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The Butterworth filter is known to have maximally flat response. Incidentally, the same
response is desired in precise positioning systems. This paper presents a method for
obtaining a closed-loop Butterworth filter pattern using common control schemes for
positioning applications, i.e., Integral Resonant Control (IRC), Integral Force Feedback
(IFF), Positive Position Feedback (PPF), and Positive Velocity and Position Feedback
(PVPF). Simulations show a significant increase in bandwidth over traditional design
methods and verify the desired pole placement is achieved. The simulations also show
a significant limitation of the achievable bandwidth in the case of IRC, IFF, and PPF. For
this reason, only PVPF is considered in experimental analysis. Experiments are performed
using a two-axis serial kinematic nanopositioning stage. The results show a significant
improvement in bandwidth, from 123 to 370Hz, and increased positioning accuracy,
specifically at the turn-around point, in comparison to the sequentially designed control
scheme.

Keywords: nanopositioning, damping control, tracking control, integral resonant control, positive position
feedback, positive velocity and position feedback

1. INTRODUCTION

Lightly damped resonant systems are highly susceptible to excitation of the resonant modes. This
behavior can severely limit performance and lead to catastrophic failure of the system. Various
control techniques have been proposed in the literature to improve the performance of these systems.
Open-loop control schemes, such as filtering and model-based inversion techniques (Croft et al.,
2001), have been used. The performance of open-loop systems is limited by the sensitivity to
perturbations in the systemdynamics and rely on a having a sufficiently accuratemodel. Closed-loop
controllers are more commonly used due to superior robustness and excellent stability (Preumont,
1997). In this work, we consider a piezoactuated serial kinematic nanopositioning platform as
an example system. Nanopositioners exhibit highly resonant behavior due to a lightly damped
dominant resonant mode at relatively low frequency and non-linear behavior inherent to the
piezoelectric actuators.

The effect of the low-frequency resonant mode on the performance of a nanopositioner is that
the scanning speed at which accurate tracking can be achieved is limited to approximately one-
hundredth of the resonant frequency in open-loop operation (Moheimani, 2008). In applications
which require high scanning speeds (Ando et al., 2002; Tuma et al., 2012), a controller which damps
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the resonant mode is required. Numerous damping controllers
have been presented in the literature. Integral Force Feedback
(IFF) (Preumont et al., 2008) and Integral Resonant Control
(IRC) (Aphale et al., 2007) are simple, easy to design control
schemes which provide guaranteed stability and excellent
robustness. Positive Position Feedback (PPF) (Fanson and
Caughey, 1990) and Positive Velocity and Position Feedback
(PVPF) (Bhikkaji et al., 2007) use the feedback of position, and
position and velocity, respectively, to achieve closed-loop pole
placements, which increase damping. This work will focus on
IFF, IRC, PPF, and PVPF due to the simple design procedures.
However, numerous other damping controllers exist and have
been extensively reported, including Shunt control (Hagood and
von Flotow, 1991), Resonant control (Aphale et al., 2008a), and
H∞ control (Sebastian and Salapaka, 2005). These damping
controllers are not limited in use to nanopositioning. Successful
implementation has been reported in applications, such as robotic
manipulators (Pereira et al., 2011), disk drives (Numasato and
Tomizuka, 2003), aircraft wings (Friedmann and Millott, 1995),
scanning probemicroscopes (Fleming et al., 2010),MEMS/NEMS
(Ferreira and Aphale, 2011), and high-density memory storage
devices (Sebastian et al., 2008).

