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Abstract

The fast and accurate tracking of periodic and arbitrary reference trajectories is the principal goal in many nanopo-
sitioning applications. Flexure-based piezoelectric stack driven nanopositioners are widely employed in applications
where accurate mechanical displacements at these nanometer scales are required. The performance of these nanoposi-
tioners is limited by the presence of lightly damped resonances in their dynamic response and actuator nonlinearities.
Closed-loop control techniques incorporating both damping and tracking are typically used to address these limita-
tions. However, most tracking schemes employed use a first-order integrator where a triangular trajectory commonly
used in nanopositioning applications necessitates a double integral for zero-error tracking. The phase margin of the
damped system combined with the hardware-induced delay deem the implementation of a double-integrator unstable.
To overcome this limitation, this paper presents the design, analysis and application of a new control scheme based
on the structure of the traditional Two-Degrees-of-Freedom PID controller (2DOF-PID). The proposed controller
replaces the integral action of the traditional 2DOF-PID with a double integral action (2DOF-PI2D). Despite its sim-
plicity, the proposed controller delivers superior tracking performance compared to traditional combined damping and
tracking control schemes based on well-reported designs such as positive position feedback (PPF), Integral resonant
control (IRC), and Positive Velocity and Position Feedback (PVPF). The stability of the control system is analyzed in
the presence of a time delay in the system. Experimental results validating the efficacy of the proposed chattering-free
control of a piezo-driven nanopositioning system are included.

Keywords: Vibration, Piezoelectric actuators (PEAs), Precision Motion control.

1. Introduction

Micro-/nanopositioning [1] has emerged as a key
enabling technology in various scientific fields such
as biotechnology [2], fiber optics [3], and atomic
force microscopy (AFM) [4]. Among the differ-
ent actuation methods available, piezoelectric actua-
tors (PEAs) [5, 6] have been extensively adopted in
micro-/nanopositioning applications mainly due to their
nanometer-scale resolution, high bandwidth, high force
density and, absence of backlash and stick–slip [7]. The
early models of piezoelectric tube scanners have been
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replaced by various PEA-driven nanopositioners capa-
ble of providing multi-DOF motions [8–11]. Flexure-
based nanopositioners are popular due to several key ad-
vantages viz: low cross-coupling between motion axes,
robust mechanical construction, large motion range and
high mechanical bandwidth [12]. However, the two
main drawbacks of flexure-based mechanisms are: 1)
the nonlinear behavior of the piezoelectric actuators em-
ployed to drive the nanopositioner, and 2) the lightly
damped resonant modes of the flexible compliant mech-
anism, which impose an upper bound on the achievable
bandwidth - governed predominantly by the first reso-
nant mode of each axis of the nanopositioner.

Since nanopositioners are used for tasks which re-
quire both periodic reference trajectory tracking (such
as imaging tasks in scanning probe microscopy) and ar-
bitrary aperiodic reference trajectory tracking (such as
manipulation and lithography); a high-bandwidth posi-
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tioning platform and effective tracking control are re-
quired. Resonant modes can be pushed to higher fre-
quencies at the cost of achievable scanning range [13–
15]. Therefore, control-based approaches to improving
positioning performance is an area of current research
interest [16].

Recent examples include resonant control [17], inte-
gral resonant control (IRC) [10], and polynomial-based
control such as positive position feedback (PPF) [18],
and Positive Velocity and Position Feedback (PVPF),
which was first introduced as an extension of the PPF,
in which the damping controller and the tracking con-
troller were designed independently [19], and then
designed simultaneously in [20] by means of selec-
tive pole placement to maximize the bandwidth of the
nanopositioner. It is important to note that these con-
trollers impart first-order integral tracking action to the
overall system and thus are incapable of delivering zero-
error tracking performance for trajectories with veloc-
ity (triangular or ramp-like). Controllers that provide
asymptotic tracking of periodic signals have also been
proposed. These are based on the internal model prin-
ciple (IMP) and use variations of either repetitive con-
trol (RC) or iterative learning control (ILC) [11] [21]. It
should also be emphasized that in RC, the enhanced per-
formance at the desired periodic frequencies commonly
results in deteriorated loop shapes at other frequencies
[22], which from a practical point of view means that
either the time-period must be constant (±0.1%), or an
on-line accurate measurement of the period of the signal
is necessary in order to adaptively tune the controller
- thereby increasing complexity. Even the recently re-
ported modifications in repetitive control (MRC) [1]
cannot guarantee an improved performance at frequen-
cies different from the chosen one, and only provide a
robust disturbance rejection against perturbations with
frequencies outside the bandwidth of interest. Finally,
another drawback of both the RC and the ILC schemes
is that they employ information from previous periods
to modify the control signal, so it is impossible to track
arbitrary aperiodic signals accurately. In order to deal
with the nonlinear behavior of the PEAs utilized in the
nanopositioners such as the hysteresis, creep and pure
time delay, a number of closed-loop control method-
ologies have been studied without an explicit model of
hysteresis or creep, by treating these phenomena as dis-
turbances. Recent examples include robust control [23],
sliding-mode control (SMC) [5], resonant control [17],
IRC [10], PPF [18], and PVPF [19, 20]. These con-
trollers have shown that hysteretic effects can be effec-
tively compensated by simply incorporating an integral
action. Yet, incorporating double integral action has

proved difficult mainly due to the system’s phase pro-
file and the hardware induced pure time delays.

