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Non-orthogonal Multiple Access in Large-Scale

Underlay Cognitive Radio Networks

Yuanwei Liu, Zhiguo Ding, Maged Elkashlan, and Jinhong Yuan

Abstract

In this paper, non-orthogonal multiple access (NOMA) is applied to large-scale underlay cognitive radio (CR)

networks with randomly deployed users. In order to characterize the performance of the considered network,

new closed-form expressions of the outage probability are derived using stochastic-geometry. More importantly,

by carrying out the diversity analysis, new insights are obtained under the two scenarios with different power

constraints: 1) fixed transmit power of the primary transmitters (PTs), and 2) transmit power of the PTs being

proportional to that of the secondary base station. For the first scenario, a diversity order ofm is experienced at the

m-th ordered NOMA user. For the second scenario, there is an asymptotic error floor for the outage probability.

Simulation results are provided to verify the accuracy of the derived results. A pivotal conclusion is reached that by

carefully designing target data rates and power allocationcoefficients of users, NOMA can outperform conventional

orthogonal multiple access in underlay CR networks.

Index Terms
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I. INTRODUCTION

Spectrum efficiency is of significant importance and becomesone of the main design targets for future

fifth generation networks. Non-orthogonal multiple access(NOMA) has received considerable attention

because of its potential to achieve superior spectral efficiency [1]. Particularly, different from conventional

multiple access (MA) techniques, NOMA uses the power domainto serve multiple users at different power

levels in order to use spectrum more efficiently. A downlink NOMA and an uplink NOMA are considered

in [2] and [3], respectively. The application of multiple-input multiple-output (MIMO) techniques to

NOMA has been considered in [4] by using zero-forcing detection matrices. The authors in [5] investigated

an ergodic capacity maximization problem for MIMO NOMA systems.
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Another approach to improve spectrum efficiency is the paradigm of underlay cognitive radio (CR)

networks, which was proposed in [6] and has rekindled increasing interest in using spectrum more

efficiently. The key idea of underlay CR networks is that eachsecondary user (SU) is allowed to access

the spectrum of the primary users (PUs) as long as the SU meetsa certain interference threshold in the

primary network (PN). In [7], an underlay CR network taking into account the spatial distribution of the

SU relays and PUs was considered and its performance was evaluated by using stochastic geometry tools.

In [8], a new CR inspired NOMA scheme has been proposed and theimpact of user pairing has been

examined, by focusing on a simple scenario with only one primary transmitter (PT).

By introducing the aforementioned two concepts, it is natural to consider the application of NOMA in

underlay CR networks using additional power control at the secondary base station (BS) to improve the

spectral efficiency. Stochastic geometry is used to model a large-scale CR network with a large number of

randomly deployed PTs and primary receivers (PRs). We consider a practical system design as follows:

1) All the SUs, PTs, and PRs are randomly deployed based on theconsidered stochastic geometry model;

2) Each SU suffers interference from other NOMA SUs as well asthe PTs; and 3) The secondary BS

must satisfy a predefined power constraint threshold to avoid interference at the PRs. New closed-form

expressions of the outage probability of the NOMA users are derived to evaluate the performance of

the considered CR NOMA network. Moreover, considering two different power constraints at the PTs,

diversity order1 analysis is carried out with providing important insights:1) When the transmit power of

the PTs is fixed, them-th user among all ordered NOMA user experiences a diversityorder ofm; and 2)

When the the transmit power of the PTs is proportional to thatof the secondary BS, an asymptotic error

floor exists for the outage probability.