Non-linear behavior, such as hysteresis and creep, is observed
in nanopositioning due to the use of piezoelectric actuators
(Figure 1). The positioning error caused by non-linearities is
significant andmust be consideredwhen designing an appropriate
controller. A number of methods have been proposed in the
literature to reduce the effects of non-linear behavior on the
positioning error. The hysteretic behavior of piezoactuators can
be linearized by driving with charge actuation (Newcomb and
Flinn, 1982; Fleming, 2013), rather than themore commonly used
voltage actuation. It has also been shown that the augmentation
of linear controllers with non-linear damping reduces the effects
of non-linearities on positioning error (Kanestrom and Egeland,
1994; Vagia et al., 2013). Fuzzy control has been applied to
nanopositioning, incorporating non-linearities in the modeling
of the plant, to design controllers, which directly target the
non-linear behavior (Yu et al., 2009). The most common method
of reducing the effects of non-linear behavior in nanopositioning

is through the use of reference tracking (Devasia et al., 2007).
Debate is ongoing with regard to whether linear controllers are
suitable for the control of non-linearities. However, numerous
works have shown, experimentally, that integral tracking control
reduces the effects of hysteresis on positioning error (Bhikkaji
et al., 2007; Aphale et al., 2008a; Fleming, 2010).

Eielsen et al. (2014) showed that using Model Reference Con-
trol to obtain a closed-loop Butterworth filter pattern provides
increased performance over traditional damping and tracking
controllers, in terms of bandwidth and positioning error. The aim
of this work is to provide a quick and simple method of deriving
controllers to obtain a closed-loop Butterworth filter pattern. This
allows the user to improve performancewith limited knowledge of
control theory.

One reason for the relatively poor performance of traditional
controller designs in precise positioning is that the damping
and tracking controllers are designed sequentially. This is due to
the fact that many of the common damping controllers used in
nanopositioning were either originally employed as standalone
damping controllers in other applications or based on such
controllers. In this case, the original design process of the damping
controller is followed. When the tracking controller is added and
the gain tuned, the damped characteristics of the closed-loop
system are altered.

The performance of the system can be improved by simulta-
neously design the damping and tracking controllers. By utilizing
a simultaneous design process, the desired damping and tracking
characteristics can be achieved in closed-loop operation.

The paper is structured as follows: Section 2 provides an
overview of the IRC, IFF, PPF, and PVPF control schemes. Meth-
ods are provided for each control scheme to obtain the closed-
loop Butterworth filter pattern. Section 3 details the experimen-
tal nanopositioning setup. In Section 4, controller parameters
are derived for both traditional and Butterworth-based control
schemes. Simulations are provided to evaluate the performance of
the proposed controller in comparisonwith the traditional design.
Section 5 presents experimental results for the PVPF case, show-
ing the effectiveness of the Butterworth-based controller design in
implementation. Section 6 concludes the paper.

FIGURE 1 | Interaction of input harmonics and plant dynamics. On the left is a typical input for nanopositioning systems, a high frequency triangular waveform.
The typical frequency response of a lightly damped resonant system is presented in the center. On the right is the resultant distorted output showing the effects of
the lightly damped resonance, creep, and hysteresis. Note: the effects have been exaggerated for illustrative purposes.
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2. OBTAINING BUTTERWORTH PATTERN

A number of methods have been proposed for the control of
second-order systems. These range from PI control, commonly
used in commercial Atomic ForceMicroscopes, to optimal control
methods, such as H∞ (Sebastian and Salapaka, 2005). The ideal
frequency response for tracking applications consists of unity gain
at low frequencies to preserve the harmonics of the input, followed
by a roll-off at high frequencies to reduce the effects of noise and
high frequency unmodeled dynamics. The Butterworth filter is
known to fit these criteria. The Butterworth filter is defined as
having transfer function, H(s), such that the poles of H(s)H(−s)
are equally spaced on a circle, with radius equal to the natural
frequency of the Butterworth filter, in the Cartesian plane. In this
section, a brief overview is given of the four control schemes used
in this work and a method to achieve a closed-loop Butterworth
filter pattern is presented.

First, we must consider the modeling of the plant. Nanoposi-
tioning platforms utilize collocated sensor/actuator pairs, which
are modeled as the sum of multiple second-order transfer func-
tions. However, the performance of a nanopositioner is limited by
a dominant, low-frequency resonant mode. The nanopositioner
can, therefore, be modeled as a single second-order system. This
approach has been used extensively in the literature. The transfer
function of the model, measured from the input voltage to the
output displacement, is given by

G(s) = σ2

s2 + 2ζωns+ ω2n
(1)

where ζ is the damping ratio, ωn is the natural frequency, and σ

is a constant gain determined by the physical characteristics of
the plant. Although the controller design process, presented in the
remainder of this section, utilizes a simplified model of the plant,
the closed-loop performance is not degraded by the inclusion of
higher-order modes.

