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ABSTRACT

A critical problem for airborne, ship board, and land based radars operating in mar-

itime or littoral environments is the detection, identification and tracking of targets against

backscattering caused by the roughness of the sea surface. Statistical models, such as the

compound K-distribution (CKD), were shown to accurately describe two separate struc-

tures of the sea clutter intensity fluctuations. The first structure is the texture that is asso-

ciated with long sea waves and exhibits long temporal decorrelation period. The second

structure is the speckle that accounts for reflections from multiple scatters and exhibits a

short temporal decorrelation period from pulse to pulse. Existing methods for estimating

the CKD model parameters do not include the thermal noise power, which is critical for

real sea clutter processing. Estimation methods that include the noise power are either

computationally intensive or require very large data records.

This work proposes two new approaches for accurately estimating all three CKD model

parameters, including noise power. The first method integrates, in an iterative fashion, the

noise power estimation, using one-dimensional nonlinear curve fitting, with the estimation

of the shape and scale parameters, using closed-form solutions in terms of the CKD inten-

sity moments. The second method is similar to the first except it replaces integer-based

intensity moments with fractional moments which have been shown to achieve more ac-

curate estimates of the shape parameter. These new methods can be implemented in real

time without requiring large data records. They can also achieve accurate estimation per-

formance as demonstrated with simulated and real sea clutter observation datasets. The

work also investigates the numerically computed Cramér-Rao lower bound (CRLB) of the

variance of the shape parameter estimate using intensity observations in thermal noise with

unknown power. Using the CRLB, the asymptotic estimation performance behavior of the

new estimators is studied and compared to that of other estimators.
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Chapter 1

INTRODUCTION

1.1 Statistical Modeling of Sea Clutter

Fundamental requirements for airborne, ship board, and land based radars operating in

maritime or littoral environments include the detection, identification and tracking of tar-

gets against an undesirable backscattering caused by the roughness of the sea surface. This

backscattering or sea echo reflectivity is often referred to as sea clutter. A characteristic of

sea clutter is its spikiness that results from Bragg, whitecap and sea spike scattering [1, 2]

and often obscures smaller targets or vessels. This leads to either miss detections or false

positives, resulting in degraded radar performance. For this reason, statistical modeling of

sea clutter to improve radar performance remains an active area of research. In particular

these models are used throughout the engineering design, development, and verification of

modern day complex radar systems.

As shown from empirical studies, the sea surface exhibits small and large scale structure

components. The small-scale structure or speckle component which are reflections from

multiple scatterers with short temporal decorrelation period. The large-scale structure or

texture component modulates the speckle component. It accounts for long sea waves that

are slowly time-varying and have long temporal decorrelation period [2, 3]. Statistical

models based on probability density functions were considered to represent the statistical

fluctuations of the amplitude or intensity of the speckle and texture components [4, 5, 6,

7, 8, 9]. A commonly used model is the compound K-distribution (CKD) as it was shown

to be a matched fit to sea clutter intensity data under various conditions, including thermal
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noise [10, 2].

1.2 ICKD Parameter Estimation Methods

The shape and scale parameters of the intensity-based compound K-distribution (ICKD)

have been estimated using the first two intensity moments, assuming known thermal noise

power [7]. By also including the third moment, the thermal noise power can be estimated

provided very large data sets are available for improved accuracy [2, 10]. Constrained

maximum likelihood estimation was also used, but it requires numerical integration and

optimization [11]. In [7], windowing and time-averaging of the spectra of sea echo re-

flectivity in single range-bins was used to estimate the thermal noise power. Methods for

estimating all three ICKD parameters include the use of fractional moments that do not

require numerical computations [12], and a log-based moment approach that evaluates the

resulting nonlinear estimators numerically [13, 14]. A nonlinear curve fitting of the ICKD

or the tail of its complementary cumulative distribution function, combined with Nelder-

Mead unconstrained nonlinear optimization, was also considered [6, 15, 16]. Though this

approach does not require large data sets, it uses non-coherent pulse integration and the

required three-dimensional (3-D) search makes it computationally intensive.

1.3 Dissertation Contributions

In this work, two methods are proposed for estimating the parameters of ICKD-modeled

sea clutter intensity observations in thermal noise. Marine radar systems cannot avoid the

presence of thermal noise as it affects detection performance, especially for small targets.

As a result, the effect of thermal noise must be accounted for when modeling sea clut-

ter characteristics to ensure increased radar receiver processing performance [17]. As the

thermal noise power cannot always be estimated by averaging Doppler spectra over a sin-
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gle range bin [7], more involved methods need to be considered. The goal is to introduce

methods that can effectively estimate the ICKD shape, scale and thermal noise power pa-

rameters and that can be implemented in real time without requiring a large number of

collected sea clutter observations. To that effect, the following summarizes our proposed

methods and overall results.

Integration of Integer-based Moments and Nonlinear Curve Fitting: We propose the

integrated noise-power estimation intensity moment (NEIM) method for ICKD parameter

estimation [18, 19]. This is an iterative method that integrates the estimation of the thermal

noise power using 1-D nonlinear curve fitting with the use of the first two integer-based

intensity moments to estimate the shape and scale parameters. The method was shown to

be about 30 times less computationally intensive than the 3-D curve fitting approach in [6]

while maintaining the high estimation accuracy. It also provides more accurate estimation

performance than the methods based on integer or fractional intensity moments as, unlike

the moment-based methods, it does not require large data records.

CNR Estimated Fractional Intensity Moment: The CNR estimated fractional intensity

moment (CEFIM) method [18, 19] is similar to the NEIM approach in that a thermal noise

power estimate is iteratively computed to minimize a curve fitting mean-squared error

(MSE). However, to obtain the shape parameter estimate, the CNR is first estimated us-

ing fractional intensity moments with the thermal noise power estimate.

The performance of the proposed NEIM and CEFIM ICKD-model parameter estima-

tion methods for sea clutter intensity in thermal noise is demonstrated and compared using

both simulated ICKD variates and real sea echo reflectivity observations obtained from

clifftop radars operating in littoral environments. The computational intensity and estima-

tion MSE performance of the new estimators are also compared using simulated observa-

tions and two different sets of sea echo reflectivity.
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Cramér-Rao Lower Bounds for the Parameter Estimation and Asymptotic Perfor-

mance: We provided numerical computation of the Cramér-Rao lower bound (CRLB) for

the variance of the ICKD shape parameter estimate for sea clutter intensity observations in

thermal noise with unknown power. Using the CRLB, the asymptotic estimation perfor-

mance behavior of the new estimators is studied and compared to that of other estimators.

1.4 Report Organization

The rest of the dissertation is organized as follows. Chapter 2 reviews the ICKD model

with thermal noise, whereas Chapter 3 summarizes the intensity moments, fractional in-

tensity moments, log-based intensity moments and the 3-D nonlinear curve fitting ICKD

parameter estimation methods. The new NEIM and CEFIM methods are described in Chap-

ter 4, and Chapter 5 with comparative results provided, both with simulated and real clutter

intensity data in the respective chapters.

Note that a list of symbols and abbreviations used throughout the thesis is given in

Appendix A.
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Chapter 2

COMPOUND K-DISTRIBUTION SEA CLUTTER REFLECTIVITY MODELS

2.1 Introduction to Sea Clutter Models

The detection performance of airborne radars operating in littoral or maritime envi-

ronments can be impacted by the spikiness of the sea-surface reflectivity or clutter. For

this reason, accurate sea clutter models are necessary for the design of radar hardware and

signal processing algorithms.

Several probability density functions (PDFs) have been proposed as sea clutter models

that can be used with higher resolution low grazing angle radars, including the Rayleigh,

log-normal and Weibull [2, 5]. The compound K-distribution (CKD) has been shown to be

a well-matched model for sea clutter amplitude statistics. It is a compound distribution that

captures both the spikiness and the decorrelation properties of sea clutter returns. Statistical

analysis has shown this model to be a good fit to high resolution sea clutter amplitude

fluctuations under most conditions [5]. One exception is for horizontally polarized sea

clutter reflectivity which exhibits a heaver tail PDF and makes detection more difficult

[20, 8]. In addition to accurately modeling sea clutter amplitude statistics, the CKD can

also accurately capture both the spatial and temporal correlation aspects of the sea clutter

[5]. In addition, this model can be expanded to account for thermal noise. Inclusion of the

thermal noise in the model results in an overall increase of the average power of the fast

changing speckle component of the distribution [10].