II. NETWORK MODEL

We consider a large-scale underlay spectrum sharing scenario consisting of the PN and the secondary

network (SN). In the SN, we consider that a secondary BS is located at the origin of a disc, denoted by

D with radiusRD as its coverage. TheM randomly deployed secondary users are uniformly distributed

1Diversity order is defined as the slope for the outage provability curve decreasing with the signal-to-noise-ratio (SNR). It measures the

number of independent fading paths over which the data is received. In NOMA networks, since users’ channels are ordered and SIC is

applied at each receiver, it is of importance to investigatethe diversity order.
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within the disc which is the user zone for NOMA. The secondaryBS communicates with all SUs within

the disc by applying the NOMA transmission protocol. It is worthy pointing out that the power of the

secondary transmitter is constrained in order to limit the interference at the PRs. In the PN, we consider

a random number of PTs and PRs distributed in an infinite two dimensional plane. The spatial topology

of all the PTs and PRs are modeled using homogeneous poisson point processes (PPPs), denoted byΦb

andΦℓ with densityλb andλℓ, respectively. All channels are assumed to be quasi-staticRayleigh fading

where the channel coefficients are constant for each transmission block but vary independently between

different blocks.

According to underlay CR, the transmit powerPt at the secondary BS is constrained as follows:

Pt = min







Ip

max
ℓ∈Φℓ

|gℓ|
2 , Ps






, (1)

whereIp is the maximum permissible interference power at the PRs,Ps is maximum transmission power

at the secondary BS,|gℓ|
2 = |ĝℓ|

2L (dℓ) is the overall channel gain from the secondary BS to PRsℓ. Here,

ĝℓ is small-scale fading witĥgℓ ∼ CN (0, 1), L (dℓ) = 1
1+dα

ℓ

is large-scale path loss,dℓ is the distance

between the secondary BS and the PRs, andα is the path loss exponent. A bounded path loss model is

used to ensure the path loss is always larger than one even forsmall distances [2, 9].

According to NOMA, the BS sends a combination of messages to all NOMA users, and the observation

at them-th secondary user is given by

ym = hm

M∑

n=1

√

anPtxn + nm, (2)

wherenm is the additive white Gaussian noise (AWGN) at them-th user with varianceσ2, an is the

power allocation coefficient for then-th SU with
∑M

n=1 an = 1, xn is the information for then-th user,

andhm is the channel coefficient between them-th user and the secondary BS.

For the SUs, they also observe the interferences of the randomly deployed PTs in the PN. Usually, when

the PTs are close to the secondary NOMA users, they will causesignificant interference. To overcome

this issue, we introduce an interference guard zoneD0 to each secondary NOMA user with radius ofd0,

which means that there is no interference from PTs allowed inside this zone [10]. We assumed0 ≥ 1 in
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this paper. The interference links from the PTs to the SUs aredominated by the path loss and is given by

IB =
∑

b∈Φb

L (db), (3)

whereL(db) = 1/(1 + dαb ) is the large-scale path loss anddb is the distance from the PTs to the SUs.

Without loss of generality, all the channels of SUs are assumed to follow the order as|h1|
2 ≤ |h2|

2 ≤

· · · ≤ |hM |2. The power allocation coefficients are assumed to follow theorder asa1 ≥ a2 ≥ · · · ≥ aM .

According to the NOMA principle, successive interference cancelation (SIC) is carried out at the receivers

[11]. It is assumed that1 ≤ j ≤ m < i. In this case, them-th user can decode the message of thej-th

user and treats the message for thei-th user as interference. Specifically, them-th user first decodes

the messages of all the(m − 1) users, and then successively subtracts these messages to obtain its own

information. Therefore, the received signal-to-interference-plus-noise ratio (SINR) for them-th user to

decode the information of thej-th user is given by

γm,j =
|hm|

2γtaj

|hm|
2γt

M∑

i=j+1

ai + ρbIB + 1

, (4)

whereγt = min

{

ρp

max
ℓ∈Φℓ

|gℓ|
2 , ρs

}

, ρp =
Ip
σ2
, ρs =

Ps

σ2
, ρb =

PB

σ2
, andPB is the transmit power of the PTs,|hm|

2

is the overall ordered channel gain from the secondary BS to them-th SU. For the casem = j, it indicates

them-th user decodes the message of itself. Note that the SINR fortheM-th SU isγM,M = |hM |2γtaM
ρbIB+1

.