2.1. Integral Resonant Control
Integral Resonant Control is an adaptation of IFF, whereby posi-
tion feedback is used as opposed force feedback. In using position
feedback, a feedthrough term is added to emulate the response
of the force measurement. As this is no longer an inherent sys-
tem parameter, the feedthrough can be arbitrarily chosen, giving
greater control over the response. IRC has found wide use in a
number of applications including nanopositioning (Aphale et al.,
2008b; Bhikkaji and Moheimani, 2008), smart structures (Aphale
et al., 2007), and flexible link manipulators (Pereira et al., 2011)

due to the simplicity of the design method and the stability and
robustness properties. The structure of the IRC scheme is shown
in Figure 2A, where G(s) is the plant, d is an arbitrarily chosen
constant gain, and Cd(s) is an integral controller given by

CdIRC(s) =
k
s , (2)

and the tracking controller, Ct(s), is an integral controller given by

Ct(s) =
kt
s . (3)

The traditional design procedure for IRC is as follows; first,
the feedthrough, d, is chosen to be sufficiently large and negative.
Then, the damping controller gain which provides maximum
damping is found using the root-locus method. The tracking
controller gain is found via trial-and-error. Further analysis has
provided expressions for the feedthrough and damping controller
gain, in terms of known parameters, which the maximum achiev-
able damping (Namavar et al., 2014). Stability criteria are also
providedwhich limits the range of tracking controller gains. How-
ever, it is known that the addition of the tracking controller affects
the damped poles of the system, and it is observed that within
the range of stability, the tracking controller gain and closed-
loop damping ratio are inversely related. It is, therefore, necessary
to design both the damping and tracking controllers simultane-
ously. In the remainder of this section, expressions are derived
for the three tunable parameters, which will give a closed-loop
Butterworth filter pattern.

From Figure 2A and the structure of the controllers as given
previously, the closed-loop transfer function is derived as

Gnum
cl (s) = ktkσ2

Gden
cl (s) = s4 + (2ζωn − dk)s3 + (ω2

n − 2ζωndk)s2

+ k(−dω2
n − σ2)s+ ktkσ2

(4)

where Gnum
cl denotes the numerator and Gden

cl the denominator of
the closed-loop transfer function.

A fourth-order Butterworth filter has two sets of complex poles
with the same natural frequency and differing damping ratios. The
denominator of the transfer function is given by

P(s) = (s2 + 2γ1ωds+ ω2
d)(s2 + 2γ2ωds+ ω2

d) (5)
= s4 + αωds3 + βω2

ds2 + αω3
ds+ ω4

d (6)

where
α = 2γ1 + 2γ2, β = 2+ 4γ1γ2. (7)

FIGURE 2 | Block diagram of (A) the IRC/IFF and (B) the PPF/PVPF control schemes where G(s) is the plant, Cd (s) is the damping controller, Ct (s) is
the tracking controller, and d is a constant gain, which can be chosen arbitrarily for IRC and is determined by the plant dynamics for IFF.
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Equating the coefficients of the denominator of the closed-loop
transfer function, in equation (4), and the characteristic equation
of the Butterworth filter, in equation (6), gives the conditions for
achieving a closed-loop Butterworth filter pattern, i.e.,

αωd = 2ζωn − dk (8)
βω2

d = ω2
n − 2ζωndk (9)

αω3
d = k(−dω2

n − σ2) (10)
ω4
d = ktkσ2. (11)

Rearranging equations (8)–(11) to find the controller parame-
ters gives

dk = 2ζωn − αωd (12)

dk =
ω2
n − βω2

d
2ζωn

(13)

dk =
−kσ2 − αω3

d
ω2n

(14)

kt =
ω4
d

kσ2 . (15)

Equating equations (12) and (13) and rearranging for ωd gives

βω2
d − 2ζωnαωd + 4ζ2ω2

n − ω2
n = 0 (16)

The roots of equation (16) give the achievable damped natural
frequency and are calculated as

ωd =
2ζωnα±

√
4ζ2ω2nα2 − 4β(4ζ2ω2n − ω2n)

2β . (17)

With the damped natural frequency,ωd, now known, the damp-
ing controller gain, k, can be found by equating equations (12) and
(14) giving

k =
αωdω

2
n − 2ζω3

n − αω3
d

σ2 . (18)

The feedthrough term, d, is then calculated from equa-
tion (12) as

d =
2ζωn − αωd

k , (19)

and the tracking controller gain, kt, given by equation (15).

