1,891 research outputs found

    Dolphin-inspired target detection for sonar and radar

    No full text
    Gas bubbles in the ocean are produced by breaking waves, rainfall, methane seeps, exsolution, and a range of biological processes including decomposition, photosynthesis, respiration and digestion. However one biological process that produces particularly dense clouds of large bubbles, is bubble netting. This is practiced by several species of cetacean. Given their propensity to use acoustics, and the powerful acoustical attenuation and scattering that bubbles can cause, the relationship between sound and bubble nets is intriguing. It has been postulated that humpback whales produce ā€˜walls of soundā€™ at audio frequencies in their bubble nets, trapping prey. Dolphins, on the other hand, use high frequency acoustics for echolocation. This begs the question of whether, in producing bubble nets, they are generating echolocation clutter that potentially helps prey avoid detection (as their bubble nets would do with man-made sonar), or whether they have developed sonar techniques to detect prey within such bubble nets and distinguish it from clutter. Possible sonar schemes that could detect targets in bubble clouds are proposed, and shown to work both in the laboratory and at sea. Following this, similar radar schemes are proposed for the detection of buried explosives and catastrophe victims, and successful laboratory tests are undertaken

    Space-time Characteristics and Experimental Analysis of Broadening First-order Sea Clutter in HF Hybrid Sky-surface Wave Radar

    Get PDF
    In high frequency (HF) hybrid sky-surface wave radar, the first-order sea clutter broadening is very complex and serious under the influence of ionosphere and bistatic angle, which affects the detection of ship target. This paper analyzes the space-time characteristics based on the HF sky-surface wave experimental system. We first introduce the basic structure, working principle and position principle based on our experimental system. Also analyzed is the influence of ionosphere and bistatic angle on the space-time coupling characteristics of broadening first-order sea clutter and the performance of space-time adaptive processing (STAP). Finally, the results of theoretic analysis are examined with the experimental data. Simulation results show that the results of experiment consist with that of theoretic analysis

    Persepsi pelajar sarjana muda kejuruteraan elektrik terhadap program latihan industri, Kolej Universiti Teknologi Tun Hussein Onn

    Get PDF
    Kajian ini dijalankan bertujuan untuk mengetahui persepsi Pelajar Sarjana Muda Kejuruteraan Elektrik Terhadap Program Latihan Industri, KUiTTHO berdasarkan kepada 4 faktor iaitu kesesuaian penempatan program latihan industri, kesesuaian pendedahan pelajaran teori di KUiTTHO dan amali di tempat program latihan industri, tahap kerjasama yang diberikan oleh pihak industri kepada pelajar d a n kesediaan pelajar melakukan kerja yang diberi semasa program latihan industri. Sampel kajian adalah terdiri daripada pelajar-pelajar Sarjana Mud a Kejuruteraan Elektrik di KUITTHO yang telah menjalani program latihan industri. Set soal selidik terdiri daripada 3 bahagian iaitu bahagian A yang bertujuan untuk mendapatkan maklumat diri responden manakala bahagian Bertujuan untuk mengetahui kesesuaian program latihan industri yang telah diikuti oleh pelajar dan bahagian C adalah cadangan untuk meningkatkan mutu program latihan industri. Data - data yang diperolehi dianalisis menggunakan perisisan SPSS 10.0 for Windows (Statistical Package for the Social Science version 10) dan dipersembahkan dalam bentuk peratusan, carta dan keterangan analisis. Dapatan kajian secara umumnya menunjukkan reaksi positif dimana bagi semua aspek menunjukkan min keseluruhan yang tingg

    Subsurface sounders

    Get PDF
    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature

    Remote sensing of earth terrain

    Get PDF
    A mathematically rigorous and fully polarimetric radar clutter model used to evaluate the radar backscatter from various types of terrain clutter such as forested areas, vegetation canopies, snow covered terrains, or ice fields is presented. With this model, the radar backscattering coefficients for the multichannel polarimetric radar returns can be calculated, in addition to the complex cross correlation coefficients between elements of the polarimetric measurement vector. The complete polarization covariance matrix can be computed and the scattering properties of the clutter environment characterized over a broad range of incident angle and frequencies

    MIMO Radar Target Localization and Performance Evaluation under SIRP Clutter

    Full text link
    Multiple-input multiple-output (MIMO) radar has become a thriving subject of research during the past decades. In the MIMO radar context, it is sometimes more accurate to model the radar clutter as a non-Gaussian process, more specifically, by using the spherically invariant random process (SIRP) model. In this paper, we focus on the estimation and performance analysis of the angular spacing between two targets for the MIMO radar under the SIRP clutter. First, we propose an iterative maximum likelihood as well as an iterative maximum a posteriori estimator, for the target's spacing parameter estimation in the SIRP clutter context. Then we derive and compare various Cram\'er-Rao-like bounds (CRLBs) for performance assessment. Finally, we address the problem of target resolvability by using the concept of angular resolution limit (ARL), and derive an analytical, closed-form expression of the ARL based on Smith's criterion, between two closely spaced targets in a MIMO radar context under SIRP clutter. For this aim we also obtain the non-matrix, closed-form expressions for each of the CRLBs. Finally, we provide numerical simulations to assess the performance of the proposed algorithms, the validity of the derived ARL expression, and to reveal the ARL's insightful properties.Comment: 34 pages, 12 figure

