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Abstract
For high-performance trajectory tracking at the nanometer scales, this paper
presents a new fast terminal sliding mode controller, which combines a recursive
integer-order non-singular high-order sliding manifold and a fractional-order
fast fixed-time reaching law to ensure globally fast convergence, and adopts a
time-delay-estimation (TDE) based disturbance estimator deeming the designed
controller robust to parameter uncertainty. Stability of the designed controller
is verified through the Lyapunov framework, where the full analyses of conver-
gence region and settling time are also presented. The tracking performance is
experimentally verified on a piezo-stack driven nano-positioning platform. To
showcase the performance improvements, measured closed-loop performance
of the proposed controller is contrasted with those obtained using three bench-
mark control approaches namely the basic Proportional-Integral-Derivative
(PID), the popular Positive Position Feedback with Integral action (PPF+I), and
the traditional linear sliding mode controller (LSMC).

K E Y W O R D S
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1 INTRODUCTION

In recent years, piezo-actuated nanopositioners have found widespread application in several micro/nanoscale hi-tech
systems such as atomic force microscopy,1 nanolithography,2 microinjection systems,3 and fast tool servo mechanisms.4
This is mainly due to the ease of operation and system integration, mechanical robustness, repeatability, high-resolution
and design simplicity afforded by piezo-actuated stages; with further performance enhancements made possible by
advances in control technology.5-7 The positioning performances of the piezoelectric stages are usually restricted by the
inherent hysteresis,8-10 creep, lowly-damped resonance modes, and parameter uncertainties. Feedback control methods
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can ensure robustness in presence of system parameter uncertainties, and enhance the transient and steady-state perfor-
mance of the system appropriately. Usually, for piezo-actuated nanopositioners, these methods focus on mitigating the
adverse effects of resonant linear dynamics, inherent nonlinearities, model uncertainty, and external disturbance, on the
steady-state precision and achievable positioning bandwidth. Consequently, a significant volume of literature focuses on
hysteresis modeling and inverse control methods.11-13 The key drawback of these techniques lie in the inevitable error in
modeling and parameter identification. Consequently, these techniques are often combined with other feedback control
methods, such as proportional–integral–derivative (PID) control,14 sliding-mode control,15,16 model predictive control,17

and so forth, to deliver adequate performance.
The sliding-mode control (SMC) is a popular nonlinear control method that has recently gained wide-spread attention

due to its effectiveness and robustness to disturbances.18,19 The core concept of the SMC is to keep system state sliding
on a specifically designed manifold that guarantees predefined (desired) dynamic performance. The traditional linear
SMC method can only guarantee the asymptotic stability of the closed-loop system.20,21 Consequently, persistent con-
trol input is needed to guarantee asymptotic stability.22,23 On the other hand, external control inputs are not needed if a
system is finite-time stable,24-27 which means the system can reach a stable operating point within a finite settling time.
Thus, in many engineering applications, finite-time stability28 is highly desirable. In case of nanopositioners, finite-time
stability can significantly improve the speed (bandwidth) of the nanopositioning system. The nonlinear sliding surface
based SMC, also known as the terminal sliding-mode control (TSMC), has been developed to possess this property.29

However, TSMC may lead to chattering issues,30 singularity,31 and slower convergence speed when compared to linear
SMC, if the system is operating far away from the equilibrium point.3,32 On the other hand, the state trajectories of TSMC
control systems with finite-time stability exhibit high amplitudes33,34 and long convergence times.35 Furthermore, for
TSMC schemes, convergence time is highly dependent on the initial conditions and strictly increases with increase in
initial conditions of the system. To address this issue, a fixed-time stability method, in which the settling time of a sta-
ble system is fixed and independent of the initial system state has also been proposed.36 However, these advances have
to date, not been applied to nanopositioning systems in order to explore the possible performance improvements they
can afford.

Fractional calculus has recently become very attractive in several engineering applications.37-40 It has also been proved
that the fractional integral sliding surface is equivalent to a low-pass filter on the sign function and thus can elimi-
nate high-frequency components–typically the cause of instability with the potential to excite unmodeled high-frequency
system dynamics.41 Fractional-order (FO) control systems42-44 can provide more adjustable degrees of freedom than its
Integer-order (IO) counterparts. Some recent studies10,45 also show the superiority of FO controller over IO designs. In
2020, a continuous fractional-order nonsingular terminal sliding mode controller46 is proposed for a class of second-order
nonlinear systems. For the speed operation of permanent magnet synchronous motor, an adaptive super-twisting
Fractional-order PID sliding mode controller47 is proposed based on an extended state observer. It’s worth noting that the
fusion of fractional calculus and fixed-time sliding mode control could be an effective way to improve the performance of
several engineering systems. In literature,48 a fixed-time fractional-order sliding mode controller is proposed and it can
effectively stabilize a nonlinear power system. Junkang49 proposed a fast fixed-time nonsingular terminal sliding mode
controller which is applied to chaos suppression in power systems. However, There is no relevant report on fractional
fixed-time sliding mode control applied to piezoelectric driven high precision positioning system to the best of authors’
knowledge. As fixed convergence time is more attractive than finite time for the practical application, the fixed-time
sliding mode control method based on fractional calculus remains a challenge to be explored for piezoelectric-actuated
positioning system, which is the main motivation of this paper.

As analyzed above, TSMC control schemes with fixed convergence time is highly desirable because the settling
time is independent of the initial system state. However, the fixed-time SMC based on fractional calculus remains a
challenge to be explored. In addition, the needs of designing high performance controller for piezoelectric positioner
with high-order model can be satisfied. The benefits of this study include but are not limited to that the following
academic questions can be solved so as to realize high performance positioning for piezoelectric positioner.50,51 For
example, how to combine high order sliding mode and fractional calculus to design a robust, stable, non-singular,
global fast convergent controller? How to ensure its stability, even fixed time stability? How to calculate the time of its
stability?