Yet, for nanopositioning systems, the presence of
pure time delays in the system has not been studied in
as much depth as the hysteresis and creep phenomena.
The existence of a pure time delay (i.e., the presence of
a term in the form of e−sτ in the transfer function of the
plant for τ > 0), and its effect on a nanopositioner was
first noticed in [24], and has also been studied in [13]
and [25] in which a modification to the IRC scheme is
utilized to control the nanopositioner. However, these
works are principally focused on the mechanical design
of the nanopositioner and on the electrical implemen-
tation of the control scheme using an analog circuit. It
is important to note that in the case of high-bandwidth
nanopositioners, the presence of any time delay has an
important effect on the stability margins of the closed-
loop system and on the performance of the controlled
system if the controller is designed based on a model
that omits the delay. To the best of our knowledge, only
[26] proposes a design methodology that designs a con-
trol scheme (PPF controller) for nanopositioners, incor-
porating this time delay.

PVPF can be treated as a particular case of 2DOF-
PID controller as demonstrated in[26]. Therefore, the
control design proposed in this paper is termed the
2DOF-PI2D controller because it modifies the transfer
function of the block which acts on the tracking error
signal by adding a second integral action. The main
goals of this design is to outperform the existing con-
trol schemes in the following aspects:

1. To track triangular command trajectories with zero
steady state error, independent of their funda-
mental frequency. Other controllers combining a
damping controller and integral tracking cannot
achieve this (IRC, PPF, and PVPF) or they need
an exact knowledge of the time-period of the exci-
tation signals (RC and ILC).

2. Improve the transient response of the closed-loop
system (settling time and overshoot) by including
the nanopositioner time delay in the controller de-
sign procedure, thereby enabling tracking of ape-
riodic signals without any additional design con-
straints.

As consequence of this, the scanning rate of any com-
mercial AFM can be effectively doubled by using both
slopes of the triangular trajectory to record data (rather
than recording for both up and down traverses and aver-
aging out - the typical approach) [16, 27]. The proposed
control scheme is simple, the design is synthesized us-
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ing pole-placement and the controller is easily imple-
mentable in practice.

This paper is organized as follows. Section 2 de-
scribes the mathematical model of the piezo-actuated
nanopositioner. The 2DOF-PI2D controller design is
detailed in Section 3. Section 4 describes the experi-
mental setup. The closed-loop stability analysis of the
controller is presented in Section 5, and the experimen-
tal results and conclusions are included in Sections 6
and 7.

2. System Modeling

A flexure-based nanopositioner can be interpreted as
a Linear Time-Invariant (LTI) Multiple-input Multiple-
output (MIMO) system. Since X-Y piezo-actuated
flexure-based nanopositioners are usually designed with
low cross-coupling between their motion axes, each axis
of motion can be treated independently, leading to the
following dynamic relationship for each axis:

y(s) = g(s)u(s) + f (s) (1)

where u(s) and y(s) denote the Laplace transform of the
input and output of the system, and where f (s) is the
Laplace transform of the perturbation (which describes
the combined effects of unmodeled nonlinear dynamics,
external perturbations and the artifacts of the neglected
coupling). It is important to note that the input to the
system, u(s), is the voltage signal applied to the PEA
that moves the nanopositioner in that particular axis, and
the output of the system, y(s), corresponds to the voltage
signal proportional to the displacement achieved, typi-
cally recorded using a capacitive displacement sensor.
The transfer function g(s), that models the dynamics of
the system, can be represented by means of a finite sum
of second-order terms given by:

gM(s, τ) = e−τs
M∑

i=1

σ2
i

s2 + 2ζiωis + ω2
i

(2)

where M is the number of resonant modes and is ideally
infinite, where σ2

i corresponds to the gain of each res-
onant mode, ζi is the damping ratio of each mode, and
ωi is the frequency at which each resonant mode occurs.
Note that the exponential term included in the model (2)
models the dynamics of the hardware-induced system
delay; where τ is the value of the time delay and does
not have to be constant. The delay τ of the system is due
to two different phenomena: (i) a fixed delay τFix due to
the latency of the system and the mechanical design of
the nanopositioner and (ii) a variable delay proportional

to half the sampling time Ts as predicted theoretically
in [28, 29]. Thus, τ will be equal to:

τ =
1
2

Ts + τFix (3)

As can be seen from (2), controlling these kinds of
systems is a challenging task. On the one hand, the sys-
tem has an infinite number of poles owing to the infinite
modes of vibration, and on the other, since the delay is
a transcendental transfer function, it also introduces an
infinite number of poles. In order to reduce the com-
plexity of the model (2), it is usually truncated to con-
tain a finite number of modes, and the delay is neglected
or approximated by means of a Padé approximation. In
several works [20, 25], (2) is truncated at the first mode,
since this mode dominates the entire bandwidth of in-
terest. For the system considered in this paper, the first
four modes of vibration are modelled (M = 4). Further-
more, since the effect of the delay cannot be ignored,
it is also included in the dynamic model. It must be
highlighted that although only the first mode of vibra-
tion is considered in the design of the control scheme
proposed in this paper, the remaining three modes of vi-
bration are included in the simulations in order to test
the robustness of the proposed controller to unmodeled
high-frequency dynamics and spillover effects.

3. 2DOF-PI2D Desgin

As mentioned in the Section 1, several closed-loop
control methodologies without an explicit model of the
hysteresis have been proposed till date [18–20]. In all
these works, the hysteresis is treated as an external dis-
turbance, thus leading to control schemes composed of
two nested control loops. The inner loop is utilized im-
part adequate damping to the resonant mode furnishing
higher gain margins that allows the implementation of a
high-gain integrator, as accomplished by the outer loop.
Since the outer loop is composed of only a first-order
integrator, these control schemes can only deliver error-
free tracking of step-like trajectories. When these con-
trol schemes are utilized to track ramp-like or triangular
trajectories, they result in constant steady-state track-
ing error. Since the raster scanning trajectories typically
employed in AFM are triangular, (or triangular with a
rounded apex), these trajectories can be viewed as the
composition of two ramp signals (one with a positive
slope and the other with negative slope), and the afore-
mentioned control schemes cannot track these trajecto-
ries with the required accuracy. Additionally, they can-
not provide asymptotic tracking either. Though track-
ing triangular trajectories can be tracked via the internal
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Figure 1: 2DOF PID Control scheme. Tracking controller (c1) and
damping controller (c2), defined as equations (4) and (5)

model principle using repetitive control [11] or itera-
tive learning control [30], these techniques have several
drawbacks: a) they are complicated to design, b) they
require several cycles of the signal in order to reduce
the tracking error, which deems them inapplicable for
non-periodic signals, c) they require perfect knowledge
of all the parameters of the system, or in the case of
uncertainties, they must be combined with robust con-
trol schemes [11] [30]. A simpler approach would be
extremely beneficial for such applications.