2.2. Integral Force Feedback
Integral Force Feedback was first proposed by Preumont et al. to
damp the vibrations in space structures (Preumont et al., 1992).
This method has since been refined (Preumont et al., 2008) and
applied to other resonant systems, such as nanopositioning stages
(Fleming, 2010). IFF with tracking control has the same structure
as IRC, see Figure 2A, where Cd and Ct are both integral con-
trollers. There are two main differences between IFF and IRC:
first, IFF uses force feedback in the damping loop, whereas IRC
uses position feedback. Second, the feedthrough term, d, is fixed
and determined by properties of the system in IFF, IRC allows an
arbitrary choice of feedthrough. In recent work, Optimal Integral
Force Feedback (OIFF) has been developed (Teo et al., 2014). This

entails the addition of an arbitrarily chosen feedthrough term, β,
such that the feedback in the damping loop, ỹ, is given by

ỹ(t) = (G+ dt)u(t) (20)

where dt is the total feedthrough gain, defined as dt = d+ β. The
benefit of this method is an increase in the achievable damping
and improved robustness. To achieve a closed-loop Butterworth
pattern, the OIFF control scheme can be designed using the same
method as IRC. The feedthrough, dt, is calculated using equation
(19). The additional feedthrough is then β= dt − d. The integral
damping and tracking controllers are unchanged.

2.3. Positive Position Feedback
Positive Position Feedback was originally developed for the con-
trol of large space structures (Goh and Caughey, 1985; Fanson
and Caughey, 1990). It has since been successfully applied to
nanopositioning stages (Aphale et al., 2008a). Traditionally, PPF
uses a pole placement algorithm to design the damping controller,
CdPPF . The closed-loop pole placement can be chosen arbitrar-
ily. The controller is derived by equating the coefficients of the
desired characteristic equation with those of the denominator of
the closed-loop transfer function and solving for the controller
parameters. However, due to the limitations of the PPF con-
troller, the desired pole placement cannot always be achieved. The
tracking controller gain is found via trial-and-error.

To obtain a closed-loop Butterworth filter pattern, the same
method as for IRC is used, i.e., the denominator of the closed-
loop transfer function is equated to the characteristic equation
of the Butterworth filter. However, due to additional complex-
ity of the higher-order system, some parameters must be found
numerically.

The structure of the PPF control schemewith tracking is shown
in Figure 2B where the PPF controller, Cd has transfer function

CdPPF(s) =
Γ1

s2 + 2ζcωcs+ ω2c
, (21)

and the tracking controller, Ct, is an integrator given by

Ct(s) =
kt
s . (22)

The closed-loop transfer function is given by

Gnum
cl (s) = ktσ2(s2 + 2ζcωcs+ ω2

c )

Gden
cl (s) = s5 + (2ζωn + 2ζcωc)s4

+ (2ζωn2ζcωc + ω2
n + ω2

c )s3

+ (2ζωnω
2
c + 2ζcωcω

2
n + ktσ2)s2

+ (ω2
nω

2
c − σ2Γ1 + ktσ22ζcωc)s

+ ktσ2ω2
c (23)

The fifth-order Butterworth filter has the following character-
istic equation

P(s) = (s+ ωd)(s2 + 2ϕ1ωds+ ω2
d)(s2 + 2ϕ2ωds+ ω2

d)

= s5 + (α+ 1)ωds4 + (α+ β)ω2
ds3

+ (α+ β)ω3
ds2 + (α+ 1)ω4

ds+ ω5
d (24)
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where

α = 2ϕ1 + 2ϕ2 (25)
β = 2+ 4ϕ1ϕ2. (26)

