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AbstractThis paper proposes a Fractional-order modification of the traditional Integral Resonant
Controller named as FIRC. The fractional integral action utilised in the proposed FIRC is a
simple, robust, and well-performing technique for vibration control in smart structures with
collocated sensor-actuator pairs such as nanopositioning stages. The proposed control scheme
is robust in the sense of being insensitive to spillover dynamics and maintaining closed-
loop stability even in the presence of model inaccuracies or time-delays in the system. The
experimental and simulated results have showed that the proposed FIRC can provide a closed-
loop bandwidth which spans up to a 95.2% of the first resonant mode of the experimental system,
thus improving the bandwidth achieved by classical integer-order IRC implementations.
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1. INTRODUCTION

Increasing the achievable bandwidth and thus the oper-
ating speed of scanning probe microscopes (SPMs) is a
critical problem. Usually the scanning frequency of high-
resolution SPMs is situated at around 1/100 to 1/10 of the
first resonant mode Clayton et al. (2009). Since triangular
waveforms are utilised to produce the raster scanning, con-
trol techniques that enable closed-loop flat band response
for a wide range of frequencies are necessary to cope with
the frequency spectrum of these waves (which is composed
of all the odd harmonics of the fundamental frequency
Lathi (2009)).

This bandwidth-related limitation to SPM operating speed
motivates the number of emerging trends in control tech-
niques aiming to damp the mechanical-induced residual vi-
brations and to satisfy the critical requirements of nanopo-
sitioning stages to provide fast and accurate scanning
mechanisms for SPMs. Among these techniques can be
found: resonant control Pota et al. (2002), integral reso-
nant control (IRC) Aphale et al. (2007), Positive Position
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Feedback (PPF) Aphale et al. (2008), and Positive Veloc-
ity and Position Feedback (PVPF) Russell et al. (2016).

IRC has demonstrated a robust performance and versatil-
ity, however when compared to the rest of aforementioned
controllers, Russell et al. (2016) showed that the IRC
presents the smaller achievable bandwidth. This reduced
bandwidth is produced because the IRC presents only
three parameters to tune while needing four closed-loop
poles to be placed. Consequently, all the poles cannot be
placed arbitrarily and thus, there is only one valid value of
the cutoff frequency for the equivalent Butterworth filter
design Russell et al. (2016) (which is usually close to the
half of the resonant frequency of the system). Because
of the simplicity and robustness advantages of the IRC
scheme, it would be desirable to find a way to increase
the achievable bandwidth and at the same time keep the
frequency response as flat as possible in order to not distort
the references applied to the controlled system.

Fractional-order controllers are usually utilised to design
very robust schemes by designing the phase margin of
the closed-loop system Monje et al. (2008) and have
been widely utilised in the control of smart structures
where the vibrations are a major issue, Monje et al.
(2007); Feliu-Talegon et al. (2016). This paper proposes
a fractional-order implementation of the classical IRC
scheme (FIRC), where the damping controller is designed
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as in Namavar et al. (2014) to maximize the damping
of the system, and the tracking controller is replaced
by fractional-order integrator. This new implementation
increases the number of available design parameters by one
and facilitates increasing the achievable bandwidth while
keeping the frequency response within the +3dB band.

This paper is organised as follows: Section 2 presents
the mathematical model for one axis of a piezoactuated
nanopositioner. The integer and fractional-order IRC con-
trollers (FIRC) are formulated in Section 3 and 4. Section
5 describes the experimental platform utilized in this work.
Section 6 presents the simulations and analysis thereof
to study the robustness and sensitivity of the proposed
controller, and the experimental results and conclusions
are presented in Sections 7 and 8 respectively.

2. DYNAMIC MODEL

The vibrational dynamic behavior of a flexure-hinge-
guided piezo-actuated nanopositioning stage can be mod-
elled by means of an infinite sum of second-order systems
with lightly damped resonant modes:

M
o2

Cul) =) Gogei s (1)

— 5% + 2Gw;s + wf

where M denotes the number of modes of vibration
considered in the transfer function and ideally M — oo, o2
corresponds to the gain of each mode of vibration, (; is the
damping ratio of each mode, w; is the natural frequency
of vibration of each mode, and 7 is the value of the time

delay of the system.

The infinite number of modes of vibration and the delay
in (1) makes controlling these systems a challenging task
because of the infinite number of poles introduced by the
infinite modes of vibration, and by the inherent system
delay which can be modeled by the transcendental transfer
function.

