving all the other functions and

distributions in the model unchanged.

P (Y = y|do(X = 1)) =
∑
z

∑
εy

P (z) P (εy)1{fy(1, z, εy) = y} (2.10)

=
∑
z

P (z)
∑
εy

P (εy)1{fy(1, z, εy) = y}︸ ︷︷ ︸
P(Y=y|X=1,Z=z)

(2.11)

Equation 2.11 corresponds to equations 2.4 and 2.5. It is not equivalent to the observa-

tional distribution given by:

P (Y = y|X = 1) =
∑
z

∑
εy

P (z|X = 1) P (εy)1{fy(1, z, εy) = y} (2.12)

Structural equation models are generally applied with strong constraints on the functional

form of the relationship between the variables and noise, which is typically assumed to

be additive, Xi = fi(·) + εi. A structural equation model with N variables resembles

a set of N simultaneous equations, with each variable playing the role of the dependent

(left hand side) variable in one equation. However a SEM is, by definition, more than

a set of simultaneous equations. By declaring it to be structural, we are saying that it

represents causal assumptions about the relationships between variables. When visualised

as a network, the absence of an arrow between two variables encodes the assumption
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X = fx(Z, εx)

Z = fz(εz)

εz

Y = fy(X,Z, εy)

εyεx

Figure 2.7: SEM for example 2

that one does not cause the other. The similarity between the notation used to describe

and analyse structural equation models and simultaneous equations, combined with a

reluctance to make explicit statements about causality, has led to some confusion in the

interpretation of SEMs [74, 120].

Granger causality A discussion of approaches to (observational) causal inference would

not be complete without a mention of Granger causality, [70]. The fundamental idea

behind Granger causality is to leverage the assumption that the future does not cause

the past to test the existence and direction of a causal link between two time series.

The basic approach is to test, for a pair of time series variables X and Y , if Yt ⊥⊥
(X1, ..., Xt−1)|(Y1, ..., Yt−1) - that is if the history of X helps to predict Y given the history

of Y . The original formulation considered only pairs of variables and linear causal rela-

tionships but recent work has generalised the key idea to multiple variables and non-linear

relationships. Unlike the previous models we have discussed, Granger causality does not

provide us with a means to specify our assumptions about the causal structure between

variables. Rather it aims to infer the causal structure of a structural equation model from

observational data - subject to some assumptions. I would categorise Granger causality

as method for causal discovery in time series data, see the discussion of causal discovery

versus causal effect estimation in section 2.2.

2.1.4 Comparing and unifying the models

Remarkably for models developed relatively independently in fields with very different

approaches and problems, causal Bayesian networks, counterfactuals and structural equa-

tion models can be nicely unified for interventional queries (those that can be expressed

with the do-notation) [120]. These queries, and the assumptions required to answer them,

can be mapped between the frameworks in a straightforward way, allowing techniques de-

veloped within one framework to be immediately applied within another. If the network

for a structural equation model is acyclic, that is if starting from any node and following

edges in the direction of the arrows you cannot return to the starting point, then it implies

a recursive factorisation of the joint distribution over its variables. In other words, the

network is a causal Bayesian network. All of the results that apply to causal Bayesian
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networks also apply to acyclic structural equation models. Taking an action that sets a

variable to a specific value equates to replacing the equation for that variable with a con-

stant. This corresponds to dropping a term in the factorisation and the truncated product

formula (equation 2.3). Thus, the interventional query P (Y |do(X)) is identical in these

two frameworks. We can also connect this to counterfactuals via:

P
(
Y 0
)
≡ P (Y |do(X = 0))

P
(
Y 1
)
≡ P (Y |do(X = 1))

(2.13)

The assumption εX ⊥⊥ εY , stated for our structural equation model, implies X ⊥⊥ (Y 0, Y 1)

in the language of counterfactuals. When discussing the counterfactual model, we made

the slightly weaker assumption:

X ⊥⊥ Y 0 and X ⊥⊥ Y 1 (2.14)

It is possible to relax the independence of errors assumption for SEMs to correspond

exactly with the form of equation (2.14) without losing any of the power provided by

d-separation and graphical identification rules [131]. The correspondence between the

models for interventional queries (those that can be phrased using the do-notation) makes

it straightforward to combine key results and algorithms developed within any of these

frameworks. For example, you can draw a causal graphical network to determine if a

problem is identifiable and which variables should be adjusted for to obtain an unbiased

causal estimate. Then use propensity scores [136] to estimate the effect. If non-parametric

assumptions are insufficient for identification or lead to overly large uncertainties, you can

specify additional assumptions by phrasing your model in terms of structural equations.

The frameworks do differ when it comes to causal queries that involve joint or nested

counterfactuals and cannot be expressed with the do-notation. These types of queries arise

in the study of mediation [123, 84, 169] and in legal decisions, particularly on issues such

as discrimination [120, Ch. 4, Sec. 4.5.3]. The graphical approach to representing causal

knowledge can be extended to cover these types of questions via Single World Intervention

Graphs [131], which explicitly represent counterfactual variables in the graph.

In practice, differences in focus and approach between the fields in which each model dom-

inates eclipse the actual differences in the frameworks. The work on causal graphical mod-

els [120, 153] focuses on asymptotic, non-parametric estimation and rigorous theoretical

foundations. The Neyman-Rubin framework builds on the understanding of randomised

experiments and generalises to quasi-experimental and observational settings, with a par-

ticular focus on non-random assignment to treatment. Treatment variables are typically

discrete (often binary). This research emphasises estimation of average causal effects and

provides practical methods for estimation, in particular, propensity scores; a method to

control for multiple variables in high dimensional settings with finite data [136]. In eco-

nomics, inferring causal effects from non-experimental data to support policy decisions is

central to the field. Economists are often interested in more informative measures of the
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distribution of causal effects than the mean and make extensive use of structural equa-

tion models, generally with strong parametric assumptions [76]. The central approach to

estimation is regression - which naturally handles continuous variables while discrete vari-

ables are typically encoded as indicator variables. In addition, the parametric structural

equation models favoured in economics can be extended to analyse cyclic (otherwise re-

ferred to as non-recursive) models. However, these differences are not fundamental to the

frameworks. Functional assumptions can be specified on the conditional distributions of

(causal) Bayesian networks, counterfactuals can readily represent continuous treatments

(eg Y x), and structural equation models can represent complex non-linear relationships

between both continuous and discrete variables.

2.1.5 What does a causal model give us? Resolving Simpson’s paradox

We will now demonstrate our new notation and frameworks for causal inference to resolve

a fascinating paradox noted by Yule [180], demonstrated in real data by Cohen and Nagel

[45], and popularised by Simpson [149]. The following example is adapted from Pearl [120].

Suppose a doctor has two treatments, A and B, which she offers to patients to prevent

heart disease. She keeps track of the medication her patients choose and whether or not

the treatment is successful. She obtains the results in table 2.1.

Table 2.1: Treatment results

Treatment Success Fail Total Success Rate

A 87 13 100 87%
B 75 25 100 75%

Drug A appears to perform better. However, having read the latest literature on how

medications affect men and women differently, she decides to break down her results by

gender to see how well the drugs perform for each group, and obtains the data in table

2.2.

Table 2.2: Treatment results by gender

Gender Treatment Success Fail Total Success Rate

M A 12 8 20 60%
M B 56 24 80 70%
F A 75 5 80 94%
F B 19 1 20 95%

Once the data is broken down by gender, drug B looks better for both men and women.

Suppose the doctor must choose only one drug to prescribe to all her patients in future

(perhaps she must recommend which to subsidise under a national health scheme). Should

she choose A or B? The ambiguity in this question lies at the heart of Simpson’s paradox.

How does causal modelling resolve the paradox? The key is that the doctor is trying to

choose between interventions. She wants to know what the success rate will be if she

changes her practice to give all the patients one drug, rather than allowing them to choose
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as currently occurs.

Let’s represent the treatment by the variable T , the gender of the patient by Z and whether

or not the treatment was successful by Y . The doctor is concerned with P (Y |do(T )), not

the standard conditional distributions P (Y |T ). Unfortunately, the data in tables 2.1 and

2.2 is insufficient to enable estimation of the interventional distribution P (Y |do(T )) or

determine if do(T = A) is better or worse than do(T = B). Some assumptions about

the causal relationships between the variables are required. In this example, it seems

reasonable to conclude that gender may affect the treatment chosen and the outcome.

Assuming there are no other such confounding variables (for example income) then we

obtain the causal network in figure 2.8.

Z = Gender

T = Treatment Y = Outcome

Figure 2.8: An example of causal network that can give rise to Simpson’s Paradox. In this
case, we should select treatment on the basis of the gender-specific results.

With this model, women are more likely to choose drug A and are also more likely to

recover than men, regardless of the treatment they receive. Knowing a patient took drug

A indicates they are more likely to be female. When we compare the group of people

who took A against those who took B, the effect of the higher proportion of females in

the first group conceals the greater benefit of drug B, leading to an apparent reversal

in effectiveness. However, when the doctor intervenes to set the treatment each person

receives, there will no longer be a link from gender to treatment. So, in this case she should

choose the drug to prescribe from the gender-specific table (and weight by the proportion

of the population that belongs to each gender). Drug B is the better choice.

P (Y |do(T )) = P (Y |T, female) P (female) + P (Y |T,male) P (male) (2.15)

Is the solution to Simpson’s paradox to always to break down the data by as many variables

as possible? No. Suppose we have the identical data as in 2.1 and 2.2, but replace the

column name ’gender’ with ’blood pressure’, ’M’ with ’high’ and ’F’ with ’normal’. This

is a drug designed to prevent heart disease. One pathway to doing so might well be to

lower blood pressure. Figure 2.9 shows a plausible causal graph for this setting. It differs

from the graph in figure 2.8 only in the direction of a single link. Now, however, table 2.2

tells us that people who took treatment A had better blood pressure control and better

overall outcomes. In this setting P (Y |do(T )) = P (Y |T ) and drug A is the better choice.

Note that we have not changed the data itself, only the description of the variables that

it is associated with. This illustrates that the resolution to Simpson’s paradox lies funda-

mentally not in the data, but in the assumptions we are willing to make. From a purely
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Z = Blood Pressure

T = Treatment Y = Outcome

Figure 2.9: Another causal network that can exhibit Simpson’s paradox. In this case, “the
solution” is not to stratify on Z.

(N4, N3)

(N ′
2, N
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(N2, N1)
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4, N
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(N2 +N4, N1 +N3)

(N ′
2 +N ′

4, N
′
1 +N ′

3)

Figure 2.10: Simpson’s reversal visualised. The ratios involving N ′i are steeper than those
involving Ni for both the blue and green vectors. However, when we sum them, the ratio
is steeper for the un-primed variables.

statistical viewpoint, there is no paradox. The reversal just stems from the mathematical

property of ratios expressed in equation 2.16 and represented graphically in figure 2.10.

The paradox only arises when we attempt to use the data to select an intervention and is

resolved when we apply a causal approach to do so.

∃
{
N1, ...N4, N

′
1...N

′
4

}
∈ N :

N1

N2
<
N ′1
N ′2

,
N3

N4
<
N ′3
N ′4

and
N1 +N3

N2 +N4
>
N ′1 +N ′3
N ′2 +N ′4

(2.16)

There are many other plausible causal graphs for both scenarios above. Perhaps income

affects drug choice as well as gender, or gender might affect treatment choice and blood

pressure control given treatment, etc. Causal modelling provides a powerful tool to specify

such assumptions and to determine how to estimate causal effects for a given model as we

discuss in the next section.

2.2 Answering Causal Questions

We can roughly categorise the problems studied within causal inference from observational

data into two groups, causal effect estimation and causal discovery. In causal effect estima-

tion we assume (at least implicitly) that key aspects of the causal graph are known. The
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goal is then to estimate the effect of an intervention or range of interventions in the system.

Causal effect estimation is implicit in countless studies in economics, social science and

epidemiology of everything from the effect of education on earnings [37], diet on cancer

[29] and breastfeeding on intelligence [88] to the effect of pet ownership on survival after a

heart attack [59]. Almost every time someone runs a regression model the key quantity of

interest is a causal effect. Given how it underlies so much of our scientific progress, there

is a enormous potential in properly understanding when we can draw causal conclusions,

the assumptions required to do so, and how to best leverage those assumptions to infer as

much information as possible from the available data.

Causal discovery aims to leverage much broader assumptions to learn the structure of

causal graphs from data. This is critical in fields where there is abundant data, but

limited theoretical knowledge on how variables are related to one another. Causal discovery

algorithms are being applied in bioinformatics [26, 142, 129, 7, 156, 62, 152, 161], medical

imaging [130] and climate science [167]. An effective and generalisable approach for causal

discovery would be a major step towards the automation of the scientific endeavour. In

this thesis, I have focused on problems where the structure of the causal graph is known.

Extending my work to problems where the causal structure is unknown, leveraging the

work on causal discovery, is a rich and fascinating line of potential future work, which I

discuss briefly in section 4.2.4.

2.2.1 Mapping from observational to interventional distributions

A central component of estimating causal effects from observational data is determining if

and how we can write expressions for the interventional distributions of interest in terms

of observational quantities, which can be measured. We did this on an ad hoc basis to

resolve the examples discussed in section 2.1. In this section we describe a principled

approach to mapping observational quantities to interventional ones and then, in section

2.2.3, discuss the key issues involved in estimating such expressions from finite sample

data. We assume the basic structure of the graph is known. That is, we assume that we

can draw a network containing (at a minimum):

� the target/outcome variable we care about,

� the focus/treatment variables on which we are considering interventions,

� any variables which act to confound two or more of the other variables we have

included, and

� any links between variables we have included.

Some of these variables may be latent, in that the available data does not record their

value, however their position in the network is assumed to be known. For example, consider

estimating the impact of schooling on wages. Some measure of inherent ability could

influence both the number of years of schooling people choose to pursue and the wages
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they receive. Even if we have no data to directly assess people’s inherent ability we must

include ability in the graph because it influences two of the variables we are modelling.

How can the structure of the causal graph be leveraged to compute interventional dis-

tributions from observational ones? Given the graph corresponding to the observational

distribution, the graph after any intervention can be obtained by removing any links into

variables directly set by the intervention. The joint interventional distribution is the

product of the factors associated with the interventional graph, as given by the truncated

product formula 2.3. If there are no latent variables the interventional distribution of inter-

est can be obtained by marginalising over the joint (interventional) distribution. However,

if there are latent variables, the joint interventional distribution will contain terms that

cannot be estimated from the observed data.

The key to estimating causal effects in the presence of latent variables lies in combining the

assumption of how an intervention changes the graph, encoded by the truncated product

formula, with information the graph structure provides about conditional independencies

between variables. By leveraging conditional independencies, we can effectively localise

the effect of an intervention to a specific part of a larger graph. This gives rise to the do-

calculus [120]. The do calculus consists of three rules. They are derived from the causal

information encoded in a causal network and the properties of d-separation and do not

require any additional assumptions other than that of specifying the causal network.

2.2.1.1 Independence in Bayesian networks: D-separation

Many causal algorithms are based on leveraging the independence properties encoded in

Bayesian networks. Therefore, in this section, we briefly review the key properties of

Bayesian networks. A more thorough introduction (including proofs) can be found in [97].

Recall that a Bayesian network is a way of representing the joint distribution over its

variables in a way that highlights conditional independencies between them.

Theorem 6. (Local Markov condition) Given a Bayesian network G with nodes

X1...XN , each variable Xi is independent of its non-descendents given its parents in G

for all distributions P (X1...XN ) that are compatible with G.

The set of conditional independence relations given by the local Markov condition can

enforce additional independencies that also hold in all distributions that are compatible

with G. D-separation is a graphical criterion that extends the local Markov property to

find these additional independencies. It provides a simple way of reading from a network

if a given conditional independence statement is true in all distributions compatible with

that network.

The statement that X is conditionally independent of Y given Z implies that if we know

Z, learning the value of Y provides no additional information about X. From a graphical

perspective, you can think of this as Z blocks the flow of information from X to Y in the

network. Figure 2.11 shows all possible network paths from a variable X to Y via Z. In
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figures (a) to (c) the path is blocked if we condition on Z and unblocked otherwise. In

figure (d), the path is unblocked if we condition on Z and blocked otherwise.

The structure in figure 2.11d is referred to as a collider or v-structure. The counter-

intuitive result that conditioning on Z introduces dependence between X and Y is called

the explaining away phenomena. As an example, consider a scholarship available to female

or disadvantaged students. Let X be gender, Y be family background and Z receipt of

the scholarship. There are roughly equal numbers of boys and girls in both poor and

wealthy families so X and Y are independent. However, if we know a student is receiving

a scholarship, then learning that they are male increases the probability that they are

disadvantaged.

(a) X ⊥⊥ Y |Z

X

Z

Y

(b) X ⊥⊥ Y |Z

Y

Z

X

(c) X ⊥⊥ Y |Z

Z

X Y

(d) X ⊥⊥ Y |{}

Z

X Y

Figure 2.11: All possible two edge paths from X to Y via Z

Definition 7 (unblocked path). A path from X to Y is a sequence of edges linking

adjacent nodes starting at X and finishing at Y , (X,V1, V2...Vk, Y ). It is unblocked if

every triple, X − V1 − V2, V1 − V2 − V 3, ..., Vk−1 − Vk − Y in the path is unblocked (each

triple will belong to one of the cases in figure 2.11)

Definition 8 (d-separation). The variables X are d-separated from Y given Z in the net-

work G if, there are no unblocked paths from any X ∈X to any Y ∈ Y after conditioning

on Z.

Theorem 9 (d-separation and conditional independence). If a set of variables Z d-

separates X and Y in a Bayesian network G then (X ⊥⊥ Y |Z) in all distributions P

compatible with G. Conversely, if X and Y are d-connected (not d-separated) given Z

then it is possible to construct a distribution P ′ that factorises over G in which they are

dependent.

Theorem 9 says that independencies implied by d-separation on a graph hold in every

distribution that can be factored over that graph and that if (X ⊥⊥ Y |Z) in all distri-

butions that can be factored over G then they are d-separated in G. If we denote the

independencies implied by d-separation in a graph by I (G) and the set of independencies

in a distribution by I (P ) then I (G) ⊆ I (P ).

If I (G) = I (P ) then G is called a perfect map for P . However, it is possible to con-

struct distributions that do not have a perfect map; that is, they contain conditional
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independencies that cannot be represented by d-separation. The presence of deterministic

relationships between variables is one instance where this occurs. If there is a Bayesian

network G with some deterministic nodes, then we cannot conclude that if X and Y are

d-connected then there exists a distribution P ′ consistent with G in which they are de-

pendent. This does not conflict with theorem 9, as consistent in this setting requires that

P ′ both factorises over G and satisfies the specified the deterministic relations between

variables. This subtlety led to confusion in the independencies that hold between coun-

terfactuals via twin networks [120, 131] and demonstrates the caution required in using

d-connectedness to assert lack of independence. D-separation can be extended to compute

the additional independencies implied by a graph in which certain nodes are known to be

deterministic [66].

2.2.1.2 The Do Calculus

The do-calculus is a set of three rules [119] that can be applied to simplify the expression

for an interventional distribution. If by repeated application of the do-calculus, along

with standard probability transformations, we can obtain an expression containing only

observational quantities then we can use it to estimate the interventional distribution from

observational data. Let X,Y ,Z and W be disjoint sets of variables in a causal graph G.