The proposed control scheme utilizes the control
structure shown in Figure 1, in which g1(s, τ) is the
transfer function of the nanopositioner axis, c1(s) is the
tracking controller and c2(s) is the damping controller
transfer function. In order to achieve asymptotic track-
ing of ramp signals, the tracking controller c1(s) has a
double integral structure. Being able to track a ramp
asymptotically does not mean that is possible to track a
triangular trajectory. However, if the triangular trajec-
tory is sufficiently slow (low fundamental frequency),
there will be no tracking error along the slopes of the
trajectory and only a minimal error at the corners. This
result is acceptable if the zone of interest is situated on
the slopes of the signal in a raster scan (which is usually
the case for most scanning applications).

The transfer functions for c1(s) and c2(s), are of the
following form:

c1(s) =
N11s + N10

s2 (4)

c2(s) =
N21s + N20

s2 + sD21 + D20
(5)

Two cases are considered in the proposed design pro-
cedure. In the first case, c1(s) and c2(s) are designed
by simple pole placement considering only the first
resonant mode and neglecting the delay (g1(s, 0)). In
the second case, the delay is included in the equation
(g1(s, τ)), and the positions of the poles designed for the
first case are modified in order to compensate for the ef-
fect of the delay on the position of the closed-loop poles.
Here, ω1, ζ1, and σ2

1 represent the natural frequency, the

damping ratio and the gain of the first resonant mode of
nanopositioner axis, respectively.

3.1. Design without including delay dynamics

In this case, the closed-loop transfer function has the
following expression:

y(s)
r(s)

=
Mnum(s)
Mden(s)

,

where:

Mnum(s) =s3σ2
1N11 + s2σ2

1(N11D21 + N10)

+ sσ2
1(N11D20 + N10D21) + σ2

1N10D20

Mden(s) =s6 + s5(2ζ1ω1 + D21)

+ s4(ω2
1 + 2ζ1D21ω1 + D20)

+ s3((N21 + N11) + D21ω
2
1 + 2ζ1D20ω1)

+ s2(σ2
1(N11D21 + N20 + N10) + D20ω

2
1)

+ sσ2
1(N11D20 + N10D21)

+ σ2
1N10D20

(6)

Mden(s) can be expressed as:

Mden(s) = s6+K5s5+K4s4+K3s3+K2s2+K1s+K0, (7)

where:

K5 =(2ζ1ω1 + D21)

K4 =(ω2
1 + 2ζ1D21ω1 + D20)

K3 =((N21 + N11) + D21ω
2
1 + 2ζ1D20ω1)

K2 =(σ2
1(N11D21 + N20 + N10) + D20ω

2
1)

K1 =σ2
1(N11D20 + N10D21)

K0 =σ2
1N10D20

(8)

It is clear that the coefficients of the characteristic
polynomial (7) determine the location of the closed-
loop poles of the system. The six poles of the closed-
loop can therefore be placed arbitrarily by choosing the
values of the coefficients Ki.

The parameters of the controllers c1(s) and c2(s) can
be solved recursively from (8) leading to the following
expressions:
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D21 =K5 − 2ζ1ω1

D20 =K4 − ω
2
1 − 2ζ1ω1D21

N10 =K0/(σ2
1D20)

N11 =(K1 − σ
2
1D21N10)/(σ2

1D20)

N20 =(K2 − D20ω
2
1 − (D21N11 + N10)σ2

1)/σ2
1

N21 =(K3 − D21ω
2
1 − 2ζ1D20W − N11σ

2
1)/σ2

1

(9)

3.2. Design including the delay dynamics
In this case, the closed-loop transfer function has the

following expression:

y(s)
r(s)

=
M′num(s)
M′den(s)

,

where:

M′num(s) =e−τs(s3σ2
1N11 + s2σ2

1(N11D21 + N10)

+ sσ2
1(N11D20 + N10D21) + σ2

1N10D20)

M′den(s) =s6 + s5(2ζ1ω1 + D21)

+ s4(ω2
1 + 2ζ1D21ω1 + D20)

+ s3(e−τsσ2
1(N21 + N11) + D21ω

2
1 + 2ζ1D20ω1)

+ s2(e−τsσ2
1(N11D21 + N20 + N10) + D20ω

2
1)

+ se−τsσ2
1(N11D20 + N10D21)

+ e−τsσ2
1N10D20

(10)

Substituting (9) in (10), and rearranging results in the
characteristic equation of the closed-loop transfer func-
tion:

M′den(s) =s6 + s5K5 + s4K4+

+ s3[(8(1 − e−τs)ζ2
1 + 4(e−τs − 1))ζ1ω

3
1

+ (4(e−τs − 1)ζ2
1 − e−τs + 1)K5ω

2
1

+ 2(1 − e−τs)ζ1K4ω1 + e−τsK3]

+ s2[(4(1 − e−τs)ζ2
1 + e−τs − 1)ω4

1

+ 2(e−τs − 1)ζ1K5ω
3
1

+ (1 − e−τs)K4ω
2
1 + e−τsK2]

+ sK1e−τs

+ K0e−τs

(11)

Note that the controller coefficients do not appear ex-
plicitly in (11). This expression depends only on the
plant parameters and the constants Ki (∀ 0 ≤ i ≤ 5).