3. INTEGER-ORDER IRC CONTROL

The IRC controller as it was first proposed in Aphale et al.
(2007) was applied to (1) without time delay and reverses
the pole—zero interlacing of the collocated system G(s) to
zero—pole interlacing by adding a constant feed-through
term d to the system. As a consequence the phase of
the resulting transfer function lies between 0° and —180°.
This modified system adds in positive feedback an integral
controller, Cy4(s), which produces a substantial damping
of the multiple resonant modes. Despite having proved to
be very robust and broadly applicable to nanopositioning
stages, this technique only provides damping to the reso-
nant modes and does not provide any tracking necessary to
compensate for the nonlinear hysteresis and creep effects
introduced by the piezoelectric actuators. Consequently,
the IRC is complemented with a simple tracking scheme
Cy(s) (usually an integral controller) to minimize the posi-
tioning errors introduced by these nonlinear effects Aphale
et al. (2008). This composite damping and tracking control
scheme is shown in Fig.1.
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Figure 1. Block diagram for the traditional IRC damping
controller in addition to integral tracking controller
scheme.

The first approaches utilised to design the parameters of
the IRC scheme were based on trial-and-error. The work of
Namavar et al. (2014) presents the analytical relationships
which relate the maximum damping achievable with the
IRC and the value of the parameters of the controller.
Additionally, key relationships between the feed-through
term, the gains of the damping and tracking controller and
the performance achieved are also postulated by means
of an intensive search among the different combinations
of the parameters and their effect over the bandwidth
achieved.

Recently, new design rules which produce the optimal fre-
quency response for tracking applications were presented
in Russell et al. (2016). These rules provide a maximally
flat band response with unity gain which roll-off at fre-
quencies beyond the desired bandwidth, and consist on
placing the closed-loop poles of the controlled system in
the pattern of a Butterworth filter, i.e. equally spaced
on a circle with radius equal to the natural frequency
on the filter. However, this technique presents two main
drawbacks: a) It was demonstrated in Russell et al. (2016)
that the radius of the circle along the closed-loop poles are
distributed can only take a fixed value which is smaller
than the resonant frequency of the system, (which means
that only a relatively small bandwidth can be achieved)
and b) Despite the system described in (1) can be aptly
simplified to a single-mode second-order model, the effect
of the delay cannot be neglected, thereby making the
methodologies proposed in Namavar et al. (2014) and
Russell et al. (2016) inapplicable in case of systems with
delay. These drawbacks are overcome using the fractional-
order IRC design as proposed in the following section.

4. FRACTIONAL-ORDER CONTROL SCHEME

Due to the substantial spacing between consecutive reso-
nant modes, the system described in (1) can be simplified
to a single-mode second-order model where M = 1, which
leads to:

0.2

—TS8
Gls) = 82 4+ 2Cws + w? )
where the index M = 1 has been omitted for the sake of
clarity. Considering the system of (2), the fractional-order
implementation of the IRC scheme presents the closed-
loop block diagram shown in Fig.1, where each block has
the following expressions:

Ci(s) = —» Cuals) = — (3)
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where K; is the gain of the tracking controller, « is
the fractional exponent, K, is the gain of the damping
controller and d is the feed-through term. It can be seen
that, considering a@ = 1, the traditional IRC scheme is
obtained, and the maximally flat band response, i.e. the
Butterworth filter response can be achieved by placing the
closed-loop poles equally spaced on a circle of radius wp.

However for values of 0 < a < 1 the extension of the
concept of analog Butterworth filter and its maximally
flat-band response is more complex and, as it was shown
in Acharya et al. (2014), the poles of these fractional-
order Butterworth filters need to be placed in very specific
locations along @) Riemann sheets (where @ is related to
the number of decimals of the fractional order of the filter).
If we study the closed-loop transfer function of the system
(even in the simplest case where delay is negligible, or 7=0)
the denominator of the closed-loop transfer function of the
system takes the following form:

M(8)gen = 82T + 872w — d - Kg) +
s (w? = 20wdKy) — s*Ky(dw? + 0?) + KgK;0? (4)

The restriction imposed in Acharya et al. (2014) deter-
mines very definite conditions on the structure of the
denominator of fractional-order Butterworth filters, which
cannot be satisfied by (4). It is important to note that
since this condition cannot be satisfied in the simplest case
without time delay, the case with an arbitrary time delay
7 will be impossible to satisfy as well.