We denote the graph G after the an intervention do(X), which has the effect of removing

all edges into variables in X, as GX

Rule 1: (adding or removing evidence) Rule 1 allows us to remove (or insert)

observational evidence from the right hand side of a conditional interventional distribu-

tion. It follows directly from the fact that the relationship between d-separation in a

network and independence in the corresponding probability distribution still applies after

an intervention.

If (Y ⊥⊥W |Z,X) in GX :

P (Y |do(X = x),Z = z,W = w) = P (Y |do(X = x),Z = z) (2.17)

(a) original network, G

U

X Y

W

(b) network after the intervention do(X = x), GX

U

x Y

W

Figure 2.12: Rule 1 example. (Y ⊥⊥W |X) in GX =⇒ P (Y |do(X),W ) = P (Y |do(X))

Rule 2: (exchanging actions with observations) Rule 2 describes when condition-

ing on X = x and intervening, do(X = x), have the same effect on the distribution over
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Y . Let GX denote the causal graph G with all edges leaving X removed.

If (Y ⊥⊥X|W ) in GX :

P (Y |do(X = x),W ) = P (Y |X = x,W ) (2.18)

The intuition behind this is that interventional distributions differ from observational

ones due to the presence of confounding paths between X and Y . Observing a variable X

provides information about Y both directly and indirectly, by changing our belief about

the distribution of the parents of X. However, setting X tells us nothing about its parents

and therefore affects Y only via direct paths out of X. Removing edges leaving X removes

all the direct paths out of X. If X is then independent of Y (conditional on W ), that

indicates there are no indirect paths. This implies conditioning on X is equivalent to

setting X (given W ).

Equation 2.18 does not cover cases where acting on one set of variables allows us to replace

acting on another set with conditioning (see figure 2.14). The general form of rule 2 is

given in equation 2.19.

If (Y ⊥⊥X|W ,Z) in GXZ :

P (Y |do(X = x), do(Z = z),W ) = P (Y |X = x, do(Z = z),W ) (2.19)

(a) original network, G

W

X Y

(b) GX

W

x Y

(c) GX

W

X Y

Figure 2.13: An example of rule 2 with a single intervention (Y ⊥⊥ X|W ) in GX =⇒
P (Y |do(X),W ) = P (Y |X,W ). In this example, observing X provides information about
Y both directly and indirectly, because knowing X tells us something about W , which
also influences Y . If we condition on W , we block this indirect path.

Rule 3: (adding or removing actions) This rule describes cases where the interven-

tion do(X = x) has no effect on the distribution of the outcome Y . A simple case of rule

3 is given in equation 2.20. If Y is independent of X in G after removing links entering

X then can be no direct path from X to Y and any intervention on X will not affect Y .

if (Y ⊥⊥X) in GX :

P (Y |do(X = x)) = P (Y ) (2.20)

The general case of rule 3 is easier to state by explicitly representing the intervention in
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(a) original network, G

Z

X Y

U V

(b) after do(Z), GZ

z

X Y

U V

(c) GXZ

z

X Y

U V

Figure 2.14: An example of applying equation 2.19. In this case (Y ⊥⊥ X|Z) in GXZ =⇒
P (Y |do(X = x), do(Z = z)) = P (Y |X = x, do(Z = z)). Observing, rather than interven-
ing, on Z would not have allowed us to exchange do(X = x) for X = x. Conditioning on
Z does block the indirect path X − Z − V − Y but opens X − U − Z − V − Y .

the graphical model. Let GX̂ denote the graph G after adding a variable X̂i as a parent of

each variable Xi ∈X (see figure 2.15b). The variable X̂i can be thought of as representing

the mechanism by which Xi takes its value, either by being set via intervention or as a

stochastic function of its other parents [97].

if (Y ⊥⊥ X̂|Z,W ) in GX̂
Z

:

P (Y |do(Z = z), do(X = x),W = w) = P (Y |do(Z = z),W = w) (2.21)

The statement that Y ⊥⊥ X̂ (without conditioning on X) implies that there is no un-

blocked path from X to Y in G which includes an arrow leaving X. These are the only

paths by which intervening in X can affect Y .

(a) original network, G

Z

X Y

W

(b) augmented graph GX̂

Z

X Y

W

X̂

(c) GX

Z

X Y

W

Figure 2.15: Example application of equation 2.21. (Y ⊥⊥ X̂|W,Z) =⇒
P (Y |do(X),W,Z) = P (Y |W,Z). We have to condition on Z because conditioning on
W blocks the path X̂ −X −W − Y but opens X̂ −X − Z − Y .

2.2.1.3 Identifiability

A natural question to ask is, given a set of assumptions about the causal graph, is it

possible to estimate a given interventional distribution from observational data? This is

the identifiability problem. It asks if we can obtain an unbiased point estimate for the

causal query of interest in the infinite data limit. A query is non-parametrically identifiable
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if it is identifiable without assumptions about the functional form of the dependencies

between variables in the graph.

Definition 10 (Non-parametric identifiability). Let G be a causal graph containing ob-

served variables V and latent variables U and let P (·) be any positive distribution over

V . A causal query of the form P (Y |do(X),W ), where Y ,X and W are disjoint subsets

of V , is non-parametrically identifiable if it is uniquely determined by P (·) and G.

The question of non-parametric identifiability is solved. The do calculus is complete [147,

82]. A problem is identifiable if and only if the interventional distribution of interest can be

transformed into terms containing only observational quantities via repeated application

of the do-calculus. There is a polynomial time algorithm [146] based on these properties

that, for a given network and interventional (do-type) query, can:

1. determine if the query can be translated into an expression involving only distri-

butions over observed variables. In other words, it can determine if the query is

identifiable given the assumptions encoded by the network, and

2. if it is identifiable, return the required expression.

Figure 2.16 shows some examples of identifiable and non-identifiable queries. I have created

a javascript implementation of the identifiability algorithm [146] on which you can test

your own queries http://finnhacks42.github.io. An implementation of this algorithm is

also available for R [164].

(a)

Z

X Y

U

(b)

X Z Y

U

(c)

Z

X Y

U3U1

(d)

U

X Y

(e)

U

X Y

Z

(f)

Z

X Y

U3U1

Figure 2.16: Examples of identifiable and non-identifiable queries. In sub figures (a), (b)
and (c) the causal query P (Y |do(X)) is identifiable. In sub figures (d), (e) and (f) it is
not.

Many interesting questions relating to identifiability remain open. What is the mini-

mal (by some metric) additional information that would be required to make a non-

identifiable query identifiable? What if we assume various restrictions on the functional

form of the relationships between the variables? Some queries that are not identifiable

non-parametrically can be identified by additional assumptions, such as linearity. A com-

40



plete algorithm for the problem of linear identifiability is yet to be found, despite a rich

body of work [43, 163, 50].

Although identifiability is a natural and important question to ask, it does not partition

causal questions into solvable and unsolvable. Estimators for identifiable queries can be

slow to converge and we may be able to obtain useful bounds on causal effects in cases

where point estimates are not identified.

2.2.2 Defining causal effects

So far we have described causal effect estimation in term of identifying the interventional

distribution P (Y |do(X)) from observational data. This interventional distribution is in

fact a family of distributions parameterised by the value, x, to which the treatment variable

X is set. From a decision theoretic viewpoint, we can select an optimal action x by

specifying a utility function U : y ∈ Y → R that assigns a value to each outcome y and

then selecting the action that maximises the expected utility.

x∗ = arg max
x

Ey∼P(Y |do(X=x)) [U(y)] (2.22)

Frequently however, studies wish to define and estimate a causal effect without reference

to a specific utility function. There are several ways of defining causal effects that can be

viewed as different ways of summarising the family of interventional distributions. For a

binary treatment variable X, the average causal effect, ACE 6 is defined as:

ACE = E [Y |do(X = 1)]− E [Y |do(X = 0)] (2.23)

Assuming the expectations in equation 2.23 are well defined, the ACE captures the shift

in the mean outcome that arises from varying X. It does not capture changes in variance

or higher moments of the distribution. The ACE can be generalised to non-discrete inter-

ventions by considering the effect on the expectation of Y of an infinitesimal change in x.

If X is linearly related to Y then the ACE is constant and equivalent to the corresponding

coefficient in the linear structural equation model.

ACE(x) =
d

dx
E [Y |do(X = x)] (2.24)

The average causal effect is often introduced as the average over individual causal effects

as discussed in section 2.1.2. Individual causal effects are deterministic and cannot be

6Also referred to as the average treatment effect (ATE)
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expressed as properties of the interventional distribution. However, we can personalise

the average causal effect by stating it with respect to some observed context. I will refer

to this as the personalised causal effect (PCE).7

PCE(z) = E [Y |do(X = 1), z]− E [Y |do(X = 0), z] (2.25)

In some cases, the average causal effect for some subgroup of the population is of prime

interest. A particularly common example of this is the average treatment effect of the

treatment of the treated (ATT). This would be the key quantity of interest if we had to

decide whether or not to continue providing a program or treatment for which we could

not control the treatment assignment process.

ATT = Ez∼P(Z|x=1) [Y |do(X = 1)]− Ez∼P(Z|x=1) [Y |do(X = 0)] (2.26)

Causal effects can also be written in terms of counterfactuals. The ACE is E
[
Y 1 − Y 0

]
.

We could estimate the ratio of expectations
E[Y 1]
E[Y 0]

instead of the difference. However,

the quantity E
[
Y 1

Y 0

]
depends on the joint distribution over the counterfactual variables

(Y 1, Y 0) and thus cannot be computed from the interventional distribution.

Another way of conceptualising causal effects is as a property indicating the strength

of the causal link between two variables. This notion is complex to formalise when the

relationship between variables is non-linear. Suppose Y = X ⊕ Z with P (Z = 1) = 1
2 ,

the interventional distributions over X are identical after marginalising out Z. Janzing

et al. [90] propose a number of postulates that a notion of causal strength could satisfy,

demonstrate why previous measures fail these postulates and propose an alternative based

on information flow.

2.2.3 Estimating causal effects by adjusting for confounding variables

Probably the two most frequently applied approaches to estimating causal effects from

observational data are instrumental variables and adjusting for confounding factors. In-

strumental variables correspond to the graph in figure 2.16e, which is not identifiable

without parametric assumptions, however they can provide tight bounds. Adjusting for

confounding equates to identifying a set of variables Z such that the ignorability assump-

tion discussed in section 2.1.2 holds. This corresponds to a simple graphical test known

as the backdoor criterion [120]. The setting is also referred to as unconfounded.

7This quantity is sometimes called the conditional average treatment effect (CATE). However, that
term is also used for the sample rather than population effect.
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(a) Multiple valid adjustment sets.

X Y

Z2Z1

(b) Don’t condition on all observable variables

Z

X Y

U3U1

Figure 2.17: Identifying an optimal adjustment set is not always intuitively obvious. There
may be multiple valid adjustment sets. In sub-figure (a) Z1 or Z2 or {Z1, Z2} all block the
backdoor path from X to Y . Adding additional variables (even pre-treatment variables)
to a valid adjustment set can result in an invalid set as in sub-figure (b). In this case the
empty set is a valid adjustment set for the causal effect of X on Y . However adding Z
would open a backdoor path X − U1 − Z − U2 − Y

Theorem 11 (The backdoor criterion). [120] Let X, Z and Y be disjoint sets of vertices

in a causal graph G. If Z blocks (see Definition 7) for every path from Xi to Yj that

contains a link into Xi, for every pair (Xi ∈X, Yj ∈ Y ), and no node in Z is a decedent

of a node in X then the backdoor criterion is satisfied and;

P (y|do(x)) =
∑
z

P (y|x, z) P (z) (2.27)

The backdoor criterion derives from rule 2 of the do-calculus. Selecting which covariates

should be adjusted for to estimate a causal effect reduces to identifying a set that satisfies

the backdoor criterion. There may be more than one valid adjustment set, (figure 2.17a).

The seemingly simple problem of determining if a variable should be adjusted for when

estimating causal effects has been the subject of substantial debate and controversy [121].

Adjusting for the wrong variables (even pre-treatment variables) can introduce or magnify

bias, see figure 2.17b. Causal graphs and the back door criterion provide a clear mechanism

for deciding which variables should be adjusted for. For a practical example, see the

discussion in Schisterman et al. [143] on whether estimates of the causal effect of smoking

on neonatal mortality should adjust for birth weight.

Given that a set of variables Z satisfies the backdoor criterion (or equivalently the con-

ditional ignorability assumption), the interventional distribution is asymptotically iden-

tifiable and can be estimated from equation 2.27. The expected value of Y after the

intervention do(X = x) is given by equation 2.28 and the average causal effect for a binary

intervention x ∈ {0, 1} is given by equation 2.29.

E [Y |do(X = x)] = Ez∼P(Z) [E [Y |x, z]] (2.28)
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ACE = Ez∼P(Z) [E [Y |1, z]− E [Y |0, z]] (2.29)

Assuming x and z are discrete, equation 2.28, and thus the ACE, can be estimated by

selecting the data for which X = x, stratifying by Z, then computing the mean outcome

within each stratum and finally weighting the results by the number of samples in each

strata. However this approach is not workable for most real world problems with finite

samples as the number of strata grows exponentially with the dimension of Z and it cannot

handle continuous covariates. There is a substantial body of work within in the statistics

and econometrics literature on estimating average causal effects assuming conditional ig-

norability (see Imbens [85] for a comprehensive review). The key approaches are based on

matching on covariates, propensity score methods and regression. We now examine these

approaches from a machine learning perspective.

In standard supervised learning, we have a training set (x1, y1), ..., (xn, yn) assumed to be

sampled i.i.d from an unknown distribution P (x, y) = P (x) P (y|x). The goal is to select

a hypothesis h ∈ H : X → Y such that, on unseen data ∼ P (x, y), h(x) is close (by some

metric) in expectation to y. In other words we wish to minimise the generalisation error

Eout(h),

Eout(h) = E(x,y)∼P(x) P(y|x) [L(h(x), y)] (2.30)

We cannot directly compute the generalisation error as P (x, y) is unknown, as we only

have access to a sample. We could search over H and select a hypothesis h∗(x) that

minimises some loss function on the sample data.

Ein(h) =
1

n

n∑
i=1

L(h(xi), yi) (2.31)

The VC-dimension of the hypothesis space provides (typically loose) bounds on the proba-

bility that Eout >> Ein. However, in practice, the generalisation error is usually estimated

empirically from a hold-out set of the sample that was not used to train the model, or via

cross-validation.

In the causal effect estimation under ignorability, we have training data (x1, z1, y1), ..., (xn, zn, yn)

sampled i.i.d from P (z) P (x|z) P (y|x, z). Estimating E [Y |do(X = x)] corresponds to se-

lecting a hypothesis h ∈ H : X × Z → Y that minimises;
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Eout = E(x,z,y)∼δ(x−x′) P(z) P(y|x,z) [L2(h(x, z), y)] , (2.32)

= E(z,y)∼P(z) P(y|x,z) [L2(h(x, z), y)] , (2.33)

Johansson et al. [91] identified that this is equivalent to the covariate shift problem.

If we let v = (x, z) then we have training data sampled from Ptrain {v}P (y|v) where

Ptrain {v} = P (z) P (x|z), but at test time the data will be sampled from Ptest {v}P (y|v),

where Ptest {v} = δ(x−x′) P (z).8 With this connection to covariate shift in mind, let us

return to regression, matching and propensity scores.

2.2.3.1 Regression

The regression approach is to learn a function that is a good approximation to the out-

put surface E [Y |X,Z]. Let f1(z) = E [Y |X = 1, Z = z]. The expectation of Y after

the intervention X = 1 is then obtained by taking the expectation with respect to Z,

E [Y |do(X = 1)] = Ez∼P(Z) [E [Y |X = 1, z]]. We can learn a parametric regression model

f̂1(z) via empirical risk minimisation.

f̂1(z) = h1(z; θ̂obs), where θ̂obs = arg min
θ∈Θ

[
1

n

n∑
i=1

1{xi = 1}L (h1(zi; θ), yi)

]
(2.34)

This estimator is consistent with respect to the observational distribution. As the sample

size tends to infinity, θ̂obs approaches the parameter within the hypothesis space that

minimises the expected loss given data sampled from the observational distribution.

lim
n→∞

θ̂obs = arg min
θ∈Θ

E(z,y)∼P(z|x=1) P(y|x=1,z) [L (h1(z; θ), y)] (2.35)

If the model is correctly specified such that f1(z) = h1(z; θ∗) for some θ∗ ∈ Θ then

the empirical risk minimisation estimate is consistent with respect to the loss over any

distribution of Z [158], including the interventional one.

8It is not obvious that the question of estimating causal effects under ignorability is entirely equivelent
to covariate shift. Take the case where we have a binary intervention x ∈ {0, 1}. Suppose we learn
h(1,z) = E [Y |x = 1,z]+g(z) and h(0,z) = E [Y |x = 0,z]+g(z), then the estimated average causal effect
equals the true average causal effect for any function g, E [h(1,z)− h(0,z)] = E [Y |x = 1,z]−E [Y |x = 0,z].
Additionally, if the goal is to select an optimal action x∗ from a space of possible interventions, rather
than to estimate the causal effect of all possible interventions relative to a baseline, we need algorithms
capable of leveraging any structure in the relationship between x and y as well as a means of focusing the
loss on regions of the sample likely to affect x∗.
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lim
n→∞

θ̂obs = θ∗ = arg min
θ∈Θ

E(z,y)∼P(z) P(y|x=1,z) [L (h1(z; θ), y)] (2.36)

The average causal effect can then be estimated by:

τ̂reg =

n∑
i=1

(
f̂1(zi)− f̂0(zi)

)
(2.37)

Regression thus has a direct causal interpretation if the parametric model is correctly spec-

ified and the covariates included form a valid backdoor adjustment set for the treatment

variable of interest in the corresponding structural equation model.

2.2.3.2 Propensity scores

If the parametric model is missspecified then the parameter that minimises the loss de-

pends on the distribution from which the covariates z are sampled. The model learned by

ERM could perform very well in a validation set (which estimates the generalisation error

over the observational distribution of (x, z)) but yield very poor estimates of the causal

effect, see figure 2.18.

z

y

f0(z) = E[y|do(x = 0), z]
f0(z)
f1(z) = E[y|do(x = 1), z]
f1(z)

z

(z)
(z)

Figure 2.18: Parametric regression may yield poor estimates of causal effects if the model
is missspecified, even if the model fits well over the domain of the training data. In this
example, P (Z|X = 0) ∼ N(µ0, σ

2
0) and P (Z|X = 1) ∼ N(µ1, σ

2
1) with little overlap in the

densities. If X = 0 then Y ∼ N(f1(x) = sin(x), σ2
y) and if X = 1 then Y ∼ N(f0(x) =

1
x+1 , σ

2
y). We estimate f1(z) from the sample in which X = 1 (green points) and f0(z)

from the sample for which X = 0 (blue points). In both cases the linear model is a good
fit to the data. However, the resulting estimate of the causal effect is very poor for the
lower values of z.

A general approach to estimating the expectation of some function f(·) with respect to

data from some distribution P (·), when we have data sampled from a different distribution
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Q (·) is importance sampling [80, 97].

Ev∼P(v) [f(v)] = Ev∼Q(v)

[
f(v)

P (v)

Q (v)

]
(2.38)

This importance weighting approach can be applied to the covariate shift/average causal

effect problem by weighting the terms in the empirical risk minimisation estimator [158].