Substituting the values forϕ1, ϕ2, andωd gives the characteristic
equation in the form

P(s) = s5 + K4s4 + K3s3 + K2s2 + K1s+ K0. (27)

Equating the denominator coefficients of equation (23) with
equation (27) and rearranging for the controller parameters gives

2ζcωc = K4 − 2ζωn

ω2
c = K3 − ω2

n − 2ζωn2ζcωc

kt = K0/σ
2ω2

c

Γ1 = (ω2
nω

2
c + 2ζcωcσ

2kt − K1)/σ
2 (28)

As PPF does not allow arbitrary pole placement, a closed-
loop Butterworth filter pattern can only be achieved for a specific
damped natural frequency,ωd. This is foundnumerically such that

|Si| = ωd, i = 1, . . . , 5 (29)

where si are the roots of denominator of equation (23).

2.4. Positive Velocity and
Position Feedback
Positive Velocity and Position Feedback (PVPF) is an adaptation
of PPF. The addition of velocity feedback allows truly arbitrary
pole placement to be achieved, where there is a limitation of the
achievable pole placement of PPF. Successful implementation of
the PVPF control scheme in nanopositioning applications has
beenwidely reported in the literature (Bhikkaji et al., 2007; Aphale
et al., 2008a; Bazaei et al., 2012). The design procedure of the PVPF
controller is similar to that of the PPF controller. The desired
closed-loop pole placement is chosen, typically by reducing the
real component of the plant poles by a sufficiently large amount,
such that the damping ratio is increased while maintaining the
damped natural frequency of the plant. The tracking controller is
designed via trial-and-error.

As PVPF allows arbitrary pole placement, the closed-loop But-
terworth filter pattern can be easily achieved using a method
similar to the traditional design. The only difference is that the
tracking controller must be taken into account in the design
process.

The structure of the PVPF control scheme with tracking is
shown inFigure 2B, where the damping controller,Cd has transfer
function

CdPVPF(s) =
Γ2s+ Γ1

s2 + 2γωcs+ ω2c
, (30)

and the tracking controller is an integrator given by

Ct(s) =
kt
s . (31)

The closed-loop transfer function is

Gnum
cl (s) = ktσ2(s2 + 2γωcs+ ω2

c )

Gden
cl (s) = s5 + (2ζωn + 2γωc)s4 + (2ζωn2γωc + ω2

n + ω2
c )s3

+ (2ζωnω
2
c + 2γωcω

2
n + ktσ2)s2

+ (ω2
nω

2
c − σ2Γ1 + ktσ22γωc)s+ ktσ2ω2

c (32)

The fifth-order Butterworth filter has the following character-
istic equation

P(s) = (s+ ωd)(s2 + 2ϕ1ωds+ ω2
d)(s2 + 2ϕ2ωds+ ω2

d) (33)
= s5 + (α+ 1)ωds4 + (α+ β)ω2

ds3

+ (α+ β)ω3
ds2 + (α+ 1)ω4

ds+ ω5
d (34)

where α and β are given by equations (25) and (26), respectively.
As PVPF allows arbitrary pole placement, the values for ϕ1,

ϕ2, and ωd can be substituted giving a characteristic equation of
the form

s5 + K4s4 + K3s3 + K2s2 + K1s+ K0. (35)

Equating this with equation (32) gives the controller parame-
ters as

2γωc = K4 − 2ζωn

ω2
c = K3 − ω2

n − 2ζωn2γωc

kt = K0/(σ
2ω2

c )

Γ2 = −(K2 − 2ζωnω
2
c − 2γωcω

2
n − ktσ2)/σ2

Γ1 = −(K1 − ω2
cω

2
n − 2γωcktσ2)/σ2 (36)

In the following sections, the proposed methods for designing
the IRC, PPF, and PVPF control schemes are applied to a nanopo-
sitioning stage. IFF will not be considered due to the similarity
with IRC. The performance of the Butterworth-based controllers
is evaluated against the controllers derived using the traditional
design methods.