Bearing the above questions in mind, out main focus in this paper is to address fixed-time high precision track-
ing problem for a high-order nonlinear system based on high-order sliding mode and fractional calculus. In this work,
a robust high-order sliding mode control method based on a recursive high-order sliding manifold aimed at position-
ing performance improvement of a piezoelectric platform is proposed. The controller combines a recursive high-order
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(A) (B)

F I G U R E 1 (A) The experimental setup used in this work showing the two-axis, serial kinematic, piezoelectrically actuated
nanopositioner, the high-voltage amplifiers, the capacitive displacement sensor, and the computer embedded with NI A/D cards and
LabView. (B) Measured magnitude response of the system (· · ·) and the magnitude response of the full linear model (—) adopted in this work
showing excellent acuracy in capturing the linear in-bandwidth dynamics.

sliding manifold, a fractional order fast fixed-time reaching law and a time-delay-estimation (TDE) disturbance estimation
method. The major contributions of this work are highlighted as follows:

1. A piezoelectric platform is accurately modelled, including a linear high-order (10th) component, a nonlinear
Bouc-Wen-type hysteresis component, and a lumped TDE disturbance.

2. A new practical robust fractional-order terminal sliding mode control method is synthesized by combining a recursive
high-order sliding manifold, a modified fractional-order fast fixed-time reaching law and a TDE disturbance estimation
methodology.

3. With the aid of the model-free nature of TDE, the controller is capable of adequately compensating for the residual
uncompensated hysteresis and unmodeled dynamics.

4. The stability of the proposed controller, convergence region and settling time of system state are theoretically proved
via Lyapunov theory.

5. The excellent performances of the proposed controller in terms of high tracking accuracy, fast convergence,
non-singularity, robustness, chattering-free have been verified by comparing the experimental results with basic PID,
the popular PPF+I and the traditional linear LSMC controllers.

In order to clearly demonstrate the controller design, analysis, and experimental process and results for the piezo-
electric platform, the rest of this paper is logically organized as follows. Section 2 introduces the controlled plant
(piezoelectric platform) and the entire experimental system, and presents the accurate modeling process of the con-
trolled plant including linear dynamics part and nonlinear hysteresis part. Then, the controller synthesis is presented
in detail in Section 3 which consists of Mathematical foundations, Inverse model of hysteresis, TDE disturbance estima-
tion, and Sliding mode based controller design. Next, the stability and convergence property are analysed in Section 4.
Section 5 gives out the experimental settings, tracking results, and performance analysis. Finally, the paper is concluded in
Section 6.

2 SYSTEM MODELING OF THE PLATFORM

This section first describes the experimental setup employed in this work. It then describes the complete system identifica-
tion and modeling process resulting in a model that encapsulates the linear dynamics as well as the nonlinear hysteresis.
This model is subsequently employed during the control design and simulations. Experiments are carried out directly on
the setup shown in Figure 1 using the hardware described below.
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2.1 Experimental setup description

The experimental setup used in this work is shown in Figure 1A. It consists of a piezo-stack actuated, flexure-guided,
two-axis (x − y) nanopositioner. Each axis of the nanopositioner is driven by a 10 mm, 200 V piezoelectric stack actuator
capable of producing 40𝜇m motion along each axis. The nanopositioner also provides integrated mounts for capacitive
sensor probes. The MicroSense 6810 capacitive displacement sensor and 6504-01 probe with a sensitivity of 5 mm/V
provides a voltage signal proportional to the displacement sensed along each axis. The piezoelectric stack actuators are
supplied with both AC actuation and DC bias voltages by two PiezoDrive PDL200 voltage amplifiers with a gain of 20.

2.2 Modeling the platform

Before designing a controller, the model of the piezoelectric platform must be established. In this work, one axis of the
piezo-actuated nanopositioner is employed so as to demonstrate the efficacy of the proposed control scheme. Firstly, the
linear dynamics of the platform is modeled as a general time-domain differential equations:

y(n)(t) +
n−1∑

k=0
aky(k)(t) =

m∑

k=0
bku(k)(t) (1)

where u(t) is the input voltage applied to the platform as a function time t; y(t) is the displacement produced along the
axis; u(k)(t) and y(k)(t) are respectively the kth derivatives of u(t) and y(t); m and n are the orders of the model, and m < n;
ak and bk are constant coefficients of the model.

In order to aquire the coefficients and orders of the above model, the dynamics of one axis of the nanopositioner is iden-
tified by applying a sinusoidal chirp signal (from 10 to 1500 Hz) with an amplitude of 0.2 V as input to the voltage amplifier
of the x-axis and measuring the output signal (sensor voltage proportional to axial displacement) along the x axis.Then,
the small signal frequency response functions (FRFs) is computed by taking the fourier transform of the recorded data.
The recorded frequency response clearly shows that the dynamics within the recorded bandwidth-of-interest are domi-
nated by a lowly-damped resonant mode that occurs at 716 Hz. To validate the identified model, the magnitude response of
the identified model was superimposed on the measured magnitude response of the nanopositioner’s axis, see Figure 1B.
Clearly, the identified model is a very accurate match to the measured linear dynamics of the nanopositioner axis.
It is worth noting that the order n in Equation (1) is set to 10, which means the controlled platform is a high-order
plant.

Secondly, the inherent hysteresis nonlinear behaviour of the piezo-stack actuator employed by the nanopositioner
is usually modeled by a hysteresis model. Due to its apparent simplicity, its ability to capture the nonlinear behavior
accurately and its popularity, the Bouc-Wen model is often adopted in the literatures and can be generally expressed as
follows:52

{
H(t) = du − h
ḣ = 𝛼1u̇ − 𝛼2|u̇|h − 𝛼3u̇|h|

(2)

where H(t) is an immeasurable hysteresis displacement; d is piezoelectric constant; h is an intermediate state variable
whose time derivative is ḣ; 𝛼1, 𝛼2 and 𝛼3 are the coefficients that determine the shape and orientation of the hysteresis
loop.