θ̂iw = arg min
θ∈Θ

[
1

n

n∑
i=1

1{xi = 1}L (h1(zi; θ), yi)
P (zi) δ(xi − 1)

P (zi) P (xi = 1|zi)

]
(2.39)

= arg min
θ∈Θ

[
1

n

n∑
i=1

1{xi = 1}L (h1(zi; θ), yi)
1

e(zi)

]
, (2.40)

where e(z) is the propensity score, defined by [136];

e(z) ≡ P (x = 1|z) (2.41)

The estimator in equation 2.39 is an example of a doubly robust estimator [135, 93].

Doubly robust methods are asymptotically unbiased so long as either the regression model

h or propensity score e are correctly specified [134].

The propensity score can be used to estimate the average causal effect without specifying

a regression model for E [Y |X,Z]. Rosenbaum and Rubin [136] demonstrated that if the

ignorability assumption is satisfied by conditioning on Z, then it is also satisfied by condi-

tioning on e(z). This allows for estimators based on stratifying, matching or regression on

the propensity score rather than the covariates Z. Inverse propensity weighting can also

be combined with empirical estimation of E [Y |X,Z] yielding the simple, albeit inefficient,

estimator in equation 2.43 [85]. In some settings, such as stratified randomised trials [86]

or learning from logged bandit feedback [30], the propensity score may be known. How-

ever, in general, it must be estimated from data. Frequently this is undertaken with a

simple parametric model, such as logistic regression, but a wide range of standard machine

learning algorithms including bagging and boosting, random forests and neural networks

can also be applied [20]. Lunceford et al. [110] review the theoretical properties of key

propensity score based estimators, including stratification and inverse propensity weight-

ing.

E [Y |do(X = x)] = Ez∼P(Z) [E [Y |x, z]] = Ez∼P(Z|x)

[
E [Y |x, z]

1

e(z)

]
(2.42)
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τ̂inverse propensity =
1

n

n∑
i=1

(
1{xi = 1} yi

e(zi)
− 1{xi = 0} yi

1− e(zi)

)
(2.43)

2.2.3.3 Matching

There is a straightforward connection between matching and regression for causal effect

estimation. If h ∈ H =⇒ h + a ∈ H for any constant a and f̂ is selected by minimising

empirical risk with an L2 loss then 1
n

∑n
i=1 1{xi = 1} f̂1(zi) = 1

n

∑n
i=1 1{xi = 1} yi 9, and

equation 2.37 can be re-written as:

τ̂reg =
n∑
i=1

[
1{xi = 1}

(
yi − f̂0(zi)

)
+ 1{xi = 0}

(
f̂1(zi)− yi

)]
(2.44)

This formulation of the regression estimator highlights the missing data aspect of causal

effect estimation. For each instance, the regression models are used to estimate the coun-

terfactual outcome had the instance received the alternate treatment. Matching estimates

the counterfactual outcome for an instance from the outcome of similar instances that

received a different treatment. Abadie and Imbiens [2] analyse an estimator where both

target and control instances are matched and the matching is done with replacement, let

j ∈ Jk(i) be the indices of the k instances closest to i by some metric d(zi, zj) such that

xi 6= xj .

τ̂match =

n∑
i=1

1{xi = 1}

yi − 1

k

∑
j∈Jk(i)

yj

+ 1{xi = 0}

1

k

∑
j∈Jk(i)

yj − yi

 (2.45)

This estimator is equivalent to equation 2.44 with k nearest neighbour regression. There

are many variants of matching estimators using different distance metrics, matching with

or without replacement (and in the latter case, greedy or optimal matching) and with or

without discarding matches beyond some threshold [44, 137]. Although intuitive, matching

estimators in general have poor large sample properties [1]. An exception is where the

goal is to estimate the average treatment effect of treatment on the treated in settings

where there is a large set of control instances (compared to treatment instances) [85].

The practical performance of the estimation approaches discussed in this section depend

on the sample size, dimensionality of the covariates, the complexity of the treatment

assignment mechanism and output function, and the degree of prior knowledge available

about these functions. A key difference between standard machine learning problems and

causal effect estimation is that when estimating causal effects we cannot directly apply

9[85] state this holds for most implementations

48



cross-validation or a hold-out set for model selection because we lack samples from the

counterfactual.

The significance of this should not be underestimated. Cross-validation has allowed applied

machine learning to succeed in many cases with a relatively atheoretical approach on the

basis that we can identify when a model is successful. With causal effect estimation

there is no guarantee that a model that performs well at prediction (even out of sample)

will accurately estimate the outcome of an intervention. Sugiyama et al. [158] propose

inverse propensity weighted cross validation for the covariate shift problem. There is

relatively little theory on model selection for estimating the propensity score. To achieve

asymptotically unbiased estimates, the covariates should satisfy the backdoor criterion.

It is also known that conditioning on instrumental variables, which directly influence X

but not Y , increases variance without any reduction in bias and can increase bias if there

are unmeasured confounding variables [176, 28, 122, 115]. With doubly robust estimators,

one could apply an iterative approach, fitting a propensity score model, using the results

for inverse propensity weighted cross-validation of the regression model and then selecting

covariates for the propensity model on the assumption the estimated regression function

was correct.

The performance of methods for causal effect estimation can be tested on simulated data

[60, 181, 79, 49] or by comparing estimates from observational studies with the results from

corresponding experiments [99, 58, 78, 77, 47, 151, 11]. Unfortunately, there are a relatively

small number of examples where comparable observational and experimental data are

available. The results are mixed with later studies finding generally better alignment of

results, but it is hard to ascertain if this is due to improved methodological approaches or

over-fitting to the available data.

2.3 Bayesian reasoning and causality

The Bayesian approach to modelling encapsulates a very general approach to combining

prior knowledge and assumptions with data to draw inferences. You can specify a complex

model that captures your assumptions about the underlying mechanisms of your system,

describe uncertainty about the parameters (and priors over their values), and then update

your beliefs about the values of these parameters based on the observed data. If you

believe the model to be a mechanistic representation of the way the world works then it

can be used to infer the consequences of interventions.

Why then do we need a special framework for causal inference? Why not encode all

the assumptions required to infer the outcome of an intervention in a given system in

a Bayesian model? The short answer is we could. However, causal graphical models

represent a useful level of abstraction for many problems. Formalising the definition of

an intervention within the framework of causal graphical models provides us with an

explicit mechanism to map information from one data generating process, the system
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pre-intervention, to another, the system post-intervention. We do not need to specify the

functional relationships between the variables or priors over their distributions. The power

of defining an intervention in this way stems from the number of things that are assumed

invariant between the two processes. All the (conditional) distributions for variables in

the graph that were not directly set by the intervention are assumed not be changed by

it. The causal framework also provides, via the do-calculus, a rigorous method to draw a

boundary around which variables we must measure and model to identify causal effects.

We can represent problems where the goal is to infer properties of the post-interventional

system based on data generated by the pre-interventional distribution by explicitly repre-

senting both systems and their common features (figure 2.19). This does not require any

special framework or notation. The graphs in figure 2.19 are ordinary Bayesian networks.

However, without a causal framework, we have to make assumptions about what will be

invariant to the intervention for each such problem encountered. For complex problems,

it is very difficult to conceptualise the assumptions we expect to hold without the benefit

of a causal framework.

Z

X Y x

Z′

Y ′

θy

θz

θx

N M

Figure 2.19: Causal inference with ordinary Bayesian networks. The plate on the left
represents the observed data generated prior to the intervention and the plate on the
right the data we anticipate obtaining after an intervention that sets the pre-interventional
variable X to x. The variables Z ′ and Y ′ are unobservable as the goal is to infer properties
of thier distribution before we actually intervene on X. The assumptions characterised
by this plate model correspond to those implied by the causal Bayesian network in figure
2.4 for the intervention do(X = x). As the networks in this figure are ordinary Bayesian
networks, we could have represented the same information with a different ordering of the
links within each plate. However, this would then entail a complex transformation relating
the parameters between the two plates, rather than a simple invariance.

Causal graphical models can also be combined with Bayesian approaches to estimation.

For example, we can use a causal graphical model to identify a set of variables that form

a valid adjustment set and then use Bayesian regression to estimate posterior distribution

over a given causal effect. However, as I highlight in the next section, the way priors are

specified is critical.
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2.3.1 Be careful with that prior

Suppose data is generated by the linear Gaussian Bayesian network below. The goal is to

estimate the causal effect of X on Y , that is identify the value of the coefficient wyx. The

variable U is latent.

P (U) = N(0, vu) (2.46)

P (Z|U) = N(wzuU, vz) (2.47)

P (X|Z) = N(wxzZ, vx) (2.48)

P (Y |U,Z,X) = N(wyuU + wyzZ + wyxX, vy) (2.49)

Z

X Y

U

Figure 2.20

As each variable is a linear function of its parents, with Gaussian noise, resulting in a

joint distribution P (U,Z,X, Y ) that is multivariate normal. Marginalising out U and

conditioning on X and Z yields,

Y ∼ N(wyxX + βZ, ε) (2.50)

where,

β = wyz +
wyuwzu
w2
zu + vz

vu

, and, (2.51)

ε = vy + w2
yuvu −

v2
uw

2
zuw

2
yu

v2
z + v2

uw
2
zu

(2.52)

The causal effect of X on Y is identifiable (even without the linear Gaussian assumptions)

as Z satisfies the backdoor criterion and the expectation of the coefficient for X in a

standard OLS regression of Y against X and Z is wyx. However, the causal effect of Z on

Y is not identifiable due the presence of the unobserved confounder U . The coefficient β

captures both the causal relationship between Z and Y , wyz and the indirect relationship

through U , which we cannot separate without observing U .

Undertaking a Bayesian regression of X and Z against Y and using intuition based on

the causal relationship between Z and Y to select a prior for β will lead to selection of
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something centred around wyz. However, this is incorrect and can introduce bias into

our estimate of the coefficient for wyx, as demonstrated in figure 2.21. The prior for β

should be based on the belief about how Z is expected to be associated with Y , after

marginalising out any confounding variables.

This result is counter intuitive. When fitting a model to estimate the effect of marketing

on sales, it is natural to put a prior on the coefficient for price that is strongly negative

because we believe increasing price decreases sales. However, our prior should be on the

expected association between price and sales, holding fixed all the other variables in the

model, not the causal relationship between price and sales. An alternative is to explicitly

include U as a latent variable in the model. However, this comes at a computational

cost with little benefit for estimation, unless we have good knowledge of the relationships

between U , Z and Y . More fundamentally, at whatever level we decide to stop adding

latent variables and specify a prior, we can introduce this form of bias if priors are selected

naively on the basis of causal intuition. The issue is not limited to linear-Gaussian models.

This is an important insight for the many applications of Bayesian modelling that make

use of human-elicited priors, since people tend to think causally. The solutions, either

explicitly modelling latent variables to higher levels or allowing for them in setting priors,

have the effect of broadening the priors over nuisance parameters in the model.
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(a) No prior on β, the posterior on wyx is centred around its true value
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(b) Prior on β centred around wyz, the causal effect of Z on Y , Prior(β) = N(wyz, σ = 0.5). The
posterior on wyx is biased away from its true value (as is the posterior on β but this is not the
key quantity of interest).
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Figure 2.21: An example demonstrating how selecting a prior for a nuisance parameter cen-
tred around the causal effect of that parameter on the outcome, rather than its association
with the outcome, can bias estimates for actual parameter of interest. We sample n = 1000
data points from the joint distribution defined by P (U)P (Z|U)P (X|Z)P (Y |U,Z,X) ∼
N(0, 1)N(2U, 0.09)N(0.5Z, 1)N(3U − Z + 0.5X, 0.25) and fit the model Y ∼ N(wyxX +
βZ, ε) in Stan and plot the posterior distributions over wyx and β. Figure (a) shows
the results with no prior (equivalently an improper prior) for both wyx and β. Figure
(b) shows the results when we place a Gaussian prior centred around the wyz on the
distribution for β. All models were fit using Stan [38]
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Chapter 3

Learning from interventions

The previous sections focused on aspects of the problem of estimating the likely effect

of an intervention from data gathered prior to making the intervention. There is an

obvious alternative. Instead of trying to infer the outcome of an intervention from passive

observations, one can intervene and see what happens. There are three key differences

between observing a system and explicitly intervening in it. First, we determine the nature

of the intervention and thereby control the data points used to estimate causal effects.

Selecting data points optimally for learning is the focus of the optimal experimental design

literature within statistics [128] and the active learning literature in machine learning [145].

Secondly, explicitly choosing interventions yields a perfect model of the probability with

which each action is selected, given any context, allowing control over confounding bias.

Finally, when we are intervening in a system we typically care about the impact of our

actions on the system in addition to optimising learning. For example, in a drug trial,

assigning people a sub-optimal treatment has real world costs. This leads to a trade-off

between exploiting the best known action so far and exploring alternative actions about

which we are less certain. This exploration-exploitation trade-off lies at the heart of the

field of reinforcement learning [159].

Reinforcement learning describes the problem of an agent interacting with an environment,

learning by observing the outcome of its actions, with the goal of maximising some reward.

These problems, which also incorporate planning, are extremely difficult because the value

of an action is generally not immediately clear. The state of the environment may evolve

over time and according to previously selected actions. Actions available at future time

steps can depend on those taken in the past, and rewards may be obtained only after a

long sequence of actions. This makes it extremely difficult for the agent to accurately

attribute value to each chosen action along the path to obtaining a given reward.

We focus on a simpler class of problems within reinforcement learning known as multi-

armed bandit problems. Multi-armed bandit problems also describe an agent aiming

to maximise some reward by interacting with an environment. However, the reward is

observed immediately after the action is selected and the environment is stateless. Future

rewards generated by the environment in response to the agent’s actions do not depend
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Randomiser
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U

Figure 3.1: causal network for a randomised experiment

on the previous actions of the agent. These assumptions are a reasonable approximation

in settings where we face the same decision repeatedly with respect to many independent

units or individuals and we have a good proxy for the outcome. In this chapter we describe

the interventionalist approaches to learning to act for these types of problems, beginning

with classical randomised experiments and then the, more adaptive, multi-armed bandit

algorithms. We show how both observational causal inference and bandit algorithms can

be viewed as generalisations of randomised experiments and highlight connections between

the observational and interventional approaches to causal inference.

3.1 Randomised experiments

Randomised controlled trials are often presented as the gold standard for determining

causal effects. What is it about randomisation that makes it so important when it comes

to causality? The graphical model for a randomised controlled experiment is shown in

figure 3.1. If we assume perfect compliance (everyone takes the treatment that we select

for them) then we have a perfect model for the treatment assignment process. Since

treatment is assigned randomly, there can be no other variables that influence it and thus

no confounding variables that affect both treatment and outcome.

Randomisation does not ensure target and control group are exactly alike. The more other

features (observed or latent) influence the outcome, the more likely it is that there will be

a significant difference in the joint distribution of these variables between the target and

control groups in a finite data sample. However, the variance in the outcome, within both

the target and control groups, also increases. The net result is increased variance (but not

bias) in the estimate of causal effects.

Stratified randomised experiments address the issue of variance due to covariate imbal-

ance by randomly allocating treatment conditional on covariates believed to influence the

outcome of interest. If we stratify in such a way that the probability an instance receives

a given treatment is independent of its covariates, for example, by grouping instances by

each assignment to the covariates and then assigning treatment randomly with fixed prob-

abilities, the causal graphical model in figure 3.1 still holds. We can then estimate the

average causal effects directly from the differences in outcome across treatments. More

complex stratification strategies can introduce a backdoor path from treatment to out-

come via the covariates on which treatment is stratified, (figure 3.2). This necessitates

that one condition on these covariates in computing the average causal effect in the same

55



Treatment

Randomiser Covariates

Outcome

U

Figure 3.2: causal network for a stratified randomised experiment if the probability an
individual is assigned a given treatment depends on some covariates.

way as for estimating causal effects under ignorability (§2.2.3). The key difference is that

the propensity score is known, as it is designed by the experimenter, and there are guar-

anteed (rather than assumed) to be no latent confounding variables (that influence both

treatment and outcome). See Imbens and Rubin [86] for a discussion of the trade-offs

between stratified versus completely random experiments.

The benefit provided by randomisation in breaking the link between the treatment variable

and any latent confounders should not be understated. The possibility of unobserved

confounders cannot be empirically ruled out from observational data [120] (there is no

test for confounding). This means causal estimates from non-experimental data are always

subject to the criticism that an important confounder may have been overlooked or not

properly adjusted for. However, randomised experiments do have some limitations.

3.1.1 Limitations of randomised experiments

The idealised notion of an experiment represented by figure 3.1 does not capture the com-

plexities of randomised experiments in practice. There may be imperfect compliance so

that the treatment selected by the randomiser is not always followed, or output censoring

in which the experimenter is not able to observe the outcome for all units (for example if

people drop out). If compliance or attrition is not random, but associated with (poten-

tially latent) variables that also affect the outcome, then the problem of confounding bias

returns.1 See figure 2.5 for a graphical model of a randomised experiment with imperfect

compliance.

It is not always possible or ethical to conduct a randomised controlled trial, as is beautifully

demonstrated by the paper of Smith and Pell [150] on randomised cross-over trials of

parachute use for the reduction of the mortality and morbidity associated with falls from

large heights (figure 3.3). When experimentation is possible, it is frequently difficult or

expensive. This means experimental data sets are often much smaller than observational

ones, limiting the complexity of models that can be explored. In addition, they are often

conducted on a convenient, but unrepresentative, sample of the broader population of

interest (for example first year university students). This can result in estimates with

1Non-compliance is a problem if the goal is to estimate the causal effect of the treatment on the outcome
but not if the goal is to estimate the causal effect of prescribing the treatment. The latter makes sense in a
context where the process by which people decide whether to take the treatment they have been prescribed
is likely to be the same if the treatment were made available more generally beyond the experimental trial.
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Figure 3.3: Experiments are not always ethical; an illustration of a randomised cross-over
trial of parachutes for the prevention of morbidity and mortality associated with falls from
large heights.

high internal validity [36], in that they should replicate well in a similar population, but

low external validity in that the results may not carry over to the general population of

interest. The question of whether an experiment conducted on one population can be

mapped to another is referred to as the transportability problem [24] and relies on very

similar assumptions and arguments to causal inference and the do-calculus.

Finally, non-adaptive randomised experiments are not optimal from either an active or

reinforcement learning perspective. As an experiment proceeds, information is obtained

about the expectation and variance of each intervention (or treatment). Fixed experimen-

tal designs cannot make use of this information to select which intervention to try next.

This results in both poorer estimates for a fixed number of experimental samples and more

sub-optimal actions during the course of the experiment.

3.2 Multi armed bandits

Multi-armed bandits address the problem of designing experiments that can adapt as

samples are observed. Their introduction is generally attributed to Thompson [162]. In

its classic formulation [133, 98] the (stochastic) k-armed bandit describes a sequential

decision making problem, with k possible actions or arms. Each arm i is associated with

a fixed but unknown reward distribution.2 For each timestep up to some horizon T , the

learner selects an action and receives a reward, sampled i.i.d from the marginal distribution

corresponding to that action. The goal of the learner is to maximise the total reward they

2In order to quantify the performance of bandit algorithms, some assumptions are required on the
distributions from which the rewards are generated. It sufficient (but not necessary) to assume they are
sub-Gaussian.
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receive. This problem captures the exploration-exploitation trade-off. The learner must

balance playing arms that have yielded good results previously with exploring arms about

which they are uncertain.