According to (8), controller coefficients are embedded
in these constants. The whole design procedure then
consists two sequential steps: 1) determining constants
Ki that place the six designed closed-loop poles of the
system with delay in the desired locations, and 2) ob-
taining controller coefficients from the Ki’s by using the
inverse relations (9) that have to be solved sequentially.

To place the six poles of the closed-loop system in
the positions pn (with 1 ≤ n ≤ 6), the six conditions
M′den(pn) = 0 have to be verified. These can be ex-
pressed in a compact matrix form as:

A · K = B (12)

where K = (K0,K1,K2,K3,K4,K5)T , and matrices B ∈
<6x1 and A ∈ <6x6 depend only on the plant parameters
and the desired closed-loop poles, which are:

bn = − (4(1 − e−τpn )ζ2
1 + e−τpn − 1)p2

nω
4
1

− (8(1 − e−τpn )ζ3
1 + 4(e−τpn − 1)ζ1)p3

nω
3
1 − p6

n

(13)

and

an,1 =e−τpn

an,2 =e−τpn pn

an,3 =e−τpn p2
n

an,4 =e−τpn p3
n

an,5 =(1 − e−τpn )p2
nω

2
1 + (2 − 2e−τpn )ζ1 p3

nω1 + p4
n

an,6 =((4e−τpn − 4)ζ2
1 − e−τpn + 1)p3

nω
2
1

+ (2e−τpn − 2)ζ1 p2
nω

3
1 + p5

n

(14)

where 1 ≤ n ≤ 6.
Linear equation (12) can be solved by inverting ma-

trix A, which would be full rank if it were verified that
pn , p j if n , j. Once constants Ki have been ob-
tained, the coefficients of controllers c1(s) and c2(s) are
obtained by substituting in (9). In the case of multiple
poles, another invertible matrix A′ can be obtained by
differentiating conditions (13) and (14) in order to ob-
tain a system of linear equations. The exact location of
six closed-loop poles can be defined by following this
procedure. However, the transcendental nature of the
delay leads to infinitely many characteristic roots in the
closed-loop transfer function. In order to complete the
design procedure, it is therefore necessary to determine
whether the six closed-loop poles designed are domi-
nant over the infinite remaining poles introduced by the
delay, i.e., whether the six designed poles are closer to
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Figure 2: A two-axis serial kinematic nanopositioner, designed at the
EasyLab, University of Nevada, Reno, driven by two PiezoDrive 200
V linear amplifiers, with position measured by a Microsense 4810
capacitive sensor.

the imaginary axis than the remaining infinite poles of
the system.

Note that this procedure allows the closed-loop poles
of the system to be placed in any arbitrary position.
However, in this paper, the poles of the closed-loop sys-
tem are placed by following the design criterion given
in [20], in which the desired closed-loop performance
is defined by means of a flat band response at low fre-
quencies which rolls off above the resonance frequency.
This design criteria is met when the poles of the closed-
loop system lie along a circle of radius ω1 (ω1 being
the natural frequency of the first mode of vibration of
the nanopositioner) and are spaced at equal angular dis-
tances as in the low pass Butterworth filter (which is
often referred to as a ”maximally flat magnitude” filter).

4. Experimental platform

In this section, the hardware utilized to test the per-
formance of the proposed control scheme is described.
This section also provides details on the identification
procedure employed to characterize the experimental
platform.

The experimental setup employed in this paper is
shown in Figure 2. The nanopositioner (designed at the
EasyLab, University of Nevada, Reno, USA) is com-
posed of a flexure XY serial mechanism driven by two

PZT stacks with a stroke of 20 µm. The voltage ap-
plied to the PZT actuators is provided by two piezoelec-
tric amplifiers which increase the voltage of the con-
trol signal by a gain factor of 20 and a bias term of
100V. The nanopositioner delivers translational motions
in space which are measured by a Microsense 4810 ca-
pacitive displacement sensor and a 2805 measurement
probe with a measurement range of ± 50 µm for a cor-
responding voltage output of ± 10 V. A PCI-6621 data
acquisition card from National Instruments installed on
a PC running the Real-Time Module from LabVIEW is
used to interface between the experimental platform and
the control design. The PC utilized is an OPTIPLEX
780 with an Intel(R) Core(TM)2 Duo Processor running
at 3.167 GHz and equipped with 2GB of DDR3 RAM
memory. The whole system is able to achieve determin-
istic sampling times of as few as 30 × 10−6 seconds.

The cross-coupling between the two axes was mea-
sured and ascertained to be close to -40 dB. Such a
small value justifies assuming the axes decoupled (as
indicated in Section 2). The x−axis of the platform is
used to conduct the experiments presented in this work.
However, the y−axis was biased to +100 V (0 V at the
output of the acquisition card) so as to mimic a realistic
platform operation.

4.1. Identification of the experimental platform
The work begins with the formulation of the mathe-

matical model of the nanopositioner used to design the
controller. The mathematical model of the nanoposi-
tioner was identified through the use of small signal
frequency response functions (FRFs). FRFs are deter-
mined by applying a small-amplitude sinusoidal (0.2
V) chirp signal (from 0.1 to 1800 Hz) as input to the
nanopositioner. Both the input and the output signals
are then utilized to compute the FRFs by taking the
Fourier transform of the recorded data. It should be
noted that, when using small amplitudes, the nonlin-
ear effects of the PEAs such as hysteresis are negligi-
ble [31]. It should also be noted that, since the capaci-
tive sensor measures relative displacements from a zero
point, a new zero point is measured before each exper-
iment in order to avoid any offset in the measurements.
In Figure 3, the magnitude and phase responses of the
FRF of g(s) are plotted for a sampling time of 50× 10−6

s.
The chosen frequency range captures the first four

resonance modes of the platform (at 716.2, 1235.5,
1294, and 1578 Hz) and also shows that the phase re-
sponse appears to include a linear term (see the dotted
line in Figure 3), suggesting a time delay, which vali-
dates the theoretical model (2). The existence of this
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Figure 3: FRF of the experimental platform measured from the input
to output displacements

delay, and its effect on nanopositioners, has also been
noticed before in [24], [13] and [25]. The procedure
used to obtain the transfer function of the system con-
sists of two steps: first, the dominant resonance modes
of the transfer function of the system were obtained by
using the subspace based modeling technique described
in [32], and then the delay was adjusted by minimizing
the root mean square error of the phase response.