Thirdly, all the other unmodeled dynamics and uncertainties can be considered as a lumped disturbance.
Combining the above three aspects, the entire dynamic model of one axis of the nanopositioner can be expressed as:

y(n)(t) +
n−1∑

k=0
aky(k)(t) +H(t) + Δ(t) =

m∑

k=0
bku(k)(t) (3)

where Δ(t) is the uncertain displacement caused by the lumped disturbance including all the un-modelled
(out-of-bandwidth) linear and nonlinear dynamics and other disturbances from temperature variation and aging and so
on.
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2600 WANG et al.

F I G U R E 2 Block-diagram of the proposed control scheme showing the overall signal flow

3 CONTROLLER SYNTHESIS

In this section, a robust fractional-order fast terminal sliding mode scheme with fixed-time convergence law is pro-
posed for controlling the above-mentioned platform. The control objective is to track a scanning trajectory (typically
triangular in nature) accurately in the presence of unknown disturbances. Firstly, a hysteresis compensation scheme
based on Bouc-Wen model is employed in order to eliminate hysteretic nonlinearity in advance. Then, with the
hysteresis-compensated plant which can be quite accurately approximated by a high-order linear dynamical systems with
uncertainties, we proposed a feedback sliding mode control scheme which combines a recursive high-order sliding mani-
fold, a fractional-order fast fixed-time reaching law and a time-delay estimation. The block diagram of the control system
is shown in Figure 2.

3.1 Mathematical foundations

Definition 1 [53]: The 𝛼 th-order Reimann-Liouville fractional integration of function f (t) with respect to t is given by
the following

t0I𝛼t f (t) = 1
Γ(𝛼)∫

t

t0

f (𝜏)
(t − 𝜏)1−𝛼

d𝜏 (4)

where Γ(𝛼) is the gamma function and t0 is the initial time.
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Definition 2 [53]: The 𝛼 th-order Reimann-Liouville fractional derivative of of function f (t) with respect to t is
defined as follows

t0D𝛼

t f (t) =
d𝛼f (t)

dt𝛼
= 1
Γ(m − 𝛼)

dm

dtm∫
t

t0

f (𝜏)
(t − 𝜏)𝛼−m+1 d𝜏 (5)

where m − 1 < 𝛼 ≤ m,m ∈ N.

Lemma 1 (54). Fractional-order differentiation is linear; if A, B are constants, then

0D𝛼

t [Af (t) + Bg(t)] = A0D𝛼

t f (t) + B0D𝛼

t g(t) (6)

0D𝛼

t [−f (t)] = −0D𝛼

t f (t) (7)

Lemma 2 (55). For 𝜇 > 0, v > 0, the FO calculus of function f (t) = (t − a)v is

aD−𝜇
t f (t) = (t − a)v+𝜇

Γ(𝜇)
B(𝜇, v + 1) (8)

where B(𝜇, v) is the beta function, and Γ(𝜇) is the gamma function.

Lemma 3 (41,56). Consider the following system:

ẋ(t) = −ax𝜇1 − bx𝜇2 , x(0) = x0 (9)

where a, b > 0, and 𝜇1, 𝜇2 are the ratio of two positive odd integers which satisfying 𝜇1 > 1 and 𝜇2 < 1. Then, the equilibrium
point of system (3) is fixed-time stable, and the settling time is upper bounded by:

T <
1

a (𝜇1 − 1)
+ 1

b (1 − 𝜇2)
(10)

It should be noted that, in this work the fractional order term is approximated by the Oustaloup refined filter method.57

And, the notation D−𝛼 and D𝛼 respectively indicate the Reimann-Liouville fractional integration and derivative with the
interval from t0 to t.

3.2 Inverse model of hysteresis

In the hysteresis compensation scheme, the inverse hysteresis based on Bouc-Wen model is employed, which is similar to
the method proposed in literature.58 The main idea is shown in Figure 3, which shows that the hysteresis compensation
scheme in series of inverse model and Bouc-Wen model can linearize the hysteresis nonlinearity of the system.

The specific process is as follows. (1) The Bouc-Wen hysteresis model is identified by a differential evolution
algorithm,59 and then the corresponding parameters in formula (2) can be obtained. (2) With the second equation in
expression (2), the term ∫ ḣ (⋅) in Figure 3 can be constructed. (3) According to Equation (2), the output of the inverse
hysteresis model can be designed as 1

d
(input + h), where h can be calculated by Equation (2). As this is a very mature

scheme, interested readers can consult the literature58 for more details.

3.3 TDE disturbance estimation

After the hysteresis compensation, the entire dynamic model of one axis of the nanopositioner can be approximated by:

y(n)(t) +
n−1∑

k=0
aky(k)(t) + Δ(t) =

m∑

k=0
bku(k)(t) (11)

As demonstrated above, the termΔ(t) is complicated and can not be easily obtained. Thus, the value ofΔ(t) is estimated
with the time-delayed method in this work when designing the feedback controller. With the disturbance estimation
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2602 WANG et al.