Definition 12 (Stochastic k-armed bandit problem). Let A = {1, ..., k} be the set of

available actions (or bandit arms) and P (y) = P
(
Y 1, ..., Y k

)
be a joint distribution over

the rewards for each action. The multi-armed bandit problem proceeds over T rounds. In

each round t,

1. the learner selects an action at ∈ {1, ..., k}, based on the actions and rewards from

previous timesteps and a (potentially stochastic) policy π

2. the world stochastically generates the rewards for each action, [Y 1
t , ..., Y

k
t ] ∼ P (y)

3. the learner observes and receives (only) the reward for the selected action Y at
t

At the end of the game, the total reward obtained by the learner is
∑T

t=1 Y
at
t . We denote

the expected reward for the action i by µi and the action with the highest expected reward

by i∗. Note we have used counterfactual notation (see section 2.1.2) to denote the rewards

for each action, Y i
t is the reward the algorithm would have received had it selected action i

at timestep t. I discuss the (potentially) counterfactual nature of regret further in section

3.3.

The total reward a bandit algorithm/policy can expect to achieve depends on the dis-

tributions from which the rewards for each action are sampled. To account for this, the

performance of bandit algorithms is quantified by the difference between the reward ob-

tained by the algorithm and the reward that would have been obtained by an oracle that

selects the arm with the highest expected reward at every timestep. This difference is

known as the (cumulative) regret.3

RT =

T∑
t=1

Y i∗
t −

T∑
t=1

Y at
t (3.1)

Both the rewards and the actions selected by the algorithm are random variables. The

majority of work in the bandit literature focuses on analysing and optimising some form

of the expected regret, however there has been some work that also considers the concen-

tration of the regret [17, 15, 14]. The expectation of the regret, as defined by equation 3.1,

is referred to as the pseudo-regret [31] and is given by equation 3.2. A stochastic bandit

algorithm is learning if it obtains pseudo-regret that is sub-linear in T .

3The term regret is somewhat overloaded in the reinforcement learning literature. There are alternative
definitions that arise in the related problems of adversarial bandits and learning from expert advice. In
addition, researchers often refer to the expected regret as “the regret”.

58



Definition 13 (Pseudo-Regret).

R̄T (π) = max
i∈{1,...,k}

E

[
T∑
t=1

Y i
t

]
− E

[
T∑
t=1

Y at
t

]
(3.2)

= Tµi∗ − E

[
T∑
t=1

Y at
t

]
(3.3)

The regret is invariant to adding a constant to the expected rewards for all actions. How-

ever, it still depends on key characteristics of the reward distributions for each action.

Bandit algorithms are designed given assumptions about the form of the distributions,

such as that they come from a given family (i.e Bernoulli bandits, Gaussian bandits), or

that the rewards are bounded in some range. Given these assumptions, the performance

of the algorithm is characterised in two ways; by the problem-dependent regret, which typ-

ically depends on how far each arm is from optimal and by the worst case regret, which

is the maximum regret over all possible configurations of the reward distributions (for a

given horizon T and number of arms k).

3.2.1 Stochastic bandits: Approaches and results

The adaptive nature of multi-armed bandit algorithms complicates the design and analysis

of estimators. The action selected by an algorithm at a given timestep can depend on the

history of previous actions and rewards. As a result, the probability that each action is

selected evolves over time, the actions are not sampled i.i.d from a fixed distribution and

the number of times each action is selected is a random variable. The expectation and

variance guarantees of standard estimators do not hold in this setting (see figure 3.4 for a

concrete example). This makes it very difficult to obtain an analytical expression for the

expected regret for a given algorithm and problem. Instead, the focus is on computing

bounds on the expected regret.

There are a few key principles that are used to guide the development of bandit algorithms.

The simplest is to explicitly separate exploration from exploitation, and base estimation

of the expected rewards of each arm only on the data generated during exploration steps.

A common example in practice is uniform exploration (or A/B testing) for some fixed

period followed by selecting the action found to be best during the exploration phase.

This results in simpler analysis, particularly if the number of exploration steps is fixed in

advance, however it is sub-optimal, even if the exploration period is adaptive [63].

Another key approach is optimism in the face of uncertainty. Applied to stochastic bandits,

the optimism in the face of uncertainty principle suggests computing a plausible upper

bound for the expected reward of each arm, and selecting the arm with the highest upper

bound. The optimism principle encourages exploitation and exploration because a high

upper bound on the expected reward for an action implies either the expected reward or

the uncertainty about the reward for that action is high. Thus selecting it yields either a
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Figure 3.4: Standard empirical estimators can be biased if the number of samples, n, is
not fixed in advance, but is a random variable that depends on the values of previous
samples. This example plots the distribution (over 106 simulations) of µ̂ = 1

n

∑n
i=1Xi,

where Xi ∼ Bernoulli(0.2). In each simulation, we stop taking samples if the average
value of Xi up to that point exceeds a threshold of 0.3 or n reaches 100. E [µ̂] = 0.439.
The estimator is substantially biased above E [Xi] = 0.2 by the early stopping. Note that
excluding experiments that were stopped early creates a bias in the opposite direction,
E [µ̂|n = 100] = 0.185, as trials that obtained positive results early are excluded. This has
some interesting real world implications. Early stopping of clinical trials is controversial.
A researcher conducting a meta-analysis who wished to avoid (rather than bound) bias
due to early stopping would have to exclude not only those trials which were stopped early
but those which could have been stopped early.

good reward or useful information.

Lai and Robbins [98] leveraged the optimism in the face of uncertainty principle to de-

velop an algorithm for specific families of reward distributions, including the exponential

family. They showed that, for a given bandit problem, the pseudo-regret increased with

O (log(T )) asymptotically and proved this is asymptotically efficient. However, their al-

gorithm is complex and memory intensive to compute as, at each timestep, it relies on the

entire sequence of rewards for each arm. Agrawal [4] developed a simpler algorithm that

computed upper bounds based only on the mean of previous samples for each arm, whist

retaining the logarithmic dependence on T . Finally, Auer et al. [16] developed the UCB-1

algorithm, see algorithm 1, which requires only that the reward distributions are bounded,

and proved finite-time regret bounds. We now assume the rewards are bounded in [0, 1].

The algorithm and regret bounds can be generalised to sub-gaussian reward distributions,

see Bubeck et al. [31].
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Algorithm 1 UCB-1

1: Input: horizon T .
2: Play each arm once.
3: for t ∈ 1, . . . , T do
4: Count the number of times each arm has been selected previously nt,i =∑t−1

s=1 1{as = i}
5: Calculate the mean reward for each arm µ̂t,i = 1

nt,i

∑t−1
s=1 1{as = i}Yt

6: Select arm at ∈ arg maxi={1,...,k}

(
µ̂t,i +

√
2 log t
nt,i

)

Let ∆i = µi−µ∗ be the degree to which each arm is sub-optimal. The problem-dependent

pseudo-regret for UCB-1 is bounded by equation 3.4 [31],

R̄T ≤
∑
i:∆i>0

(
8 log(T )

∆i
+ 2

)
(3.4)

Somewhat unintuitively, the regret increases as the value of the arms gets closer together.

This is because it becomes harder for the algorithm to identify the optimal arm. As

the differences ∆i → 0, the regret bound in equation 3.4 blows up, however the regret

itself does not - since although we may not be able to distinguish arms with very small

∆i from the optimal arm, we also do not lose much by selecting them. The worst case

occurs if all arms have the same expected reward µ except for the optimal arm which has

reward µ∗ = µ+ ∆, where ∆ is just too small for the algorithm to learn to identify which

arm is optimal given the horizon T . The regret cannot exceed what would be obtained by

selecting the a sub-optimal arm in every timestep, T∆, so the worst case regret is bounded

by the minimum of equation 3.4 and T∆ which is maximised when they are equal, see

figure 3.5. By solving this equality for ∆ one can show the worst case regret is bounded

by equation 3.5, see Bubeck et al. [31].

R̄T ∈ O
(√

kT log(T )
)

(3.5)

Auer et al. [17] show that the worst case regret for the k-armed bandit problem is lower

bounded by R̄T ∈ Ω
(√

kT
)

. Note that the form of the dependence on the number of

arms k and horizon T differs between the problem-dependent and worst case regret. The

problem-dependent regret grows linearly with the number of arms, k, and logarithmically

with T , while the worst case regret grows with the square root of k and T . This difference

is because the problem-dependent regret defines how the regret grows for a fixed set of

reward distributions as T increases, whereas in the worst case regret, the gap between

expected rewards is varied as a function of T .

Subtle modifications to the UCB algorithm can eliminate the logarithmic term in equation

3.5. This yields regret O
(√

TK
)

and closes the gap with the worst case lower bound

61



0.0 0.2 0.4 0.6 0.8 1.0
Suboptimality gap ∆

0

20

40

60

80

100

120

140

160

P
se

ud
o

re
gr

et
 R

T

T∆(
8log(T)

∆
+ 2

)
simulated

Figure 3.5: The regret bound in equation 3.4 grows as the differences between the expected
rewards for each arm shrink. The solid curve shows the mean (cumulative) regret for the
UCB-1 algorithm, over a 1000 simulations for a 2-armed, Bernoulli bandit with fixed
horizon, T = 500, as a function of the difference in the expected reward for the arms ∆.
The dashed curves show the corresponding upper bounds; T∆ and equation 3.4
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Figure 3.6: The actual performance of the UCB algorithm can be substantially better than
suggested by the upper bound, particularly for small T . The solid curve shows the mean
expected regret associated with the sequence of arms chosen by UCB-1 with k = 2 arms
and the rewards sampled from Bernoulli([.3, .7]) over 1000 simulations. The dashed curve
shows the corresponding upper bound given by the minimum of T∆max and equation3.4.

[12, 103], whilst retaining a good problem-dependent bound of the form achieved by UCB

[103].

Finally, there is the heuristic principle of playing each arm with probability proportional

to the likelihood that it is optimal. This approach is generally called Thompson sam-

pling as it was the method proposed in the original bandit paper by Thompson [162].

Thompson sampling has strong empirical performance, [42]. However, it is complex to

analyse. Kaufmann et al. [95] demonstrate that it obtains optimal problem-dependent

bounds, Agrawal and Goyal [5] show that it obtains worst case regret of O
(√

kT log(T )
)

,

equivalent to UCB. Thompson sampling has recently been shown to converge on the opti-

mal policy asymtopically in very general reinforcement learning settings that violate may

of the assumptions made in the bandit setting [104].

3.2.2 Pure-exploration problems

Another problem that has attracted recent attention [32, 13, 61, 94] within the stochas-

tic multi-armed bandit framework is pure exploration or best arm identification. In this

setting, the horizon T represents a fixed budget for exploration after which the algorithm

outputs a single best arm i. The performance of the algorithm is measured by the simple
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regret; the expected difference between the mean reward of the (truly) optimal arm and

the mean reward of the arm selected by the algorithm.

Definition 14 (Simple Regret).

RT = µi∗ − E
[
µî∗
]
. (3.6)

The best arm identification problem arises naturally in applications where there is a testing

or evaluation phase, during which regret is not incurred, followed by a commercialisation

or exploitation phase. For example, many strategies might be assessed via simulation prior

to one being selected and deployed. In many business settings, maintaining the ability to

experiment incurs a high fixed cost in comparison to any regret incured, which justifies

seperating exploration and exploitation. The worst case simple regret for a k-armed bandit

is lower bounded by equation 3.7 ([32]).

RT ∈ O
(√

K/T
)

(3.7)

Pure-exploration does not mean simply playing the arm with the widest uncertainty

bounds. The goal is to be sure the arm we believe is optimal is in fact optimal at the

end of the exploration period. This means we should focus exploration on arms which

are plausibly optimal, creating a form of exploration-exploitation trade-off, albeit subtlety

different to that for the cumulative regret.

3.2.3 Adversarial Bandits

Adversarial bandits, described by Auer et al. [17], are an alternate, widely studied, setting

that relaxes the assumption that rewards are generated stochastically. Instead, simulta-

neously with the learner selecting an action at, a potentially malicious adversary selects

the reward vector Y t. As in the stochastic setting, the learner then receives reward only

for the selected action.

Definition 15 (Adversarial k-armed bandit problem). Let A = {1, ...k} be the set of

available actions. In each round t ∈ 1, ..., T ,

1. the world (or adversary) generates, but does not reveal, a vector or rewards Yt =

[Y 1
t , ..., Y

k
t ].

2. the learner selects an action at ∈ {1, ..., k}, based on the actions and rewards from

previous timesteps and a (potentially stochastic) policy π

3. the learner observes and receives (only) the reward for the selected action Y at
t

Adversaries that generate rewards independently of the sequence of actions selected by
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the learner in previous timesteps are referred to as oblivious, as opposed to non-oblivious

adversaries, which can generate rewards as a function of the history of the game. In

the case of oblivious adversaries, we can also define the adversarial bandit problem by

assuming the adversary generates the entire sequence of reward vectors before the game

commences.

For oblivious adversarial bandits, we can define regret analogously to stochastic bandits

as the difference between the reward obtained by playing the single arm with the highest

reward in every round and the expected reward obtained by the algorithm.4 We do not

have to take the expectation over the first term of equation 3.8 because the sequence of

rewards is fixed. However the reward obtained by the algorithm is still a random variable

as we are considering randomised algorithms.

R̄T (π) = max
i∈{1,...,k}

T∑
t=1

Y i
t − E

[
T∑
t=1

Y at
t

]
(3.8)

The policy (or algorithm) used by the learner is available to the adversary before the game

begins, and there are no limitations placed on the amount of computation the adversary

can perform in selecting the reward sequences. This implies the adversary can ensure

that any learner with a deterministic policy suffers regret O (T ) by forecasting their entire

sequence of actions. For example, if the learner will play a1 = 1 in the first round, then

the adversary sets the reward Y1 = [0, 1, 1, ...1], forecasts what action the learner will play

in round 2, given they received a reward of 0 in round 1, and again generates the reward

vector such that the action the learner will select obtains no reward, and all other actions

obtain the maximum reward. This implies adversarial bandit policies must be sufficiently

random to avoid such exploitation 5

The seminal algorithm for adversarial bandits is Exp-3 [16], which, like UCB, obtains worst

case pseudo-regret of O
(√

TK log(T )
)

[17]. Optimal algorithms, with R̄T = O
(√

TK
)

,

have also been demonstrated for the oblivious adversarial setting [12]. The focus, for

adversarial bandits, is on analysing the worst case regret because the problem-dependent

regret is not well defined without additional assumptions. However, there has been recent

work on developing algorithms that are optimised for both the adversarial and stochastic

settings, in that they are sufficiently cautious to avoid linear regret in the adversarial

setting, but can nonetheless obtain good problem-dependent regret in more favourable

environments [34, 19].

Adversarial bandits appear to be more applicable to real world problems because they

do not assume that the rewards associated with each arm are constant over time or in-

4This is also referred to as the weak regret, since in the adversarial case, it can make more sense to
compare against the best sequence of arms rather than the best single arm.

5The UCB algorithm, defined by algorithm 1, is deterministic if the order in which arms are played
during the first k rounds is fixed and the method for selecting which arm to play when multiple-arms have
the same upper-confidence bound is not-random (for example, select the arm one with the lowest index i).
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dependent of the previous actions of the learner. However, pseudo-regret, as defined in

equation 3.8, does not fully capture an algorithm’s performance in such cases because it

is defined with respect to playing the single arm with the best average return over the

game. In settings where the rewards change over time, the pseudo-regret can be negative

(see figure 3.7) so upper bounds on the pseudo-regret do not fully reflect how sub-optimal

the algorithm may be. An example of a setting that lies between stochastic and adver-

sarial bandit problems is the non-stationary setting, in which the rewards are generated

stochastically from a distribution that varies over time. Adversarial bandit algorithms

may perform better in such settings than standard stochastic policies to the extent that

they explore more (to avoid the adversary simulating their behaviour) and thus adapt

quicker to changes in the reward distribution. Adversarial algorithms also have stronger

worst case regret guarantees, since even the weak regret for stochastic bandits is not guar-

anteed to be sub-linear in such settings. However, if there are constraints on how rapidly

or frequently the reward distributions can change over time, it is better to use algorithms

specifically developed to exploit such information and compare them against a stronger

notion of regret (see for example [65, 64, 27]).
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Figure 3.7: The pseudo-regret can be negative if rewards are non-stationary. This exam-
ple shows the results of 1000 simulations of running the UCB-1 algorithm on a 2-armed
Bernoulli bandit problem where the expected rewards change linearly over time, up to a
horizon T = 10, 000. Figure (a) shows the expected rewards of each arm, and the propor-
tion of time that arm-1 is played, as a function of time. The single best-arm is arm-1 as it
has the highest expected reward (averaged over t). An oracle that selects arm-1 in every
round obtains an expected reward of 5, 000. However, despite not being designed to do so,
the UCB-algorithm can adapt to the changing reward distribution to obtain consistently
higher rewards. The distribution of regret over the 1000 simulations is shown in figure
(b).
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3.2.4 Contextual bandits

In the standard multi-armed bandit setting, each decision is identical and the goal is to

learn a single best action. However, in most real life (sequential) decision making processes,

the optimal action depends on some context. The best treatment to offer an individual

patient could depend on their age, gender, disease subtype or genetics and will not always

align with the treatment that is best on average (or for the majority of people). Similarly,

decisions on which ad or content to display on a webpage, or which product to recommend,

can be personalised based on the previous behaviour of the user. A movie recommender

system that learned a single “best” movie for everyone would not be very useful.

Contextual bandits are a generalisation of multi-armed bandits that make use of this

additional contextual information. The term contextual bandit was coined by Langford

and Zhang [101]. However, close variants of the underlying problem have also been posed

under the names; “associative reinforcement learning” [92], “bandits with concomitant

variables”[174] and “bandit problems with side information” [171].

Definition 16 (Stochastic Contextual Bandit 6). Let P (x,y) be the joint distribution

over the rewards for each action and some context X ∈ X . In each round t ∈ {1, ...T},

1. the world stochastically generates the vector of rewards for each action and the

context, (Xt, [Y
1
t , ..., Y

k
t ]) ∼ P (x,y) and reveals Xt to the learner

2. the learner selects an action At ∈ {1, ..., k}, based on the context as well as actions

and rewards from previous timesteps,

3. the learner observes and receives (only) the reward for the selected action Yt = Y At
t

Note that, like in the standard multi-armed bandit setting, the enviroment is assumed

to be stationary. The context and rewards are sampled stochastically at each timestep

independently of the previous contexts, rewards and actions. Standard multi-armed ban-

dits learn to select the action a that, with high probability, maximises E [Y |a]. Contextual

bandits learn to select actions that maximise E [Y |x, a]. The reward for contextual bandits

should be compared to an oracle that acts optimally based on the context. To achieve

this, even when the context is continuous, the regret is defined with respect to a class of

hypothesis that map from context to action, h ∈ H : X → {1, ..., k}. The pseudo-regret

is the difference between the expected regret obtained by an oracle that selects actions

based on the single best hypothesis or policy h at each timestep, and the expected reward

obtained by the algorithm.