2.5. Note on Parameter Selection
The design methods presented in this section are generalized and
contain someundefined parameters. This followingwill clarify the
available choices.

In the case of IRC and IFF, in order to obtain a closed-
loop Butterworth filter pattern, the desired closed-loop damping
ratios must be defined as γ1 = 0.9239 and γ2 = 0.3827. This is
necessary to ensure a fourth-order closed-loop Butterworth filter
pattern. This consequently defines α and β and allows controller
parameters to be derived for a given plant.

For PPF and PVPF, the desired closed-loop damping ratios
must be defined as: ϕ1 = 0.8090 and ϕ2 = 0.3090, in order to
ensure a fifth-order Butterworth filter pattern is achieved. In
the case of PPF, the natural frequency at which the Butterworth
filter pattern can be achieved has, thus far, only been found by
numerical analysis for a given plant. For PVPF, a closed-loop
Butterworth filter pattern can, theoretically, be achieved for any
choice of cutoff frequency, ωd. In practice, it is noted that large
choices of ωd can cause instability. It is recommended that the
chosen natural frequency of the Butterworth filter does not exceed
the natural frequency of the plant.
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3. EXPERIMENTAL SETUP

The performance of the Butterworth-based controller is evalu-
ated on a two-axis serial kinematic nanopositioner, pictured in
Figure 3. The nanopositioner was designed and constructed at the
EasyLab, University of Nevada, Reno. The stage is driven by two
10-mm 200-V piezoelectric stack actuators that provide a range of
40µmin each axis. The position ismeasured by aMicrosense 6810
capacitive sensor and 6504-01 probe with a sensitivity of 5µm/V.
The stage is driven by two PiezoDrive PDL200 voltage amplifiers
with a gain of 20. The control algorithm is implemented using NI
LabVIEW’s Real-Time module at a sampling rate of 20 kHz.

4. SIMULATIONS

Simulations are performed using a second-order model derived
from the measured frequency response, see Figure 4, of one-
axis of the nanopositioner described in the previous section. The
model is calculated to model the dominant resonant mode of the
nanopositioner and is given by

G(s) = 9.911× 106

s2 + 92.12s+ 2.026× 107
, (37)

that is, in terms of the plant parameters of equation (1),
σ= 3148.2, ζ = 0.0102, and ωn = 4501.1.

The remainder of this section presents the design process of
both the traditional and Butterworth-based control schemes for
IRC, PPF, and PVPF. IFF has not been included due to the
similarity to IRC. The simulations focus on frequency-domain
results to ensure stability, and that the closed-loop Butterworth
pattern is achieved. Bandwidth measurements are provided for
comparison of the traditional and Butterworth-based controllers’
performance.

4.1. IRC
4.1.1. Traditional Design
The traditional IRC scheme is designed using the method devel-
oped by (Namavar et al., 2014) to achieve maximum damping.
The feedthrough term, d, and damping controller gain, are derived
as functions of plant parameters. The tracking controller gain is
found via trial-and-error such that the closed-loop magnitude
response does not exceed unity gain.

d = −0.9782 (38)

Cd(s) =
5472
s (39)

Ct(s) =
950
s . (40)

4.1.2. Butterworth-Based Design
To achieve a fourth-order Butterworth pattern, the required
closed-loop damping ratios are given as

γ1 = cos(±22.50) = 0.9239 (41)
γ2 = cos(±67.50) = 0.3827. (42)

FIGURE 3 | A two-axis serial kinematic nanopositioner, designed at
the EasyLab, University of Nevada, Reno, driven by two PiezoDrive
200V Linear amplifiers, with position measured by a Microsense 4810
capacitive sensor.

FIGURE 4 | The measured magnitude response of the nanopositioning
platform and the second-order model.