F I G U R E 3 The principle of inverse-hysteresis compensation scheme based on Bouc-Wen model.

technique,60,61 the estimation value of disturbance Δ(t) can be defined as follows:

Δ̂(t) ≜ Δ(t − T) =
m∑

k=0
bku(k)(t − T) − y(n)(t − T) −

n−1∑

k=0
aky(k)(t − T) (12)

where T is the sampling interval and usually is a very small value. Then the controlled plant (11) becomes:

y(n)(t) +
n−1∑

k=0
aky(k)(t) + Δ̂(t) + Δ̃(t) =

m∑

k=0
bku(k)(t) (13)

where Δ̃(t) is the estimation error and can be defined as:

Δ̃(t) = Δ(t) − Δ̂(t) (14)

Usually, we suppose the estimation error Δ̃(t) is bounded and satisfies

|Δ̃(t)| < ̄̃Δ (15)

where ̄̃Δ is the upper bound of estimation error Δ̃.

Remark 1. In this work, the employment of TDE estimator is mainly considered from the practical point of view. The
basic idea of the TDE estimation is to voluntarily introduce a small delay and then to use past observations regarding
both inputs and responses to compensate the unknown dynamics and disturbances simultaneously. The advantages of
using the TDE estimation method include (1) The TDE estimation only acquire the residual system dynamics with just
time-delayed system information (residual dynamics are not needed to be modelled any more) and ensures a fascinating
model-free scheme. (2) The shorter the TDE sampling interval, the more accurate the disturbance estimation. In this
work, the sampling frequency is 20 kHz, which means the sampling interval is small enough to get a sufficient tracking
accuracy. (3) The TDE estimation is essentially an online estimation method, and thus it can real-time compensate for
the uncertainties or the disturbances, which is very preferable in the practical application.

3.4 Sliding mode based controller design

This control design begins with the design of a recursive high-order sliding manifold which is then followed by proposing
a new fractional-order fast fixed-time reaching law.
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WANG et al. 2603

3.4.1 Recursive high-order sliding manifold

Define position tracking error:

e = y − yd (16)

where y is the output displacement, and yd is the desired displacement command.
Then, we have the all the derivatives of the tracking error

e(i) = y(i) − y(i)d , (i = 1, 2, … n) (17)

Let

s0 = e, ṡ0 = ė, … , s(n)0 = e(n) (18)

A recursive high-order fast terminal sliding manifold is defined as follows:

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

s1 = s0 + 𝛼sp0∕q0
0 + 𝛽 ṡ0

s2 = s1 + 𝛼sp1∕q1
1 + 𝛽 ṡ1

s3 = s2 + 𝛼sp2∕q2
2 + 𝛽 ṡ2

⋮

sj = sj−1 + 𝛼spj−1∕qj−1

j−1 + 𝛽 ṡj−1

sn−1 = sn−2 + 𝛼spn−2∕qn−2
n−2 + 𝛽 ṡn−2

(19)

where 𝛼, 𝛽 ∈ R+; pj, qj are all constant positive odd number, j = 1, 2, … ,n − 1; n − 1 < pj−1

qj−1
< n. It should be noted that

n ≥ 2 means pj−1

qj−1
> 1. This can ensure that we don’t have zero denominators in the derivation calculations and thus can

guarantee the non-singularity property. Using the same calculation method as in the literature,62,63 we have the definition:
sp∕q ≜ |s|p∕qsign(s), which always returns a smooth, monotonically increasing real function. Note that sign(⋅) means the
sign function.

From formula (19) we can get:

s(2)n−2 = s(2)n−3 + 𝛼
d2

dt2 spn−3∕qn−3
n−3 + 𝛽s(3)n−3 (20)

s(3)n−3 = s(3)n−4 + 𝛼
d3

dt3 spn−4∕qn−4
n−4 + 𝛽s(4)n−4 (21)

Then, by taking the derivative of the sn−1 by recursive steps according to formula (19), we can get:

ṡn−1 = ṡn−2 + 𝛼
d
dt

spn−2∕qn−2
n−2 + 𝛽s(2)n−2

= ṡn−2 + 𝛽s(2)n−3 + 𝛽
2s(3)n−4 + 𝛼

d
dt

spn−2∕qn−2
n−2 + 𝛼𝛽 d2

dt2 spn−3∕qn−3
n−3 + 𝛼𝛽2 d3

dt3 Spn−4∕qn−4
n−4 + 𝛽3s(4)n−4

= 𝛽n−1s(n)0 +
n−2∑

k=0
𝛽

ks(k+1)
n−k−2 +

n−2∑

k=0
𝛼𝛽

k dk+1

dtk+1
spn−k−2∕qn−k−2

n−k−2 (22)

3.4.2 Fractional-order fast fixed-time reaching law

The following fractional-order fast fixed-time reaching law is proposed due to the satisfactory performance:

ṡn−1 =
1

𝛽n−1

[
−
(
𝜙1D−𝜇1 s

⌣
𝜆
n−1 + 𝜙2D−𝜇2 s

𝜆3
𝜆4
n−1

)]
(23)
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2604 WANG et al.

where D−𝜇1 and D−𝜇2 are the abbreviated forms of 0D−𝜇1
sn−1

and 0D−𝜇2
sn−1

, they are the fractional order operators with the orders
0 < 𝜇1 < 1 and 0 < 𝜇2 < 1∕2 those are both the ratio of a positive even to a positive odd number and ⌣

𝜆 satisfies the
following equation:

⌣
𝜆 = 1

2
+ 𝜆1

2𝜆2
+
(
𝜆1

2𝜆2
− 1

2

)
sign(|sn−1| − 1) (24)

then we have

s
⌣
𝜆
n−1 =

⎧
⎪
⎨
⎪⎩

s𝜆1∕𝜆2
n−1 |sn−1| > 1

sn−1 |sn−1| < 1
(25)

It should be note that 𝜆i (i = 1, 2, 3, 4) are all constant positive odd number, and 𝜆1∕𝜆2 > 1, 0 < 𝜆3∕𝜆4 < 1∕2. Obviously,⌣
𝜆 ≥ 1.