However in this paper we are looking for a compromise
between increasing the maximum achievable bandwidth
and keeping a flat in-band response. In our case this is
achieved by following a two step procedure: First the
parameters of the damping controller of the IRC, K, and d,
are designed following the equations provided in Namavar
et al. (2014) so that the damping provided by the controller
is maximized, and once these parameters have been com-
puted, the parameter of the tracking controller of the IRC,
K, is designed by numerical optimization for each value
of a.. In order to maximize the achievable bandwidth and
to keep a flat-band response inside the +£3 dB band, the
following optimisation criteria and restrictions are utilised:

e The maximum bandwidth, wp,, is defined as the
lowest frequency at which the -1dB line is crossed
by the magnitude response of the closed loop system.

e The maximum allowed amplitude of the band pass
ripple, dpnaz, is defined as the maximum value reached
by the magnitude response of the closed loop system
for frequencies below wyp,,.

e The closed loop system must be stable.

It is important to note that for practical purposes (as
inaccuracies in the parameters of the identified system),
the optimisation procedure utilises the =1dB band as ad-
missibility criterion (d,,4,=1). Once the goals and restric-
tions of the problem have been set, the design procedure
is performed by following these steps:

(1) The nanopositioning stage is identified and the nu-
merical values of the parameters of the first mode of
vibration,o, w and (, are obtained.

(2) The following equations from Namavar et al. (2014):
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are utilised to design the parameters of the damping
controller of the IRC that prove the maximum damp-
ing to the system.

(3) The value of « is varied in the interval [1,0] in
decrements of Aa=0.1.

(4) For each new value of a the value of K; is obtained
by using the gradient method to maximize wy,,. It is
important to note that the frequency response of the
closed-loop system utilised in the optimisation pro-
cedure is computed considering the complete model
(including the delay) showed in (2)

(5) If a new value of o cannot lead to a feasible solution
(due to instability of because it cannot fulfill the
restriction of 0,,4,) the value of « is considered as
unreachable.

The application of an optimisation procedure to the design
of a fractional-order filter is not new. In Matos and Or-
tigueira (2010) and Freeborn et al. (2015) differential evo-
lution and nonlinear least squares optimization algorithms
were utilised respectively to adjust the parameters of a
fractional-order filter to approximate the response of an
integer order filter. In our case, however, we are trying to
maximize the achievable bandwidth under the well-know
criterion of the =3 dB. In it important to note that the
design considers a +1 dB band, but the actual performance
is evaluated following the +3 dB criterion.

5. EXPERIMENTAL SETUP AND SYSTEM
IDENTIFICATION

The fractional-order control scheme proposed in this paper
was tested on a two-axis nanopositioner with a flexure-
based XY serial mechanism driven by two PZT stacks as
seen in Fig.2. Two piezoelectric amplifiers configured to
provide a gain factor of 20 times the control signal and
a bias of 100 V are utilised to drive the two PZT stacks
(only the z—axis was utilised to perform the experiments
presented in this work, while control signal of the y—axis
was set OV to mimic a realistic platform operation). The
cross-coupling between the two axes of the nanopositioner
is -40 dB, thus making it feasible to treat each axis as
being decoupled from the other. In our experimental setup
the translational motion along the xr—axis is measured by
a Microsense 4810 capacitive displacement sensor and a
2805 measurement probe with a sensitivity of 5 pm/V.
Additionally, a PCI-6621 data acquisition card from Na-
tional Instruments installed on a PC running the Real-
Time Module from LabVIEW is used to interface between
the experimental platform and the control design. The PC
utilized is an OPTIPLEX 780 with an Intel(R) Core(TM)2
Duo Processor running at 3.167 GHz and equipped with
2GB of DDR3 RAM memory.

The nanopositioner was identified by using the small signal
frequency response function (FRF) in the range [0,1800)
Hz in order to capture the first four resonance modes of
the platform (at 716.2, 1235.5, 1294, and 1578 Hz) and to
quantify the delay (which can be seen as a linear term in
the phase response of the system). The procedure utilised
to obtain the transfer function of the system consists of two
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Figure 2. Two-axis serial kinematic nanopositioner.
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Figure 3. FRF of the x-axis of the experimental platform
measured from the input voltage to output displace-
ment.

steps: first the resonance modes of the transfer function
of the system were obtained by using the subspace based
modelling technique described in McKelvey et al. (1996),
and then the delay was adjusted by minimizing the root-
mean-square error (RMSE) of the phase response. The
transfer function identified was:

Gals, ) 1.024 x 107e~7* 10000e~7*
s, T) =
4 s2499s + 2.025 x 107 s2 + 7.76s + 6.026 x 107
62500e~ 75 122500e 75

s2 +13.01s + 6.61 x 107 s2 4 15.86s + 9.83 x 107

(6)

where: 7=115 pus. The identified model accurately captures
the first four resonant modes of the platform and accounts
for the delay in the system, as shown in Fig.3. However,
only the first resonant mode is utilised to design the
proposed control scheme whereas the remaining modes of
vibration are utilised only to validate the stability of the
control scheme and its robustness to spillover effects.

