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Abstract

Inherent nonlinearities as well as their sharp lightly-damped resonant mode
severely limit the positioning bandwidth of commercially available piezo-
electric stack actuated nanopositioners. In this paper, we propose a hybrid
control scheme that incorporates a H∞-based loop-shaping control scheme
for resonance damping and an integral control for tracking. Experimental
raster scans recorded in both open-loop and closed-loop operation are pre-
sented to show the substantial increase in positioning performance achieved
by the implemented control scheme. It is also shown that the control scheme
is robust under relatively large changes in platform resonance, an effect of
platform loading.

Key words: Nanopositioning, H∞ loop-shaping, resonance damping,
tracking, rastering

1. Introduction

The piezoelectric-stack actuated nanopositioning platform has emerged
as a popular, commercially-available nanopositioning device due to its sim-
ple design, robust mechanical construction, ease of sensor integration, large
motion ranges, almost flat motion profile and inherently low axial cross-
coupling, [1, 2, 3, 4]. Most of these commercially available platforms are
essentially parallel-kinematic manipulators with flexure guidance systems.
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Figure 1: (a) A snapshot of the commercially available PI-734 nanopositioning platform.
(b) Working principle of the monolithic XY piezoelectric-stack actuated nanopositioning
platform.

Figure 1 shows one such nanopositioner with integrated parallel-plate capac-
itive sensors for measuring axial displacement. These nanopositioners have
a number of inherent performance-limiting factors such as lightly damped
resonant modes, hysteresis and creep; that their accompanying rudimentary
controllers, mostly PI or PID, cannot alleviate without drastically reducing
their positioning bandwidth, [5, 6]. To push the boundaries of their posi-
tioning performance in terms of speed, linearity and accuracy, a number of
evolved control algorithms have been proposed.

Inversion-based feedforward techniques for continuously tracking a de-
sired trajectory have been investigated, [7, 8]. Inversion-based feedforward
technique has also been applied to nanopositioning systems [9]. It was shown
that by using this approach, it is possible to compensate for nonlinear effects
such as creep and hysteresis [10, 11]. High sensitivity to modeling errors and
plant parameter uncertainties are the main drawbacks of the feedforward con-
trol strategy. Feedback techniques that suppress the effects of uncertainties
have been shown to improve the bandwidth of feedforward strategies [12].
Force-feedback for nano-manipulation was reported in [13]. In [14], robust
tracking was reported. H∞ control algorithms for nano-scale tracking have
also been investigated [15]. An in-depth overview of this field is given in
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[16, 17].
Variation in resonance frequency is one of the commonly occurring sys-

tem uncertainties in a nanopositioning stage. These variations can occur due
to a number of reasons such as a change in ambient temperature, humidity,
atmospheric pressure and mechanical loading. The most effective method
to make the system less sensitive to variations in resonance frequencies is to
impart substantial damping to the dominant resonant mode of the nanoposi-
tioner using a feedback controller and ensure that the controller is sufficiently
robust to changes in resonance frequency. Passive damping techniques such
as shunts have been effective but need constant tuning and show a drastic
performance degradation under variations in resonance frequencies. Adap-
tive shunts are needed to handle system uncertainties and have been reported
in [18, 19]. Feedback controllers that impart substantial damping to the sys-
tem have been documented over the years [20, 21, 22, 23, 24]. PPF control
[25] and Resonant control [26] have shown substantial damping capability.
Polynomial-based controller is another straightforward controller, [27], which
is easy to construct for second-order plants, imparts substantial damping to
the system, and is robust under resonance frequency variations [28, 29]. In
recent years, Integral Resonant Control has also been applied successfully to
damp the dominant resonant mode of custom-built and commercially avail-
able nanopositioners, [30, 31]. Combining such damping controllers that are
insensitive to variations in resonance frequencies with a PI controller has
been reported earlier [32], where it was noted that the high gain needed by
the integrator to track a given trajectory limits the achievable scan speed
using this technique to about 4 Hz. The need for high-speed high-resolution
scanning at the nanometer scale has led to several control approaches being
investigated, [33, 34]. Using the inversion-based feedforward technique in
conjunction with the feedback, it was shown that the scan speed of the same
commercially-available nanopositioner could be increased, [35].