5



2.2 Statistical Characteristics of Sea Clutter

2.2.1 Sea Scatter and Its Impact on Target Detection

Fundamental requirements for airborne, ship board, and land based radars operating

in maritime or littoral environments include the detection, identification and tracking of

targets against an undesired backscattering caused by the roughness of the sea surface.

Furthermore maritime radars are often required to adapt the target tracking radar parameters

as the sea surface changes over a long range, driving the need for accurate environment and

sea clutter models. Throughout this thesis, we refer to sea clutter as the radar echo or

backscatter from the ocean surface caused by the roughness of the illuminated sea area.

This can be further characterized by the wind speed, wind direction, wave speed, fetch, and

swell direction. Surface waves can be categorized into capillary of gravity waves [21, 2,

22].

Capillary waves are small ripples that have less than 1.73 cm wavelengths, are modu-

lated by the longer wavelength gravity waves, and are controlled by the surface tension of

the sea water. The velocity or propagation of the gravity waves is controlled by gravity,

their wavelengths are greater than 1.73 cm, and they are further categorized into sea and

swell waves. the sea waves result from a long duration wind blowing over the fetch or

large surface area with nearly constant direction and velocity. Swell waves propagate from

the local area, and often take the form of long-crested low-frequency sinusoids which can

extend over very long distances [21, 1].

In addition to sea waves there are several radar parameters that define the clutter char-

acteristics such as grazing angle, transmit power, carrier frequency, range to the target, area

of illumination, polarization, atmospheric and propagation loss, and receiver thermal noise

[2, 22, 1, 23].
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2.2.2 Scattering from the Ocean Surface

When sea clutter is observed by higher resolution, low grazing angle radars, the backscat-

ter from a single range cell is referred to as a sea spike. This sea spike is non-stationary

in time and spatially non-homogeneous, and has been modeled using a non-Rayleigh prob-

ability density function. As it can exist for several seconds, it can cause false alarms in

Gaussian based detectors [1]. This backscatter from the sea surface primarily consists of

three frequency dependent scattering components that are linearly combined and catego-

rized as Bragg, burst and whitecap scattering [2, 24, 25, 26]. Bragg scattering arises from

resonate capillary waves caused by many scatters within a range cell accounting for the

speckle component of the clutter. It is modeled with Gaussian statistics [2], and can be de-

scribed by composite surface theory [26]. Burst scattering is caused by the crest of waves

before they break, giving rise to a short duration specular reflection or spike. These sea

spikes exist for a small fraction of a second, typically 200 ms [2, 24]. Whitecap scattering

consists of sea spikes caused by the foamy rough surface of the waves crest before they

break. These spike waves do not decorrelate from pulse-to-pulse or with frequency agility

[2, 24].

An example of the sea clutter spikes is depicted in Fig. 2.1, which shows the amplitude

of a sea clutter observation for a single range bin. The observations are from the CSIR

dataset, which consists of sea clutter collected using the Council for Scientific and Indus-

trial Research (CSIR) Fynmeet Clifftop Radar [27]. In particular, the observations are from

range bin 58 (corresponding to a range or 3,855.6 m from the radar) of set CFC17-001

of the CSIR database. Note that additional information on the Fynmeet radar parameters

are provided in Appendix B. The figure shows examples of the scattering components that

appear to be riding on a slow changing mean level or modulation. This combination of

modulation and clutter spikes contributes to the non-Gaussian nature of the clutter, often
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referred to as spikiness [2].

Fig. 2.1: Scattering Components for the Amplitude Response of a Singe Range Bin of Sea

Clutter Reflectivity from the CSIR Dataset.

To better understand how an increase in spikiness effects the statistics of the clutter,

we provide Fig. 2.2 that compares two different levels of amplitude backscatter using

simulated data with unit mean. Fig. 2.2(a) depicts very spiky clutter whereas Fig. 2.2(b)

shows clutter that is less spiky and appears to follow a Gaussian distribution.

2.3 Compound K-distribution Model of Sea Clutter Amplitude

The CKD is a compound distribution that is used to model the speckle and texture

sea clutter amplitude structures. The speckle is a small-scale structure that accounts for

the reflections from multiple scatters with short temporal decorrelation period. The rapid

decorrelation is due to the frequency agility or relative motion of the scatters within a cell

and it is modeled using a Rayleigh PDF. The texture of local mean level is a large-scale

structure tha modulates the speckle component and accounts for the slowly time-varying

sea waves and swell [2, 10, 3]. The scatters associated with these long sea waves vary
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(a)

(b)

Fig. 2.2: Clutter Amplitude: (a) Spiky Clutter. (b) Less Spiky Noise Like Clutter.
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spatially and have long temporal decorrelation period. The texture amplitude structure is

thus modeled using Gamma PDF [2].

Fig. 2.3 shows the amplitude of a single range bin of sea clutter [27]. The sea clutter

component is less then 10 ms and it decorrelates, its mean level is changing slowly as

it decorrelates in time, in order of several seconds [28, 2]. The CKD amplitude model

is characterized by the shape parameter ν and scale parameter b. The shape parameter

provides a measure of the amplitude spikiness; the smaller the value of the shape parameter,

the sea clutter amplitude is spikier. For high resolution sea clutter, it has been generally

observed that the value of the shape parameter ranges from 0.1 to infinity (from very spiky

to only thermal noise and no spikes) [29].

Fig. 2.3: Amplitude Response as a Function of Time of Sea Clutter Reflectivity Obtained

from a Single Range-bin from the CSIR CFC17-001 Dataset.

The radar range equation provides the relationship between the received mean level

power pc = ν/b of sea clutter and the radar transmit power pt and is given by [2, 30]

pc =
pt µc G2 λ 2 σ0 Ac

(4π)3 R4 La Ls
. (2.1)
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Here, µc is the pulse compression gain, G is the antenna gain, λ is the transmitted wave-

length, R is the range from the radar to the target, σ0 is the normalized sea clutter RCS, Ac

is the area of illumination, La is the atmospheric and propagation loss, and Ls is the system

loss. The thermal noise power is defined as

pn =k T0 BFn (2.2)

where k is the Boltzmann’s constant, T0 is the ambient reference temperature in Kelvin, B

is the matched filter bandwidth, and Fn is the radar noise figure accounting for generated

received noise above the theoretical thermal noise minimum [2, 30]. Using (2.1) and (2.2),

we now define the clutter-to-noise ratio (CNR)

CNR = pc/pn. (2.3)

The PDF pA(a) of sea clutter amplitude is given by [2],

pA(a) =
∫

∞

0
p(A|x)pX(x)dx, a≥ 0 (2.4)

where the speckle component of the PDF for a given texture component x is given by a

Rayleigh distribution

p(A|x) = 2A
x

exp
(
−A2

x

)
. (2.5)

The PDF of the texture is given by

pX(x) =
bν

Γ(ν)
xν−1 exp(−bx), x≥ 0 (2.6)

where ν is the shape parameter, b is the the scale parameter, Γ(·) is the Gamma function.

Substituting (2.5) and (2.6) into (2.4) yields the amplitude PDF:

pA(a) =
4b(ν+1)/2

Γ(ν)
aνKv−1(2a

√
b), a≥ 0 (2.7)
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where Kν is the modified Bessel function.

Fig. 2.4 demonstrates the CKD amplitude model PDF in Equation (2.7) for b = 1 and

varying shape parameters, 0.3, 1, 3, and 10.

Fig. 2.4: CKD Amplitude Model PDF in (2.7) for Scale Parameter b = 1 and for Varying

ν .

2.4 Compound K-distribution of Sea Clutter Intensity in Thermal Noise

For realistic scenarios, it is important to consider sea clutter intensity observations in

the presence of thermal noise and their corresponding CKD PDF intensity model or ICKD.