The above-mentioned FO fast fixed-time reaching law (23) has superior dynamical performance, so the control system
will have a faster convergence rate. To demonstrate its superiority, it is compared to three other IO convergence laws as
follows:

(1) IO finite-time reaching law

ṡn−1 = −𝜙1s𝜆1∕𝜆2
n−1 − 𝜙2s𝜆3∕𝜆4

n−1 − 𝜙3sn−1 (26)

(2) IO fixed-time reaching law

ṡn−1 = −𝜙1s𝜆1∕𝜆2
n−1 − 𝜙2s𝜆3∕𝜆4

n−1 (27)

(3) IO fast fixed-time reaching law

ṡn−1 = −𝜙1s
⌣
𝜆
n−1 − 𝜙2s𝜆3∕𝜆4

n−1 (28)

After reasonable selection of parameters, the comparison of dynamical performances between the reaching law pro-
posed in this paper and the other three reaching laws are shown in Figure 4. We can see that the proposed FO fast
fixed-time reaching law has the fastest convergence rate. Usually, we have the following conclusions: (1) The convergence
time of the finite time reaching law is related to the initial value. The larger the initial value is, the longer the convergence
time is. So the fixed-time reaching law is a better choice. (2) The fast fixed-time reaching law is faster than the fixed-time
convergence law. (3) Fractional order reaching law has more regulating parameters than integer order approach law, and
thus the convergence performance will be better if it is well adjusted.

3.4.3 Control law

Then we define an intermediate variable for simplicity:

Vc =
m∑

k=0
bku(k)(t) (29)

Then, the controlled plant (13) can be rewritten as

y(n)(t) +
n−1∑

k=0
aky(k)(t) + Δ̂(t) + Δ̃(t) = V(t) (30)
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F I G U R E 4 Comparison of dynamical performance of the four reaching laws.

Thus, we proposed the following virtual control law:

Vc =
1

𝛽n−1

[
−
(
𝜙2D−𝜇s𝜆n−1 + 𝜙3D−𝜇2 S𝜆1∕𝜆4

n−1

)
−

n−2∑

k=0
𝛽

ks(k+1)
n−k−2 +

n−2∑

k=0
𝛼𝛽

k dk+1

dtk+1
spn−k−2∕qn−k−2

n−k−2

]

+ y(n)d +
n−1∑

k=0
aky(k)(t) + Δ̂(t) (31)

Combing (12) and the above control law (31), we can get a robust virtual control law as follows:

Vc =
1

𝛽n−1

[
−
(
𝜙2D−𝜇S𝜆n−1 + 𝜙3D−𝜇2 S𝜆3∕𝜆4

n−1

)
−

n−2∑

k=0
𝛽

kS(k+1)
n−k−2 −

n−2∑

k=0
𝛼𝛽

k dk+1

dtk+1
Spn−k−2∕qn−k−2

n−k−2

]

+ y(n)d +
n−1∑

k=0
aky(k)(t) +

m∑

k=0
bku(k)(t − T) − y(n)(t − T) −

n−1∑

k=0
aky(k)(t − T) (32)

After the virtual control law Vc is calculated out, we can obtain u(t) from (29). Obviously, Vc is filtered by a filter transfer
function 1

bmsm+bm−1sm−1+…+b1s+b0
. Thus, the ultimate real control law u(t) can be yielded by the following expression:

u = Vc
1

bmsm + bm−1sm−1 + … + b1s + b0
(33)

The flowchart of our control scheme (33) is illustrated in Figure 2. The stability proof and convergence analysis of the
proposed control scheme will be given in the next section.

4 STABILITY ANALYSIS

Theorem 1. For controlled plant (11) with tracking error satisfying expression (16), if sliding manifold is designed as (19),
the reaching surface is designed as (23), and the robust control law (33) is selected, then the control system is stable. The
system states sn−1 will convergence from initial state to a small region 𝜎 within a fixed settling time Treach.

where 𝜎 =
⎧
⎪
⎨
⎪⎩

sn−1 ∶ |sn−1| ≤
(

𝛽
n−1 ̄̃Δ

𝜙2
Γ(𝜆3∕𝜆4+1)

Γ(𝜇2+𝜆3∕𝜆4+1)

) 1
𝜆3∕𝜆4+𝜇2

⎫
⎪
⎬
⎪⎭

, and Treach <
1

𝜙
′
1

( ⌣
𝜆+𝜇1−1

) + 1
𝜙
′
2(1−𝜆3∕𝜆4−𝜇2) .
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2606 WANG et al.

4.1 Stability proof

Substituting the perturbance estimation (12) into the controlled plant (30), we can get

y(n)(t) +
∑n−1

k=0aky(k)(t) +
∑m

k=0bku(k)(t − T) − y(n)(t − T) −
∑n−1

k=0aky(k)(t − T) + Δ̃(t) = V(t) (34)

Then, combing the virtual control law (32) and the above controller plant (34), we can get

1
𝛽n−1

[
−
(
𝜙1D−𝜇1 S𝜆n−1 + 𝜙2D−𝜇2 S𝜆3∕𝜆4

n−1

)
−

n−2∑

k=0
𝛽

kS(k+1)
n−k−2 −

n−2∑

k=0
𝛼𝛽

k dk+1

dtk+1
Spn−k−2∕qn−k−2

n−k−2

]

= y(n)(t) − y(n)d + Δ̃(t) = e(n)(t) + Δ̃(t) = s(n)0 (t) + Δ̃(t) (35)

From Equation (22), we have

s(n)0 = 1
𝛽n−1

[
ṡn−1 −

n−2∑

k=0
𝛽

ks(k+1)
n−k−2 −

n−2∑

k=0
𝛼𝛽

k dk+1

dtk+1
spn−k−2∕qn−k−2

n−k−2

]
(36)