In this paper, a H∞-based loop-shaping controller that robustly damps
the platform resonance is combined with inversion-based feedforward and
integral tracking control to ultimately result in fast and accurate nanoposi-
tioning. To further reduce the effects of hysteresis and creep, the fast axis of
the nanopositioner is driven by charge rather than voltage using a custom-
built charge amplifier, [36].
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Figure 2: Experimental setup used in this work.

2. Experimental Setup

Figure 2 shows the experimental setup used for this work. The com-
mercially available piezoelectric stack actuated nanopositioner used in this
work is the PI-734 XY piezo-scanner that has a 100µm × 100µm motion
range (scan area). The E-509 sensor module was employed to procure dis-
placement data from the in-built capacitive sensors of the nanopositioner.
This module generates voltages proportional to the respective axis displace-
ments. The control algorithm was implemented using the dSPACE DS1103
rapid prototyping system consisting of 16-bit A/D input channels and 16-bit
D/A output channels operating in parallel at a sampling rate of 20 kHz. To
reduce the effect of environmental exogenous vibrations and disturbances,
the nanopositioner was mounted on a pneumatic vibration isolation table.
All the transfer functions were recorded using a HP35670A Dynamic Signal
Analyzer.

2.1. System Identification

The nanopositioning platform is treated as a two input - two output sys-
tem, the inputs being the command signals for x and y axes and the outputs
being the resulting displacements in each of the axes. The nanopositioner
is driven by an amplifier using a swept-sine wave input generated by the
HP35670A Dynamic Signal Analyzer. The motion of the nanopositioner in
each axis is sensed by the two-plate capacitive sensor integrated into each
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Figure 3: The frequency response of the two-input two-output nanopositioning platform
measured from inputs (amplifier input voltage proportional to desired displacement) X
and Y to sensor outputs (capacitive displacement sensor voltages proportional to resulting
displacement). Note that the Gxx(s) has a resonant peak at 426 Hz, Gyy(s) has a resonant
peak at 395 Hz and there is substantial decoupling (a minimum of ≈ -30 dB between the
two axes).
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axis and this signal is then fed to the E-509 sensor module. Finally, the sensor
module produces a voltage proportional to the platform displacement.

Figure 3 plots the four magnitude responses (from input X to output X
→ Gxx(s), from input X to output Y → Gyx(s), from input Y to output X
→ Gxy(s) and from input Y to output Y → Gyy(s)) for the nanopositioner.
The first and dominant resonant peaks for the x and the y axes occur at 426
Hz and 395 Hz respectively. Throughout this work, we will address the axis
with its first resonant peak at 426 Hz to be the fast axis and the one with its
resonance at 395 Hz as the slow axis. As the most popular scan trajectory
is a raster pattern employing a triangle wave (with high frequency compo-
nents) on one axis and a slow ramp on the other, this is the scan trajectory
used in our experimental analysis to test the positioning performance of the
nanopositioner operated in closed-loop with the proposed control strategy.
Consequently, the fast axis will be driven with a triangle wave input while
the slow axis will move along a slow ramp / staircase trajectory. The fast
axis of the nanopositioner was driven by a charge amplifier while the slow
axis was driven by a voltage amplifier. Also note that though the cross-
coupling is low throughout the frequency range, it is particularly high near
the platform resonance. Damping the resonance modes of both the axes will
also result in reduced cross-coupling, an extremely favorable property for
accurate nanopositioning systems.

As operating point (D.C. Bias) as well as external loading tend to change
the frequency response of the system, frequency responses were measured
to ascertain the behavior of the nanopositioner to these operating condi-
tion variations. Figure 4(a) shows the frequency magnitude response of the
nanopositioner for different operating points. As can be seen, variation in op-
erating point leads to minor changes in the overall system gain that manifest
clearly at lower frequencies. Change in loading conditions have a more pro-
nounced impact of the frequency response of the nanopositioner. As shown
in Figure 4(b), as the load increases, the resonance frequency as well as the
magnitude of the resonance peak reduce.