III. OUTAGE PROBABILITY

In this section, we provide exact analysis of the considerednetworks in terms of outage probability. In

NOMA, an outage occurs if them-th user can not detect any of thej-th user’s message, wherej ≤ m

due to the SIC. DenoteXm = |hm|2γt
ρbIB+1

. Based on (4), the cumulative distribution function (CDF) of Xm is

given by

FXm (ε) = Pr

{

|hm|
2γt

ρbIB + 1
< ε

}

. (5)

We denoteεj = τj/
(

aj − τj
∑M

i=j+1 ai

)

for j < M , τj = 2Rj − 1, Rj is the target data rate for the

j-th user,εM = τM/aM , andεmax
m = max {ε1, ε2, ..., εm}. The outage probability at them-th user can be

expressed as follows:

Pm = Pr {Xm < εmax
m } = FXm (εmax

m ) , (6)
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where the conditionaj − τj
∑M

i=j+1 ai > 0 should be satisfied due to applying NOMA, otherwise the

outage probability will always be one [2].

We need calculate the CDF ofXm conditioned onIB andγt. Rewrite (5) as follows:

FXm|IB ,γt (ε) = F|hm|2

(
(ρbIB + 1) ε

γt

)

, (7)

whereF|hm|2 is the CDF ofhm. Based on order statistics [12] and applying binomial expansion, the CDF

of the ordered channels has a relationship with the unordered channels as follows:

F|hm|2 (y) = ψm

M−m∑

p=0

(
M −m

p

)
(−1)p

m+ p

(

F
|h̃|

2 (y)

)m+p

, (8)

where y = (ρbIB+1)ε
γt

, ψm = M !
(M−m)!(m−1)!

, and
∣
∣
∣h̃
∣
∣
∣

2

=
∣
∣
∣ĥ
∣
∣
∣

2

L (d) is the unordered channel gain of an

arbitrary SU. Here,̂h is the small-scale fading coefficient witĥh ∼ CN (0, 1), L (d) = 1
1+dα

is the large-

scale path loss, andd is a random variable representing the distance from the secondary BS to an arbitrary

SU.

Then using the assumption of homogenous PPP and applying thepolar coordinates, we expressF
|h̃|

2 (y)

as follows:

F
|h̃|

2 (y) =
2

R2
D

∫ RD

0

(
1− e−(1+rα)y

)
rdr. (9)

Note that it is challenging to obtain an insightful expression for the unordered CDF. As such, we apply

the Gaussian-Chebyshev quadrature [13] to find an approximation for (9) as

F
|h̃|

2 (y) ≈
N∑

n=0

bne
−cny, (10)

whereN is a complexity-accuracy tradeoff parameter,bn = −ωN
√

1− φ2
n (φn + 1), b0 = −

N∑

n=1

bn, cn =

1 +
(
RD

2
(φn + 1)

)α
, ωN = π

N
, andφn = cos

(
2n−1
2N

π
)
.

Substituting (10) into (8) and applying the multinomial theorem, we obtain

F|hm|2 (y) = ψm

M−m∑

p=0

(
M −m

p

)
(−1)p

m+ p

∑

q0+···+qN=m+p

(
m+ p

q0 + · · ·+ qN

)( N∏

n=0

bqnn

)

e
−

N
∑

n=0
qncny

. (11)



6

where
(

m+p
q0+···+qN

)
= (m+p)!

q0!···qN !
. Based on (11), the CDF ofXm can be expressed as follows:

FXm (εj) =

∫ ∞

0

∫ ∞

0

F|hm|2

(
(ρbx+ 1) εj

z

)

fIB (x) fγt (z) dxdz

=ψm

M−m∑

p=0

(
M −m

p

)
(−1)p

m+ p

∑

q0+···+qN=m+p

(
m+ p

q0 + · · ·+ qN

)( N∏

n=0

bqnn

)