The ICKD model for clutter intensity Z = A2 is given by

pZ(z) =
∫

∞

0
p(z|pn)pX(x)dx (2.8)

where pn is the thermal noise power and pX(x) is given in Equation (2.6). Given a texture

value x and a thermal noise power pn , the conditional PDF of the speckle component can

12



be defined as [7],

p(z|pn,x) =
1

pn + x
exp
(
− z

pn + x

)
, x≥ 0. (2.9)

Combining (2.9), and (2.6), the ICKD model is given by

pZ(z) =
bν

Γ(ν)

∫
∞

0

xν−1

pn + x
exp
(
− z

pn + x
−bx

)
dx, x≥ 0. (2.10)

Note that Equation (2.10) cannot be obtained in closed form and must be solved numeri-

cally [2].

The ICKD complementary cumulative distribution function (CCDF) is the probability that

a an observation intensity z exceeds a threshold ζ . Specifically, it is given by

Φ(ζ ) =Pr(Z > ζ ) =
∫

∞

ζ

pZ(z)dz (2.11)

Equation (2.10) also defines the probability of false alarm PFA or probability that a radar tar-

get is assumed present even though the observations only include noisy sea clutter intensity

data [31, 7].

2.5 Modified Compound K-distribution Models

2.5.1 ICKD for Non-coherent Sum of Pulses

For radar systems that use non-coherent pulse integration, the speckle PDF for a given

texture x and N pulses is given by,

p(r|x) = rN−1

(pn + x)N(N−1)!
exp
(
− r

pn + x

)
, x≥ 0 (2.12)
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where r = ∑
N
i=1 zi. The resulting PFA for this system is given by

Pr(R > r) =
1

(N−1)!

∫
∞

0
Γ

(
N,

r
pn + x

)
pX(x)dx (2.13)

where Γ(·, ·) is the incomplete Gamma function and pX(x) provided with (2.6) [2].

2.5.2 Distribution for Horizontally Polarized Sea Clutter Reflectivity

It has been shown that the CKD model does not provide a good fit to horizontally

polarized sea clutter reflectivity which exhibits a heaver tail PDF [20, 8]. To address this

shortcoming of the CKD model, the KK-distribution, which is the sum of two compound

K-distributions, has been shown to provide a better fit to the tail of the PFA, especially for

regions less than 10−3 [32]. The KK-distribution has been adapted to include thermal noise

[33] and is given by

Q(z, pn) =(1− kr)P1(z;ν1,b1, pn)+ krP2(z;ν2,b2, pn) (2.14)

with Pi(z;νi,bi, pn), i = 1,2 correspond to the ICKD PDF in (2.10) with corresponding

parameters νi, bi and pn. Note that the KK-distribution in (2.14) has six parameters. Using

real sea clutter observations, the authors in [32, 33] determined kr = 0.01 and reduced

the number of parameters to four by selecting ν = ν1 = ν2. The authors also observed

the ratio ρµ = b2/b1 to be > 1 and determines the degree of separation between the two

distributions, whereas the kr ratio determines the point of and degree of separation.
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Chapter 3

COMPOUND K-DISTRIBUTION MODEL PARAMETER ESTIMATION METHODS

FOR SEA CLUTTER INTENSITY

3.1 Introduction

The estimation of sea clutter intensity model parameters remains an active area of re-

search, as it is essential to improve the processing of today’s complex radar systems in

the presence of clutter. It is also necessary to understand the sea surface environment

when detection algorithms need to discriminate a target from a spike in sea clutter. There

are several methods for estimating the intensity-based compound K-distribution (ICKD)

shape and scale parameters some of which are extended to include the thermal noise power

[2, 4, 5, 6, 10]. These methods include the use of integer, fractional, or log-based inten-

sity moments [4, 14, 34, 35, 36, 37], and nonlinear least squares curve fitting methods

[2, 6, 10, 16, 38, 12].

3.2 K-distribution Shape Parameter Estimation

The focus of our research is to estimate the K-distribution parameters from received

sea clutter reflectivity, and we address a few methods that are frequently used. Before

doing so, we need to point out that there are also models that can be used to predict radar

performance. It is often necessary to understand how a radar performs in relation to the

data collection environment and geometry before investing in engineering development. In

particular, empirical models were developed for reasonable values of the shape parameter

ν of the ICKD model based on a specified radar scene. One such empirical model that can
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be used for grazing angles φgr in the range 0.1° to 10.0° is [2, 39]

log10(ν) =
2
3

log10(φgr)+
5
8

log10(Ac)− kpol−
cos(2θs)

3
(3.1)

where Ac is the radar resolved area, kpol is the radar transmit and receive polarization pa-

rameter, taken to be 1.39 for vertical polarization (VV) and 2.09 for horizontal polarization

(HH), and θs is the aspect angle with respect to swell direction, which can be omitted if

there is no swell.

Equation (3.1) clearly shows that the amplitude or spikiness of the clutter is impacted by

the radar collection parameters, in addition to the direction of the sea swell. Other models

have been published that factor in swell in the up, down or cross directions; however, these

models do not incorporate wind direction or sea state (wave height), and thus include spiky

clutter observed for all sea states [2].

3.3 Intensity Moments Method

3.3.1 Thermal Noise Power Estimation Using Higher Order Moments

The intensity moment (IM) method is commonly used to estimate the shape parameter

ν and scale parameter b, assuming that the thermal noise power is known [2]. The method

uses the first two ICKD moments, µk = E[Zm], m = 1,2, as they can be obtained in closed

form in terms of the two unknown parameters. Here, E[·] denotes statistical expectation.

Specifically, for a known thermal noise power pn, the two moments are given by [2, 7]

µ1 =
ν

b
+ pn (3.2)

µ2 =
2
b2 ν(ν +1)+

4
b

pn ν +2 p2
n . (3.3)
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For independent and identically distributed intensity samples zk, k = 1, . . . ,Ns, the mth sam-

ple moment estimate is

µ̂m =
1
Ns

Ns

∑
k=1

zm
k (3.4)

Solving (3.2) and (3.3), and using the sample moments, the shape and scale parameters can

be estimated in closed form as

ν̂ =
2(µ̂1− pn)

2

µ̂2−2µ̂2
1

(3.5)

b̂ =
ν̂

µ̂1− pn
. (3.6)

In order to also estimate the thermal noise power pn, the third ICKD intensity moment,

µ3 =
6ν(ν +1)(ν +2)

b3 +
18pnν(ν +1)

b2 +
18p2

nν

b
+6p3

n , (3.7)

can be combined combined with µ1 and µ2 in (3.2) and (3.3) [10, 2, 13]. Solving three

equations with three unknowns yields

ν̂ =
18
(

µ̂2−2 µ̂2
1

)3

(
12 µ̂3

1 −9 µ̂1 µ̂2 + µ̂3

)2 (3.8)

p̂n = µ̂1−
√

0.5 ν̂
(
µ̂2−2 µ̂2

1
)

(3.9)

b̂ =
ν̂

µ̂1− p̂n
(3.10)

Using the three estimates and (3.2), the clutter-plus-noise ratio (CNR) η = (ν/b)/pn can be

obtained as

η̂ = (ν̂/b̂)/ p̂n =
µ̂1− p̂n

p̂n
. (3.11)

Note that, although the IM is easy to implement, it requires a large number of observations

to obtain accurate estimates [2, 10].

17



3.3.2 Thermal Noise Estimation Using Time-frequency Methods

As noted in the previous section, large sample sizes are required to obtain accurate

estimates of the shape parameter when using the first three intensity moments in Equation

(3.8). If the thermal noise power is known, the shape and scale parameters can be estimated

using the first two moments in Equations (3.5) and (3.6). As was shown in [18], this

increases the estimation accuracy of the shape parameter. In [7], a method was considered

for estimating the thermal noise power that did not involve higher intensity moments. This

method uses the short-time Fourier transform (STFT) time-frequency representation (TFR)

to find regions of minimum spectral time-variation. The thermal noise power pn is then

estimated by time-averaging the STFT over these spectral regions.

