141 research outputs found

    Application of a Fractional Order Integral Resonant Control to increase the achievable bandwidth of a nanopositioner

    Get PDF
    The congress program will essentially include papers selected on the highest standard by the IPC, according to the IFAC guidelines www.ifac-control.org/publications/Publications-requirements-1.4.pdf, and published in open access in partnership with Elsevier in the IFAC-PapersOnline series, hosted on the ScienceDirect platform www.sciencedirect.com/science/journal/24058963. Survey papers overviewing a research topic are also most welcome. Contributed papers will have usual 6 pages length limitation. 12 pages limitation will apply to survey papers.Publisher PD

    A Modified Positive Velocity and Position Feedback scheme with delay compensation for improved nanopositioning performance

    Get PDF
    Acknowledgments This paper was sponsored by the Spanish FPU12/00984 Program (Ministerio de Educacion, Cultura y Deporte). It was also sponsored by the Spanish Government Research Program with the Project DPI2012-37062-CO2-01 (Ministerio de Economia y Competitividad) and by the European Social Fund.Peer reviewedPostprin

    An analytical approach to integral resonant control of second-order systems

    Get PDF
    Peer reviewedPostprin

    A dual-loop tracking control approach to precise nanopositioning

    Get PDF
    The author(s) received no financial support for the research, authorship, and/or publication of this article.Peer reviewedPostprin

    Two-degrees-of-freedom PI2D controller for precise nanopositioning in the presence of hardware-induced constant time delay

    Get PDF
    This work was supported in part by the Spanish Agencia Estatal de Investigacion (AEI) under Project DPI2016-80547-R (Ministerio de Economia y Competitividad) and in part by the European Social Fund (FEDER, EU), and in part by the Spanish FPU12/00984 Program (Ministerio de Educacion, Cultura y Deporte).Peer reviewedPostprin

    Robust fractional-order fast terminal sliding mode control with fixed-time reaching law for high-performance nanopositioning

    Get PDF
    Open Access via the Wiley Agreement ACKNOWLEDGEMENTS This work is supported by the China Scholarship Council under Grant No. 201908410107 and by the National Natural Science Foundation of China under Grant No. 51505133. The authors also thank the anonymous reviewers for their insightful and constructive comments.Peer reviewedPublisher PD

    High-precision Control of a Piezo-driven Nanopositioner Using Fuzzy Logic Controllers

    Get PDF
    Acknowledgments: The authors would like to thank Douglas Russell for the technical help and Andres San-Millan for data measurements. Financial support via the Elphinstone Research Scholarship, provided by the School of Engineering, University of Aberdeen, to fund Mohammed Altaher’s Ph.D. work is highly appreciated.Peer reviewedPublisher PD
    corecore