R̄T = max
h∈H

E

[
T∑
t=1

Y
h(Xt)
t

]
− E

[
T∑
t=1

Y At
t

]
(3.9)

6Contextual bandits can also be defined in the adversarial setting analogously to definition 15
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If the context is discrete, X = {1, ..., N}, the contextual bandit problem can be reduced to

the standard multi-armed bandit problem by creating a separate standard bandit instance

for each value of the context. This approach results in a worst case regret of O
(√

NkT
)

,

with respect to the hypothesis class H = X ×A, consisting of all possible mappings from

context to action7. This is optimal with respect to this class of hypothesis. However, as

this reduction treats the problem of learning the correct action for each context completely

independently, it cannot leverage any structure in the relationships between different con-

texts and actions. As in the supervised learning setting, the existence of some form of

low-dimensional structure is key to learning in realistic problems, where the context is

continuous or high-dimensional.8 We expect some form of smoothness; that is, values of

context that are similar should lead to comparable rewards for a given action. We need

algorithms that can leverage such assumptions.

An alternate reduction to the standard bandit problem, which allows us to constrain the

hypothesis space to explore, is to treat each hypothesis h as a bandit arm [101]. At each

timestep, we select h ∈ H based on the rewards previously observed for each hypothesis,

take action h(x) and observe the associated reward. Although this approach removes

the explicit dependence on the size of the context, the regret grows linearly with the size

of the hypothesis class considered, limiting our ability to learn any complex mappings

from context to actions. The key problem with this approach is each sample is used to

update our knowledge about only one hypothesis, as opposed to the supervised learning

setting, where each data point is (implicitly) used to compute the loss for every hypothesis

simultaneously.

Suppose that, at each timestep t, after selecting an action, the learner received the reward

for the chosen action but observed the full vector of rewards [Y 1
t , ..., Y

k
t ]. This is known as

the full information setting. In this case, the learner can simulate running each hypothesis

over the history to compute the reward it would have obtained and use the hypothesis

with the best empirical reward to select the next action. This is the follow the leader

algorithm, which obtains optimal regret O
(√

T log(|H|)
)

for the full-information prob-

lem [41]. Unfortunately, in the contextual bandit problem, the (counterfactual) rewards

associated with alternate action choices are not observed. As in causal effect estimation,

we can view this as a missing data problem. However, the data is missing not at random

because the component of the reward that is observed depends on the action selected,

which in turn is a function of the previous history of actions and rewards.

The Epoch-greedy algorithm, [101], addresses these issues by transforming the contex-

tual bandit problem into a “data missing at random” problem by explicitly separating

exploration from exploitation. Epoch-greedy is an explore-exploit algorithm. It selects

actions uniformly at random during an exploration phase and leverages this data to es-

7This follows from the fact that we have N standard bandit instances, each suffering regret O
(√
kTc
)
,

where Tc is the number of times context c occurred such that
∑N
c=1 Tc = T . The regret is maximised if

Tc = T/N resulting in total regret O
(
N
√
kT/N

)
.

8Even if the context is genuinely discrete, N grows exponentially with the number of variables. For
example, with n binary variables, N = 2n
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timate the value of each hypothesis, using inverse propensity weighted estimators to “fill

in” the missing data. The hypothesis with the highest empirical reward is then used to

select actions for the remaining timesteps. The epsilon-greedy algorithm obtains worst

case regret O
(
T

2
3 (k log |H|)

1
3

)
, which has sub-optimal dependence on the horizon T .

The Exp-4 algorithm, developed in the context of learning from expert advice (each h ∈ H
can be viewed as an expert who recommends which action to take), achieves optimal worst

case regret of O
(√

kT log(|H|)
)

for both stochastic and adversarial contextual bandit

problems [18]. However, it involves maintaining a list of weights for each hypothesis h,

resulting in time and memory requirements that grow linearly with the size of the hy-

pothesis space and, unlike the epoch-greedy algorithm, it cannot be generalised to infinite

dimensional hypothesis spaces in a straightforward way. The ILOVECONBANDITS al-

gorithm combines the best of both worlds to obtain a computationally efficient algorithm

with (almost) optimal regret [3]

Both Epoch-greedy and ILOVECONBANDITS involve solving problems of the form,

arg max
h∈H

τ∑
t=1

Yt1{h(Xt) = At} (3.10)

This expression equates to identifying the empirically best policy based on previous data.

The algorithms assume the existence of an oracle that can solve this problem and report

complexity in terms of the number of calls required to the oracle. The computational

tractability of these algorithms on large (or infinite) hypothesis spaces stems from the fact

that this problem (also known as the argmax-oracle), can be reduced to solving a cost

sensitive classification problem [51].

Finally, if we have a parametric model for the relationship between context, action and

reward that allows (efficient) computation of the posterior or confidence bounds on the

reward for each arm given context, we can develop generalised versions of the UCB or

Thompson sampling algorithms. For linear pay-off models, both approaches yield algo-

rithms with strong regret guarantees, Lin-UCB [107] and Generalised Thompson Sampling

[6].

3.2.4.1 The causal structure of contextual bandits

The definition of contextual bandits (see definition 16) does not make any assumptions

about the causal relationship between the context X and the reward Y (see figure 3.8).

However, the context should be relevant, such that P (y|x) 6= P (y), otherwise including it

is equivalent to adding irrelevant features to a supervised learning problem. Bareinboim

et al. [23] demonstrate that, in some cases, policies that incorporate observations of the

action an agent would have taken were their action not set by the bandit policy can

achieve lower regret than those that ignore this information. This is an example of the
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case represented in figure 3.8b. It is even possible to have (useful) context X that is a

consequence of Y as in figure 3.8c and example 17.

(a) X causes Y

Y

Y a

A

X

(b) X and Y are confounded

Y

Y a

A

X

U

(c) Y causes X

Y

Y a

A

X

Figure 3.8: Several potential causal graphical models for the contextual bandit problem
(if actions are selected at random). X and Y represent the context and reward vectors
respectively, and Y = Y a is the reward received by the learner, which is a deterministic
function of Y and a. Regardless of the causal structure, observing the context X provides
information about the vector of rewards Y . The causal structures in figures 3.8a and 3.8b
also make sense if the elements of Y are genuine counterfactuals, that is only the reward of
the selected action is ever realised. For a variable to be used as context, its value must be
observable before the agent must select an action. Thus the variable X can only treated
as context in causal graphs of the form in figure 3.8c if the components of Y (and thus X)
are realised prior to the agent selecting an action. This implies the components of Y are
not truly counterfactual, it just that the agent is limited to only observing the outcome
of the action they choose. Finally, to represent a realistic (contextual) bandit problem,
where actions are not selected at random, we would need to “unroll” the graphs, such that
there was a copy for each timestep t and allow the action At to depend on the context Xt

and the previous observations (X, A, Y )t−1
1 .

Example 17. Imagine a modified game of roulette. As in standard roulette, it consists of

a spinning wheel with a ball that can land in one of 37 numbered pockets. However, unlike

the standard game where punters place bets before the wheel is spun, in this variant the

wheel is spun first. Five seconds before it comes to rest the face of the wheel darkens to

hide the position of the ball from the players. They then place bets after it has stopped

(and are each allowed only to check if the position they have bet on was correct). At the

point in time the players are selecting their actions, the rewards for each possible choice

are fully determined (all zero except for the pocket containing the ball). Suppose a canny

gambler realises the ball makes a tiny sound, from rocking back and forth, if it is close to

the left or right side of the wheel such that the pocket holding it is close to horizontal. The

existence (or not) of this sound is a consequence of the position of the ball and thus the

reward state and the gambler can use it as context to improve the likelihood of obtaining

a reward.

It is difficult to come up with realistic examples in which the full sequence of rewards is

generated, but only the one associated with the selected action is observable to the learner.

In the typically cited applications of contextual bandit algorithms, such as selecting how

to treat patients or which ad to use, only the reward of the selected action is ever realised,

and the alternate rewards are counterfactual variables.
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3.2.5 Learning from logged bandit data

Another topic of interest within the bandit community, which is deeply connected to causal

effect estimation from observational data, is learning from logged bandit feedback data or

off-policy evaluation [100, 157, 108, 52, 30, 160]. In this setting, the learner has a data

set S =
{

(Xt, At, Y
At
t )
}T
t=1

, which is assumed to have been generated by a stochastic

contextual bandit environment interacting with some unknown, potentially stochastic,

policy π(xt, ht), where ht is the sequence of observed data up to time t. The goal of the

learner is to evaluate the value of an alternative policy, π′, for selecting actions, often with

the underlying motivation of identifying an optimal policy within some space of policies

Π.

This problem differs from the contextual bandit problem in that the learner is not interact-

ing with the environment. As a result, there is no exploration-exploitation trade-off to be

made. However, the problem does not reduce to supervised learning because of the bandit

nature of the feedback; only the reward of the selected action is observed. In addition, if

π is allowed to depend on h then the samples are not i.i.d. The majority of the literature

considers the case where the original policy π was stationary (π(xt, ht) = π(x)). Lang-

ford et al. [100] do allow the original policy to be adaptive and prove a high probability

bound on the accuracy of their estimator for π′, albeit with the strong assumption that

the original policy π did not depend on X.

If the original policy is assumed to be stationary, the problem of evaluating an alternate

policy π′ is almost identical to that of causal effect estimation under ignorability, as we

discussed in section 2.2.3. The causal structure can be represented in figure 3.9 There is an

(implicit) assumption that all variables that affect the choice of action by π are included in

X, ensuring that X satisfies the backdoor criterion with respect to identifying the causal

effect of do(A = a) on the observed reward Y , for any action a ∈ {1, ..., k}. The only

difference is that the goal is to evaluate alternate policies π′ that may be stochastic and

depend on x, as opposed to only policies of the form π′(x) = a, equivalent to do(A = a).

However, the identification of such stochastic, conditional policies can be reduced to the

identification of P (y|do(A = a),x), see section 4.2. of Pearl [120]. In this case, letting

Pπ′ {a|x} denote the distribution over actions under policy π′ given context x, the expected

(per round) reward obtained by π′ is given by,

E
[
y|π′

]
= E

[
y|do(a ∼ π′(x))

]
= E(x,a)∼P(x) Pπ′{a|x} [y|x, a] (3.11)

The final equality relies on X satisfying the backdoor criterion, which implies that

P (y|x, do(a)) = P (y|x, a) . As in estimating average causal effects under ignorability, we

have a covariate shift problem, with training data sampled from P (x) Pπ {a|x}P (y|x, a)

but generalisation error measured with respect to P (x) Pπ′ {a|x}P (y|x, a). A difference

in practice, is that in the applications frequently considered under learning from logged

71



X

YA
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Figure 3.9: Causal graphical model for learning from logged feedback data under the
assumption the original policy π for selecting actions was stationary and dependent only
on some observed context X, a ∼ π(x). The outcome Y may depend on X directly,
indirectly through a latent variable U or both.
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...

Figure 3.10

feedback data, such as ad serving or recommender systems, there may be substantial in-

formation available about π, in the best case, Pπ {a|x} is known. This makes estimators

utilising inverse propensity weighting, including doubly robust estimators as in Dudik

et al. [52], more attractive.

Swaminathan and Joachims [160] point out that the problem of identifying the optimal

policy (subject to some risk minimisation goal) is not as simple as estimating the expected

reward associated with each policy in some space and selecting the empirical best because

the variance of the estimators for some policies may be much higher than for others.

The data generating mechanism for adaptive policies, which include standard contextual

bandit algorithms, is more complex and can no longer be represented by figure 3.9 because

the action at any time point depends on the previous sequence of contexts, actions and

rewards in addition to the current context. This setting can be represented graphically

by ’unrolling’ the graph in figure 3.9, and adding links from all (Xt<τ , Yt<τ , At<τ ) to Aτ

as shown in figure 3.10. We can still apply the do-calculus to show P (yt|do(at),xt) =

P (yt|at,xt), however we cannot simply estimate P (yt|at,xt) with estimators designed for

i.i.d data such as
∑T

t=1 Yt1{X = xt, A = at}/
∑T

t=1 1{X = xt, A = at}.

3.2.6 Adding structure to actions

The classic multi-armed bandit is a powerful tool for sequential decision making. However,

the regret grows linearly with the number of (sub-optimal) actions and many real world

problems have large or even infinite action spaces. This has led to the development of

a wide range of models that assume some structure across the reward distributions for

different arms, for example generalised linear bandits [56], dependent bandits [118], X-

armed bandits [33] and Gaussian process bandits [155], or that consider more complex
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feedback, for example the recent work on graph feedback [111, 105, 9, 35, 96, 8] and

partial monitoring [126, 25].

In the next chapter, I propose a very natural connection between causal graphs and bandit

problems and show it induces a novel form of additional feedback and structure between

arms that cannot be can exploited by these previous approaches.

3.3 The counterfactual nature of regret

We conclude this chapter on bandits with a note on the counterfactual nature of regret,

which I have not seen discussed with respect to bandit regret. However, the issues raised

are very closely related to the work by Dawid [46] on problems associated with the use of

counterfactual variables for (observational) causal inference.

It is possible, as we demonstrated in example 17, to construct bandit problems in which

the full vector of rewards [Y 1
t , ..., Y

k
t ] is actually generated at each timestep (and, at least

in principle, is observable to someone although not the agent). However, in most real

applications for bandit problems, only the outcome associated with the selected action

is ever realised and so the remaining components of the reward vector are counterfac-

tual, justifying the use of the counterfactual notation to denote them. There are complex

philosophical objections to counterfactuals arising from the way they describe alternate

universes that were never realised. This makes it easy to make statements using counter-

factuals that cannot be confirmed empirically (even with infinite experimental data). We

now show with a simple example that the standard definition of regret is a fundamentally

counterfactual quantity. Recall that the cumulative regret is defined by,

RT =

T∑
t=1

Y i∗
t −

T∑
t=1

Y at
t (3.12)

=

T∑
t=1

(
Y i∗
t − Y

at
t

)
(3.13)

Take a stochastic, two-armed, Gaussian bandit with the joint distribution of the (coun-

terfactual) rewards P
(
Y 1
t , Y

2
t

)
given by equation 3.14. Suppose without loss of generality

that arm 1 is the optimal arm, such that µ1 > µ2.

P (Y 1
t , Y

2
t ) ∼ N(

[
µ1

µ2

]
,

[
σ2 ρσ2

ρσ2 σ2

]
) (3.14)

Consider an algorithm that always selects arm 2. The distribution over the difference

of jointly normal random variables is also normal, letting, τt = Y 1
t − Y 2

t yields P (τt) =
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N(µ1 − µ2, 2σ
2(1 − ρ)). Thus the distribution over the regret for this algorithm is given

by,

RT ∼ N
(
T (µ1 − µ2), 2σ2T (1− ρ)

)
(3.15)

The parameters of the marginal distributions, P
(
Y 1
t

)
and P

(
Y 2
t

)
, can be estimated di-

rectly by simply sampling from each arm. However, the covariance ρ cannot, because

we never simultaneously observe the rewards for both arms. As a result, even with full

knowledge of the reward distributions for each arm, the distribution over regret cannot,

in general, be computed without untestable assumptions about the covariance between

counterfactuals (see figure 3.11).

4 3 2 1 0 1 2 3 4 5
Y

P(Y 1)

P(Y 2)

(a) Marginal distributions over the rewards
for each action for µ1 = 1, µ2 = 0 and σ = 1.

4 6 8 10 12 14 16
RT

P(RT|ρ= . 99)

P(RT|ρ= 0)

(b) The distribution over RT for T = 10 for
two different values of ρ

Figure 3.11: The distribution over the regret as defined by equation 3.12 depends on
unobservable properties of the joint distribution over counterfactual rewards. The same
(marginal) distributions over the rewards can correspond to quite different regret distri-
butions.

This result is somewhat perturbing. The stochastic bandit problem can be defined with-

out recourse to counterfactual variables by having the world stochastically generate only

a reward for the selected action at each timestep, and the behaviour of standard bandit

algorithms depends only on the marginal reward distributions for each arm. The expecta-

tion of the regret as defined by equation 3.2 also remains unchanged as both its definition

and the learner’s actions depend only on the marginal distributions. It seems therefore

unfortunate that we should have to assume, for example, that the rewards for alternate

actions are independent of one-another to be able to analyse the variance of the regret.

This is particularly so, as this assumption is likely to be violated in many realistic ban-

dit problems. For example, a given user may be more (or less) likely to buy something

no matter which advertisement they are served, leading to a positive correlation between

counterfactual rewards. Equally, an illness might have two (unobservable) subtypes, with

each medication (bandit arm) effective only against one, resulting in a negative correlation

between the counterfactual rewards.

We could focus only on analysing the expected regret, since this depends only on the
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marginal distributions. However, there are many real problems for which we do care how

tightly concentrated the regret is around its expectation. For example, if we are risk averse,

we may prefer an algorithm with slightly higher expected regret but a lower probability

of suffering extremely large regret. This raises the question, is it possible to construct an

alternate definition of regret that can capture how consistently bandit algorithms behave,

but that does not depend on any properties of the joint distribution over counterfactual

rewards? A natural candidate would be:

RT =
k∑
i=1

Ni(T )∆i, (3.16)

where Ni(T ) is the number of times arm i was played up to timestep T and ∆i is the degree

to which arm i is sub-optimal, ∆i = µ∗ − µi. The expectation of this variant of regret is

the same as for the version defined in equation 3.12. It depends on the randomness of the

reward distribution only indirectly through the number of times each action is selected,

which in turn depends only on the marginal distributions. Furthermore, this quantity has

already been analysed in existing work on the concentration of bandit regret, [15, 14] as

a more tractable proxy to the standard regret. In conclusion, when selecting measures of

bandit performance, it is worth noting whether they rely on counterfactual assumptions

and considering if these assumptions are justifiable or needed for the specific problem of

interest.
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Chapter 4

Causal Bandits: Unifying the

approaches

As we have seen in the previous two chapters, critical insights and methods for learning

how to act have emerged from both the observational and experimental approaches to

causality. From observational inference, we have the do-calculus, which allows us to map

information between observational and interventional distributions and we have a range of

estimators designed for these types of mapping problems including propensity scores and

doubly robust methods. The bandit community has developed carefully tuned algorithms

to balance exploration and exploitation, estimation approaches for identifying and selecting

the optimal action (rather than estimating the rewards for all actions) and techniques to

bound the bias of estimators due to the adaptive nature of decision making processes.

However, despite the commonality of the underlying problem, there has been relatively

little work on the intersection between observational causal inference and adaptive decision

making processes. Although some ideas, such as doubly robust estimators [135, 93] and

inverse propensity score weighting [80] have transferred across (from causal inference to

off-policy evaluation), there are many more opportunities for fruitful work in this space.

In most key real world decision making processes, from algorithms recommending drug

treatments to robots deciding how to open doors, we have access to both potentially huge

observational data sets, as well as the ability to intervene in the system at some level. It

is critical that we develop methods that allow us to incorporate the causal knowledge we

have about the world, along with data sets collected under a range of different conditions,

into our decision making processes. In this chapter, I introduce a very general framework

that connects causal graphical models with multi-armed bandit problems and demonstrate

how it can be leveraged to make better decisions.
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Y

X

A =

do(W = 0, Z = 0)
do(W = 0, Z = 1)
do(W = 1, Z = 0)
do(W = 1, Z = 1)

do(W = 0)
do(W = 1)
do(Z = 0)
do(Z = 1)
do()

Figure 4.1: A simple causal graphical model and corresponding complete action space. W
and Z represent binary variables that can be intervened on and Y represents the reward.