The TFR-based method is demonstrated in Fig. 3.1(a) that depicts the spectrogram

(magnitude-squared of the STFT) TFR of coherent clutter data obtained from the CSIR

CFC17-001 range-bin 1 (RB 1). The TFR is shown zoomed in to the region -500 to 500

Hz to emphasize the time changing Doppler spectra. The figure shows clutter spectral

regions both with low and high time-frequency variation. As shown with the averaged

power spectrum in Fig. 3.1(b), the region between -2,500 and -2,000 Hz exhibits very

low time-frequency variation. A different, and less accurate estimate would be obtained if

we considered frequencies between -2,000 and -1,500 Hz. In this example the STFT was

obtained using the fast Fourier transform (FFT) and a Taylor window. Although different

types of windows can be used to compute the STFT [40], we use the Taylor window because

it is comparable to the optimal Dolph-Chebyshev window used in [7]. Unlike this optimal

window, the Taylor window is realizable and used frequently in practice [21, 41, 42]. The

Taylor window parameters include the length of the window NT , the number of nearly

constant sidelobes levels adjacent to the mainlobe n̄, and the maximum sidelobe level (in

dB) relative to the mainlobe SLL. The parameters used for this example include a length
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512 FFT, NT = 64, n̄ = 4 and SLL =−55.

The STFT window and its duration must be carefully selected as they can affect the

estimation performance of the thermal noise power. The importance of the selection of

the duration of the STFT window is demonstrated using simulated clutter data (as in [7]).

We simulated coherent correlated clutter data with a shape parameter of ν = 0.1 and 0 dB

CNR (corresponding to pn = 0.5). The time-averaged STFT in Fig. 3.2(a) was obtained

using a Taylor window with very short duration NT = 2; the window is thus very broad

in the frequency domain. A longer Taylor window, with NT = 64 (and thus narrower in

frequency) is used in Fig. 3.2(b). Comparing the two time-averaged STFT power spectra

in Fig. 3.2, a different estimate of the thermal noise power is obtained in each case when

the region between -2,500 to -2,000 Hz is selected.
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(a)

(b)

Fig. 3.1: (a) STFT of clutter data CFC17-001 (RB 1); (b) Time-averaged Power Spectrum

Over the Spectral Region Selected Using the STFT.
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(a)

(b)

Fig. 3.2: Time-averaged STFT Power Spectrum using Simulated Clutter with ν = 0.1,

CNR ≈ 0 dB; (a ) Taylor Window with Length NT = 2. (b) Taylor Window with Length

NT = 64.
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3.4 Fractional Intensity Moments Method

Instead of using the higher order intensity moments in (3.2) and (3.3), fractional inten-

sity moments (FIMs) were used in [12] to obtain a closed form estimate of the shape pa-

rameter. The method is based on the effective shape parameter value, νeff, that corresponds

to the ICKD shape parameter estimate in (3.5) with pn = 0, that is, when it is assumed that

no thermal noise is present in the data. The ICKD with no noise and shape parameter νeff is

approximated by an ICKD with shape parameter ν and a given CNR η [10, 2, 12]. Using

this approximation, the effective shape parameter is given by

νeff = ν

(
1+

1
η

)2
=

2 µ̂2
1

µ̂2−2µ̂2
1

(3.12)

where µ̂1 and µ̂2 are the first and second sample moment estimates in (3.4). The method

also uses the FIM ratios

αρ,q =
µ(ρ+q)

µρ µq
, βρ,q =

µ(ρ−q) µq

µρ

, (3.13)

for ρ∈R+ and q∈Z, that can be shown to be independent of the scale b and thermal noise

power pn values. Combining (3.12) and the FIM ratios in (3.13) with q = 1, the shape

parameter estimate is given in closed form as

ν̂ =
νeff

(
1−ρ β̂ρ,1

)2

(
νeff

ρ

( 1
(ρ +1)

α̂ρ,1−1
)
−ρ β̂ρ,1

)2 , (3.14)

where α̂ρ,1 and β̂ρ,1 are obtained using (3.13) and the sample moment estimates µ̂ρ+1,

µ̂ρ−1, and µ̂ρ in (3.4). As shown in [12], the estimated shape parameter in (3.14) has

a lower mean-squared error (MSE) when compared to the one obtained using the IM in

(3.8). Using (3.12), the CNR estimate is

η̂ = 1/(
√

νeff/ν̂−1) . (3.15)
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Using this value and the relation η̂ = (µ̂1− pn)/pn, an estimated value of the thermal noise

power can be obtained as p̂n = µ̂1/(1+ η̂) and the scale b can be estimated using (3.6).

3.5 Log-based Intensity Moments Method

If the thermal noise power is assumed known, and with multiple number of pulses

integrated, an accurate estimate of the shape parameter can be obtained using the first

moment and the first moment of the logarithm of the observations [14]. This also assumes

that the samples of the speckle component are independent from pulse to pulse. The thermal

noise parameter is also estimated using log-based intensity moments (LIMs) in [12]. For a

single-pulse system with unknown thermal power, the effective shape parameter in (3.12)

is used to estimate the shape parameter ν̂ by solving

ψ1

µ1
−ξ1 = 1+

1√
ν̂νeff

(
1− 2F0

(
ν̂ ,1; ;h(ν̂ ,νeff)

))
(3.16)

where h(ν̂ ,νeff)=−
(√

ν̂νeff− ν̂
)−1, 2F0 = (a,b; ;z) is a hypergeometric function [13], and

the LIMs are given by

ψ1 =
∫

∞

0
z log(z) pZ(z)dz, ξ1 =

∫
∞

0
log(z) pZ(z)dz (3.17)

that can be computed as log-based sample moments. Although both the LIM and FIM

estimates ν̂ in (3.16) and (3.14), respectfully, achieve similar MSE estimation performance,

the LIM is computationally more intensive than the FIM as it requires numerical zero or

root finding methods [12].

3.6 3-D Nonlinear Curve Fitting Method

The nonlinear curve fitting (NCF) method performs a three dimensional (3-D) search

to obtain an estimate of the three parameters of the ICKD model in (2.10) [6, 15, 16].

The method is based on fitting the mathematical form of the complementary cumulative
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distribution function (CCDF) of Z to simulated sea clutter intensity observations. Using

vector notation for the three parameters, θθθ = [ν b pn], the CCDF is obtained as

ΦZ(z;θθθ) = Pr(Z > z;θθθ) =
∫

∞

z
pZ(ζ ;θθθ)dζ . (3.18)

For a detection statistic L (Z) that is distributed as in (3.18), a threshold value can be

obtained for a given probability of false alarm PFA using PFA = ΦZ(L (z);θθθ) [31, 7]. When

a very small value of PFA is selected, the approach avoids fitting the CCDF tail to regions

where the clutter is very spiky [6].

Mean-normalized intensity observations, zk, k = 1, . . . ,Ns are first used to form simu-

lated CCDF values. The Nelder-Mead unconstrained nonlinear optimization method was

selected to numerically obtain the estimated parameters; this is an iterative approach that

minimizes the residuals between the model and simulated CCDFs [6, 15, 16]. At each it-

eration, a 3-D parameter vector estimate of θθθ is obtained. Using some convergence tests

as iteration stopping criteria, a global minimum is determined that minimizes the overall

curve fitting MSE using,

θ̂θθ
(i)

= arg min
θ̂θθ
(i)

EZ(θ̂θθ
(i)
), (3.19)

where EZ(θ̂θθ
(i)
) is a goodness of fit measure or a curve fitting MSE at the ith iteration given

by

EZ(θ̂θθ
(i)
) =

1
M

L−M

∑
m=1

(
Φ

sim
Z (zm)−ΦZ(zm; θ̂θθ

(i)
)
)2

, (3.20)

with L being the length of the CCDF and M the number of selected CCDF values to avoid

fitting points in the upper tail where the fit will be poor [6]. Note that only M out of L

distribution points are used in (3.20).
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Fig. 3.3 outlines the NCF algorithm flow. A summary of the NCF steps is provided

in Algorithm 1. The input to the NCF algorithm includes the mean-normalized intensity

observations ζm and an initial starting estimate for ν(0), b(0), p(0)n . The algorithm defines

a stopping criteria based on the convergence of the estimates MSE. At the i iteration, the

stopping criteria is computed as |EZ(θ̂θθ
(i+1)

)− EZ(θ̂θθ
(i)
)| < εF , where EZ(θ̂θθ

(i)
) is defined

in Equation (3.20) and εF is the smallest difference that can be added to a floating point

number provided in Table 3.2.