From equation (17), the maximum achievable damped natural
frequency is found to be ωd = 2471.2 rad/s. Equations (15), (18),
and (19) give the following controllers

d = −0.7045 (43)

Cd(s) =
9035
s (44)

Ct(s) =
416.4
s . (45)

4.2. PPF
4.2.1. Traditional Design
The traditional PPF scheme is designed using the method found
in (Aphale et al., 2008a). In this case, the design criteria are to
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maintain the damped natural frequency and increase the damping
ratio to 0.37. This damping ratio is chosen as a rough approx-
imation of the achieved damping ratios found in the literature.
Damping ratio is used as opposed to coordinates as it is irrespec-
tive of system resonances. The tracking controller gain is found via
trial-and-error, such that the magnitude response does not exceed
0 dB at any point. This gives the following controllers

Cd(s) =
2.403× 107

s2 + 7108s+ 3.924× 107
(46)

Ct(s) =
1050
s . (47)

4.2.2. Butterworth-Based Design
The closed-loop damping ratios are

ϕ1 = cos(±360) = 0.8090 (48)
ϕ2 = cos(±720) = 0.3090. (49)

The damped natural frequency, ωd, is found via simulation.
Over a range ofωd, the desired characteristic equation is calculated
and damping and tracking controllers designed using equation
(28). The closed-loop transfer function is derived and the poles
are found. We choose ωd as the frequency at which

ωd −
∑5

i=1 |si|
5 = 0. (50)

This gives ωd = 3655.3. Equation (28) gives the PPF and track-
ing controllers as

Cd(s) =
5.7× 107

s2 + 1.174× 104s+ 4.861× 107
(51)

Ct(s) =
851
s . (52)

4.3. PVPF
4.3.1. Traditional Design
The traditional PVPF controller is designed in the sameway as the
PPF controller, the only difference being the additional parameter

in the numerator relating to velocity. The damping controller is
designed to give a closed-loop damping ratio of 0.37, and the
tracking controller gain found via trial-and-error to ensure the
magnitude response does not exceed 0 dB. The damping and
tracking controllers are calculated as follows

Cd(s) =
−2248s+ 2.403× 107

s2 + 7108s+ 3.924× 107
(53)

Ct(s) =
1500
s . (54)

4.3.2. Butterworth-Based Design
The closed-loop damping ratios are

ϕ1 = cos(±360) = 0.8090 (55)
ϕ2 = cos(±720) = 0.3090, (56)

and the damped natural frequency is set to ωd =ωn. This gives the
following characteristic equation

s5 + 1.4567× 104s4 + 1.061× 108s3 + 4.776× 1011s2

+ 1.3287× 1015s+ 1.8482× 1018. (57)

The controllers are derived from equation (36) as

Cd(s) =
−1.56× 104s+ 7.065× 107

s2 + 1.447× 104s+ 8.45× 107
(58)

Ct(s) =
2207
s (59)

The simulated closed-loop frequency response of both the tra-
ditional and Butterworth-based control schemes of IRC, PPF, and
PVPF are presented in Figure 5 and the measured bandwidth
given inTable 1. The bandwidth is defined as the lowest frequency
at which the magnitude response of the system breaches the
specified limits. Both positive and negative limits are imposed
as an increase in magnitude can cause performance degradation
equal to that of a reduction in magnitude. For nanopositioning
applications, which require highly accurate tracking, the standard
−3 dB bandwidth is not sufficiently stringent (Namavar et al.,
2014). For this reason, the ±1 dB bandwidth is considered as
a more pertinent performance metric. The ±3 dB bandwidth is
also included for comparison. Figure 6 shows the closed-loop
pole-zero map of the Butterworth-based designs.

FIGURE 5 | Simulated open- and closed-loop (damped and tracked) frequency response of both the traditional and Butterworth-based designs for (A)
IRC, (B) PPF, and (C) PVPF.
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TABLE 1 | Simulation results.

IRC PPF PVPF

Trad. Butter. Trad. Butter. Trad. Butter.

Bandwidth ±1dB (Hz) 76 332 64 552 92 658
Bandwidth ±3dB (Hz) 164 392 130 612 204 738

FIGURE 6 | Pole-zero map of the Butterworth-based IRC, PPF, and
PVPF damped and tracked closed-loop system, showing the achieved
Butterworth filter pattern.