Substituting formula (36) into formula (35) and rearranging the formula, we get

ṡn−1 = −
(
𝜙1D−𝜇1 s

⌣
𝜆
n−1 + 𝜙2D−𝜇2 s𝜆3∕𝜆4

n−1

)
− 𝛽n−1Δ̃ (37)

Then, a Lyapunov candidate is selected as

V = |sn−1| (38)

And we have

V̇ = ṡn−1sign (sn−1) =
[
−
(
𝜙1D−𝜇1 s

⌣
𝜆
n−1 + 𝜙2D−𝜇2 s𝜆3∕𝜆4

n−1

)
− 𝛽n−1Δ̃

]
sign (sn−1) (39)

Obviously, when sn−1 > 0 we can get

V̇ = −𝜙1D−𝜇1 s
⌣
𝜆
n−1 − 𝜙2D−𝜇2 s𝜆3∕𝜆4

n−1 − 𝛽n−1Δ̃

= −𝜙1D−𝜇1 |sn−1|
⌣
𝜆 − 𝜙2D−𝜇2 |sn−1|𝜆3∕𝜆4 − 𝛽n−1Δ̃ (40)

and when sn−1 < 0, because 𝜆i (i = 1, 2, 3, 4) is all odd number, we can obtain the following expression according to
Lemma 1:

V̇ = 𝜙1D−𝜇1 s
⌣
𝜆
n−1 + 𝜙2D−𝜇2 s𝜆3∕𝜆4

n−1 + 𝛽n−1Δ̃

= 𝜙1D−𝜇1(− |sn−1|)
⌣
𝜆 + 𝜙2D−𝜇2(− |sn−1|)𝜆3∕𝜆4 + 𝛽n−1Δ̃

= −𝜙1D−𝜇1 |sn−1|
⌣
𝜆 − 𝜙2D−𝜇2 |sn−1| 𝜆3∕𝜆4 + 𝛽n−1Δ̃ (41)

In addition, according to formula (15) we have ±𝛽n−1Δ̃ < 𝛽
n−1 ̄̃Δ. So, we can get

V̇ < −𝜙1D−𝜇1 |sn−1|
⌣
𝜆 − 𝜙2D−𝜇2 |sn−1|𝜆3∕𝜆4 + 𝛽n−1 ̄̃Δ (42)

According to Lemma 2, we have

0D−𝜇1
|sn−1|

|sn−1|
⌣
𝜆 = B(𝜇1,

⌣
𝜆 + 1)

Γ (𝜇1)
|sn−1|

⌣
𝜆+𝜇1 (43)
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WANG et al. 2607

0D−𝜇2
|sn−1|

|sn−1|𝜆3∕𝜆4 =
B(𝜇2, 𝜆3∕𝜆4 + 1)

Γ (𝜇2)
|sn−1|𝜆3∕𝜆4+𝜇2 (44)

For the purpose of simplifying expression, 0D|sn−1|
−𝜇1 |sn−1|

⌣
𝜆 in Equation (43) and 0D|sn−1|

−𝜇2 |sn−1|𝜆3∕𝜆4 in Equation (44)

will be abbreviated as D−𝜇1 |sn−1|
⌣
𝜆 and D−𝜇2 |sn−1|𝜆3∕𝜆4 respectively in subsequent derivation. Then, according to the

following definition and attribute of beta function

B(𝜇, v) = ∫
1

0
t𝜇−1(1 − t)v−1dt = Γ(𝜇)Γ(v)

Γ(𝜇 + v)
(45)

Equations (43) and (44) can be re-written as

D−𝜇1 |sn−1|
⌣
𝜆 = Γ( ⌣𝜆 + 1)

Γ(𝜇1 +
⌣
𝜆 + 1)

|sn−1|
⌣
𝜆+𝜇1 (46)

D−𝜇2 |sn−1|𝜆3∕𝜆4 =
Γ(𝜆3∕𝜆4 + 1)

Γ(𝜇2 + 𝜆3∕𝜆4 + 1)
|sn−1|𝜆3∕𝜆4+𝜇2 (47)

Here, it should be pointed out that the value of each gamma function in Equations (46) and (47) is positive because the
parameters meet the conditions ⌣𝜆 ≥ 1, 0 < 𝜆3∕𝜆4 < 1∕2, 0 < 𝜇1 < 1, 0 < 𝜇2 < 1∕2.
Substituting (46) and (47) into (42), we can have

V̇ < −𝜙1
Γ(
⌣
𝜆+1)

Γ(𝜇1+
⌣
𝜆+1)

|sn−1|
⌣
𝜆+𝜇1 − 𝜙2

Γ(𝜆3∕𝜆4+1)
Γ(𝜇2+𝜆3∕𝜆4+1) |sn−1|𝜆3∕𝜆4+𝜇2 + 𝛽

n−1 ̄̃Δ

|sn−1|𝜆3∕𝜆4+𝜇2
|sn−1|𝜆3∕𝜆4+𝜇2 (48)

Then we define two new variables 𝜙′1 and 𝜙′2, and they satisfy the following equation relationships

𝜙
′
1 = 𝜙1

Γ( ⌣𝜆 + 1)
Γ(𝜇1 +

⌣
𝜆 + 1)

(49)

𝜙
′
2 = 𝜙2

Γ (𝜆3∕𝜆4 + 1)
Γ (𝜇2 + 𝜆3∕𝜆4 + 1)

− 𝛽
n−1 ̄̃Δ

|sn−1|𝜆3∕𝜆4+𝜇2
(50)

By substituting (49) and (50) into (48), we can get

V̇ < −𝜙′1|sn−1|
⌣
𝜆+𝜇1 − 𝜙′2|sn−1|𝜆3∕𝜆4+𝜇2 (51)

Obviously, we can get V̇ < 0 if 𝜙′1 > 0 and 𝜙′2 > 0. In fact, 𝜙′1 is always positive according to (49) and the range of the value
of the selected parameters. In addition, the first term in Equation (50) can be very big positive and the second term is a
very small positive number. Then 𝜙′2 > 0 holds if appropriate parameters are chosen. Thus, we are able to get

V̇ < 0 (52)

So, the system state sn−1 is reachable, and then the system stability is proved.