Expression (3) shows a linear relationship between
the sampling time of the system, Ts, and the time-delay
τ. The relationship seen between the delay and half
the sampling time Ts has been predicted theoretically
in [28, 29]. Moreover, the details concerning the iden-
tification of the constant term of expression (3), τFix,
can be found in [26]. This yielded a value of τFix =

90× 10−6s. Substituting this value and the sampling pe-
riod Ts = 30 × 10−6s in the axis model expression (3)
gives a time-delay τ = 105×10−6s. The identified trans-
fer function is therefore:

g4(s, τ) =
1.024 × 107e−τs

s2 + 99s + 2.025 × 107 +
10000e−τs

s2 + 7.76s + 6.026 × 107

+
62500e−τs

s2 + 13.01s + 6.61 × 107 +
122500e−τs

s2 + 15.86s + 9.83 × 107

(15)

The model identified matches the system dynamics
well in the frequencies below 1800 Hz and captures the
high-frequency dynamics accurately. However, since
the first resonant mode dominates the response of the
system and the different control schemes analyzed in
this paper are developed considering only the first res-
onant mode, a simple second-order model comprising
only the first resonant mode is employed to design the
proposed control scheme. The complete model with
four resonant modes is used to test the robustness of the

proposed controller with regard to the effects of high or-
der dynamics and spillover.

Using an incorrect value of τ (or not considering
such time delay at all) would produce a significant er-
ror in the matching of the phase plot of the frequency
response. Moreover, using an incorrect value of τ in the
controller design procedure described in Subsection 3.2
would yield in an ill-tuned controller that would notice-
ably reduce the closed-loop stability (specially, if the
value of the time delay used in the design is lower than
the real one).

5. Stability analysis

As stated at the end of Section 3, the proposed design
methodology allows the closed-loop poles of the system
to be placed in any arbitrary configuration. However,
since the stability of the closed-loop system depends on
the pole placement employed to design the controller,
this paper analyzes the stability of the controller when
the closed-loop poles are placed in a pattern mimick-
ing a Butterworth filter. This pole placement pattern is
analyzed in [33] in which it is shown to achieve im-
proved tracking performance compared to traditional in-
dependent sequential design of damping and tracking
controllers.

In this paper, the six closed-loop poles of the system
are placed along a circle of radius R = ω1, spaced at
equal angular distances, as in the low pass Butterworth
filter (which is often referred to as a ‘maximally flat
magnitude’ filter). The stability of the system is ana-
lyzed for two scenarios: a) when the controller is de-
signed by using the equations for systems without delay
(8) and (9) and b) when the controller is designed by
considering the delay of the system.

In both cases (with and without delay), the controllers
designed are computed based on parameters of the first
resonant mode of (15), i.e., g1(s, τ) and g1(s, 0). Once
the controllers have been designed, the complete mod-
els of the system with four modes of vibration g4(s, τ)
and g4(s, 0) are utilized to illustrate that the high order
dynamics of the nanopositioner (which are not consid-
ered in the design of the controller) do not affect the
closed-loop stability of the system. In order to address
the issue of an infinite number of poles being introduced
by the delay (and in order to simplify the analyses per-
formed in this section), it is desirable to represent an
equivalent low degree rational transfer function that ap-
proximates the behavior of the delay of the system. The
popular method to approximate the effect of the delay is
the Padé approximation [34]. The Padé approximation
technique has useful features, such as the computational
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simplicity and the fitting of time-moments. The Padé
approximation is defined as in [35]:

For n > 1, the [n, n] Padé approximant is given by:

e−τs =
p(−s)
p(s)

, (16)

where

p(s) =

n∑
k=0

(
n
k

)
(2n − k)!

(2n)!
sk. (17)

When the second order Padé approximation is uti-
lized to substitute the exponential terms in the transfer
function of the closed-loop system, the resulting char-
acteristic equation consists of eight poles (six poles de-
termined by the parameters of the controller employed
and two poles introduced by the second order Padé ap-
proximation of the system delay).

5.1. Effect of the delay on the controller by neglecting
system delay

If the controller is designed based only on equations
(8) and (9) (system delay neglected) and the closed-loop
poles are placed along a circle of radius ω1, the con-
troller obtained has the following parameters:

c1(s) =
2517s + 2.83 × 106

s2 (18)

c2(s) =
1.11 × 104s − 6.371 × 107

s2 + s1.381 × 104 + 7.512 × 107 (19)

However, if the controller is designed by considering
the nominal value of τ (τ0 = 105×10−6 s), the controller
obtained has the following parameters:

c1(s) =
2480s + 2.41 × 106

s2 (20)

c2(s) =
7812s − 6.01 × 107

s2 + s1.28 × 104 + 8.554 × 107 (21)

If the controller composed of (18) and (19) is utilized
to control the actual plant (with delay), the evolution of
the closed-loop poles of the platform is represented in
Figure 4 for delays in the range of [0, 400] × 10−6 s.