3. Control Design

There are two main problems that have been targeted by the proposed
control design viz: (i) the lightly-damped resonant mode of the nanoposi-
tioner and (ii) nonlinear effects such as hysteresis and creep. Additionally, as
these nanopositioners are employed in applications that require the nanopo-
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Figure 4: (a) Frequency responses of one axis of the nanopositioning platform at various
operating points (resulting from changes in the DC bias applied to the piezoelectric actu-
ator of the respective axis). (b) Frequency responses of one axis of the nanopositioning
platform under different loading conditions.

sitioners to undergo varying load conditions, these nanopositioners also ex-
perience substantial changes in their resonant frequency. Thus, any control
strategy implemented must be robust enough to accommodate these varia-
tions without any instability issues. In this section, the details of the control
design are presented. For more details, readers are referred to any one of
several classical texts on Robust Control such as [37].

3.1. H∞ Loop-shaping for robust resonance damping

We define the nominal model of the system to be controlled starting from
the coprime factors on the left: G(s) = M̃(s)−1Ñ(s). Then a perturbed
model is written (see Fig .5).

G̃ = (M̃ +∆m)
−1(Ñ +∆n) (1)

where G̃ is a left coprime factorization (LCF) of G, and ∆m,∆n are
unknown and stable transfer functions representing the uncertainty. We can
then define a family of models with the following expression :

ξǫ = {G̃ = (M̃ +∆m)
−1(Ñ +∆n) : ‖(∆m ∆n)‖∞ < ǫ} (2)
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Figure 5: Coprime factor robust stabilization problem.

where ǫmax represent the margin of maximum stability. The robust prob-
lem of stability is thus to find the greatest value of ǫ = ǫmax , such as all
the models belonging to ξǫ can be stabilized by the same corrector K. The
problem of robust stability H∞ amounts finding γminand K(s) stabilizing
G(s) such as:

∥∥∥∥
(

I

K

)
(I −GK)−1(I W2GW1)

∥∥∥∥
∞

= γ−1
min = ǫ−1

max (3)

However, [38] showed that the minimal value γ of is given by:

γmin = ǫ−1
max =

√
1 + λsup(XY ) (4)

where λsup indicates the greatest eigenvalue of XY . Moreover, for any
value ǫ < ǫmax a corrector stabilizing all the models belonging to ξǫ is given
by:

K(s) = BTX(sI − A+BBTX − γ2ZY CTC)−1γ2ZY CT

Z = (I + Y X − γ2I)−1 (5)

γ = ǫ−1

where A, B and C are state matrices of the system defined by the function
G and X , Y are the positive definite matrices and solution of the Ricatti
equation.
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Figure 6: Loop Shaping design procedure.

3.1.1. The Loop Shaping Design Procedure

Contrary to the approach of Glover-Doyle, no weight function can be
introduced into the problem. The adjustment of the performances is obtained
by affecting an open modeling (Loop Shaping) process before calculating the
compensator. The design procedure is as follows :

• We add to the matrix G(s) of the system to be controlled, a pre-
compensator W1 and/or a post-compensator W2. The nominal plant
G(s) and shaping functions W1 and W2 are combined in order to im-
prove the performances of the system such as Ga(s) = W2(s)G(s)W1(s)
(see Fig.6.a).

• From coprime factorizations of Ga(s), we apply the previous results to
calculate ǫmax, and then synthesize a stabilizing controller K ensuring
a value of ǫ slightly lower than ǫmax.

• The final feedback controller is obtained by combining the H∞ con-
troller K(s) with the shaping functions W1 and W2 such that Ga(s) =
W2(s)G(s)W1(s) (See Figure 6(b)).