4.2 Convergence region of states sn−1

Let 𝜙′2 > 0 and according to formula (50), we have

|sn−1| >
⎛
⎜
⎜
⎜⎝

𝛽
n−1 ̄̃Δ

𝜙2
Γ(𝜆3∕𝜆4+1)

Γ(𝜇2+𝜆3∕𝜆4+1)

⎞
⎟
⎟
⎟⎠

1
𝜆3∕𝜆4+𝜇2

(53)
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2608 WANG et al.

The above Equation (53) shows the range that the system state can achieve. It means, system state sn−1 will eventually
convergence from initial state to the following region:

𝜎 =

⎧
⎪
⎪
⎨
⎪
⎪⎩

sn−1 ∶ |sn−1| ≤
⎛
⎜
⎜
⎜⎝

𝛽
n−1 ̄̃Δ

𝜙2
Γ(𝜆3∕𝜆4+1)

Γ(𝜇2+𝜆3∕𝜆4+1)

⎞
⎟
⎟
⎟⎠

1
𝜆3∕𝜆4+𝜇2

⎫
⎪
⎪
⎬
⎪
⎪⎭

(54)

From the above expression, we can see the convergence region 𝜎 is related to the upper bound ̄̃Δ of the estimation
error of disturbance. If the ̄̃Δ is set small enough, the system state sn−1 will converge to a small enough region.

4.3 The calculation of settling time

Substituting (38) to (51), we get

V̇ < −𝜙′1V
⌣
𝜆+𝜇1 − 𝜙′2V𝜆3∕𝜆4+𝜇2 (55)

Here, we can see that each parameter in formula (55) meets the requirements in Lemma 3. This is because ⌣
𝜆 ≥ 1, 0 <

𝜆3∕𝜆4 < 1∕2, 0 < 𝜇1 < 1 is the ratio of a positive even to a positive odd number, 0 < 𝜇2 < 1∕2 is the ratio of a positive even
to a positive odd number. Then, we can get ⌣𝜆 + 𝜇1 > 1, 𝜆3∕𝜆4 + 𝜇2 < 1. According to Lemma 3, the settling time of the
system state can be obtained as follows:

Treach <
1

𝜙
′
1

( ⌣
𝜆 + 𝜇1 − 1

) + 1
𝜙
′
2 (1 − 𝜆3∕𝜆4 − 𝜇2)

(56)

5 EXPERIMENTAL RESULTS

To demonstrate the clear performance benefits furnished by the proposed control scheme, a battery of careful, comparative
experiments were performed. Their details, results and relevant discussions are presented here.

5.1 Experimental settings and tuning of controller parameters

The control objective is to track triangular trajectories accurately. Extensive simulations were carried out on the identified
model of the nanopositioner axis. The experimental setup employed in this paper is shown in Figure 1A. A PCI-6621 data
acquisition card from National Instruments installed on a PC running the Real-Time Module from LabVIEW is used to
interface between the experimental platform and the control design. The PC utilized is an OPTIPLEX 780 with an Intel(R)
Core(TM)2 Duo Processor running at 3.167 GHz and equipped with 2 GB of DDR3 RAM memory. The cross-coupling
between the two axes was measured to be −40 dB; small enough to be neglected, thereby making it feasible to treat each
axis as being decoupled from the other. Throughout the experiments, the unused axis has its input terminals shorted in
order to avoid spurious excitation. The sampling frequency of the A/D and D/A converters of the control system is set to
20 kHz.

The choice of controller parameters affects the tracking performance of the system. In convergence phase,
Equation (23) indicates that the performance of the system is determined by parameters 𝜙1, 𝜙2, 𝜇1, 𝜇2, 𝜆1, 𝜆2, 𝜆3, 𝜆4. In
sliding phase, Equation (19) indicates that the performance of the system is determined by parameters 𝛼, 𝛽, pj, qj. Con-
strained by the sliding Equation (19), both 𝛼 and 𝛽 have to be a small value because the errors are small. 𝛼 controls the
stage far away from the equilibrium. And the smaller its value, the higher the bandwidth.If the value is too large, the con-
vergence time will increase. 𝛽 controls the near equilibrium stage. And the smaller its value, the higher the bandwidth.
If the value is too small, the convergence time will increase. If the value is too large, it can even lead to instability. pj and
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(B)

F I G U R E 5 (A) The evolution of state variables versus time. (B) phase-plane portrait for a triangular trajectory, demonstrating the
proposed controller’s convergence property.

qj are all odd numbers; the ratio between pj to qj has to be at least greater than n − 1 − j to ensure the non-singularity
property. A numerical search was employed to aid in selection of the appropriate controller parameters. The resulting
controller parameters are as follows:

1. 𝛼 = 0.005, 𝛽 = 0.000035
2. p0 = 129, p1 = 115, p2 = 103, p3 = 89, p4 = 77, p5 = 63, p6 = 51, p7 = 37, p8 = 25
3. q0 = 13, q1 = 13, q2 = 13, q3 = 13, q4 = 13, q5 = 13, q6 = 13, q7 = 13, q8 = 13
4. 𝜙1 = 820, 𝜙2 = 40
5. 𝜇1 = 6∕115, 𝜇2 = 4∕115
6. 𝜆1 = 5, 𝜆2 = 3, 𝜆3 = 3, 𝜆4 = 7

5.2 Analysis of phase trajectories

Here, the phase trajectories under the above selected parameters are given and discussed. It should be noted that as the
controller parameters change, the controller performance and phase trajectory will also change, but the trends are con-
sistent. Figure 5A shows the state variables of sn (n = 1, 2, … , 9). Figure 5B shows the phase plane between ṡ9 and s9. We
can see that the ṡ9 can convergence very steeply, and can even convergence to equilibrium very quickly at each discontin-
uous point of the triangular wave. And then, s9 will convergence to a small neighborhood of zero, and s8, s7, s6, … , s1 will
sequentially converge to equilibrium according to the law given in Equation (19), as shown in Figure 5A. When conver-
gence law approaches zero, s9 will reach equilibrium point. And then (s9, s8, s7, … , s1)will converge to equilibrium point
sequentially. Then, s0(= e = y − yd) will also reach equilibrium point. All the states sn (n = 1, 2, ...9) satisfies the similar
convergence law, shown in Equation (19).