×

∫ ∞

0

e
−

εj
z

N
∑

n=0
qncn

∫ ∞

0

e
−

xρbεj
z

N
∑

n=0
qncn

fIB (x)dx

︸ ︷︷ ︸

Q2

fγt (z)dz

︸ ︷︷ ︸

Q1

, (12)

wherefγt is the PDF ofγt. We expressQ2 in (12) as follows:

Q2 =

∫ ∞

0

e
−x

ρbεj
z

N
∑

n=0
qncn

fIB (x)dx = EΦb

{

e
−

xρbεj
z

N
∑

n=0
qncn

}

= LIB

(

xρbεj
z

N∑

n=0

qncn

)

. (13)

In this case, the Laplace transformation of the interferences from the PT can be expressed as [10]

LIB (s) = exp
(

−λbπ
[(

e−sd
−α
0 − 1

)

d20 + sδγ
(
1− δ, sd−α0

)])

= exp






−λbπ







(

e−sd
−α
0 − 1

)

d20 + sδ
∫ sd−α

0

0

t−δe−tdt

︸ ︷︷ ︸

Θ












, (14)

whereδ = 2
α

andγ (·) is the lower incomplete Gamma function.

To obtain an insightful expression, we use Gaussian-Chebyshev quadrature to approximate the lower

incomplete Gamma function in (14),Θ can be expressed as follows:

Θ ≈ s1−δ
L∑

l=1

βle
−tlsd

−α
0 , (15)

whereL is a complexity-accuracy tradeoff parameter,βl =
1
2
d2−α0 ωL

√

1− θ2l tl
−δ , tl = 1

2
(θl + 1), ωL = π

L
,

andθl = cos
(
2l−1
2L
π
)
. Substituting (15) into (14), we approximate the Laplace transformation as follows:

LIB (s) ≈e
−λbπ

(

(

e
−sd

−α
0 −1

)

d20+s
L
∑

l=1
βle

−tlsd
−α
0

)

. (16)

Substituting (16) into (12),Q2 is given by

Q2 = e

−λbπ












e
−

ρbεjd
−α
0

z

N∑

n=0
qncn

−1






d20+

ρbεj
z

N
∑

n=0
qncn

L
∑

l=1
βle

−
tlρbεj
zdα

0

N∑

n=0
qncn







. (17)

The following theorem provides the PDF ofγt.
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Theorem 1: Consider the use of the composite channel model with Rayleigh fading and path loss, the

PDF of the effective power of the secondary BS is given by

fγt (x) = e−aℓρ
δ
se

−
ρp
x Dirac (x− ρs) +

(ρp
x

+ δ
)

aℓx
δ−1e−aℓx

δe−
ρp
x −

ρp

x U (ρs − x) , (18)

whereaℓ =
δπλℓΓ(δ)

ρδp
, U (·) is the unit step function, andDirac (·) is the impulse function.

Proof: See Appendix A.

Substituting (18) and (17) into (12), we expressQ1 as follows:

Q1 =e

−aℓρ
δ
se

−
ρp
ρs −

εj

N∑

n=0
qncn

ρs
−λbπ












e
−

ρbεj
ρsd

α
0

N∑

n=0
qncn

−1






d20+

ρbεj
ρs

N
∑

n=0
qncn

L
∑

l=1

βle
−

tlρbεj
ρsd

α
0

N∑

n=0
qncn







+

∫ ρs

0

aℓ

(ρp
z

+ δ
)

zδ−1e−aℓz
δe−

ρp
z −

ρp+εj

N∑

n=0
qncn

z Q2dz

︸ ︷︷ ︸

Ψ

. (19)

We notice that it is very challenging to solve the integralΨ in (19), therefore, we apply the Gaussian-

Chebyshev quadrature to approximate the integral as follows:

Ψ ≈
K∑

k=1

ηke

−
ρp+εj

N∑

n=0
qncn

ρssk
−λbπ












e
−

ρbεj
ρsskdα

0

N∑

n=0
qncn

−1






d20+

ρbεj
ρssk

N
∑

n=0
qncn

L
∑

l=1

βle
−

tlρbεj
ρsskdα

0

N∑

n=0
qncn







, (20)

whereK is a complexity-accuracy tradeoff parameter,ωK = π
K

, ϕk = cos
(
2k−1
2K

π
)
, sk = 1

2
(ϕk + 1), and

ηk =
ωK

2

√

1− ϕ2
k

(
ρp
ρssk

+ δ
)

aℓρ
δ
ss
δ−1
k e−aℓρ

δ
ss

δ
ke

−
ρp

ρssk .

Substituting (19) and (20) into (12) and applyingεmax → εj, based on (6), we obtain the closed-form

expression of the outage probability at them-th user as follows:

Pm = ψm

M−m∑

p=0

(
M −m

p

)
(−1)p

m+ p

∑

q0+···+qN=m+p

(
m+ p

q0 + · · ·+ qN

)( N∏

n=0

bqnn

)

×







e

−aℓρ
δ
se

−
ρp
ρs −

εmax
N∑

n=0
qncn

ρs
−λbπ












e
−

ρbεmax
ρsd

α
0

N∑

n=0
qncn

−1






d20+

ρbεmax
ρs

N
∑

n=0
qncn

L
∑

l=1
βle

−
tlρbεmax

ρsd
α
0

N∑

n=0
qncn







+

K∑

k=1

ηke

−
ρp+εmax

N∑

n=0
qncn

ρssk
−λbπ












e
−

ρbεmax
ρsskdα

0

N∑

n=0
qncn

−1






d20+

ρbεmax
ρssk

N
∑

n=0
qncn

L
∑

l=1

βle
−

tlρbεmax
ρsskdα

0

N∑

n=0
qncn













. (21)
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IV. D IVERSITY ANALYSIS

Based on the analytical results for the outage probability in (21), we aim to provide asymptotic diversity

analysis for the ordered NOMA users. The diversity order of the user’s outage probability is defined as

d = − lim
ρs→∞

logPm (ρs)

log ρs
. (22)

A. Fixed Transmit Power at Primary Transmitters

In this case, we examine the diversity with the fixed transmitSNR at the PTs (ρb), while the transmit

SNR of secondary BS (ρs) and the maximum permissible interference constraint at the PRs (ρp) go to the

infinity. Particularly, we assumeρp is proportional toρs, i.e.ρp = κρs, whereκ is a positive scaling factor.

This assumption applies to the scenario where the PRs can tolerate a large amount of interference from the

secondary BS and the target data rate is relatively small in the PN. Denoteγt∗ =
γt
ρs

= min

{

κ

max
ℓ∈Φℓ

|gℓ|
2 , 1

}

,

similar to (8), the ordered CDF has the relationship with unordered CDF as

F∞
Xm|IB,γt∗

(y∗) = ψm

M−m∑

p=0

(
M −m

p

)
(−1)p

m+ p

(

F∞

|h̃|
2 (y∗)

)m+p

, (23)

where y∗ =
(ρbIB+1)εj

ρsγt∗
. When ρs → ∞, we observe thaty∗ → 0. In order to investigate an insightful

expression to obtain the diversity order, we use Gaussian-Chebyshev quadrature and1 − e−y
∗
≈ y∗ to

approximate (9) as

F∞

|h̃|
2 (y∗) ≈

N∑

n=1

χny
∗, (24)

whereχn = ωN
√

1− φ2
n (φn + 1) cn. Substituting (24) into (23), sincey∗ → 0, we obtain

F∞
Xm|IB,γt∗

(εj) = ξ

(
(ρbIB + 1) εj

ρsγt∗

)m

+ o

((
(ρbIB + 1) εj

ρsγt∗

)m)