3.1.2. Robust Controller Synthesis

H∞ based loop-shaping control technique basically involves choosing suit-
able pre- and post-compensator weighting functions that shape the plant dy-
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namics as desired. Once these weighting functions are chosen, an H∞-based
controller K(s) that robustly stabilizes the shaped plant is synthesized. For
nanopositioning systems, it is apt to choose a pre-compensator to be a scalar
gain that pushes the gain of the plant at low-frequencies to unity. Addition-
ally, the post-compensator is chosen such that the higher-frequency dynamics
(seen in the frequency response at frequencies greater than the first dominant
resonant mode) roll-off at a faster rate. Consequently, for the nanopositioner
used in this work, the pre-compensator weight W1 is chosen to be 0.5 and
the post-compensator W2 is chosen to be

W2 =
5.053× 107

s2 + 4021s+ 2.527× 107
, (6)

TheH∞-based controllerK(s) that robustly stabilizes the shaped plantGa(s)
is found to be:

K(s) =
−2.358s3 − 5735s2 − 4.307× 107s+ 1.021× 1011

s3 + 1.243× 104s2 + 9.15× 107s+ 4.13× 1011
(7)

This controller results in good gain and phase margins (G.M. = 10.3 dB
at 872.17 Hz and P.M. = 68.8 deg at 552.26 Hz). Using a similar approach,
the loop-shaping pre- and post-compensator weights as well as a H∞-based
controller was designed for the slow axis of the nanopositioning platform.
The details are given below.

W ′

1 = 0.45

W ′

2 =
5.053× 107

s2 + 6032s+ 2.527× 107

K ′(s) =
−2.417s3 − 2400s2 − 1.46× 107s+ 6.96× 1010

s3 + 1.091× 104s2 + 6.442× 107s+ 2.385× 1011

Simulations predict almost a 22 dB damping augmentation at resonance
for both the x and y axes of the nanopositioner.

3.2. Tracking control

To increase the accuracy of the nanopositioner as well as the positioning
bandwidth, an integral tracking controller combined with the inversion-based
feed-forward technique was implemented. The details of these controllers are
given below.
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3.2.1. Integral tracking

Due to the substantial damping of the resonant mode achieved by the
H∞ loop-shaping controller discussed earlier, there is sufficient gain-margin
in the system to implement a relatively high-gain integral tracking controller.
Also, as the slow axis is given a ramp input, the integral tracking controller
is ideally suited. Thus, a gain of 600 was selected for the implemented in-
tegrator. Figure 7 shows the overall control loop implemented for the slow
axis.

3.2.2. Inversion-based Feed-forward control

Input-shaping using plant inversion is a well-known and popular technique
for achieving accurate scan performance using nanopositioning devices [9, 35].
The inversion-based feedforward controller finds the input ‘u’ that, when fed
to a linear system with known dynamics ‘Gxx’, produces the desired output
‘yd’. In mathematical terms, the task is to find a u such that

Yd(iω) = Gxx(iω)U(iω) (8)

where U(iω) and Yd(iω) are Fourier transforms of u and the desired trajectory
yd respectively. In most scanning applications, the desired trajectory is a
periodic triangle waveform and can be expressed as a Fourier series viz:

yd(t) =
∞∑

k=1

Aksin(ωkt) (9)

where Ak =
8

π2k2
sin

(
πk
2

)
and ωk = 2πkf with f being the fundamental fre-

quency of the triangular waveform. Therefore, the Fourier transform Yd(iω)
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is a sum of impulses with magnitude Ak. Hence, an input u(t) based on the
inverted system dynamics 1

Gxx((iωk)
, given by

u(t) =
∞∑

k=1

Ak

| Gxx(iωk) |
sin(ωt− φk) (10)

where

φk = ∠Gxx(iωk), k = 1, 2, . . . , (11)

should result in yd(t) being the output, for more details refer to [39]. However,
this technique suffers from two poignant drawbacks viz:

1. The desired trajectory yd(t), and hence u(t), have an infinite number
of harmonics and are consequently not bandlimited.