    A robust nonlinear scale space change detection approach for SAR images

    Get PDF
    In this paper, we propose a change detection approach based on nonlinear scale space analysis of change images for robust detection of various changes incurred by natural phenomena and/or human activities in Synthetic Aperture Radar (SAR) images using Maximally Stable Extremal Regions (MSERs). To achieve this, a variant of the log-ratio image of multitemporal images is calculated which is followed by Feature Preserving Despeckling (FPD) to generate nonlinear scale space images exhibiting different trade-offs in terms of speckle reduction and shape detail preservation. MSERs of each scale space image are found and then combined through a decision level fusion strategy, namely "selective scale fusion" (SSF), where contrast and boundary curvature of each MSER are considered. The performance of the proposed method is evaluated using real multitemporal high resolution TerraSAR-X images and synthetically generated multitemporal images composed of shapes with several orientations, sizes, and backscatter amplitude levels representing a variety of possible signatures of change. One of the main outcomes of this approach is that different objects having different sizes and levels of contrast with their surroundings appear as stable regions at different scale space images thus the fusion of results from scale space images yields a good overall performance

    Modeling and Parameter Estimation of Sea Clutter Intensity in Thermal Noise

    Get PDF
    abstract: A critical problem for airborne, ship board, and land based radars operating in maritime or littoral environments is the detection, identification and tracking of targets against backscattering caused by the roughness of the sea surface. Statistical models, such as the compound K-distribution (CKD), were shown to accurately describe two separate structures of the sea clutter intensity fluctuations. The first structure is the texture that is associated with long sea waves and exhibits long temporal decorrelation period. The second structure is the speckle that accounts for reflections from multiple scatters and exhibits a short temporal decorrelation period from pulse to pulse. Existing methods for estimating the CKD model parameters do not include the thermal noise power, which is critical for real sea clutter processing. Estimation methods that include the noise power are either computationally intensive or require very large data records. This work proposes two new approaches for accurately estimating all three CKD model parameters, including noise power. The first method integrates, in an iterative fashion, the noise power estimation, using one-dimensional nonlinear curve fitting, with the estimation of the shape and scale parameters, using closed-form solutions in terms of the CKD intensity moments. The second method is similar to the first except it replaces integer-based intensity moments with fractional moments which have been shown to achieve more accurate estimates of the shape parameter. These new methods can be implemented in real time without requiring large data records. They can also achieve accurate estimation performance as demonstrated with simulated and real sea clutter observation datasets. The work also investigates the numerically computed Cram\'er-Rao lower bound (CRLB) of the variance of the shape parameter estimate using intensity observations in thermal noise with unknown power. Using the CRLB, the asymptotic estimation performance behavior of the new estimators is studied and compared to that of other estimators.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Nonlinear Transformations and Radar Detector Design

    Get PDF
    A nonlinear transformation is introduced, which can be used to compress a series of random variables. For a certain class of random variables, the compression results in the removal of unknown distributional parameters from the resultant series. Hence, the application of this transformation is investigated from a radar target detection perspective. It will be shown that it is possible to achieve the constant false alarm rate property through a simple manipulation of this transformation. Due to the effect the transformation has on the cell under test, it is necessary to couple the approach with binary integration to achieve reasonable results. This is demonstrated in an X-band maritime surveillance radar detection context

    Marine Target Detection from Nonstationary Sea-Clutter Based On Topological Data Analysis

    Get PDF
    AbstractDue to the instinct complexity and the large scale non-stationary of so-called sea-clutter, radar backscatters from ocean surface, it is always challenging to detect the weak marine target. In classical statistical approaches, the seaclutter is modeled as several kinds of stochastic processes, which are found inadequate, especially in high sea-state circumstances. Therefore it is reasonable to discover the underlying dynamics that is responsible for generating the time series of sea-clutter. In this work, we take into account of the marine target detection from the X-Band seaclutter datasets with low Signal-Clutter-Ratio, and propose adequate methods to process these non-stationary data, including Empirical Mode Decomposition and Topological Data Analysis. Both theoretical simulation and experimental results indicate the proposed method's usefulness of for marine target detection, which is implemented by extract different structural features from measured sea-clutter data
    • ā€¦
    corecore