The fractional exponent of the proposed controller is
implemented in the experimental platform by using the
following expression:

K, K;
C _ T B 7
+(s) e S s (7)
where f=1—a. And by using the Griinwald-Letnikov (GL)
definition of the discretized fractional operator Vinagre
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et al. (2000), and the short memory approximation Pod-
lubny (1998),as follows:

N-1

—r e (e ®)

]:0

where f(t) is the input to the block s# and is the integral of
the error signal (r —y) multiplied by K;, y.(t) is its output,
N=200 is the number of terms involved in the discrete
convolution, T is the sampling time and the combinatorial
has been generalised in the following respect:

(9)

(/3) _BB+D(B-j+1)
j 7! '
6. SIMULATED RESULTS

Simulations are performed using two different models of
the identified experimental platform. On the one hand, a
simple second order model corresponding to the first mode
of vibration of (6) was utilised to design the parameters of
the FIRC scheme by following the optimization procedure
proposed in Section 4. On the other hand, once the
optimization procedure was completed and the parameters
of the FIRC were designed for the different values of «,
these controllers were simulated in a closed-loop scheme
where the four modes of vibration of (6) were included.
This complete model of the nanopositioner was utilised
in order to verify the stability of the designed controllers
even in the presence of high-frequency modes that were
not considered in the design stage. In order to verify
the performance of the proposed fractional order IRC
scheme different designs of the IRC were implemented in
simulation and in the experimental system.

e Butterworth Pattern-based IRC Design:

The first controller analysed in this paper is the
classical integer-order IRC designed by using the
methodology proposed in Russell et al. (2016) to
place placing the closed-loop poles of the system
(considering the delay negligible) as in a Butterworth
filter. This design present the smaller bandwidth
because it was conceived to be applied to systems
with a negligible delay.

e Maximum damping IRC Design:

The first step of the design procedure proposed
in this paper is to design the integer-order IRC by
using the methodology proposed in Namavar et al.
(2014) tuning in first place the parameters Ky and d
to maximize the damping provided by the controller
by using the relationships (5), and then designing
the tracking gain K; via simulations to maximize the
achievable bandwidth (in this case it was considered
the delay of the system in the simulations utilised to
design the controller).

e Fractional order IRC Design:

The methodology proposed in this paper is utilised
to design the fractional-order implementation of the
IRC scheme for a number of different values of «
in order to illustrate the effect of the change of the
fractional exponent over the achievable bandwidth.
The parameters of the different controllers and the
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achieved bandwidths can be seen in Table 1. It is
important to note that the case a=1 corresponds
to the integer-order IRC named as the ”Maximum
damping IRC Design”. It is also important to note
that the optimisation procedure showed that the val-
ues of a €[0,0.5] where unreachable under the restric-
tions of the optimisation procedure (particularly the
restriction d,,q,=1).

(6% Ki Kd d BWSim“ (HZ) BWExp, (HZ)
1.0 | 418.66 | 8724.17 | -0.729 208.6 223
1.0 1000 5291.39 | -1.011 268.8 274.8
0.9 680 5291.39 | -1.011 570.8 516.2
0.8 330 5291.39 | -1.011 615.8 588.4
0.7 150 5291.39 | -1.011 638 623
0.6 70 5291.39 | -1.011 662.6 681.8

Table 1. Parameters of the regulators utilised,
and bandwidth obtained in simulation and
experimentally.

Considering the results showed in Table 1, it can be seen
that the optimal value of « corresponds to 0.6 since it
produces the maximum bandwidth achievable.

6.1 Robustness analysis

As stated in the introduction, the main advantage of the
fractional-order controller is its ability to increase the
phase margin robustness of the closed-loop system. The
tracking scheme Cy(s) of the FIRC can be written as:

Ccpr(s) = Ci(s) = K;s®, (10)
where a < 0. It is clear that this transfer function
corresponds to the well-known constant phase element
(CPE) Cole (1933).This transfer function has a frequency
response with a constant phase between the entire range of
frequencies 0 < w < oo, and allows regulator designs with
desired phase margins. In order to show the robustness of
the regulators parametrized in Table 1, the Nyquist plots
using the different regulators were plotted (considering the
four vibration modes of the system) to obtain the phase
margin ®;; and gain margin My, and the values of the
frequencies at these points (w. and w,). These values are
shown in Table 2.

a | Dy(°) | we(Hz) | Mg(dB) | wg(Hz)
1 56.38 155 8.86 430
0.9 53.17 214 5.86 469
0.8 62.17 214 5.53 506
0.7 75.06 195 5.58 539
0.6 87.16 180 5.29 570

Table 2. Representative points of the Nyquist
diagram for the different controllers designed
depending on a.

