22 research outputs found

    Nonorthogonal Multiple Access in Large-Scale Underlay Cognitive Radio Networks

    Get PDF
    In this paper, non-orthogonal multiple access (NOMA) is applied to large-scale underlay cognitive radio (CR) networks with randomly deployed users. In order to characterize the performance of the considered network, new closed-form expressions of the outage probability are derived using stochastic-geometry. More importantly, by carrying out the diversity analysis, new insights are obtained under the two scenarios with different power constraints: 1) fixed transmit power of the primary transmitters (PTs), and 2) transmit power of the PTs being proportional to that of the secondary base station. For the first scenario, a diversity order of mm is experienced at the mm-th ordered NOMA user. For the second scenario, there is an asymptotic error floor for the outage probability. Simulation results are provided to verify the accuracy of the derived results. A pivotal conclusion is reached that by carefully designing target data rates and power allocation coefficients of users, NOMA can outperform conventional orthogonal multiple access in underlay CR networks.Comment: Accepted by IEEE Transactions on Vehicular Technolog

    Exact Outage Performance Analysis of Amplify-and-forward-aware Cooperative NOMA

    Get PDF
    In this paper, new radio access scheme that combines Amplify-and-Forward (AF) relaying protocol and non-orthogonal multiple access (NOMA) system is introduced. In particular, different scenarios for fixed power allocation scheme is investigated. In addition, the outage probability of both weak and strong user is derived and provided in closed-form expressions. Such outage is investigated in high SNR scenario and comparison performance between these NOMA scenarios is introduced. Numerical simulations are offered to clarify the outage performance of the considered scheme if varying several parameters in the existing schemes to verify the derived formulas

    A novel spectrum sharing scheme assisted by secondary NOMA relay

    Get PDF
    In this letter, a two-slot secondary non-orthogonal multiple access (NOMA) relay is used to assist spectrum sharing, where the primary transceivers with long distance communicate through the relay. First, the information for the primary receiver (PR) and secondary receivers (SRs) is transmitted via the NOMA relay. Then, the information for PR is re-transmitted to it through a selected SR to improve its quality of service using maximal-ratio combining, while the next data for PR is sent from the primary transmitter (PT) to the NOMA relay simultaneously. The power allocation solution is derived for the NOMA relay. Simulation results have shown the effectiveness of the proposed scheme

    Joint Power Allocation and Splitting Control in SWIPT-Aided Multi-carrier NOMA System

    Get PDF
    The combination of non-orthogonal multiple access (NOMA) and simultaneous wireless information and power transfer (SWIPT) contributes to improve the spectral efficiency (SE) and the energy efficiency (EE) at the same time. In this paper, we investigate the throughput maximization problem for the downlink multi-carrier NOMA (MC-NOMA) system with the application of power splitting (PS)-based SWIPT, in which power allocation and splitting are jointly optimized with the constraints of maximum transmit power supply as well as the minimum demand for energy harvesting (EH). To tackle the non-convex problem, a dual-layer approach is developed, in which the power allocation and splitting control are separated and the corresponding sub-problems are respectively solved through Lagrangian duality method. Simulation results validate the theoretical findings and demonstrate the superiority of the application of PS-based SWIPT to MC-NOMA over SWIPT-aided single-carrier NOMA (SC-NOMA) and SWIPT-aided orthogonal multiple access (OMA)

    An optimized power allocation algorithm for cognitive radio NOMA communication

    Get PDF
    The primary objective of cognitive radio network is to effectively utilize the unused spectrum bands. In cognitive radio networks, spectrum sharing between primary and secondary users is accomplished using either underlay or interweave cognitive radio approach. Non orthogonal multiple access (NOMA) is the proven technology in the present wireless developments, which allows the coexistence of multiple users in the same orthogonal block. The new paradigm cognitive radio NOMA (CR-NOMA) is one of the potential solutions to fulfill the demands of future wireless communication. This paper emphasizes on practical implementation of NOMA in cognitive radio networks to enhance the spectral efficiency. The goal is to increase the throughput of the secondary users satisfying the quality of service (QOS) requirements of primary users. To achieve this, we have presented the optimized power allocation strategy for underlay downlink scenario to support the simultaneous transmission of primary and secondary users. Furthermore, we have proposed QOS based power allocation scheme for CR-NOMA interweave model to support the coexistence of multiple secondary networks. Also, the changes adopted in implementing superposition coding (SC) and successive interference cancellation (SIC) for CR-NOMA are highlighted. Finally, simulation results validate the mathematical expressions that are derived for power allocation coefficient and outage probability

    State of the Art, Taxonomy, and Open Issues on Cognitive Radio Networks with NOMA

    Get PDF
    The explosive growth of mobile devices and the rapid increase of wideband wireless services call for advanced communication techniques that can achieve high spectral efficiency and meet the massive connectivity requirement. Cognitive radio (CR) and non-orthogonal multiple access (NOMA) are envisioned to be important solutions for the fifth generation wireless networks. Integrating NOMA techniques into CR networks (CRNs) has the tremendous potential to improve spectral efficiency and increase the system capacity. However, there are many technical challenges due to the severe interference caused by using NOMA. Many efforts have been made to facilitate the application of NOMA into CRNs and to investigate the performance of CRNs with NOMA. This article aims to survey the latest research results along this direction. A taxonomy is devised to categorize the literature based on operation paradigms, enabling techniques, design objectives and optimization characteristics. Moreover, the key challenges are outlined to provide guidelines for the domain researchers and designers to realize CRNs with NOMA. Finally, the open issues are discussed.Comment: This paper has been accepted by IEEE Wireless Communications Magazine. Pages 16, Figures

    Cognitive Non-Orthogonal Multiple Access with Cooperative Relaying:A New Wireless Frontier for 5G Spectrum Sharing

    Get PDF
    Two emerging technologies toward 5G wireless networks, namely non-orthogonal multiple access (NOMA) and cognitive radio (CR), will provide more efficient utilization of wireless spectrum in the future. In this article, we investigate the integration of NOMA with CR into a holistic system, namely a cognitive NOMA network, for more intelligent spectrum sharing. Design principles of cognitive NOMA networks are perfectly aligned to functionality requirements of 5G wireless networks, such as high spectrum efficiency, massive connectivity, low latency, and better fairness. Three different cognitive NOMA architectures are presented, including underlay NOMA networks, overlay NOMA networks, and CR-inspired NOMA networks. To address inter-network and intra-network interference, which largely degrade the performance of cognitive NOMA networks, cooperative relaying strategies are proposed. For each cognitive NOMA architecture, our proposed cooperative relaying strategy shows its potential to significantly lower outage probabilities. We discuss open challenges and future research directions on implementation of cognitive NOMA networks
    corecore