The minimization approach we employ is the simplex search method from Reference

[43]. This is a search that is based on minimizing unconstrained multivariable functions

without computing derivatives. In MATLAB; this method is implemented using the function

fminsearch; this function allows for a minimal function tolerance, minimal step size, and

the maximum number of iterations as termination criteria as described in Table 3.1.
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Input: initial parameters & 
required cost functions 

No

Yes

Finish

Compute curve fitting MSE 

parameter that
minimizes MSE

Compute tail CCDF pointsSimulate CCDF points 

Fig. 3.3: Flowchart of iterative Nonlinear Curve Fitting (NCF) Using the Nelder-Mead

Three Dimensional Search Algorithm.
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Algorithm 1: Iteration steps of 3-D NCF

• Input: Initial estimate θ̂θθ
(0)

, mean-normalized intensity observations, zk,

k = 1, . . . ,Ns, function tolerance ε , PFA ≥ 0.003

• Using zk, simulate Φsim
Z (z`), `= 1, . . . ,L, using the intensity data provided; this is

simulated as Φsim
Z (z`)= Pr(Z > z`)

• Obtain M (out of L), the number of tail CCDF points, as the number of intensity

samples zm such that PFA ≥ 0.003, where PFA = Pr(Z > zm)= Φsim
Z (zm)

• At the ith iteration, i = 0, . . . , Imax, compute the tail M modeled CCDF points

ΦZ(zm);θθθ
(i), m = 1, . . . ,M using ΦZ(z;θθθ)=

∫
∞

z pZ(ζ ;θθθ)dζ , where pZ(ζ ;θθθ) is the

ICKD model PDF with parameter vector θθθ . Also, θθθ
(i) are all allowable vector

values of θθθ over which the search is performed

• Compute the curve fitting MSE as EZ(θθθ
(i))= 1

M ∑
L−M
m=1

(
Φsim

Z (zm)−ΦZ(zm;θθθ
(i))
)2

• Find θ̂θθ
(i)

that minimizes the curve fitting MSE, θ̂θθ
(i)

= arg min
θθθ
(i) EZ(θθθ

(i))

• Stopping criteria: for a given ε , stop iteration when |EZ(θ̂θθ
(i+1)

)−EZ(θ̂θθ
(i)
)|< εF
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3.7 Simulation Environment and Algorithm Parameters

3.7.1 Simulated Data

For simulating stationary uncorrelated sea clutter intensity observations, we first gener-

ated the gamma distributed variable X using the inverse incomplete gamma function whose

lower tail is given by X = γ(ν ,q)= (1/Γ(ν))
∫ q

0 tν−1e−tdt. Here, q is obtained from a set

of uniformly distributed samples between [0, 1 ], ν is the ICKD shape parameter and Γ(·)

is the gamma function. Using the methods of generating non-uniform random values from

[44, 2], the ICKD variable is obtained as the product of the gamma and exponential ran-

dom variables Z =
√
−bA log(R) [35]. Here, R is obtained as q, A = γ−1(ν ,q), and b is the

ICKD scale parameter. The ICKD amplitude data set is then converted to coherent data

with random phase and additive complex zero-mean Gaussian noise to achieve the desired

CNR. Unless otherwise stated, Ns = 10,000 intensity observations were generated and av-

eraged over 1,000 Monte-Carlo (MC) simulations. The number of simulated points M to

fit the CCDF tail was selected to satisfy PFA≥0.003 in order avoid fitting very spiky clutter

[6].

3.7.2 Processor

Our testing configuration is a Mac-Book Pro, running macOS 10.13 with an Intel i7 2.8

GHz processor, and MATLAB R2017a. To improve execution time for both search methods,

we implemented (2.10) using MATLAB’S mex API.

28



3.7.3 Algorithm Termination Criteria

To make direct comparisons of the tested algorithms, we need to understand the termi-

nation criteria for each method. We will be comparing a total of three 1-D search methods

for use in our proposed NEIM method, and three 3-D NCF methods for direct comparison

with the NEIM method. For the six methods tested, the termination criteria will contain

some combination of criteria in Table 3.1.

Symbol Description

∆X Step tolerance which is the lower bound on the function step size or,

|xi− xi+1|< εX and is depicted as Step Tolerance in Fig. 3.4

∆F Function tolerance which is the lower bound on the change of the evaluated

function f (x) or | f (xi)− f (xi+1)|< εF and is depicted as Function

Tolerance in Fig. 3.4

MF Maximum number function evaluations or calls to f (x)

Table 3.1: Algorithm Termination Criteria

Fig. 3.4 depicts how both the step and function tolerance is evaluated for a proposed

function f (x). For the 1-D search methods f (x) is provided with Equation (4.1) and Equa-

tion 3.20 for the 3-D search. For the algorithms that use both step tolerance and function

tolerance, the algorithm will terminate if either of the minimum thresholds is reached.
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f (x)

x

1

2

3
4

5
Function Tolerance (∆F)

Step Tolerance (∆X)

Fig. 3.4: Algorithm Termination Tolerance for the Step Tolerance (∆X) and Function Tol-

erance (∆F). Similar to MATLAB Tolerance and Stopping Criteria Documentation.

3.7.4 Simulated Data Sample Size and Minimum Usable CCDF Levels

A main consideration of using curve fitting methods to estimate the K-distribution pa-

rameters is to obtain the estimates using smaller sample sizes. As a result, we need to

be careful in fitting the model distributions to the CCDF obtained from the clutter data

and not fit the regions at the tail of the distribution where we have few samples that con-

tribute to the CCDF. In [6] the authors recommend setting this level to 10−2 for using a

sample size of 1,000 samples. Fig. 3.5 depicts the log of CCDF curves for sample sizes

Ns = [104,105,106,107] using a shape parameter ν = 0.1 and CNR = 5 dB. Except where

noted in Section 4.4.4, we will be using Ns = 10,000 for all simulations, therefore we will

fit the CCDF curves down to a level of 10−3
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Fig. 3.5: Comparison of CCDF Levels for Simulated K-distribution Clutter Different Sam-

ple Lengths (Ns).

3.7.5 Tested CNR Levels

To evaluate both one and three dimensional search algorithms, we will estimate the K-

distribution parameters while also gathering performance metrics while sweeping a range

of CNR levels. In [6] the authors test CNR levels of -5 dB, 0 dB and 10 dB so for compari-

son we will extend these levels to include a CNR level of 20 dB. We will see in a following

section, that a CSIR Fynmeet Radar dataset will have a CNR of approximately 20 dB for

different range-bins of sea echo reflectivity, therefor we need to include this level in our

algorithm evaluations.

Unless otherwise stated, we will be using the values in Table 3.2 for all algorithm

comparisons
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Symbol Description Value

Ns Number of sea clutter samples 10,000

L Number of CCDF distribution points 2,048

MC Number of Monte-Carlo simulations 1,000

εX Step size stopping criteria 10−4

εF Function difference stopping criteria 10−8

Imax Maximum number function evaluations 5,000

Table 3.2: Algorithm Run-time Values
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3.8 Three Dimensional Search (Nelder-Mead) Algorithm Comparisons

The multi-dimensional Nelder-Mead (NM) search methods seek to find a minimum

value for functions containing multiple parameters. For estimating K-distribution clutter

parameters, we will be using the NM to minimize a function with three variables. We will

compare three different implementations of the NM to understand the performance of each

method. For the implementations compared, we need to provided an initial guess of the

parameters ν̂0, b̂0, p̂n,0 which we initialize to [0.1,0.1,0.1]. Testing will show these val-

ues produce stable results for the compared methods across the tested CNR. The methods

evaluated are:

MATLAB fminsearch: Is a unconstrained minimum search which uses the Nelder-Mead

simplex search as described in [43]. For a two dimension search, the simplex can be defined

by the vertices of a triangle. For a three dimension search, the vertices define a tetrahedron.