FIGURE 7 | Experimentally measured closed-loop frequency response
of the nanopositioning platform for the traditional and
Butterworth-based PVPF control schemes.

5. EXPERIMENTAL RESULTS

Experiments were performed using the nanopositioning plat-
form as described in Section 3. The performance of the control
scheme was evaluated in both the frequency- and time-domain.
In Section 2, it was found that in the case of IRC and PPF, the

FIGURE 8 | Response of the system to a 35-Hz triangular waveform
with amplitude 20µm for the following cases: (A) open-loop, (B)
traditional PVPF design, and (C) Butterworth-based PVPF design. (D)
shows the measured error signal for the traditional and Butterworth-based
PVPF designs.

closed-loop Butterworth filter pattern can only be achieved for a
single cutoff frequency, ωd. The application in Section 4 shows
that the cutoff frequency attained using IRC and PPF is signif-
icantly less than that of the PVPF scheme. Additionally, using
PVPF a closed-loop Butterworth filter pattern can be achieved
for a large range of natural frequencies. For this reason, the PVPF
based control scheme is deemed to be of greater use, and, as such,
is the sole consideration of experimental analysis.

5.1. Frequency-Domain Results
The closed-loop frequency response function of both the tra-
ditional and Butterworth-based PVPF control schemes is plot-
ted in Figure 7. The implementation is seen to be stable. It
is observed that the results largely match the simulated results.
The Butterworth-based PVPF control scheme does not dis-
play the frequency response of a perfect Butterworth filter.
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TABLE 2 | Experimental results.

Trad. Butter.

Bandwidth ±1dB (Hz) 123 370
Bandwidth ±3dB (Hz) 215 720
Max. error (µm) 1.1161 0.6777
RMS error (µm) 0.2892 0.2436

There is a minor increase in magnitude from approximately 100
to 250Hz, followed by a premature decrease from approximately
300 to 700Hz. Thorough testing of the experimental platform
indicates that this can be attributed to the delay found in the
controller implementation. This accounts for the relatively low
±1 dB bandwidth although the ±3 dB bandwidth is sufficiently
similar to that predicted by simulation. In comparison with the
traditionally designed PVPF control scheme, it is observed that
the achievable bandwidth is significantly increased.

5.2. Time-Domain Results
To measure the time-domain performance of the respective con-
trol schemes, the platform is subjected to a triangular input wave-
form, as is typical in nanopositioning applications. The triangular
wave has a frequency of 35Hz and an amplitude of 20µm. The
phase-corrected system response and error are shown in Figure 8
and the respective maximum and RMS error measurements are
provided in Table 2.

The open-loop response, plotted in Figure 8A, shows the
triangular wave excites the resonance of the plant. The gain
of the plant is significantly less than unity, and so, provides
no tracking. Comparing the response of the traditional PVPF,
Figure 8B, and the Butterworth-based PVPF, Figure 8C, it
is observed that the Butterworth-based control scheme tracks
more accurately, especially at the turn-around point. This is
reflected in the error signal (Figure 8D) and the maximum
recorded error (see Table 2). The traditional PVPF scheme

shows a significant deviation from the reference, whereas the
error of the Butterworth-based scheme at the turn-around is
nearly indistinguishable from the rest of the scan. This effect
becomes more pronounced at higher scan frequencies, due to
the dip in the magnitude response of the traditional PVPF
scheme. This causes a reduction of the gain in the lower har-
monics of the triangle waveform. The relatively flat response of
the Butterworth-based control scheme ensures the harmonics
of the triangle wave will be preserved as the scanning speed is
increased.

6. CONCLUSION

In this paper, a method is derived to obtain a Butterworth fil-
ter pattern in the damped and tracked response of a second-
order system for each of the following four control schemes:
Integral Resonant Control, Integral Force Feedback, Positive
Position Feedback, and Positive Velocity and Position Feed-
back. Simulations show that the desired pole placement is
achieved and this is reflected in frequency response. Using this
method, a higher bandwidth can be achieved, which allows a
greater accuracy in positioning. This is confirmed by exper-
imental results. Due to the simplicity of the method, this is
ideal for improving the performance of precise positioning
systems.
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