4.1 A synthesis that connects bandit problems and obser-

vational causal inference

A natural way to connect the causal framework with the bandit setting is to model the

action space as interventions on variables in a causal directed acyclic graph. Each possible

assignment of variables to values is a potential action (or bandit arm), see figure 4.1 for

a simple example. In some settings, it makes sense to restrict the action space available

to the agent to a subset of all the possible actions, for example the set of single variable

interventions. The reward is the value of a single specified node. We refer to these problems

as causal bandit problems. In this thesis, I focus on the case where the causal graph is

known. Extending this work to simultaneously learning the causal graph is discussed in

§4.2.4.

The type of problem we are concerned with is best illustrated with an example. Consider

a farmer wishing to optimise the yield of her crop. She knows that crop yield is only

affected by temperature, a particular soil nutrient, and moisture level but the precise

effect of their combination is unknown. In each season the farmer has enough time and

money to intervene and control at most one of these variables: deploying shade or heat

lamps will set the temperature to be low or high; the nutrient can be added or removed

through a choice of fertiliser; and irrigation or rain-proof covers will keep the soil wet or

dry. Where there is no intervention, the temperature, soil, and moisture vary naturally

from season to season due to weather conditions. These are all observed along with the

final crop yield at the end of each season. How might the farmer best experiment to

identify the single, highest yielding intervention in a limited number of seasons?

We now formalise the definition of causal bandit problems. We will assume each variable

only takes on a finite number of distinct values. (The path to relaxing this assumption

would be through levering the work on continuous armed bandits).

Definition 18 (Causal bandit problem). A learner for a causal bandit problem is given

the causal model’s graph G over variables X and a set of allowed actions A. Each action

a ∈ A, denoted do(X = x), assigns values x to a corresponding set of variables X ⊂ X
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and incurs a known cost C(a) on the learner. One variable Y ∈ X is designated as the

reward variable.

The causal bandit game proceeds over T rounds. In each round t, the learner:

1. observes the value of a subset of the variables Xc
t ,

2. intervenes by choosing at = do(Xt = xt) ∈ A based on previous observations and

rewards,

3. observes values for another subset of variables Xo
t drawn from

P (Xo
t |Xc

t , do(Xt = xt)),

4. obtains reward rt = Yt − C(at), where Yt is sampled from P (Yt|Xc
t , do(Xt = xt))

We refer to the set of variables that can be observed prior to selecting an action Xc as

contextual variables and the set of variables observed after the action is chosen, Xo, as

post-action feedback variables. Note that Xc and Xo need not be disjoint. A variable

may be observed both prior to and after the agent selects an action, and the action may

change its value. The notation P (·|Xc
t , do(Xt = xt)) denotes distributions conditional on

having observed Xc
t and then intervened to set Xt = xt. The values of variables in Xc

t

that are non-descendents of Xt remain unchanged by the intervention. The objective of

the learner is to minimise either the simple (equation 3.6) or cumulative regret (equation

3.2).

The empty intervention (where no variable is set) is denoted do(). The parents of a variable

Xi, denoted PaXi , is the set of all variables Xj such that there is an edge from Xj to Xi in

G. We denote the expected reward for the action a = do(X = x) by µa := E [Y |do(X = x)]

and the optimal expected reward by µ∗ := maxa∈A µa.

The causal bandit problem takes on characteristics of different bandit settings depending

on the action-space A and corresponding costs, which variables are observable prior to

selecting an action, and on which variables we receive post-action feedback. If we can (at

no cost) intervene on all of the parents of Y simultaneously then any context or alternative

actions are irrelevant, and the problem can be treated as a standard multi-armed bandit

problem over the set of actions that fully specify the values of the parents of Y . If feedback

is received only on the reward node Xo = {Y }, as in the standard bandit setting, then the

do-calculus can be applied to eliminate some actions immediately, before any experiments

are performed and then a standard bandit algorithm can be run on the remaining actions,

see figure 4.2 as an example. If we receive post-action feedback on additional variables

the problem can be more interesting. In addition to being able to eliminate some actions

prior to sampling any data as in the previous case, taking one action may give us some

information on actions that were not selected. Consider again the model in figure 4.1.

The causal structure implies:
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Health conscious

Diet Exercise

Weight

Y=Cholesterol

Test result

Free time

Figure 4.2: Example causal graph (based on Koller and Friedman [97]) where the outcome
of interest (reward) is cholesterol level. The do-calculus can be applied to eliminate some
actions immediately without the need to do any experiments. For example, no actions
involving ’Test Result’ need to be considered and interventions on ’Diet’ do not need to
be considered in conjunction with any other variables.

P (Y |do(W = 0)) = P (Y |do(),W = 0)

= P (Y |do(X = 0),W = 0)P (X = 0) + P (Y |do(X = 1),W = 0)P (X = 1)

Thus we gain information about the reward for the action do(W = 0) from selecting the

action do() or do(X = x) and then observing W = 0. We only get this form of side

information for actions that do not specify the value of every variable, for example those

in the bottom half of the table in figure 4.1.

Two other problems that sit in the space between causal inference and bandit problems

- bandits with unobserved confounders [23] and compliance aware bandits [48] - can also

be viewed as specific causal bandit problems. In the work on bandits with unobserved

confounders, it is assumed that the reward given each action may depend on some latent

variable U , which we cannot observe directly. However, prior to selecting an action, we

can observe I, the action that would have been selected under an alternate (stationary)

policy, which may depend on U , see figure 4.3a. In this case, the set of contextual variables

Xc = I, the set of post-action feedback variables Xo = {Y } and the action space consists

of all possible assignments of values to a single node X, A = do(X = x). This setting

reduces to a contextual bandit problem in our causal bandit framework. However in their

work on bandits with unobserved confounders, Forney and Bareinboim [57] also leverage

the fact that I represents the action that would have been selected under an alternate

policy to fuse data collected under the previous (observational) policy with data collected

under the new policy. This information is not encoded in the causal bandit graph in figure

4.3a, as I could be any variable that is influenced by the unobserved context U , and thus
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cannot be exploited by a standard contextual bandit algorithm.

Compliance-aware bandits describe situations in which the action recommended by the

bandit algorithm is not always followed. For example, a patient may refuse to take a treat-

ment or an advertiser may have complex rules about how many advertisements a given

customer can receive, which prevents some of the suggestions from the ad recommenda-

tion engine from being followed. After an action is selected, the algorithm can observe the

action that was actually taken, in addition to the reward. Della Penna et al. [48] analyse

this setting with binary treatments both with and without the presence of a latent con-

founding variable U , see figure 4.3b. In this case, there are no contextual variables and

the action space is again the set of assignments to a single variable but there is post-action

feedback, which reveals the value of the action that was actually taken.1

(a) Bandits with unobserved confounders:
Xc = {I}, Xo = {Y }, A = do(X = x)

U

YI

X

(b) Compliance aware bandits: Xc = {},
Xo = {T, Y }, A = do(X = x)

U

T Y

X

Figure 4.3: Causal bandit representation of bandits with unobserved confounders and
compliance aware bandits.

The classical K-armed stochastic bandit problem can be recovered in the causal bandit

setting by considering a simple causal model with one edge connecting a single variable

X that can take on K values to a reward variable Y ∈ {0, 1} where P (Y = 1|X) = r(X)

for some arbitrary but unknown, real-valued function r. The set of allowed actions in this

case is A = {do(X = k) : k ∈ {1, . . . ,K}}. Conversely, any causal bandit problem can

be reduced to a classical stochastic |A|-armed bandit problem by treating each possible

intervention as an independent arm and ignoring all sampled values for the observed vari-

ables except for the reward. However, the number of actions or arms grows exponentially

with the number of variables in the graph making it important to develop algorithms that

leverage the graph structure and additional observations.

4.2 Causal bandits with post action feedback

We now focus on causal bandit problems with post-action feedback, in which the value

of all the variables are observed after an intervention is selected, the cost of all allowable

1There are some interesting variants of the compliance aware bandit setting that, to my knowledge, have
not been analysed. The first is if the confounding variable U is observable, either as context or post-action
feedback. The second is if we extend the allowable action set to include acting directly on X, albeit at a
higher cost than acting on A. It is also worth noting the connection between this setting and instrumental
variables [22]. By making some functional assumptions about the relationships between the variables, we
can use A as an instrumental variable to bound or estimate the (causal) effect of X on Y . The estimation
will be complicated in the bandit setting because the action chosen at each timestep is dependent on the
previous sequence of actions and rewards.
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actions is equal and the goal of the learner is to minimise the simple regret. I presented

this work at NIPS 2016 [102].

Related Work As alluded to above, causal bandit problems can be treated as classical

multi-armed bandit problems by simply ignoring the causal model and extra observations

and applying an existing best-arm identification algorithm with well understood simple

regret guarantees [89]. However, as we show in §4.2.1, ignoring the extra information

available in the non-intervened variables yields sub-optimal performance.

Causal bandit problems have a superficial similarity to contextual bandit problems, §3.2.4,

since the extra observations on non-intervened variables might be viewed as context for

selecting an intervention. However, a crucial difference is that we have focused on analysing

settings where we receive post-action feedback, in which the extra observations are only

revealed after selecting an intervention and hence cannot be used as context.

There have been several proposals for bandit problems where extra feedback is received

after an action is taken. Most recently, Alon et al. [8], Kocák et al. [96] have considered

very general models related to partial monitoring games [25] where rewards on un-played

actions are revealed according to a feedback graph. As we discuss in §4.2.4, the parallel

bandit problem can be captured in this framework. However, the regret bounds are not

optimal in our setting. They also focus on cumulative regret. The partial monitoring

approach taken by Wu et al. [178] could be applied (up to modifications for the simple

regret) to the parallel bandit, but the resulting strategy require knowledge about the

likelihood of each factor in advance, while our strategy learns this online. Yu and Mannor

[179] utilise extra observations to detect changes in the reward distribution, whereas we

assume fixed reward distributions and use extra observations to improve arm selection.

Avner et al. [21] analyse bandit problems where the choice of arm to pull and arm to

receive feedback on are decoupled. The main difference from our present work is our

focus on simple regret and the more complex information linking rewards for different

arms via causal graphs. To the best of our knowledge, our paper is the first to analyse

simple regret in bandit problems with extra post-action feedback. Partial monitoring is a

very general framework for decoupling the feedback from the action and reward. It can

be used to classify problems into one of four categories, trivial with no regret, easy with

RT = Θ̃
(√

T
)

, hard with RT = Θ
(
T 2/3

)
and hopeless with RT = Ω (T ) [25]. Partial

monitoring algorithms yield results that are optimal with respect the horizon T but not

other parameters, such as the number of actions, which is the key focus of incorporating

causal structure.

Two pieces of recent work also consider applying ideas from causal inference to bandit

problems. Bareinboim et al. [23] demonstrate that in the presence of confounding variables

the value that a variable would have taken had it not been intervened on can provide

important contextual information. Their work differs from this thesis in many ways. For

example, the focus is on the cumulative regret, and the context is observed before the

action is taken and cannot be controlled by the learning agent. Ortega and Braun [117]
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(a) Parallel graph

X1 X2
... XN

Y

(b) Confounded graph

X1

X2 Y

(c) Chain graph

X1 X2
... XN Y

Figure 4.4: Causal Models

present an analysis and extension of Thompson sampling, assuming actions are causal

interventions. Their focus is on causal induction (i.e., learning an unknown causal model)

instead of exploiting a known causal model. Combining their handling of causal induction

with our analysis is left as future work.

The truncated importance weighted estimators used in §4.2.2 have been studied before in

a causal setting by Bottou et al. [30], where the focus is on learning from observational

data, but not controlling the sampling process. They also briefly discuss some of the issues

encountered in sequential design, but do not give an algorithm or theoretical results for

this case.

4.2.1 The parallel bandit problem

In this section, we propose and analyse an algorithm for achieving the optimal regret in a

natural special case of the causal bandit problem, which we call the parallel bandit. It is

simple enough to admit a thorough analysis but rich enough to model the type of problem

discussed in §4.1, including the farming example. It also suffices to witness the regret gap

between algorithms that make use of causal models and those that do not.

The causal model for this class of problems has N binary variables {X1, . . . , XN} where

each Xi ∈ {0, 1} are independent causes of a reward variable Y ∈ {0, 1}, as shown in

Figure 4.4a. All variables are observable and the set of allowable actions are all size 0 and

size 1 interventions: A = {do()} ∪ {do(Xi = j) : 1 ≤ i ≤ N and j ∈ {0, 1}}

In the farming example above, X1 might represent temperature (e.g., X1 = 0 for low and

X1 = 1 for high). The interventions do(X1 = 0) and do(X1 = 1) indicate the use of shades

or heat lamps to keep the temperature low or high, respectively.

In each round the learner either purely observes by selecting do() or sets the value of a single

variable. The remaining variables are simultaneously set by independently biased coin

flips. The value of all variables are then used to determine the distribution of rewards for

that round. Formally, when not intervened upon we assume that each Xi ∼ Bernoulli(qi)

where q = (q1, . . . , qN ) ∈ [0, 1]N so that qi = P (Xi = 1).

The value of the reward variable is distributed as P (Y = 1|X) = r(X), where r :

{0, 1}N → [0, 1] is an arbitrary, fixed, and unknown function. In the farming example, this

choice of Y models the success or failure of a seasons crop, which depends stochastically

on the various environment variables.
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The Parallel Bandit Algorithm The algorithm operates as follows. For the first

T/2 rounds it chooses do() to collect observational data. As the only link from each

X1, . . . , XN to Y is a direct, causal one, P (Y |do(Xi = j)) = P (Y |Xi = j). Thus we can

create good estimators for the returns of the actions do(Xi = j) for which P (Xi = j) is

large. The actions for which P (Xi = j) is small may not be observed (often) so estimates

of their returns could be poor. To address this, the remaining T/2 rounds are evenly

split to estimate the rewards for these infrequently observed actions. The difficulty of the

problem depends on q and, in particular, how many of the variables are unbalanced (i.e.,

small qi or (1− qi)). For τ ∈ [2...N ] let Iτ =
{
i : min {qi, 1− qi} < 1

τ

}
. Define

m(q) = min {τ : |Iτ | ≤ τ} .

Algorithm 2 Parallel Bandit Algorithm

1: Input: Total rounds T and N .
2: for t ∈ 1, . . . , T/2 do
3: Perform empty intervention do()
4: Observe Xt and Yt
5: for a = do(Xi = x) ∈ A do

6: Count times Xi = x seen: Ta =
∑T/2

t=1 1{Xt,i = x}
7: Estimate reward: µ̂a = 1

Ta

∑T/2
t=1 1{Xt,i = x}Yt

8: Estimate probabilities: p̂a = 2Ta
T , q̂i = p̂do(Xi=1)

9: Compute m̂ = m(q̂) and A =
{
a ∈ A : p̂a ≤ 1

m̂

}
.

10: Let TA := T
2|A| be times to sample each a ∈ A.

11: for a = do(Xi = x) ∈ A do
12: for t ∈ 1, . . . , TA do
13: Intervene with a and observe Yt
14: Re-estimate µ̂a = 1

TA

∑TA
t=1 Yt

15: return estimated optimal â∗T ∈ arg maxa∈A µ̂a

Iτ is the set of variables considered unbalanced and we tune τ to trade off identifying

the low probability actions against not having too many of them, so as to minimise the

worst-case simple regret. When q = (1
2 , . . . ,

1
2) we have m(q) = 2 and when q = (0, . . . , 0)

we have m(q) = N . We do not assume that q is known, thus Algorithm 2 also utilises

the samples captured during the observational phase to estimate m(q). Although very

simple, the following two theorems show that this algorithm is effectively optimal (up to

a logarithmic factor).

Theorem 19. Algorithm 2 satisfies

RT ∈ O

(√
m(q)

T
log

(
NT

m(q)

))
.

Theorem 20. For all strategies and T , q, there exist rewards such that RT ∈
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Ω

(√
m(q)

T

)
.

The proofs of Theorems 19 and 20 follow by carefully analysing the concentration of p̂a and

m̂ about their true values and may be found in Sections 4.2.5.1 and 4.2.5.2 respectively.

By utilising knowledge of the causal structure, Algorithm 2 effectively only has to explore

the m(q) ’difficult’ actions. Standard multi-armed bandit algorithms must explore all 2N

actions and thus achieve regret Ω(
√
N/T ). Since m is typically much smaller than N , the

new algorithm can significantly outperform classical bandit algorithms in this setting. In

practice, you would combine the data from both phases to estimate rewards for the low

probability actions. We do not do so here as it slightly complicates the proofs and does

not improve the worst case regret.

4.2.2 General graphs

We now consider the more general problem where the graph structure is known, but arbi-

trary. For general graphs, P (Y |Xi = j) 6= P (Y |do(Xi = j)) (correlation is not causation).

However, if all the variables are observable, any causal distribution P (X1...XN |do(Xi = j))

can be expressed in terms of observational distributions via the truncated product formula

[120].

P (X1...XN |do(Xi = j)) =
∏
k 6=i

P (Xk| PaXk) δ(Xi − j) ,

where PaXk denotes the parents of Xk and δ is the Dirac delta function.

We could naively generalise our approach for parallel bandits by observing for T/2 rounds,

applying the truncated product formula (or the do-calculus if there are latent variables)

to write an expression for each P (Y |a) in terms of observational quantities and explicitly

playing the actions for which the observational estimates were poor. However, it is no

longer optimal to ignore the information we can learn about the reward for intervening

on one variable from rounds in which we act on a different variable. Consider the graph

in Figure 4.4c and suppose each variable deterministically takes the value of its parent,

Xk = Xk−1 for k ∈ 2, . . . , N and P (X1) = 0. From the observational phase we would have

good estimates for all actions that result in Xn = 0, but no information about actions

that result in XN = 1. We can learn the reward these remaining N actions, do(Xi =

1), simultaneously by selecting do(X1 = 1). In addition, variance of the observational

estimator for a = do(Xi = j) can be high even if P (Xi = j) is large. Given the causal graph

in Figure 4.4b, P (Y |do(X2 = j)) =
∑

X1
P (X1) P (Y |X1, X2 = j). Suppose X2 = X1

deterministically, no matter how large P (X2 = 1) is we will never observe (X2 = 1, X1 = 0)

and so cannot get a good estimate for P (Y |do(X2 = 1)).

To solve the general problem we need an estimator for each action that incorporates

information obtained from every other action and a way to optimally allocate samples

to actions. To address this difficult problem we assume the conditional interventional
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distributions P (PaY |a) (but not P (Y |a)) are known. These could be estimated from

experimental data on the same covariates but where the outcome of interest differed, such

that Y was not included, or similarly from observational data subject to identifiability

constraints. Of course this is a somewhat limiting assumption, but seems like a natural

place to start. The challenge of estimating the conditional distributions P (PaY |a) in an

optimal way is left as an interesting future direction. Let η be a distribution on available

interventions a ∈ A so ηa ≥ 0 and
∑

a∈A ηa = 1. Define Q =
∑

a∈A ηa P (PaY |a) to be

the mixture distribution over the interventions with respect to η.