In addition to the initial estimate of the parameters, the method accepts εX , εF and MF to

control the termination criteria.

Mathews, Nelder-Mead: Is a simplex search method with MATLAB implementation pro-

vided in [45]. Our implementation accepts εX , εF . We made slight modifications to this

method to allow for the εX termination criteria to exit when ∆X is minimized, and to return

the total function count. Also, this method accepts as input the initial starting simplex as

opposed to an estimate of the initial parameters. We implemented a method to obtain this

simplex from the initial parameters as described by L. Pfeffer at Stanford (reference has

not been identified) and outlined here [46].

O’Neill, Nelder-Mead: This simplex search method is defined in [47] and our MATLAB

implementation was provided with [48]. In addition to the initial estimate of the parameters,

the method accepts εF and MF for the termination criteria. This method does not use εX
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to control termination. We made a slight modification to this method to return the total

function count.

Fig. 3.6(a) compares the estimated shape parameter ν̂ for the three, 3D search methods

and note they all achieve comparable results where the fminsearch method provides the

best performance for CNR in the range of -5 to 0 dB with the Mathews method being

unstable in the -5 to -3 dB range. All methods diverge from the actual parameter value of

ν = 0.1 beginning at a CNR of 12 dB. Fig. 3.6(b) compares the estimated noise parameter

ρ̂n and we compare the algorithm results with the value used to generate the simulated

clutter and note that all three methods achieved almost identical results with the exception

of where the Mathews method is unstable in the region of -5 to -4 dB.

Fig. 3.7(a) compares the total number of function evaluations and its easy to see, the

O’Neill method requires more evaluations in the CNR region of -5 to 7 dB, and this could

be related to not including ∆X as a termination criteria. We also note that the Mathews

method completes in less time than both the O’Neill and fminsearch methods. Fig. 3.7(b)

shows the CT performance and the behavior of the results are understandable considering

the number of function evaluations depicted in Fig. 3.7(a). Fig. 3.8 shows the CCDF MSE

performance for the compared algorithms with the fminsearch method having and overall

lower CCDF MSE throughout the tested CNR region with the exception of the spike at -5

dB.
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(a)

(b)

Fig. 3.6: Comparison of the Three 3-D Search Methods Using Simulated Data with In-

creasing CNR for a Simulated Shape Parameter ν = 0.1, (a) Estimated Shape Parameter ν̂ ,

(b) Estimated Thermal Noise Parameter p̂n.
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(a)

(b)

Fig. 3.7: Comparison of the Three 3-D Search Methods Using Simulated Data with In-

creasing CNR for a Simulated Shape Parameter ν = 0.1, (a) Algorithm Function Count,

(b) Time Performance in Seconds.
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Fig. 3.8: Comparison of the CCDF MSE (dB) for the Three 3-D Search Algorithms with

Increasing CNR, Using Simulated Clutter with Shape Parameter ν = 0.1.

37



3.9 Results Discussion

3.9.0.1 3-D Search Methods

Unlike the 1-D search methods that use the first two intensity sample moments, the 3-D

Nelder-Mead solves for all three parameters using a downhill simplex method [43, 47, 48].

Fig. 3.6(a) compares the estimated shape parameter ν̂ for the three, 3-D search methods and

note they all achieve comparable results where both the fminsearch and O’Neill methods

provide the best performance for CNR in the range of -5 to 0 dB with the Mathews method

being unstable in the -5 to 0 dB range. All methods diverge from the actual parameter

value of ν = 0.1 beginning at a CNR of 12 dB. Fig. 3.6(b) compares the estimated noise

parameter ρ̂n and we compare the algorithm results with the value used to generate the

simulated clutter and note that all three methods achieved almost identical results with the

exception of where the Mathews method diverges in the region of -5 to -4 dB.

Fig. 3.7(a) compares the total number of function evaluations and its easy to see, the

O’Neill method requires more evaluations in the CNR region of -5 to 7 dB, and this could

be related to not including ∆X as a termination criteria. We also note that the Mathews

method completes with less function evaluations or calls to (3.20). Fig. 3.7(b) shows the

computation time performance and the results are not as expected considering the Mathews

method is comparable with fminsearch but has a considerable difference in calls to (3.20)

as depicted in Fig. 3.7(a).

Fig. 3.8 shows the CCDF MSE performance for the compared algorithms with both

fminsearch and O’Neill methods having and overall lower CCDF MSE throughout the

tested CNR region.
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Chapter 4

PARAMETER ESTIMATION USING 1-D NONLINEAR CURVE FITTING AND

INTENSITY MOMENTS

4.1 Introduction

We propose a new intensity compound K-distribution (ICKD) model parameter estima-

tion method for sea clutter intensity data with thermal noise. The new method combines

the intensity moments (IM) estimation method with a one-dimensional (1-D) nonlinear

curve fitting method to iteratively estimate all three model parameters that define the ICKD

probability distribution function (PDF). The one parameter search routine to estimate the

thermal noise parameter does not suffer from the computational inefficiency of a three-

dimensional (3-D) search as in [6]. As the method fits the thermal noise power estimate to

the tail of the data ICKD PDF, no prior knowledge of the spectral distribution of sea clutter

is required. This avoids the use of windowing when estimating the noise power parameter

using time-frequency methods as the performance accuracy is then highly dependent on the

choice of the duration of the window [7].

4.2 Description of Proposed Method

As demonstrated in Section 3.3, the intensity moment approach for estimating all three

ICKD parameters is simple to implement but requires large amounts of data for accuracy.

Modified versions of the intensity moment approaches improve the accuracy but assume an

effective shape parameter under no noise conditions. On the other hand, the 3-D nonlin-

ear curve fitting (NCF) approach can yield accurate results but it is very computationally
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intensive. In order to avoid the computational complexity of the 3-D search while main-

taining the low estimation MSE performance, we develop an iterative 1-D search approach

integrated with the IM method.

The new integrated noise-power estimation intensity moments (NEIM) method is based

on iteratively using 1-D nonlinear curve fitting to estimate the thermal noise power pn,

followed by the IM method to estimate the shape ν and scale b ICKD parameters. The

fitting can be performed using any nonlinear least-squares approach, including the Nelder-

Mead unconstrained nonlinear optimization method.

The NEIM approach uses Ns sea clutter intensity observations zk, k = 1, . . . ,Ns, that are

normalized by their mean. At the ith iteration, the CCDF points ΦZ
(
zm; θ̂θθ

(i))
, m = 1, . . . ,M,

are used to select the tail M (out of L) CCDF points. The M CCDF points are used to

compute a goodness of fit measure or curve fitting MSE as a function of the thermal noise

power given by

EZ(p(i)n ) =
1
M

L−M

∑
m=1

(
Φ

sim
Z

(
zm

)
−ΦZ

(
zm; p(i)n

))2
, (4.1)

where ΦZ(z; pn)=
∫

∞

z pZ(ζ ; pn)dζ . The noise power p̂(i)n is obtained by minimizing the

curve fitting MSE in (4.1) using

p̂(i)n = arg min
p(i)n ∈Rp

EZ(p(i)n ) . (4.2)

where the minimization is performed over the range Rp of expected thermal noise power

values.