5.3 Comparative analysis of tracking performance

In order to compare the tracking performance of different controllers quantitatively, some error indicators must be defined
in advance. In this work, the following percent maximum (MAX) error and root mean squared (RMS) error are employed
for quantitative evaluation:

erms(%) =
⎛
⎜
⎜
⎜⎝

√
1
N

∑N
i=1e2

i

max (yd) −min (yd)

⎞
⎟
⎟
⎟⎠

× 100% (57)
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2610 WANG et al.

emax(%) =
max(|e|)

max (yd) −min (yd)
× 100% (58)

where e = y − yd is the error, N is the number of data sets, yd is the reference position.
To verify the positioning performance of the proposed SMC controller, triangular trajectories with fundamental fre-

quencies of 25, 50, and 100 Hz were chosen in the experiments. To compare the positioning performance of the proposed
controller, it was compared with three suitably designed controllers that have emerged as benchmark schemes over
the years. The first scheme is a simple PID controller. The individual gains are tuned to results in maximum posi-
tioning bandwidth using the full high-order model. The transfer function for the designed PID controller is given by
CPID = 1.5 + 6500

s
+ 0.0005s. The second control scheme is the popularly employed combination of damping and traking

actions where an inner-loop damping controller is implemented in tandem with a tracking controller in the outer loop.64

Due to its popularity and excellent performance, the positive position feedback (PPF) damping controller combined with
an integral (I) tracking controller was employed. the transfer function for the designed PPF damping controller is given
by: CPPF = 6.320×107

s2+11740s+4.855×107 and the corresponding integral gain KI = 1494. The third control scheme is a fully tuned con-
ventional linear high-order sliding mode control (LSMC) scheme,65 employed to achieve a relatively fair contrast and
modified with equivalent and switching actions to deal with this high-order plant. The designed sliding mode surface
is in the form of

∑9
i=0cie(i), and the switching action is 2s + 0.05sign(s). The comparison of the time-domain tracking

results are presented in Figure 6. In addition, Table 1 shows the quantitative comparison of performance for triangular
trajectory tracking between the proposed controller against the PID, PPF+I, and LSMC control strategies. Obviously, the
MAX and RMS errors of the proposed controller are significantly reduced compared with PPF+I, PID, and LSMC con-
troller. This means that the performance of the proposed controller is greatly improved. From Figure 6, the following
advantages of the proposed controller can also be shown: (1) the high tracking precision thanks to the chattering-free
property; (2) fast convergence guaranteed by the fast terminal sliding manifold and fractional-order fixed-time
reaching law.
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the traces are offset by 5 𝜇 m. The corresponding tracking errors are plotted in (A-2, B-2, and C-2). These errors are also offset adequately, for
clarity.
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T A B L E 1 Triangular wave tracking errors of the 4 controllers

Error (%) Frequency PID PPF+I LSMC Proposed

MAX 25 Hz 3.40 1.94 1.84 1.15

50 Hz 6.38 3.35 3.26 2.16

100 Hz 13.35 5.12 5.05 2.34

RMS 25 Hz 1.05 0.37 0.35 0.31

50 Hz 2.43 0.64 0.60 0.51

100 Hz 4.46 2.29 2.23 1.54
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F I G U R E 7 Results of robustness when tracking a 50 Hz reference command for 0%, 5%, 10%, 20% disturbance increments. (A) MAX
and RMS tracking errors. (B) Steady state control actions.

5.4 Robustness analysis

In this section, the robustness of the proposed controller is verified by changing the values of the disturbance when
tracking a 50 Hz triangular wave trajectory. The disturbance increments are equivalent to the changes in the frequency
and damping of the dominant first resonant mode. In each experiment, the disturbance increment is set to 0%, 5%, 10%,
20%, respectively. And the corresponding steady-state tracking errors and control actions are shown in Figure 7A,B. We
can see that the MAX and RMS tracking errors basically keep the same as the increase of the disturbances. And the
control action changes in terms of amplitude and ripple with the increase of the disturbances. Thus, the robustness of the
proposed control method against the disturbances can be verified. This property comes from the robustness of the sliding
manifold and the TDE estimator.

6 CONCLUSIONS

A new robust fractional-order fast terminal sliding model control approach with high-order sliding model dynamics has
been presented for a piezoelectric platform in this paper. With the well established accurate model of the controlled plant,
controller is synthesized with the aid of Inverse model of hysteresis, TDE disturbance estimation, and Sliding mode based
control design. The recursive high-order sliding manifold and fractional-order fast fixed-time reaching law can guarantee
a faster response and fixed convergence time while avoiding potential singularity and chattering problems. The stability
of the proposed scheme has been proved via the Lyapunov framework. The convergence region and the settling time
of system state have also been analyzed theoretically. The excellent performances of the proposed controller have been
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verified by comparing the experimental results with PID, PPF+I, LSMC controllers. The proposed control method has
been proved to have many superior performances in terms of high tracking accuracy, fast convergence, non-singularity,
robustness.
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