Algorithm 3 General Algorithm

Input: T , η ∈ [0, 1]A, B ∈ [0,∞)A

for t ∈ {1, . . . , T} do
Sample action at from η
Do action at and observe Xt and Yt

for a ∈ A do

µ̂a =
1

T

T∑
t=1

YtRa(Xt)1{Ra(Xt) ≤ Ba}

return â∗T = arg maxa µ̂a

Our algorithm samples T actions from η and uses them to estimate the returns µa for all

a ∈ A simultaneously via a truncated importance weighted estimator. Let PaY (X) denote

the realisation of the variables in X that are parents of Y and define Ra(X) = P{PaY (X)|a}
Q(PaY (X))

µ̂a =
1

T

T∑
t=1

YtRa(Xt)1{Ra(Xt) ≤ Ba} ,

where Ba ≥ 0 is a constant that tunes the level of truncation to be chosen subsequently.

The truncation introduces a bias in the estimator, but simultaneously chops the potentially

heavy tail that is so detrimental to its concentration guarantees.

The distribution over actions, η plays the role of allocating samples to actions and is

optimised to minimise the worst-case simple regret. Abusing notation we define m(η) by

m(η) = max
a∈A

Ea
[

P {PaY (X)|a}
Q (PaY (X))

]
, where Ea is the expectation with respect to P {.|a}

We will show shortly that m(η) is a measure of the difficulty of the problem that approx-

imately coincides with the version for parallel bandits, justifying the name overloading.

Theorem 21. If Algorithm 3 is run with B ∈ RA given by Ba =
√

m(η)T
log(2T |A|) .
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RT ∈ O

(√
m(η)

T
log (2T |A|)

)
.

The proof is in Section 4.2.5.3.

Note the regret has the same form as that obtained for Algorithm 2, with m(η) replacing

m(q). Algorithm 2 assumes only the graph structure and not knowledge of the conditional

distributions on X. Thus it has broader applicability to the parallel graph than the generic

algorithm given here. We believe that Algorithm 3 with the optimal choice of η is close

to mini-max optimal, but leave lower bounds for future work.

Choosing the Sampling Distribution Algorithm 3 depends on a choice of sampling

distribution Q that is determined by η. In light of Theorem 21 a natural choice of η is the

minimiser of m(η).

η∗ = arg min
η

m(η) = arg min
η

max
a∈A

Ea
[

P {PaY (X)|a}∑
b∈A ηb P {PaY (X)|b}

]
︸ ︷︷ ︸

m(η)

.

Since the mixture of convex functions is convex and the maximum of a set of convex

functions is convex, we see that m(η) is convex (in η). Therefore the minimisation problem

may be tackled using standard techniques from convex optimisation. The quantity m(η∗)

may be interpreted as the minimum achievable worst-case variance of the importance

weighted estimator. In the experimental section we present some special cases, but for

now we give two simple results. The first shows that |A| serves as an upper bound on

m(η∗).

Proposition 22. m(η∗) ≤ |A|. Proof. By definition, m(η∗) ≤ m(η) for all η. Let

ηa = 1/|A| ∀a.

m(η) = max
a

Ea
[

P {PaY (X)|a}
Q (PaY (X))

]
≤ max

a
Ea
[

P {PaY (X)|a}
ηa P {PaY (X)|a}

]
= max

a
Ea
[

1

ηa

]
= |A|

The second observation is that, in the parallel bandit setting, m(η∗) ≤ 2m(q). This is

easy to see by letting ηa = 1/2 for a = do() and ηa = 1{P (Xi = j) ≤ 1/m(q)} /2m(q)

for the actions corresponding to do(Xi = j), and applying an argument like that for

Proposition 22. The proof is in section 4.2.5.4.

Remark 23. The choice of Ba given in Theorem 21 is not the only possibility. As we shall

see in the experiments, it is often possible to choose Ba significantly larger when there is

no heavy tail and this can drastically improve performance by eliminating the bias. This

is especially true when the ratio Ra is never too large and Bernstein’s inequality could

be used directly without the truncation. For another discussion see the article by Bottou

et al. [30] who also use importance weighted estimators to learn from observational data.
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Remark 24. If the action space A is unconstrained, that is consists of all possible assign-

ments of values to variables, (and all actions have equal cost) the optimal action will set the

value of all the parents of Y and uniform exploration is an optimal sampling distribution

for Algorithm 3, in the sense that it minimises the regret bound as we show in theorem

25. If this regret bound can be shown to be tight then uniform exploration is optimal in

this setting. In this case, after we use the causal structure to eliminate irrelevant actions

prior to taking any samples, the problem of selecting within the remaining actions can be

treated as a standard multi-armed bandit problem.

Theorem 25. Let A′ be the set of all possible assignments of values to the parents of Y

and C(a) be the fixed cost of selecting action a. If A′ ⊆ A and C(a′) ≤ C(a) ∀(a′ ∈ A′, a ∈
A/A′) then the optimal action a∗ ∈ A′ and uniform exploration over A′ minimises the

regret bound for Algorithm 3.

Proof. for any action a ∈ A,

E [Y |Xc
t , a] = EPaY ∼P(PaY |Xc

t ,a) [E [Y |Xc
t , a,PaY ]]

= EPaY ∼P(PaY |Xc
t ,a) [E [Y | PaY ]]

= EPaY ∼P(PaY |Xc
t ,a) [E [Y |do(PaY )]]

≤ max
PaY

E [Y |do(PaY )] = E
[
Y |a′

]
for some a′ ∈ A′

This proves the optimal action a∗ ∈ A′

We now consider using importance weighted estimators from Algorithm 3 to estimate the

rewards for all actions in A′. The optimal sampling weights η are given by,

η∗ = arg min
η

max
a∈A′

Ea
[

P {PaY (X)|a}∑
b∈A ηb P {PaY (X)|b}

]
.

Note that we now only have to obtain estimates for actions a ∈ A′, since we know the

others to be sub-optimal, so the max is only over these actions. However b still sums over

all possible actions in the denominator of the importance sampling estimator, to allow

for the possibility that playing sub-optimal actions allows more efficient estimation of the

optimal actions. We now prove that this is not the case and that, in this specific setting,

Algorithm 3 cannot do better than uniform sampling over the actions a ∈ A′. Each action

a ∈ A′ consists of a given assignment xa to PaY .

a =do(PaY = xa) =⇒ Ea
[

P {PaY (X)|a}∑
b∈A ηb P {PaY (X)|b}

]
=

1∑
b∈A ηb P {PaY = xa|b}

=⇒ η∗ = arg max
η

[
min
a∈A′

∑
b∈A

ηb P {PaY = xa|b}

]
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Let Na denote
∑

b∈A ηb P {PaY = xa|b}, which can be viewed as an effective number of

samples for action a. Choosing ηb = 1{b ∈ A′} 1
|A′| , corresponding to uniform exploration

over the optimal arms only, yields Na = 1
|A′| for all a. To do better, we would need to find

weights η such that Na >
1
|A′| for all a. However,

Na >
1

|A′|
∀a =⇒

∑
a∈A′

Na > 1

=⇒
∑
b∈A

ηb
∑
a∈A′

P {PaY = xa|b} > 1 =⇒
∑
b∈A

ηb > 1

This violates the fact that η is a distribution over the actions, and thus must have weights

that sum to 1, thus completing the proof.

4.2.2.1 Combining interventional and observational data

In the previous sections we have demonstrated that knowledge of the causal structure

between variables allows the rewards of multiple actions to be estimated simultaneously

in an online, interventional setting, leading to more rapid identification of the optimal

arm. In many cases we may also have access to observational data; in other words data

sampled from P (X, Y |do()). Under the assumptions we made for algorithm 3, we can

incorporate such data in a straightforward way. Let N be the number of observational

data points previously collected and T again be the number of rounds in which we can

intervene. Combining these two periods, the values for the parents of Y are sampled from;

Q′(PaY (X)) =
N

N + T
P {PaY (X)|do()}+

T

N + T

∑
b∈A

ηb P {PaY (X)|b} (4.1)

We can then let Ra(X) = P{PaY (X)|a}
Q′(PaY (X)) and select weights to minimise the worst case

variance of the importance weighted estimator with respect to Q′.

η∗ = arg min
η

max
a∈A

Ea
[

P {PaY (X)|a}
Q′(PaY (X))

]
︸ ︷︷ ︸

m′(η)

. (4.2)

Algorithm 3 is modified to sum over both N and T 2 and obtains regret bounds;

2In practise, to minimise the problem dependent regret, we would also incorporate an elimination step
based on the observational data prior to selecting interventions. See the discussion on making better use
of the reward in section 4.2.4
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RT ∈ O

(√
m′(η)

N + T
log (2(N + T )|A|)

)
. (4.3)

In the worse case, the observational distribution over the parents of Y has no overlap

with the distributions for any of the actions in A. This results in m′(η∗) that is a factor

of N+T
T larger than m(η∗) (which assumes all actions were selected from the optimal

sampling distribution) and results in regret that decays with
√
T−1 as in the case where

no observational data is provided.

4.2.2.2 The relative value of observational versus interventional data

Another interesting question is the relative value of observational data versus interven-

tional data in a given setting. Obtaining interventional data often involves substantial

fixed costs in setting up a system to control the allocation of interventions. Ideally, we

would be able to estimate of the additional value interventional data would provide prior to

setting up such a system. The quantity m(η) also provides a means to this goal. The regret

bound in theorem 21 holds for any η. Thus we can compare the relative value of purely

observational data as opposed to optimally designed interventional data by considering

the ratio:

vobs ∈ [0, 1] =
m(η∗)

m(ηb = 1{b = do()})
(4.4)

If vobs = 0, then there exists an action for which the reward cannot be estimated from

observational data. Thus we cannot guarantee that we will identify the optimal action

regardless of the quantity of available observational data. This does not imply that ob-

servational data will not improve estimation in conjunction with interventional data as

we discussed in the previous section - just that observational data alone is insufficient for

best arm identification. If vobs = 1, then the worst case regret from purely observational

data matches that for interventional data. A value of vobs = .5 would imply we would

need twice as many samples to obtain the same regret bound from observational data as

compared to interventional data.

The ratio vobs can be computed prior to collecting any data, observational or interventional,

if the distribution over the parents of Y given each action are known - as we assumed for

Algorithm 3. The approach is also not limited to the comparison of observational data

with optimised interventional data. It can equally be applied to evaluate the potential for

improvement on any other distribution over actions, for example we might want to evaluate

the benefit of replacing a system that uniformly explores all actions with Algorithm 3. We

should note however that theorem 21 bounds the worst case regret, which occurs when

the rewards for each action are sufficiently close that we must obtain good estimates for

89



X1 X2 ... XN

Y

P (Xi = 1) = q

0.1 0.2 0.3 0.4
q

2

4

6

8

10

12

14

N

0.2

0.4

0.6

0.8

v o
bs

Figure 4.5: An example of quantifying the value of purely observational data. The heat
map shows the value of vobs for an instance of the parallel bandit problem where all the
variables have equal probability, q, of taking the value 1, as a function of q and the number
of variables N . If the variables are perfectly balanced, q = 0.5, then purely observing is
optimal and vobs = 1. If q = 0 then we cannot learn the value of actions do(Xi = 1) without
intervention, even with infinite observational data, and vobs = 0. For intermediate values
of q, we see that the improvement in the worst case regret that optimised intervention
yields over purely observational data drops as the number of variables, N , increases.
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the value of all of the actions. Where the rewards are better separated, the problem-

dependent regret can be reduced by using an adaptive algorithm that ceases to explore

actions that are sub-optimal with high probability, as we discuss in §4.2.4. Although

vobs accurately captures the relative value of interventional versus observational data for

a fixed design algorithm like Algorithm 3, in general, using interventional data with an

adaptive algorithm will lead to lower regret than selecting the best action on the basis of

observational data even when vobs = 1. However, the gap between the problem dependent

and worst case regret is not known in advance - as the reward distributions are unknown

- so the additional benefit of adaptive control cannot be computed ahead of time.

4.2.3 Experiments

We compare Algorithms 2 and 3 with the Successive Reject algorithm of Audibert and

Bubeck [13], Thompson Sampling and UCB under a variety of conditions. Thompson

sampling and UCB are optimised to minimise cumulative regret. We apply them in the

fixed horizon, best arm identification setting by running them up to horizon T and then

selecting the arm with the highest empirical mean. The importance weighted estimator

used by Algorithm 3 is not truncated, which is justified in this setting by Remark 23. The

code for all experiments is available from <https://github.com/finnhacks42/causal_

bandits>

4.2.3.1 Experiments on the paralell graph

Algorithms 2 and 3 can both be applied to the parellel bandit model. We use a model

in which Y depends only on a single variable X1 (this is unknown to the algorithms).

Yt ∼ Bernoulli(1
2+ε) ifX1 = 1 and Yt ∼ Bernoulli(1

2−ε
′) otherwise, where ε′ = q1ε/(1−q1).

This leads to an expected reward of 1
2 + ε for do(X1 = 1), 1

2 − ε
′ for do(X1 = 0) and 1

2 for

all other actions. We set the value of m(q) by choosing the number of highly unbalanced

arms. We set qi = 0 for i ≤ m(q) and 1
2 otherwise. Note that changing m(q) and thus q

has no effect on the reward distribution. For each experiment, we show the average regret

over 10,000 simulations with error bars displaying three standard errors.

In Figure 4.6a we fix the number of variables N and the horizon T and compare the

performance of the algorithms as m(q) increases. The regret for the Successive Reject

algorithm is constant as it depends only on the reward distribution and has no knowledge

of the causal structure. For the causal algorithms it increases approximately with
√
m(q).

As m(q) approaches N , the gain the causal algorithms obtain from knowledge of the

structure is outweighed by fact they do not leverage the observed rewards to focus sampling

effort on actions with high pay-offs.

Figure 4.6b demonstrates the performance of the algorithms in the worst case environ-

ment for standard bandits, where the gap between the optimal and sub-optimal arms,

ε =
√
N/(8T ) , is just too small to be learned. This gap is learnable by the causal algo-
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(c) Simple regret vs horizon,
T , with N = 50, m(q) = 2
and fixed ε = .3

Figure 4.6: Experimental results

rithms, for which the worst case ε depends on m(q)� N . In Figure 4.6c we fix N and ε

and observe that, for sufficiently large T , the regret decays exponentially. The decay con-

stant is larger for the causal algorithms as they have observed a greater effective number

of samples for a given T .

For the parallel bandit problem, the regression estimator used in the specific algorithm

outperforms the truncated importance weighted estimator in the more general algorithm,

despite the fact the specific algorithm must estimate q from the data. This is an interesting

phenomenon that has been noted before in off-policy evaluation where the regression (and

not the importance weighted) estimator is known to be mini-max optimal asymptotically

[109].

4.2.3.2 Experiments on a confounded graph

X1 X2
... XN

Y

Z

Figure 4.7: Confounded graph

We now compare the general algorithm with a range of standard bandit algorithms on the

confounded graph in Figure 4.7. All the variables are binary and the action space consists

of the set of single variable interventions plus the do nothing action,

A = {{do(Xi = j)} ∪ {do(Z = j)} ∪ {do()} : 1 ≤ i ≤ N, j ∈ {0, 1}}

We choose this setting because it generalises the parallel bandit, while simultaneously being

sufficiently simple that we can compute the exact reward and interventional distributions
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for large N (in general inference in graphical models is exponential in N). As before, we

show the average regret over 10,000 simulations with error bars showing three standard

errors.

In Figure 4.8a we fix N and T and P (Z = 1) = .4. For some 2 ≤ N1 ≤ N we define

P (Xi = 1|Z = 0) =

0 if i ∈ {1, ...N1}

.4 otherwise

P (Xi = 1|Z = 1) =

0 if i ∈ {1, ...N1}

.65 otherwise

As in the parallel bandit case, we let Y depend only on X1, P (Y |do(X1 = 1)) = 1
2 + ε

and P (Y |do(X1 = 0)) = 1
2 − ε′, where ε′ = εP (X1 = 1)/P (X1 = 0). The value of

N1 determines m and ranges between 2 and N . The values for the CPD’s have been

chosen such that the reward distribution is independent of m(η∗) and so that we can

analytically calculate η∗. This allows us to just show the dependence on m, removing the

noise associated with different models selecting values for η∗ with the same m (and also

worst case performance), but different performance for a given reward distribution.

In Figure 4.8b we fix the model and number of variables, N , and vary the horizon T . P (Z)

and P (X|Z) are the same as for the previous experiment. In Figure 4.8c we additionally

show the performance of Algorithm 1, but exclude actions on Z from the set of allowable

actions to demonstrate that Algorithm 1 can fail in the presence of a confounding variable,

which occurs because it incorrectly assumes that P (Y |do(X)) = P (Y |X). We let P (Z) =

.6, P (Y |X) = X7 ⊕XN and P (X|Z) be given by:

P (Xi = 1|Z = 0) =


.166 if i ∈ {1, ..., 6}

.2 if i = 7

.7 otherwise

P (Xi = 1|Z = 1) =


.166 if i ∈ {1, ..., 6}

.8 if i = 7

.3 otherwise

In this setting X7 tends to agree with Z and XN tends to disagree. It is sub-optimal to

act on either X7 or XN , while all other actions are optimal. The first group of X variables

with i ≤ 6 will be identified by the parallel bandit as the most unbalanced ones and played

explicitly. All remaining variables are likely to be identified as balanced and estimated

from observational estimates. The CPD values have been chosen to demonstrate the worst

case outcome, where the bias in the estimates leads Algorithm 1 to asymptotically select
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a sub-optimal action.
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Figure 4.8: Experimental results on the confounded graph

4.2.4 Discussion & Future work

Algorithm 3 for general causal bandit problems estimates the reward for all allowable

interventions a ∈ A over T rounds by sampling and applying interventions from a dis-

tribution η. Theorem 21 shows that this algorithm has (up to log factors) simple regret

that is O(
√
m(η)/T ) where the parameter m(η) measures the difficulty of learning the

causal model and is always less than N . The value of m(η) is a uniform bound on the

variance of the reward estimators µ̂a and, intuitively, problems where all variables’ values

in the causal model “occur naturally” when interventions are sampled from η will have

low values of m(η).

The main practical drawback of Algorithm 3 is that both the estimator µ̂a and the optimal

sampling distribution η∗ (i.e., the one that minimises m(η)) require knowledge of the

conditional distributions P {PaY |a} for all a ∈ A. In contrast, in the special case of

parallel bandits, Algorithm 2 uses the do() action to effectively estimate m(η) and the

rewards then re-samples the interventions with variances that are not bound by m̂(η).

Despite these extra estimates, Theorem 20 shows that this approach is optimal (up to log

factors).Finding an algorithm that only requires the causal graph and lower bounds for its

simple regret in the general case is left as future work.

Making Better Use of the Reward Signal Existing algorithms for best arm iden-

tification are based on “successive rejection” (SR) of arms based on UCB-like bounds

on their rewards [55]. In contrast, our algorithms completely ignore the reward signal

when developing their arm sampling policies and only use the rewards when estimating

µ̂a. Incorporating the reward signal into our sampling techniques or designing more adap-

tive reward estimators that focus on high reward interventions is an obvious next step.

This would likely improve the poor performance of our causal algorithm relative to the

successive rejects algorithm for large m, as seen in Figure 4.6a.

For the parallel bandit the required modifications should be quite straightforward. The
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idea would be to adapt the algorithm to essentially use successive elimination in the second

phase so arms are eliminated as soon as they are provably no longer optimal with high

probability. In the general case a similar modification is also possible by dividing the

budget T into phases and optimising the sampling distribution η, eliminating arms when

their confidence intervals are no longer overlapping. This has now been done by Sen et al.