Figure 4 shows that when the controller is designed
by considering the absence of delay in the system, the
addition of a time delay to the plant produces a large dis-
placement of the closed-loop poles, even for small delay
values. In the case studied, when the delay of the system
is equal to 230 × 10−6 s, the controlled system becomes
unstable. It will therefore be observed that the stability
of the proposed closed-loop system is highly dependent
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Figure 4: Root contours of the closed-loop system controlled with a
design considering no delay. The changing parameter is the delay of
the system (circle of radius ω1 indicated with a dashed line)

on the delay in the system. This characteristic under-
lines the importance of utilizing equations (13) and (14)
in order to compensate for the effect of system delay.
It is also important to note that the maximum delay ad-
missible in the system (230 × 10−6 s) is, according to
(3), achieved at sampling times as small as 280 × 10−6

s. This upper limit to the maximum admissible delay
is determined by the location of the poles correspond-
ing to the first harmonic of the system. Since the poles
corresponding to higher modes are placed far from the
poles located within the circle of radius R = ω1, their
location is barely affected by the control utilized or the
delay introduced in the system. Since these poles never
cross the imaginary axis, the proposed control scheme
is robust to the spillover effects.

5.2. Effect of the delay on the controller designed by
considering system delay

When the complete design methodology proposed in
this paper is utilized to compute the controller of the
system, each different value of the delay yields a new
set of parameters for the controller. In this analysis, the
delay of the plant is varied in the range [0, 900]×10−6 s,
and the closed-loop poles of the system are plotted. The
results are shown in Figure 5.

As seen from Figure 5, if the complete design
methodology proposed in this paper is utilized, the six
closed-loop poles of the system can be placed arbitrar-
ily, and their position is not disturbed by the effect of the
delay. However, the additional poles introduced by the
delay (in this case the two poles from the Padé approx-
imation) cannot be controlled. It will also be observed
that, as the delay increases, the additional poles intro-
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duced by the delay are displaced closer to the imaginary
axis, thus leading to a unstable system for delay values
that are greater than 863 × 10−6 s which, according to
(3), corresponds to sampling times of 1.546 × 10−3 s.

It is important to note that the increase in the admis-
sible delay is not the only advantage of the proposed
control design. The root contours in Figure 4 show that
the presence of any value of delay produces a great dis-
placement of the closed-loop poles from their desired
position, leading to significant distortion of the closed-
loop output. The root contours of Figure 5, meanwhile,
show that if the controller is designed by taking the sys-
tem delay into account, the closed-loop poles remain in
their desired positions and the output response therefore
remains virtually unaltered. This holds for values of de-
lay within the interval τ=[0, 370] × 10−6 s. For greater
values of delay, the additional poles introduced by the
delay are placed close enough to the dominant poles to
distort the behavior of the closed-loop system, (although
this distortion is much smaller that when the controller
is designed without taking the delay into account).

This demonstrates that the proposed controller is very
sensitive to the effects of the delay, but if the delay is
accurately identified, its effects on the placement of the
closed-loop poles of the system can be compensated.
The delay-included design also delivers improved per-
formance over a larger system delay 863 × 10−6 s when
compared to the delay-excluded design 230 × 10−6 s. It
is also important to note that the location of the poles
corresponding to the higher resonant modes of the sys-
tem is barely affected

5.3. Impact of the second integrator on the sensitivity
function

The proposed control scheme can be interpreted as an
extension of the well-reported Positive Velocity and Po-
sition Feedback (PVPF) controller, to which a second
integral action is added. It is therefore important to dis-
cuss the impact of this additional integral action on the
behavior of the controlled system. The most informing
method is to study the sensitivity of the controlled sys-
tem. From Figure 1, the closed-loop sensitivity function
of the 2DOF-PI2D control scheme is found to be:

S (s, τ) =
e(s)
r(s)

=
1 + c2(s)g4(s, τ)

1 + g4(s, τ)(c1(s) + c2(s))
(22)

The same expression can be employed in the case of
the PPF and PVPF controllers, since they share the same
block diagram structure. In the case of the IRC con-
troller, however, although the mathematical expression
is slightly more complex, the same definition of the sen-
sitivity function is utilized (S (s, τ) =

e(s)
r(s) ).

Studying the sensitivity of the system is a quantifica-
tion of the performance limits of any designed control
scheme. The double integral action of the 2DOF−PI2D
controller decreases the sensitivity at low frequencies
(note that sensitivity less than unity means better per-
formance than open loop), but as the integral of the
log magnitude of the sensitivity has to remain equal to
zero due to the so-called ”Waterbed effect” [36, 37], the
sensitivity at high frequencies is increased. Sensitiv-
ity greater than the unity typically means more ringing
and less disturbance rejection at those frequencies. This
may lead to instability caused by environmental vibra-
tion coupling. The frequency where the unity sensitivity
is crossed is denoted as Ω0.

In order to analyze the sensitivity of the controllers
studied in this paper, their closed-loop sensitivity func-
tions are computed, and the integral of the log magni-
tude of their sensitivity functions are represented in Fig-
ure 6. Additionally, different values of delay in the in-
terval [0, 370]× 10−6 s are considered in the system and
their effect over the sensitivity function is presented in
Figure 7. To evaluate all the controllers against the same
design criterion, they are designed to place the closed-
loop poles in a Butterworth filter pattern as in [38]. Con-
sequently, each controller is designed to deliver a max-
imally flat band magnitude response and the bandwidth
following the ±3dB criteria is maximized. Additionally,
this methodology guarantees a unique solution for the
parameters of each controller. Note that only those con-
trol schemes capable of delay compensation, i.e., PVPF
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Figure 6: Bode’s sensitivity integrals and phase responses for the sen-
sitivity function S (s, τ) =

e(s)
r(s) for all the controllers analysed consid-

ering a delay of τ = 105 × 10−6 s

and 2DOF-PI2D, will be able to place their closed-loop
poles exactly in that pattern in the presence of a time
delay.