From the results shown in Table 2, it is clear that despite
the value of phase margin is increased as the value of « is
decreased, the gain margin is maintained approximately
constant for all the designed controllers (which implies
increased stability robustness and damping robustness),
and this gain margin is also guaranteed for all the vibration
modes, thereby avoiding the detrimental effects due to
unmodelled spillover dynamics.
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Figure 4. Bode’s sensitivity integrals and phase responses
for the sensitivity function S(s,7) = ig:g for all the
controllers analysed considering a delay of 7 = 115us

6.2 Impact of the fractional exponent on the sensitivity
function

The proposed control scheme is a fractional extension of
the integer-order IRC. It is therefore important to discuss
the impact of the fractional exponent on the behavior of
the controlled system. The most straightforward method
is to study the sensitivity of the controlled system.

Upon studying Fig. 1, the closed-loop sensitivity function
of the FIRC control scheme is found to be:

_e(s) _ 1—-Ca(s)(Ga(s,7)+d)
S(5:7) = &) = T962()(Ca(5,7)(Co(5)=D=d)

(11)

Studying the sensitivity of the system allows also to keep
in mind the performance limits of any designed control
scheme. The fractional exponent increases the sensitivity
at low frequencies (a common issue with fractional-order
controllers is that decreasing the fractional exponent re-
sults in a slower convergence to the steady state). However
as the integral of the log of the magnitude of the sensitivity
has to remain equal to zero due to the so-called ” Waterbed
effect” Stein (2003), the sensitivity at high frequencies is
decreased, and thus the frequency where the unity sensi-
tivity is crossed (denoted as ) is increaased.

The Bode’s sensitivity integrals for all the controllers when
considering a delay of 7 = 115us (associated with the
sampling time of 50us of the experimental platform) are
displayed in Fig. 4. By observing the Bode’s sensitivity
integral of all the controllers, it can be observed that
each of the analysed controllers increases the value of
Qo reached by the previous one, i.e. the Butterworth-
base design provides 29 = 110.7 Hz, the ”Maximum
damping TRC Design” provides 2y = 138 Hz, and the
FIRC implementations of «=0.9, 0.8, 0.7 and 0.6 provides
Qo = 190 Hz, 215 Hz, 242 Hz, and 284 Hz respectively.

This increase in Qg from one controller to another, means
that each controller increases the range of frequencies
where the sensitivity function is lower than unity, and
thus makes that controller more robust to external high-
frequency disturbances.

7. EXPERIMENTAL RESULTS

The control schemes designed in Section 6 were evaluated
on the two-axis serial kinematic nanopositioner detailed in
Section 2. The performance of the different control schemes
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for the different controllers designed. Experimental
results.

were evaluated in terms of achievable bandwidth, con-
sidering the +3dB criterion. The experimental frequency
response for the different controllers designed are showed
in Fig. 5, and the numerical values of the different band-
widths achieved experimentally can be seen in the last
column of Table 1.

It can be seen that there is a good agreement between
the simulated and the experimental results, and that the
proposed control scheme deliver a superior performance
when compared with classical design techniques such as
the Butterworth-based design (because these techniques
do not take into account the effect of the delay present ion
the system). Additionally it can be seen that if we attend
to the results provided by the fractional-order controllers
(in which all the cases have been designed considering the
effect of the delay), it can be seen that the lower values
of the fractional exponent provide the greater bandwidth
achievable by the platform, providing in all the cases stable
and robust closed-loop responses.

8. CONCLUSION

This paper proposes a fractional-order modification of
the classical Integral Resonant Control (IRC), where a
fractional-order integrator is utilised in the control loop
devoted to tracking control. The addition of the fractional
exponent provides an extra degree of freedom in the design
of the controller that allows an increase in the achievable
closed-loop positioning bandwidth while keeping a flat
passband response within the +3dB. The proposed control
scheme demonstrated an increase of up to a 205.74% in the
achievable bandwidth of the system compared with the
traditional IRC controller without delay compensation,
and up to a 143.5% when compared with integer-order
techniques which take into account the delay of the system
such as the Maximum damping IRC Design. The proposed
fractional-order implementation has demonstrated its abil-
ity to provide a bandwidth which spans up to a 95.2% of
the first resonant mode frequency of the experimental sys-
tem, and that lower values of « lead to higher bandwidth
but lower speed of convergence to steady state.
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