[144], leading to problem dependent regret bounds for causal bandit problems. Note that

these modifications do not improve the mini-max regret, which at least for the parallel

bandit is already optimal. For this reason we focused on emphasising the point that

causal structure can and should be exploited when available. Another observation is that

Algorithm 3 is actually using a fixed design, which in some cases may be preferred to a

sequential design for logistical reasons. This is not possible for Algorithm 2, since the q

vector is unknown.

Cumulative Regret Although we have focused on simple regret in our analysis, it

would also be natural to consider the cumulative regret. In the case of the parallel bandit

problem we can slightly modify the analysis from [178] on bandits with side information to

get near-optimal cumulative regret guarantees. They consider a finite-armed bandit model

with side information where in each round the learner chooses an action and receives a

Gaussian reward signal for all actions, but with a known variance that depends on the

chosen action. In this way the learner can gain information about actions it does not take

with varying levels of accuracy. The reduction follows by substituting the importance

weighted estimators in place of the Gaussian reward. In the case that q is known this

would lead to a known variance and the only (insignificant) difference is the Bernoulli noise

model. In the parallel bandit case we believe this would lead to near-optimal cumulative

regret, at least asymptotically.

The parallel bandit problem can also be viewed as an instance of a time varying graph

feedback problem [8, 96], where at each timestep the feedback graph Gt is selected stochas-

tically, dependent on q, and revealed after an action has been chosen. The feedback graph

is distinct from the causal graph. A link A→ B in Gt indicates that selecting the action

A reveals the reward for action B. For this parallel bandit problem, Gt will always be a

star graph with the action do() connected to half the remaining actions. However, Alon

et al. [8], Kocák et al. [96] give adversarial algorithms, which when applied to the parallel

bandit problem obtain the standard bandit regret. A malicious adversary can select the

same graph each time, such that the rewards for half the arms are never revealed by the

informative action. This is equivalent to a nominally stochastic selection of feedback graph

where q = 0.

Lelarge and Ens [105] consider a stochastic version of the graph feedback problem, but

with a fixed graph available to the algorithm before it must select an action. In addition,

their algorithm is not optimal for all graph structures and fails, in particular, to provide

improvements for star like graphs as in our case. [35] improve the dependence of the

algorithm on the graph structure but still assume the graph is fixed and available to the
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algorithm before the action is selected.

Causal Models with Unobservable Variables If we assume knowledge of the condi-

tional interventional distributions P {PaY |a} our analysis applies unchanged to the case

of causal models with non-observable variables. Some of the interventional distributions

may be non-identifiable meaning we can not obtain prior estimates for P {PaY |a} from

even an infinite amount of observational data. Even if all variables are observable and the

graph is known, if the conditional distributions are unknown, then Algorithm 3 cannot be

used. Estimating these quantities while simultaneously minimising the simple regret is an

interesting and challenging open problem.

Partially or Completely Unknown Causal Graph A much more difficult generali-

sation would be to consider causal bandit problems where the causal graph is completely

unknown or known to be a member of class of models. The latter case arises naturally if

we assume free access to a large observational data set, from which the Markov equiva-

lence class can be found via causal discovery techniques. Work on the problem of select-

ing experiments to discover the correct causal graph from within a Markov equivalence

class [54, 53, 73, 81] could potentially be incorporated into a causal bandit algorithm. In

particular, Hu et al. [81] show that only O (log log n) multi-variable interventions are re-

quired on average to recover a causal graph over n variables once purely observational data

is used to recover the “essential graph”. Simultaneously learning a completely unknown

causal model while estimating the rewards of interventions without a large observational

data set would be much more challenging.

4.2.5 Proofs

4.2.5.1 Proof of Theorem 19

Assume without loss of generality that q1 ≤ q2 ≤ . . . ≤ qN ≤ 1/2. The assumption is

non-restrictive since all variables are independent and permutations of the variables can

be pushed to the reward function.

The proof of Theorem 19 requires some lemmas.

Lemma 26. Let i ∈ {1, . . . , N} and δ > 0. Then

P

(
|q̂i − qi| ≥

√
6qi
T

log
2

δ

)
≤ δ .

Proof. By definition, q̂i = 2
T

∑T/2
t=1 Xt,i, where Xt,i ∼ Bernoulli(qi). Therefore from the

Chernoff bound (see equation 6 in Hagerup and Rüb [72]),
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P (|q̂i − qi| ≥ ε) ≤ 2e
−Tε

2

6qi

Letting δ = 2e
−Tε

2

6qi and solving for ε completes the proof.

Lemma 27. Let δ ∈ (0, 1) and assume T ≥ 48m log 2N
δ . Then

P (2m(q)/3 ≤ m(q̂) ≤ 2m(q)) ≥ 1− δ .

Proof. Let F be the event that there exists and 1 ≤ i ≤ N for which

|q̂i − qi| ≥
√

6qi
T

log
2N

δ
.

Then by the union bound and Lemma 26 we have P (F ) ≤ δ. The result will be completed

by showing that when F does not hold we have 2m(q)/3 ≤ m(q̂) ≤ 2m(q). From the

definition of m(q) and our assumption on q we have for i > m(q) that qi ≥ qm ≥ 1/m(q)

and so by Lemma 26 we have

3

4
≥ 1

2
+

√
3

T
log

2N

δ
≥ qi +

√
6qi
T

log
2N

δ
≥ q̂i

≥ qi −
√

6qi
T

log
2N

δ
≥ qi −

√
qi

8m(q)
≥ 1

2m(q)
.

Therefore by the pigeonhole principle we have m(q̂) ≤ 2m(q). For the other direction we

proceed in a similar fashion. Since the failure event F does not hold we have for i ≤ m(q)

that

q̂i ≤ qi +

√
6qi
T

log
2N

δ
≤ 1

m(q)

(
1 +

√
1

8

)
≤ 3

2m(q)
.

Therefore m(q̂) ≥ 2m(q)/3 as required.

Proof of Theorem 19. Recall that A = {a ∈ A : p̂a ≤ 1/m(q̂)}. Then, for a ∈ A, the

algorithm estimates µa from TA
.
= T/(2m(q̂)) samples. From lemma 27, TA ≥ T/(4m(q))

with probability (1 − δ). Let H be the event TA < T/(4m(q)) and G be the event

∃a ∈ A : |µa − µ̂a| ≥
√

2m(q)
T log 2N

δ

P (G) ≤ P (H) + P (G|¬H) ≤ δ + P (G|¬H)

Via Hoeffding’s inequality and the union bound,
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P (G|¬H)
.
= P

(
∃a ∈ A : |µa − µ̂a| ≥

√
2m(q)

T
log

2N

δ
, given TA ≥ T/(4m(q))

)
≤ δ

=⇒ P (G)
.
= P

(
∃a ∈ A : |µa − µ̂a| ≥

√
2m(q)

T
log

2N

δ

)
≤ 2δ .

For arms not in A,

p̂a =
2

T

T/2∑
t=1

1{Xi = j} ≥ 1/m(q̂), by definition of not being in A

≥ 1

2m(q)
, with probability 1− δ

=⇒ Ta
.
=

T/2∑
t=1

1{Xi = j} ≥ T

4m(q)
, with probability 1− δ

Again applying Hoeffding’s and the union bound

P

(
∃a /∈ A : |µ̂a − µa| ≥

√
2m(q)

T
log

2N

δ

)
≤ 2δ

Therefore, combining this result with the bound for arms a ∈ A, we have with probability

at least 1− 4δ that,

(∀a ∈ A) |µ̂a − µa| ≤
√

2m(q)

T
log

2N

δ

.
= ε .

If this occurs, then

µâ∗T ≥ µ̂â∗T − ε ≥ µ̂a∗ − ε ≥ µa∗ − 2ε .

Therefore

µ∗ − E[µâ∗T ] ≤ 4δ + ε

≤ 8m(q)

T
+

√
2m(q)

T
log

NT

m(q)
, letting δ =

2m(q)

T

≤
√

8m(q)

T
+

√
2m(q)

T
log

NT

m(q)
, assuming T ≥ 8m

≤

√
20m(q)

T
log

NT

m(q)
, via Jensen’s Inequality

which completes the result.
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4.2.5.2 Proof of Theorem 20

We follow a relatively standard path by choosing multiple environments that have different

optimal arms, but which cannot all be statistically separated in T rounds. Assume without

loss of generality that q1 ≤ q2 ≤ . . . ≤ qN ≤ 1/2. For each i define reward function ri by

r0(X) =
1

2
ri(X) =

1
2 + ε if Xi = 1

1
2 otherwise ,

where 1/4 ≥ ε > 0 is some constant to be chosen later. We abbreviate RT,i to be the

expected simple regret incurred when interacting with the environment determined by q

and ri. Let Pi be the corresponding measure on all observations over all T rounds and Ei
the expectation with respect to Pi. By Lemma 2.6 by Tsybakov [166] we have

P0 {â∗T = a∗}+ Pi {â∗T 6= a∗} ≥ exp (−KL(P0,Pi)) ,

where KL(P0,Pi) is the KL divergence between measures P0 and Pi. Let Ti(T ) =∑T
t=1 1{at = do(Xi = 1)} be the total number of times the learner intervenes on vari-

able i by setting it to 1. Then for i ≤ m we have qi ≤ 1/m and the KL divergence between

P0 and Pi may be bounded using the telescoping property (chain rule) and by bounding

the local KL divergence by the χ-squared distance as by Auer et al. [17]. This leads to

KL(P0,Pi) ≤ 6ε2E0

[
T∑
t=1

1{Xt,i = 1}

]
≤ 6ε2 (E0Ti(T ) + qiT ) ≤ 6ε2

(
E0Ti(T ) +

T

m

)
.

Define set A = {i ≤ m : E0Ti(T ) ≤ 2T/m}.
Then for i ∈ A and choosing ε = min

{
1/4,

√
m/(18T )

}
we have

KL(P0,Pi) ≤
18Tε2

m
= 1 .

Now
∑m

i=1 E0Ti(T ) ≤ T , which implies that |A| ≥ m/2. Therefore

∑
i∈A

Pi {â∗T 6= a} ≥
∑
i∈A

exp (−KL(P0,Pi))− 1 ≥ |A|
e
− 1 ≥ m

2e
− 1 .

Therefore there exists an i ∈ A such that Pi {â∗T 6= a∗} ≥
m
2e
−1

m .

If ε < 1/4 we have

RT,i ≥
1

2
P {â∗T 6= a∗|i} ε ≥

m
2e − 1

2m

√
m

18T
.

Otherwise m ≥ 18T so
√
m/T = Ω(1) and

RT,i ≥
1

2
P {â∗T 6= a∗|i} ε ≥ 1

4

m
2e − 1

2m
∈ Ω(1)
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4.2.5.3 Proof of Theorem 21

Proof. First note that Xt, Yt are sampled from Q. We define Za(Xt) =

YtRa(Xt)1{Ra(Xt) ≤ Ba} and abbreviate Zat = Za(Xt), Rat = Ra(Xt) and P {.|a} =

Pa {.}. By definition we have |Zat| ≤ Ba and

VarQ[Zat] ≤ EQ[Z2
at] ≤ EQ[R2

at] = Ea[Rat] = Ea
[

Pa {PaY (X)}
Q (PaY (X))

]
≤ m(η) .

Checking the expectation we have

EQ[Zat] = Ea [Y 1{Rat ≤ Ba}] = EaY − Ea [Y 1{Rat > Ba}] = µa − βa ,

where

0 ≤ βa = Ea[Y 1{Rat > Ba}] ≤ Pa {Rat > Ba}

is the negative bias. The bias may be bounded in terms of m(η) via an application of

Markov’s inequality.

βa ≤ Pa {Rat > Ba} ≤
Ea[Rat]
Ba

≤ m(η)

Ba
.

Let εa > 0 be given by

εa =

√
2m(η)

T
log (2T |A|) +

3Ba
T

log (2T |A|) .

Then by the union bound and Bernstein’s inequality

P (exists a ∈ A : |µ̂a − EQ[Zat]| ≥ εa) ≤
∑
a∈A

P (|µ̂a − EQ[Zat]| ≥ εa) ≤
1

T
.

Let I = â∗T be the action selected by the algorithm, a∗ = arg maxa∈A µa be the true

optimal action and recall that EQ[Zat] = µa − βa. Assuming the above event does not

occur we have,

µI ≥ µ̂I − εI ≥ µ̂a∗ − εI ≥ µ∗ − εa∗ − εI − βa∗ .

By the definition of the truncation we have

εa ≤
(√

2 + 3
)√m(η)

T
log (2T |A|)

and

βa ≤
√
m(η)

T
log (2T |A|) .
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Therefore for C =
√

2 + 4 we have

P

(
µI ≥ µ∗ − C

√
m(η)

T
log (2T |A|)

)
≤ 1

T
.

Therefore

µ∗ − E[µI ] ≤ C
√
m(η)

T
log (2T |A|) +

1

T

as required.

4.2.5.4 Relationship between m(η) and m(q)

Proposition 28. In the parallel bandit setting, m(η∗) ≤ 2m(q).

Proof. Recall that in the parallel bandit setting,

A = {do()} ∪ {do(Xi = j) : 1 ≤ i ≤ N and j ∈ {0, 1}}

Let:

ηa = 1

{
P (Xi = j) <

1

m(q)

}
1

2m(q)
for a ∈ do(Xi = j)

Let D =
∑

a∈do(Xi=j) ηa. From the definition of m(q),

∑
a∈do(Xi=j)

1

{
P (Xi = j) <

1

m(q)

}
≤ m(q) =⇒ D ≤ 1

2

Let ηa = 1
2 + (1−D) for a = do() such that

∑
a∈A ηa = 1

Recall that,

m(η) = max
a

Ea
[

P {PaY (X)|a}
Q (PaY (X))

]

We now show that our choice of η ensures Ea
[

P{PaY (X)|a}
Q(PaY (X))

]
≤ 2m(q) for all actions a.

For the actions a : ηa > 0, ie do() and do(Xi = j) : P (Xi = j) < 1
m(q) ,

Ea
[

P {X1...XN |a}∑
b ηb P {X1...XN |b}

]
≤ Ea

[
P {X1...XN |a}
ηa P {X1...XN |a}

]
= Ea

[
1

ηa

]
≤ 2m(q)
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For the actions a : ηa = 0, ie do(Xi = j) : P (Xi = j) ≥ 1
m(q) ,

Ea
[

P {X1...XN |a}∑
b ηb P {X1...XN |b}

]
≤Ea

[
1{Xi = j}

∏
k 6=i P (Xk)

(1/2 +D)
∏
k P (Xk)

]
=Ea

[
1{Xi = j}

(1/2 +D) P (Xi = j)

]
≤ Ea

[
1{Xi = j}

(1/2)(1/m(q))

]
≤ 2m(q)

Therefore m(η∗) ≤ m(η) ≤ 2m(q) as required.
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Chapter 5

Conclusion

The underlying motivation behind much applied statistical and machine learning work is

to guide us to make better decisions. In many cases, the actions that we take in response

to the model will change the system from which the data was generated. It is critical

that we are able to recognise the causal nature of such problems and appropriately model

the decision making part of the process. If machine learning is to be as transformative in

fields such as economics, medicine and social science as it has been for image recognition,

voice processing and machine translation, we must develop methods to estimate the effect

of, and optimally select, interventions that are as effective as those we have for pattern

recognition. We need to bridge the gap between the theory driven models of economics

and science and the black box prediction approach that has been so successful in machine

learning. This will involve clarifying what information is (currently) best encoded by

theory and what can be successfully inferred from data and developing methods that can

incorporate the theory or structure required to allow models to generalise from one setting

to another whilst retaining the flexibility to capture complex patterns in empirical data.

A better understanding of causality is also relevant for the discussions around transparency

and ethics in machine learning, particularly with respect to the European Union’s new

General Data Protection Regulation, which requires that automated decision systems that

significantly affect individuals provide ”meaningful information about the logic involved.”

[69]. The recognition that there is a fundamental trade-off between accuracy and trans-

parency, unless we can build perfect causal models, when the interests of individuals and

society diverge has implications for the way we design and regulate systems that have the

potential to have major impacts on people’s lives. We must develop approaches to ensur-

ing machine learning decisions are reasonable and ethical that allow affected individuals

recourse to dispute or improve outcomes but do not undermine the ability of the system

to function.

The observational and interventional viewpoints on learning to act contribute complemen-

tary components to a general approach. Observational causal inference provides, through

the do-calculus, a formal means to map information from observational to interventional

settings, as well as between different interventions. Bandit algorithms capture the se-
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quential nature of decision making processes and provide techniques to carefully balance

exploration and exploitation.

I have developed an approach that formally connects causal graphical models with bandit

problems in a natural way and demonstrated that this conceptualisation encodes some

key existing problems in the literature. I showed that knowledge of the causal structure

(but without knowledge of the functional relationships) between variables can induce a

novel form of structure between alternate actions and that an algorithm that leverages this

structure obtains better performance that one that does not. I introduce a metric that

captures the difficulty of causal bandit problems and (under strong assumptions) allows

the value of optimised interventional data over purely observational data to be computed

prior to intervening in the system.

This work represents a first step towards a unified approach to causal inference and optimal

decision making. There is much exciting work remaining to be done. Although the causal

bandit setting can capture contextual information as well as post-action feedback, I have

formally analysed and developed algorithms only for the latter. Additionally, to make the

problem tractable, I made the (major) assumption that the interventional distribution over

the parents of the outcome was known. This can be relaxed to assuming the interventional

distribution over some Markov blanket with respect to the outcome is known. Information

can then be shared between actions outside the blanket in the same way as in algorithm

3, whilst actions inside could be learned explicitly. Relaxing this assumption entirely is a

much more challenging problem. However, as is demonstrated by the specific example of

the parallel causal bandit problem, it is possible to develop algorithms that require only

the causal structure of the graph and yield substantially lower regret.

Another interesting line of research is the question of off-policy evaluation for causal-bandit

problems. As in the online case, knowledge of the causal structure between variables in

the graph provides additional information about the reward for the actions that were not

selected at each timestep. The problem differs from typical observational causal infer-

ence in several ways: the focus is on identifying an optimal policy, rather than unbiased

estimation of all policies; the goal is to explore the value of interventions on a range of

different variables, rather than the optimal setting of a single variable; and the data will,

in general, be non-stationary in a rather special way due to the adaptive nature of policy

that generated it. Existing work on off-policy evaluation focuses (at least implicitly) on

estimating causal effects by adjusting for all variables that simultaneously affect both the

action selection and outcome. If additional information is available about the causal re-

lationships between variables involved, other approaches to identifying causal effects such

as instrumental variables or the “front door method” [120] could be also be applied to

off-policy evaluation.

Insights from the bandit literature can also be applied to more classical causal infer-

ence problems. In particular, estimators that are geared towards optimal action selection

(rather than evaluation of all actions) and approaches to quantify the finite time proper-

ties, as opposed to asymptotic efficiency, of estimators, for example [109]. An important
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line of research, that is relevant to both the observational and interventional approaches

to causal inference, is developing methodologies for model evaluation and selection that

provide something equivalent to what cross-validation does for supervised learning. My

hope is that, in the next years, combining the reinforcement learning approach to decision

making with causal graphical models and causal effect estimation techniques developed

within statistics, economics and epidemiology will lead to a revolution in our ability to

make good data driven decisions.
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[72] Hagerup, T. and Rüb, C. (1990). A guided tour of chernoff bounds. Information

Processing Letters, 33(6):305–308.
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