The Bode’s sensitivity integrals for all the controllers
when considering a delay of τ = 105×10−6 s (associated
with the sampling time of 30×10−6 s of the experimental
platform) are displayed in Figure 6.
By observing the Bode’s sensitivity integrals for all the
controllers, it can be concluded that sensitivity reduc-
tion at low frequencies leads to sensitivity increase at
higher frequencies. Yet, at low frequencies, the 2DOF-
PI2D controller delivers better performance of all. Fig-
ure 6 shows that the IRC provides Ω0 = 751 Hz, PPF
provides Ω0 = 1184 Hz, PVPF provides Ω0 = 1505 Hz,
and finally 2DOF-PI2D provides Ω0 = 1646 Hz.

Since the most representative point of the Bode’s sen-
sitivity integrals is the value of Ω0. The relationship be-
tween this point and the value of the delay of the system
is shown in in Figure 7 for the four control schemes an-
alyzed.

This analysis shows that, in all the cases, Ω0 de-
creases as the delay increases, and that the proposed
2DOF-PI2D controller has the highest value of Ω0 for
each delay associated with the system.

6. Experimental results

The performance of the proposed control scheme is
evaluated on the two-axis serial kinematic nanoposi-
tioner detailed in Section 4. In order to evaluate the per-
formance of the proposed control scheme, its features
are compared in both the time and frequency domains
with those of other classical control schemes utilized
in nanopositioners, namely: IRC Control Scheme [10],
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Figure 7: Relationship between Ω0 (frequency at which the unity sen-
sitivity is crossed) and delay associated with the system

PPF Control Scheme [18] and, PVPF Control Scheme
[19]. In order to evaluate all the controllers against the
same performance criterion, they were designed con-
sidering only the first resonant mode of the nanopo-
sitioner axis. Since the IRC and PPF controllers can
only be designed for systems without delay, g1(s, 0) was
the system to be controlled, and the closed-loop poles
were placed in a Butterworth filter pattern with radius
R = ω1 as in [38]. In the case of the PVPF con-
troller, the methodology of [26] was utilized, and the
plant was therefore considered by including the actual
delay of the system (g1(s, τ)). In this case, the closed-
loop poles were also placed in a Butterworth filter pat-
tern with radius R = ω1. Finally, g1(s, τ) was also con-
sidered for the proposed 2DOF-PI2D control scheme,
but the closed-loop poles were placed in a Butterworth
filter pattern with radius R = 0.85ω1 in order to remove
chattering in the system. The numerical values of the
different control schemes utilized are given below:

• IRC control scheme:

Ct(s) =
376.8

s
, Cd(s) =

6360
s

, d = −0.90 (23)

• PPF control scheme:

Ct(s) = 973.2
s ,Cd(s) = 3.689×107

s2+s1.062×104+3.977×107

(24)

• PVPF control scheme

Ct(s) = 1771
s ,Cd(s) = −9450s+7.123×107

s2+s1.298×104+9.687×107

(25)
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Figure 8: RMS Error produced by the traditional and the proposed
2DOF-PI2D control schemes while tracking ±10 µm triangular tra-
jectories of different frequencies.

6.1. Time-domain Results

In order to quantify the time-domain performance of
each control scheme, the platform was subjected to tri-
angular input trajectories of different frequencies, which
are typically employed during a raster scan. Addition-
ally, in order to demonstrate the ability of all the con-
trollers to track non-periodic signals, a fifth-order poly-
nomial is also used as a reference trajectory. This ap-
plies a ”smooth step” to the controlled system ensuring
that the value of the jerk (i.e. the rate of change of ac-
celeration) is finite (it is well-know that infinite values
of jerk usually leads to adverse affects to the mechanical
systems).

6.1.1. Triangular reference trajectory
The group of triangular trajectories with fundamen-

tal frequencies between [0,100] Hz and a displacement
of ±10 µm were utilized to quantify tracking perfor-
mance of the discussed control schemes. The corre-
sponding root-mean-square error (RMSE) in the track-
ing of the triangular reference signal versus the fre-
quency of the reference to be obtained is plotted in
Figure 8, for the four control schemes. It is clear that
the proposed 2DOF-PI2D control scheme has the low-
est RMSE across the entire frequency range. More-
over, in order to illustrate the actual behavior of the sys-
tem controlled when tracking the reference signal, and
to demonstrate the better performance of the proposed
2DOF-PI2D control scheme even in the case of a dis-
placement comprising the full range available, Figure 9
plots recorded time-domain results for a triangular sig-
nal of 35 Hz and ±10 µm displacement. Quantitative
results are presented in Table 1.
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Figure 9: Experimental closed-loop system response and error for var-
ious control schemes while tracking a ±10 µm, 35 Hz triangular tra-
jectory.

Control scheme Max. Error (µm) RMS Error (µm)
IRC 3.743 1.978
PPF 2.004 1.080

PVPF 1.515 0.728
2DOF-PI2D 1.555 0.271

Table 1: Experimental results for tracking a ±10 µm, 35 Hz triangular
trajectory.

The absence of tracking error along the up and down
slopes of the triangular trajectory enables the utilization
of both slopes of the trajectory to record data (rather
than recording for both up and down traverses and av-
eraging out - the typical approach), thereby effectively
doubling the scanning frequency, [27]. Thus, the raster
scanning frequency can be set to fraster = fs/2(N − 1),
where fs is the sampling frequency and N is the number
of pixels per image [16].

6.1.2. Polynomial reference trajectory
As stated in the Introduction, all the analyzed con-

trollers are capable of delivering error-free tracking of
step signals due to the presence of at least first-order
(second-order in the case of the 2DOF-PI2D) integral
action. In order to illustrate this, an example of a
”smooth step” reference is shown in Figure 10). The
reference utilized in the experimental setup was gener-
ated by using a fifth-order polynomial in order to guar-
antee a finite value for jerk during all the trajectory.