2. The construction of u(t) depends on the accuracy of the model Gxx(iω)

Thus, an inversion-based feedforward controller cannot achieve satisfactory
tracking performance in the presence of plant uncertainties. Variations in
resonance frequency and damping are two important uncertainties that can
occur in nanopositioning platforms. In the presence of such uncertainties, the
achievable positioning bandwidth of the platform is substantially degraded.
In the proposed input-shaping method using plant inversion, the closed-loop
plant, Gcl, is identified and inverted. The desired input, uref , is fed to this

inverted plant model, G̃−1
cl , and this output, uinv, is fed to the actual closed-

loop plant, Gcl, to obtain the desired output ydes. Note that the closed-loop
plant has been identified for a finite number of frequencies and thus errors
due to higher unmodeled input harmonics are present but are very small. A
pictorial representation of this scheme is given in Figure 8(a). Figure 8(b)
shows an example of the generated inversion-based input. Note that the
high-frequency components of the triangle wave (close to the tip) have been
amplified accordingly to compensate for the closed-loop system gain at those
particular frequencies.

4. Experimental Results and Analysis

Open- and closed-loop frequency responses of the system are plotted in
Figure 9. It is clear that the cross-coupling is also reduced in closed-loop. It
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Figure 8: (a) Inversion-based feed-forward strategy implemented on the fast axis of the
nanopositioner for high accuracy and bandwidth. (b) Inversion-based input (uinv) for a
desired output (ydes) of a 20 Hz triangle trajectory.

is also clear that tracking bandwidth of the slow axis is limited to 60 Hz due
to the presence of the integral loop action. To check for robustness under
variation in resonance frequency, the platform was loaded with a mass of 50
gm. This shifts the resonance by a substantial amount, from 426 Hz to 350
Hz. The implemented control strategy is capable of damping the resonant
mode by more than 20 dB, even under the presence of resonance frequency
uncertainties, see Figure 10.

Open and closed loop plots for 10 Hz, 20 Hz and 40 Hz triangular trajecto-
ries are recorded. These are plotted in Figure 11. The open- and closed-loop
RMS errors are tabulated in Table 1. The scan range is limited to 16 µm
due to the current limit of the charge drive. As can be seen from Table 1,
the RMS error is maximum at 40 Hz and is equal to 0.24 % of the total scan
range (in closed-loop).

Fundamental frequency for the triangular waveform (Hz) Open-loop RMS error (nanometers) Closed-loop RMS error (nanometers)
10 81.8 21.3
20 224.4 32.9
40 653.7 38.8

Table 1: Table showing the RMS value of error between the desired and measured scans
at three fundamental frequencies.

Raster scans were obtained by exciting the fast axis with a periodic tri-
angle wave and the slow axis with a synchronized pseudo-ramp input signal.
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Figure 9: The fast axis (X) has loop-shaping control. The slow axis (Y) has loop-shaping
control and integral tracking. The fast axis is charge driven and thus the nonlinear effects
of hysteresis are minimal. The slow axis is driven by voltage and the integral control
is implemented to enforce tracking and reduce nonlinear effects. The closed-loop 3-dB
bandwidth of the slow axis is 60 Hz.

Raster scans were recorded at 10 Hz, 20 Hz and 40 Hz as shown in Figure
12. 15 µm wide scans were obtained with a line spacing of 72 nm. At 10 Hz,
the scans have a full 15 µm linear range. At 20 Hz, the linear range drops
to 80 % of the full range and at 40 Hz, the linear range is greatly reduced to
less than 55 %. This is due to the tracking bandwidth limitation of the slow
axis (3 dB at 60 Hz). The noise is predominantly quantization noise coupled
with noise from the capacitive sensor and has an RMS value of about 13 nm.
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5. Conclusion