The NEIM approach uses the estimated thermal noise power estimate p̂(i)n at the ith

iteration to estimate the shape parameter ν̂(i) in (3.5) and the scale parameter b̂(i) in (3.6)

using the first and second sample moments. Note that the sample moments can be computed
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using

µ̂1 = E[Z] =
1
Ns

Ns

∑
k=1

zk (4.3)

µ̂2 = E[Z2] =
1
Ns

Ns

∑
k=1

z2
k . (4.4)

The resulting shape and scale parameter estimates are obtained, following (3.5) and (3.6),

as

ν̂
(i) =

2(µ̂1− p̂(i)n )2

µ̂2−2 µ̂2
1

(4.5)

b̂(i) =
ν̂(i)

µ̂1− p̂(i)n

. (4.6)

The estimated parameter vector θ̂θθ
(i)

= [ν̂(i) b̂(i) p̂(i)n ] is then used to simulate the CCDF

points ΦZ
(
zm; θ̂θθ

(i))
, m = 1, . . . ,M for use in the next iteration.

The parameters of the fitted model are updated at each iteration until convergence to a

global minimum. Convergence depends on some pre-determined stopping criteria such as a

maximum number of iterations Imax or a minimum desirable value of the curve fitting MSE.

Assuming convergence is reached at iteration Imax, the estimated thermal noise power is

p̂n = p̂(Imax)
n (4.7)

with curve fitting MSE EZ(p(Imax)
n ). The final estimates of the shape ν̂ and scale b̂ are

obtained using (4.5) and (4.6) with i = Imax and θ̂θθ = [ν̂ b̂ p̂n]. The estimated CNR is

η̂ = (µ̂1− p̂n)/p̂n =
ν̂/b̂
p̂n

. (4.8)

Fig. 4.1 provides a block diagram of the NEIM algorithm steps. The input to the algo-

rithm includes mean-normalized clutter intensity observations and the estimates of the first

two sample moments in Equations (4.3) and (4.4). In addition, it requires a range of values
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Fig. 4.1: Noise-power Estimation Intensity Moments (NEIM), Flowchart Using a One Di-

mensional Search Algorithm.

for the thermal noise power parameter pn ∈ Rp. The steps of the iterative NEIM approach

are also summarized in Algorithm 2. The algorithm uses a stopping criteria that is based on

the convergence of the p̂n estimates. The convergence requires that the difference between

two consecutive iterations satisfies |p̂(i+1)
n − p̂(i)n |< εX , where εX is the minimum step size

provided in Table 3.2. The optimization algorithm used in this method finds the mini-

mum of a single-variable function over a fixed interval using the golden search method and

parabolic interpolation [49]. In MATLAB, the function that implements this minimization

is fminbnd.

42



Algorithm 2: Iteration steps for NEIM

• Input: Initial range of pn ∈ Rp, mean-normalized intensity observations, zk,

k = 1, . . . ,Ns, minimum step size εX , PFA ≥ 0.003

• Using zk, simulate Φsim
Z (z`), `= 1, . . . ,L, using the intensity data provided; this is

simulated as Φsim
Z (z`)= Pr(Z > z`)

• Obtain M (out of L), the number of tail CCDF points, as the number of intensity

samples zm such that PFA ≥ 0.003, where PFA = Pr(Z > zm)= Φsim
Z (zm)

• At the ith iteration, i = 0, . . . , Imax, compute the tail M modeled CCDF points

ΦZ(zm);θθθ
(i), m = 1, . . . ,M using ΦZ(z;θθθ)=

∫
∞

z pZ(ζ ;θθθ)dζ , where pZ(ζ ;θθθ) is the

ICKD model PDF with parameter vector θθθ . Also, θθθ
(i) are all allowable vector

values of θθθ over which the search is performed. This is accomplished by first

obtaining the optimal p̂(i)n (4.2), then creating θ̂θθ
(i)

with (4.5) and (4.6)

• Compute the curve fitting MSE as EZ(θθθ
(i))= 1

M ∑
L−M
m=1

(
Φsim

Z (zm)−ΦZ(zm;θθθ
(i))
)2

• Find p̂(i)n that minimizes the curve fitting MSE,

EZ(p(i)n ) = 1
M ∑

L−M
m=1

(
Φsim

Z

(
zm

)
−ΦZ

(
zm; p(i)n

))2

• Stopping criteria: for a given εX , stop iteration when |p̂(i+1)
n − p̂(i)n |< εX
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4.3 Performance of NEIM Method

The estimation performance of the new NEIM method is demonstrated using both sim-

ulated and real sea clutter intensity observations. For this processing, we followed the

simulation environment and algorithm parameters described in Section 3.7.

4.3.1 1-D Search Algorithm Comparisons

We considered three methods to perform the 1-D search for the thermal noise power,

as discussed next. These methods seek to find a minimum value on a defined interval; we

selected the interval corresponding to the minimum intensity and the power value 0.8.

Method 1: This method, called Matthew’s method, uses the golden search and is discussed

in [45]. Its input includes the search interval, a minimum step size εX , and a minimum

function difference εF as input. We modified this algorithm to use εX as a stopping criterion

and to return the number of function evaluations.

Method 2: This method uses the golden search and parabolic interpolation; in MATLAB, it

is implemented by the function fminbnd. The stopping criteria include the search interval,

εX , and a maximum number of function evaluations.

Method 3: This is a root-finding method, called Brent’s method, that combines root-

bracketing, bisection and interpolation to locate the minimum value [50]. We implemented

this method following Reference [51]. The method requires the search interval, εX , εF , an

initial estimate of the minimum value, and an estimate on the upper bound of the second

derivative as inputs. We also modified it to return the number of function evaluations.

Fig. 4.2(a) compares the estimated shape parameter ν̂ for varying CNR obtained using

the three 1-D search methods; as it can be observed, all three methods achieved nearly

identical results. All three methods also perform similarly when we compare the estimated

44



noise power parameter ρ̂n for varying CNR in Fig. 4.2(b). Note that all methods result in

estimates that differ from the actual value around 12 dB CNR. Fig. 4.3(a) compares the

total number of function evaluations. As it can be observed, Method 1 is stable for all CNR

and converges using a smaller number of function evaluations, when compared to Method

2 and Method 3. Fig. 4.3(b) shows the computation time (CT) performance for each of

the methods; the CT is relative high as a high number of functions need to be evaluated.

Fig. 4.4 shows that the three methods have similar CCDF MSE performance; Method 3 has

less than 1 dB difference from 10 to 20 dB CNR.
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(a)

(b)

Fig. 4.2: Comparison of the Three 1-D Search Methods Using Simulated Data For Increas-

ing CNR for a Simulated Shape Parameter ν = 0.1: (a) Estimated Shape Parameter ν̂ ; (b)

Estimated Thermal Noise Parameter p̂n.
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(a)

(b)

Fig. 4.3: Comparison of the Three 1-D Search Methods Using Simulated Data For Increas-

ing CNR for a Simulated Shape Parameter ν = 0.1: (a) Algorithm Function Count; (b) Time

Performance in Seconds.
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Fig. 4.4: Comparison of the CCDF MSE (dB) for the Three 1-D Search Algorithms, For

Increasing CNR, using Simulated Clutter with Shape Parameter ν = 0.1.
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4.4 Performance Comparisons using Simulated Sea Clutter Intensity

4.4.1 Comparisons For Shape Parameter ν = 0.1

Based on the performance results in Sections 4.3.1 and 3.8, we compare Method 2 (us-

ing MATLAB function fminbnd) for the 1-D NEIM approach and the Nelder-Mead search

(using MATLAB function fminsearch) for the 3-D NCF approach.

Fig. 4.5 depicts the thermal noise power p̂n NEIM and NCF estimation results for in-

creasing CNR and a fixed simulated shape parameter ν = 0.1. The estimated values are

compared with the actual value of the power parameter used in the simulation. As it can be

observed, both methods perform well; the NEIM shows a slight error at 11 dB CNR.

Fig. 4.5: Comparison of the Estimated Thermal Noise Power p̂n Obtained Using the NEIM

and NCF Methods with the Actual pn Value, for Increasing CNR; the Simulated Clutter

was Ns = 100,000 Samples and Had a fixed Shape Parameter ν = 0.1.

Fig. 4.6(a) depicts the shape parameter ν̂ estimation results when the actual simulated
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value was ν = 0.1. The three methods compared, IM, NCF and NEIM, perform relatively

well; the NCF performance diverges after 10 dB CNR. Fig. 4.6(b) depicts the CCDF MSE

in dB; the NCF method is shown to have the best overall performance, whereas the IM and

NEIM methods diverge after 5 dB CNR.