Figure 10) shows the tracking responses of tradi-
tional controllers (23)-(25) and the proposed 2DOF-
PI2D controller. It can be seen that all the controllers
are capable of reaching a zero-error steady state after
some initial settling time. If settling time is denoted by
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ts and the overshoot as Mp then, the tracking perfor-
mance achieved can be quantified in descending order
as: PVPF (ts = 5.35 × 10−3s, Mp=4.5%), 2DOF-PI2D
(ts = 5.25 × 10−3s, Mp=5.7%), PPF (ts = 7.45 × 10−3s,
Mp=15.2%), and IRC (ts = 10.8 × 10−3s, Mp=16.8%).

These results show that only the proposed control
scheme is capable of zero tracking error of ramp sig-
nals, thus leading to a superior positioning performance
when tracking the slopes of the triangular signal. Addi-
tionally, the proposed control scheme delivers a superior
accuracy in the range of frequencies studied because of
its lower rate dependence between the RMSE and the
frequency of the signal (it has the least steep ramp in
Figure 8). It is important to note that this type of exper-
imentation, in which the controller is designed once and
then forced to track triangular signals of a wide range
of frequencies, cannot be carried out in the case of con-
trollers based on the internal model principle, such as
repetitive control since, as was stated in the Introduc-
tion, these controllers require an exact knowledge of the
period-time of the excitation signals.

6.2. Frequency-domain Results

The well-known criterion of ±3dB bandwidth is
widely employed in order to quantify the performance
of different control schemes as regards nanopositioning
systems (because it provides a measure of the achiev-
able tracking bandwidth). However, this criterion is
usually employed when the delay of the system is con-
sidered to be negligible. In the experimental setup used
herewith, the delay cannot be ignored and the simu-
lations conducted in this paper were therefore carried
out on the complete model of the experimental platform
identified, i.e., g4(s, τ), in which the delay value was
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Figure 11: Experimental magnitude and phase response of the open-
loop platform and of the closed-loop IRC, PPF, PVFP and 2DOF-
PI2D control schemes

τ=105 × 10−6s. Experimental results will validate the
simulations.

The results obtained experimentally are presented in
Figure 11 and the bandwidths achieved in simulation
and in experiments, are provided in Table 2. Experi-
mental and simulated results present good agreement in
all the cases (except in the IRC controller, where the
noise of the signal produced a more significant differ-
ence between simulated and experimental results).

Control Bandwidth ± 3 dB (Hz)
scheme Simulation Experimental

IRC 118.8 90.4
PPF 246.6 248.6

PVPF 712.2 717.8
2DOF-PI2D 154.4 151.8

Table 2: ±3dB bandwidth results with delay in the plant

It is observed that the frequency response of the pro-
posed 2DOF-PI2D control scheme does not follow the
flat band response typically achieved when using the
low pass Butterworth filter design. This effect is caused
by the existence of zeroes in the closed-loop transfer
function of the system. Since the zeroes of the closed-
loop transfer function cannot be designed arbitrarily,
a complete flat band response cannot be achieved (it
should be noted that an ideal low pass Butterworth fil-
ter does not have any zeroes in its transfer function).
However, as stated in Section 3, the proposed design
methodology allows the closed-loop poles to be placed
arbitrarily; and better patterns for the closed-loop pole
placement can therefore be found by means of optimiza-
tion of the closed-loop response without a loss of gen-
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erality.
It is also clear that the proposed control scheme has a

relatively lower bandwidth when compared to the PVPF
control scheme. However, as can be seen from the time-
domain results, providing a high bandwidth does not
necessarily result in superior tracking performance for
ramp or triangular signals.

6.3. Circular trajectory tracking
Finally, in order to demonstrate the advantages of the

proposed control scheme and the ability to track trajec-
tories typically utilized in scanning probe microscopy
(aside from triangular ones), simulated results are pro-
vided in order to compare the performance of the dis-
cussed control schemes for circular trajectory tracking.
In order to perform a fair comparison between con-
trollers, simulations were carried out considering no de-
lay in the system (because IRC and PPF cannot com-
pensate the delay). The parameters identified for both
axes of the nanopositioner were used in order to mimic
a realistic platform operation, and suitable controllers
for each axis were designed based on the first resonant
mode of each axis.

Figure 12 (a) shows an example of the results ob-
tained when tracking a circular trajectory with a fre-
quency of 200 Hz. From this figure it can be seen
that traditional control schemes cannot track high fre-
quency signals and that there is a distortion of the circu-
lar trajectory. The eccentricity of the ellipsoid produced
when tracking the circular trajectory is utilized in or-
der to quantify the performance of each controller. It
is important to note that the eccentricity ε is defined as
ε = a/b, where a and b are the minor and the major
axes of the ellipse respectively. Figure 12 (b) shows the
relationship between the eccentricity of the trajectories
produced by each control scheme and the frequency of
the circular reference. It can be seen that the controller
proposed in this paper presents a better performance and
can track circular trajectories with very small distortion
in a wide range of frequencies, whereas the traditional
controllers lead to a heavily distorted trajectory even for
relatively low frequency references. These results sup-
port the efficacy of the proposed 2DOF-PI2D controller
and its potential in increasing the scanning frequency of
atomic force microscopes.

7. Conclusions

This paper proposes a new control scheme based on
a two-degrees of freedom PID control, namely 2DOF-
PI2D. It also proposes a design methodology for con-
troller parameters by placing the closed-loop poles of
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Figure 12: (a) Tracking performance of different control schemes for
a circular trajectory with a frequency of 200 Hz. (b) Relationship
between the eccentricity of the motion produced by each controller
and the frequency of the desired reference signal.

the system at selected locations, even in the presence
of inherent system delay. The improved tracking per-
formance delivered by the proposed 2DOF-PI2D con-
trol scheme has been thoroughly interrogated via an ex-
haustive set of simulations and validated through ex-
periments. Finally, stability and robustness of the pro-
posed controller in the presence of higher-order system
dynamics has also been demonstrated. In future, the
proposed control scheme should motivate optimal pole-
placement designs for high-speed nanopositioning ap-
plications.
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