An integrated control strategy for commercially available piezoelectric
nanopositioners that incorporates both damping control and trajectory track-
ing was proposed. The damping control was based on the H∞ loop-shaping
algorithm and was shown to be robust under significant variations in reso-
nance frequency. The damped resonant mode facilitates the implementation
of a high-gain integral controller for trajectory tracking. This proposed strat-
egy was tested on the PI-734 piezo-scanner and the performance as well as the
robustness of the proposed control scheme was validated. Raster scans were
obtained at frequencies as high as 40 Hz. It was seen that the performance
degrades gracefully even with wide variations in resonance frequency.
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Figure 11: (a),(c) and (e) show the open-loop (undamped) plots for 10 Hz, 20 Hz and 40
Hz triangular scan outputs respectively. (b), (d) and (f) show the closed-loop (feedback
and inversion-based input shaping combined) tracking results for the same. Note that in
closed-loop, the tracking is visibly superior. As the frequency content in the scan signal
increases, the scan performance of the closed-loop worsens due to loss of bandwidth.
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Figure 12: Raster scans obtained at 10 Hz, 20 Hz and 40 Hz. The solid green line denotes
the measured data while the dotted blue line is the reference. Note that as the scanning
frequency increases, the effective useable scan area decreases. This is because the sharp
direction shifts that occur during a raster scan cannot be accurately followed by the band-
limited tracking loop.

References

[1] www.physikinstrumente.com.

[2] www.madcitylabs.com.

[3] www.dynamic-structures.com.

[4] www.smaract.de.

[5] Pi-734 xy pieo-scanner datasheet.

[6] E-509 signal conditioner / piezo servo module datasheet.

[7] M. Tomizuka, On the design of digital tracking controllers, ASME Jour-
nal of Dynamic Systems, Measurement and Control (50th Anniversary
Issue) 412 – 418.

[8] T. Tsao, Optimal feedforward digital tracking controller design, ASME
Journal of Dynamic Systems, Measurement and Control 116 (4) (1994)
583 – 592.

17



[9] Q. Zhou, S. Devasia, Preview-based optimal inversion for output track-
ing: Application to scanning tunneling microscopy, IEEE Trans. on Con-
trol System Technology 12 (3) (2004) 375 – 386.

[10] D. Croft, S. Stilson, S. Devasia, Optimal tracking of piezo-based nanopo-
sitioners, Nanotechnology 10 (2) (1999) 201 – 208.

[11] D. Croft, G. Shedd, S. Devasia, Creep, hysteresis, and vibration compen-
sation for. piezoactuators: Atomic force microscopy application, Journal
of Dynamic Systems, Measurement, and Control 123 (1) (2001) 35–43.

[12] Y. Zhao, S. Jayasuriya, Feedforward controllers and tracking accuracy in
the presence of plant uncertainties, Trans. of ASME, Journal of Dynamic
Systems, Measurement and Control 117 (1995) 490 – 495.

[13] M. Sitti, H. Hashimoto, Teleoperated touch feedback from the surfaces
at the nanoscale: Modeling and experiments, IEEE/ASME Trans. on
Mechatronics 8 (2003) 287 – 298.

[14] S. Salapaka, A. Sebastin, J. P. Cleveland, M. V. Salapaka, High band-
width nano-positioner: A robust control approach, Review of Scientific
Instruments 73 (9) (2002) 3232 3241.

[15] A. Sebastian, S. M. Salapaka, Design methodologies for robust nano-
positioning, IEEE Trans. Contr. Syst. Tech. 13 (6) (2005) 868 – 876.

[16] S. O. R. Moheimani, S. Devasia, E. Eleftheriou, Guest editorial introduc-
tion to the special issue on dynamics and control of micro- and nanoscale
systems, IEEE Trans. on Control Systems Technology 15 (5) (2007) 799
– 801.

[17] S. Devasia, E. Eleftheriou, S. O. R. Moheimani, A survey of control
issues in nanopositioning, IEEE Trans. on Control Systems Technology
15 (5) (2007) 802–823.

[18] A. J. Fleming, S. O. R. Moheimani, Adaptive piezoelectric shunt damp-
ing, IOP Smart Materials and Structures 12 (2003) 18 – 28.

[19] D. Niederberger, A. J. Fleming, S. O. R. Moheimani, M. Morari, Adap-
tive multimode resonant piezoelectric shunt damping, Smart Materials
and Structures 18 (2) (2004) 291–315.

18



[20] B. Kang, J. K. Mills, Vibration control of a planar parallel manipulator
using piezoelectric actuators, J. Intell. Robotics Syst. 42 (1) (2005) 51–
70. doi:http://dx.doi.org/10.1007/s10846-004-3028-1.