, (25)

whereξ =
ψm

(

N
∑

n=1
χn

)m

m
. Based on (6), (11), and (25), the asymptotic outage probability is given by

P∞
mF

≈
1

ρms

∫ ∞

0

∫ ∞

0

ξ

(
(ρbx+ 1) εmax

z

)m

fIB (x) fγt∗ (z) dxdz

︸ ︷︷ ︸

C

, (26)

wherefγt∗ the PDF ofγt∗. SinceC is a constant independent ofρs, (26) can be expressed as follows:

P∞
mF

=
1

ρms
C + o

(
ρs

−m
)
, (27)
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Substituting (27) into (22), we obtain the diversity order of this case ism. This can be explained as

follows. Note that SIC is applied at the ordered SUs. For the first user with the poorest channel gain, no

interference cancelation is operated at the receiver, therefore its diversity gain is one. While for them-th

user, since the interferences from all the other(m− 1) users are canceled, it obtains a diversity ofm.

B. Transmit Power of Primary Transmitters Proportional to that of Secondary Ones

In this case, we examine the diversity with the transmit SNR at the PTs (ρb) is proportional to the

transmit SNR of secondary BS (ρs). Particularly, we assumeρb = νρs, whereν is a positive scaling

factor. We still assumeρp is proportional toρs. Applying ρs → ∞, ρp = κρs andρb = νρs to (21), we

obtain the asymptotic outage probability of them-th user in this case as follows:

P∞
mP

≈ψm

M−m∑

p=0

(
M −m

p

)
(−1)p

m+ p

∑

q0+···+qN=m+p

(
m+ p

q0 + · · ·+ qN

)( N∏

n=0

bqnn

)

×







e

−a∞ℓ e−κ−λbπ












e
−νεmax

dα
0

N∑

n=0
qncn

−1






d20+νεmax

N
∑

n=0
qncn

L
∑

l=1

βle
−

tlνεmax
dα
0

N∑

n=0
qncn







+

K∑

k=1

η∞k e

− κ
sk

−λbπ












e
− νεmax

skdα0

N∑

n=0
qncn

−1






d20+

νεmax
sk

N
∑

n=0
qncn

L
∑

l=1
βle

−
tlνεmax
skdα0

N∑

n=0
qncn













. (28)

wherea∞ℓ = δπλℓΓ(δ)
κδ

andη∞k = ωK

2

√

1− ϕ2
k

(
κ
sk

+ δ
)

a∞ℓ s
δ−1
k e−a

∞
ℓ sδke

− κ
sk .

It is observed thatP∞
mP

is a constant independent ofρs. Substituting (28) into (22), we find that

asymptotically there is an error floor for the outage probability of SUs.
V. NUMERICAL RESULTS

In this section, numerical results are presented to verify the accuracy of the analysis as well as to obtain

more important insights for NOMA in large-scale CR networks. In the considered network, the radius of

the guard zone is assumed to bed0 = 2 m. The Gaussian-Chebyshev parameters are chosen withN = 5,

K = 10, andL = 10. Monte Carlo simulation results are marked as “•” to verify our derivation.

Fig. 1 plots the outage probability of them-th user for the first scenario whenρb is fixed andρp is

proportional toρs. In Fig. 1(a), the power allocation coefficients area1 = 0.5, a2 = 0.4 and a3 = 0.1.

The target data rate for each user is assumed to be all the sameasR1 = R2 = R3 = 0.1 bit per channel

use (BPCU). The dashed and solid curves are obtained from theanalytical results derived in (21). Several
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Fig. 1: Outage probability of them-th user versusρs of the first scenario.
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−4, κ = 0.5,
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Fig. 2: Outage probability of them-th user versusρs of the second scenario.

observations can be drawn as follows: 1) Reducing the coverage of the secondary users zoneD can

achieve a lower outage probability because of a smaller pathloss. 2) The ordered users with different

channel conditions have different decreasing slope because of different diversity orders, which verifies the

derivation of (26). In Fig. 1(b), the power allocation coefficients area1 = 0.8 and a2 = 0.2. The target

rate isR1 = 1 andR2 = 3 BPCU. The performance of a conventional OMA is also shown in the figure

as a benchmark for comparison. It can be observed that for different values of the path loss, NOMA can
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achieve a lower outage probability than the conventional OMA.