[21] G. Schitter, P. Menold, H. Knapp, F. Allgower, A. Stemmer, High per-
formance feedback for fast scanning atomic force microscopes,, Rev. Sci.
Instrum. 72 (8) (2001) 3320 – 3327.

[22] T. Ando, N. Kodera, D. Maruyama, E. Takai, K. Saito, A. Toda, A high-
speed atomic force microscope for studying biological macromolecules in
action, Japanese Journal of Applied Physics 41 (7B) (2002) 4851–4856.

[23] N. Kodera, H. Yamashita, T. Ando, Active damping of the scanner for
high-speed atomic force microscopy, Rev. Sci. Instrum. 76 (5) (2005) 1
– 5.

[24] Y. K. Yong, B. Bhikkaji, S. O. R. Moheimani, Design, modeling, and
fpaa-based control of a high-speed atomic force microscope nanoposi-
tioner, IEEE/ASME Transactions on Mechatronics 18 (3) (2013) 1060
– 1071.

[25] J. L. Fanson, T. K. Caughey, Positive position feedback control for large
space structures, AIAA Journal 28 (4) (1990) 717 – 724.

[26] H. R. Pota, S. O. R. Moheimani, M. Smith, Resonant controllers for
smart structures, Smart Materials and Structures 11 (1) (2002) 1 – 8.

[27] G. C. Goodwin, S.F. Graebe and M. E. Salgado, Control System Design,
Prentice Hall International, Inc, 2001.

[28] S. O. R. Moheimani, B. J. G. Vautier, B. Bhikkaji, Experimental imple-
mentation of extended multivariable PPF control on an active structure,
IEEE Trans. Contr. Syst. Tech. 14 (3) (2006) 443–455.

[29] B. Bhikkaji, M. Ratnam, A. J. Fleming, S. O. R. Moheimani, High-
performance control of piezoelectric tube scanners., IEEE Trans. Control
Systems Technology 5 (5) (2007) 853 – 866.

[30] B. Bhikkaji, S. O. R. Moheimani, I. R. Petersen, A negative imaginary
approach to modeling and control of a collocated structure, IEEE /
ASME Transactions on Mechatronics 17 (4) (2012) 717 – 727.

19



[31] A. J. Fleming, S. S. Aphale, S. O. R. Moheimani, A new method for
robust damping and tracking control of scanning probe microscope po-
sitioning stages, IEEE Transactions on Nanotechnology 9 (4) (2010) 438
– 448.

[32] S. S. Aphale, B. Bhikkaji, S. O. R. Moheimani, Minimizing scanning
errors in piezoelectric stack-actuated nanopositioning platforms, IEEE
Trans. on Nanotechnology 7 (9) (2008) 79 – 90.

[33] T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, A. Pantazi, High-speed
multiresolution scanning probe microscopy based on lissajous scan tra-
jectories, Nanotechnology 23 (18).

[34] N. Xi, B. Song, R. Yang, K. Lai, H. Chen, C. Qu, L. Chen, Video rate
atomic force microscopy: Use of compressive scanning for nanoscale
video imaging, IEEE Nanotechnology Magazine 7 (1) (2013) 4–8.

[35] S. S. Aphale, S. Devasia, S. O. R. Moheimani, High-bandwidth control
of a piezoelectric nanopositioning stage in the presence of plant uncer-
tainties, Nanotechnology 19 (2008) 125503 (9pp).

[36] A. Fleming, S. O. R. Moheimani, A ground-loaded charge amplifier for
reducing hysteresis in piezoelectric tube scanners, Rev. Sci. Instrum.
76 (7).

[37] K. Zhou, with John C. Doyle, K. Glover, Robust and Optimal Control,
Prentice Hall, Englewood Cliff, New Jersey 07632, 1995.

[38] D. McFarlane, K. Glover, A loop shaping design procedure using h-
infinity synthesis, IEEETransactions on Automatic Control 37 (1992)
759 – 769.

[39] B. P. Lathi, Linear Systems and Signals, second edition Edition, Oxford
Press, 2005.

20