Fig. 2 plots the outage probability of them-th user for the second scenario when bothρb andρp are

proportional toρs. The power allocation coefficients area1 = 0.8 and a2 = 0.2. The target rates are

R1 = R2 = 0.1 BPCU. The dashed and solid curves are obtained from the analytical results derived in

(21). One observation is that error floors exist in both Figs.2(a) and 2(b), which verifies the asymptotic

results in (28). Another observation is that user two (m = 2) outperforms user one (m = 1). The reason

is that for user two, by applying SIC, the interference from user one is canceled. While for user one,

the interference from user two still exists. In Fig. 2(a), itis shown that the error floor become smaller

whenλb andλℓ decrease, which is due to less interference from PTs and the relaxed interference power

constraint at the PRs. It is also worth noting that with thesesystem parameters, NOMA outperforms OMA

for user one while OMA outperforms NOMA for user two, which indicates the importance of selecting

appropriate power allocation coefficients and target data rates for NOMA. In Fig. 2(b), it is observed

that the error floors become smaller asν decreases. This is due to the fact that smallerν means a lower

transmit power of PTs, which in turn reduces the interference at SUs.
VI. CONCLUSIONS

In this paper, we have studied non-orthogonal multiple access (NOMA) in large-scale underlay cognitive

radio networks with randomly deployed users. Stochastic geometry tools were used to evaluate the

outage performance of the considered network. New closed-form expressions were derived for the outage

probability. Diversity order of NOMA users has been analyzed in two situations based on the derived

outage probability. An important future direction is to optimize the power allocation coefficients to further

improve the performance gap between NOMA and conventional MA in CR networks.

APPENDIX A: PROOF OFTHEOREM 1

The CDF ofγt is given by

Fγt (x) = Pr






min







ρp

max
ℓ∈Φℓ

|gℓ|
2 , ρs






≤ x







= Pr

{

max
ℓ∈Φℓ

|gℓ|
2 ≥ max

{
ρp
x
,
ρp
ρs

}}

+ Pr

{

max
ℓ∈Φℓ

|gℓ|
2 ≤

ρp
ρs
, ρs ≤ x

}

= 1− U (ρs − x) Pr

{

max
ℓ∈Φℓ

|gℓ|
2 ≥

ρp
x

}

︸ ︷︷ ︸

Ω

. (A.1)
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DenoteΩ̄ = 1− Ω, we express̄Ω as follows:

Ω̄ = Pr

{

max
ℓ∈Φℓ

|gℓ|
2 ≤

ρp
x

}

= EΦℓ

{
∏

ℓ∈Φℓ

Pr

{

|ĝℓ|
2 ≤

(1 + dαℓ ) ρp
x

}}

= EΦℓ

{
∏

ℓ∈Φℓ

F|ĝℓ|
2

(
(1 + dαℓ ) ρp

x

)}

. (A.2)

Applying the generating function, we rewrite (A.2) as follows:

Ω̄ = exp



−λℓ

∫

R2

(

1− F|ĝℓ|
2 ((1 + dαℓ )µ)

)

rdr



 = exp

[

−2πλℓe
−µ

∫ ∞

0

re−µr
α

dr

]

. (A.3)

Applying [14, Eq. (3.326.2)], we obtain

Ω = 1− Ω̄ = 1− e
−

e−µδπλℓΓ(δ)

µδ , (A.4)

whereΓ(·) is Gamma function. Substituting (A.4) into (A.1), and taking the derivative, we obtain the

PDF of γt in (18). The proof is completed.
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