Fig. 4.7(a) compares the CT performance, in seconds, of the NCF and NEIM algo-

rithms. It can be observed that the NEIM CT remains almost constant at less than 1 s. The

NCF CT varies between about 2.8 s and 4.3 s. Fig. 4.7(b) is a direct comparison of the

CCDF MSE for the NEIM and NCF methods; although the NCF performs better than the

NEIM from 5 to 20 dB CNR, it is computationally intensive as demonstrated in Fig. 4.7(a).
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(a)

(b)

Fig. 4.6: Comparison of the IM, NCF, and NEIM Methods for Increasing CNR using Sim-

ulated Clutter with Shape Parameter ν = 0.1: (a) Estimated Shape Parameter ν̂ ; (b) CCDF

MSE (dB).
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(a)

(b)

Fig. 4.7: Comparison of IM, NEIM and NCF Methods Using Simulated Clutter with In-

creasing CNR, and Shape Parameter ν = 0.1. (a) Time Performance in Seconds, (b) CCDF

MSE (dB).
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4.4.2 Comparisons For Shape Parameter ν = 0.5

Fig. 4.8 depicts the thermal noise p̂n estimation results for increasing CNR levels with a

simulated shape parameter of ν = 0.5 using the NEIM and NCF methods. In this figure, we

compare these estimated values with the simulated pn noise value. We see good agreement

with the estimated p̂n with slight deviation in the NCF method beginning at a CNR of -1

dB.

Fig. 4.8: Comparison of the Estimated Thermal Noise p̂n for the NEIM and NCF Meth-

ods with the Known Value pn, Using Simulated Clutter with Increasing CNR, and Shape

Parameter ν = 0.5.

Fig. 4.9(a) depicts the shape parameter ν̂ estimation results for a value ν = 0.5; we

notice the thee estimation methods work well from 0 to 13 dB CNR. We also see a slight

deviation in the estimated shape parameter for the NEIM method between CNR region of -5

dB and 0 dB and very minor separation for the NEIM above 17 dB. The figure also depicts

the NCF method is unstable in the CNR region of -5 dB to 2 dB with the estimated shape
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parameter diverging from the simulated value beginning at a CNR of 13 dB. Fig. 4.9(b)

depicts the CCDF MSE in dB for the IM, NEIM and NCF methods; we notice good agree-

ment between the IM and NEIM methods. The NCF method has an overall lower CCDF

MSE; however, it becomes unstable from -5 to -2 dB CNR and starting at 18 dB CNR.

Fig. 4.10(a) compares the CT performance in seconds between the NEIM and NCF

methods; we notice that the NEIM method is almost constant at less than 1 whereas the

NCF decreases from 7.2 s at -5 dB CNR, reaches a low of 1.5 s at 4 dB CNR and increases

back to approximately 2.3 s at 19 dB CNR. Fig. 4.10(b) is a direct comparison of the

CCDF MSE of the NEIM and NCF methods; it can be observed that the NCF method has

an overall lower CCDF MSE.
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(a)

(b)

Fig. 4.9: Comparison of IM, NEIM and NCF Methods Using Simulated Clutter with In-

creasing CNR, and Shape Parameter ν = 0.5: (a) Estimated Shape Parameter ν̂ ; (b) CCDF

MSE (dB).
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(a)

(b)

Fig. 4.10: Comparison of IM, NEIM and NCF Methods Using Simulated Clutter with In-

creasing CNR, and Shape Parameter ν = 0.5: (a) Time Performance in Seconds, (b) CCDF

MSE (dB).
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4.4.3 Comparisons For Shape Parameter ν = 1

Fig. 4.11 depicts the shape parameter ν̂ estimation results for increasing CNR levels

with a simulated shape parameter of ν = 1.0 using the NEIM and NCF methods. We com-

pare these estimated values with the simulated pn noise value and see good agreement with

the estimated p̂n with deviation for both the NEIM and NCF methods for -5 to -3 dB CNR.

Fig. 4.11: Comparison of the Estimated Thermal Noise p̂n for the NEIM and NCF Meth-

ods with the Actual pn Value, Using Simulated Clutter with Increasing CNR and Shape

Parameter ν = 1.

Fig. 4.12(a) depicts the shape parameter ν̂ estimation results for ν = 1; we notice that the

three estimation methods work well, except from -5 to -2 dB CNR, where the performance

of both methods deteriorates; the NEIM shows a larger divergence. Fig. 4.12(b) depicts

the CCDF MSE in dB; it can be observed that the NCF method provides an overall lower

CCDF MSE when compared to the IM and NEIM methods.
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(a)

(b)

Fig. 4.12: Comparison of IM, NEIM and NCF Methods Using Simulated Clutter with

Increasing CNR and Shape Parameter ν = 1: (a) Estimated Shape Parameter ν̂ ; (b) CCDF

MSE (dB).
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Fig. 4.13(a) compares the CT performance in seconds between the NEIM and NCF

methods; we notice that the CT for the NEIM method is almost constant at less than 1 s

whereas the NCF CT decreases from 7.5 s at -3 dB, reaches a low of 1 s at 12 dB, then

climbs back to 2 s to 20 dB. Fig. 4.13(b) is a direct comparison of the CCDF MSE of the

NEIM and NCF methods; the NCF has an overall lower CCDF MSE but becomes unstable

at 0 dB CNR.

4.4.4 Estimation Comparison for Varying Parameters

To further investigate the ICKD parameter estimation accuracy of the IM, NCF and

NEIM methods, we varied different simulation variables, including the number Ns of simu-

lated observation samples. Note that the estimation results were averaged over 1,000 Monte

Carlo (MC) simulations. Table 4.1 compares the three methods when Ns = 10,000 samples,

for varying shape and CNR values. Table 4.2 compares the methods using Ns = 100,000

samples The estimation results in Table 4.1 match the curve fitting results in Fig. 4.14. We

note that, as CNR increases or p̂n decreases, b̂ approaches ν̂ ; this is expected, as shown in

Equation (3.2).
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(a)

(b)

Fig. 4.13: Comparison of IM, NEIM and NCF Methods Using Simulated Clutter with

Increasing CNR, and Shape Parameter ν = 1: (a) Time Performance in Seconds; (b) CCDF

MSE (dB).
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Simulated clutter

intensity parameters

Shape Scale Noise CNR Estimation ν̂ b̂ p̂n CCDF MSE

ν b pn (dB) method (dB)

IM 0.1031 0.2078 NA -59.38

0.5 0.5 0 NCF 0.0990 0.1968 0.5008 -65.95

0.1
NEIM 0.1048 0.2076 0.4972 -61.72

IM 0.1034 0.1137 NA -56.91

0.09 0.09 10 NCF 0.0981 0.1088 0.0912 -66.80

NEIM 0.1040 0.1140 0.0891 -57.74

IM 0.5066 1.0133 NA -58.58

0.5 0.5 0 NCF 0.5115 0.9993 0.4966 -60.61

0.5
NEIM 0.5308 1.0333 0.4928 -60.78

IM 0.5043 0.5548 NA -56.18

0.09 0.09 10 NCF 0.4968 0.5461 0.0918 -63.41

NEIM 0.5073 0.5563 0.0899 -57.84

IM 1.0177 2.0355 NA -58.23

0.5 0.5 0 NCF 1.1158 2.0535 0.4895 -61.33

1.0
NEIM 1.1693 2.145 0.4784 -60.25

IM 1.0105 1.1116 NA -56.68

0.09 0.09 10 NCF 1.0009 1.0976 0.0909 -61.18

NEIM 1.0256 1.119 0.0872 -58.49

Table 4.1: Estimated Intensity Clutter Parameters Using Ns=10,000 Simulated Samples.
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In Table 4.2, two shape values and two CNR values are considered with the increased

number of samples. The estimation accuracy of the three methods is similar. However, for

ν = 0.1 and 20 dB CNR, the accuracy of the NCF estimated shape parameter ν̂ decreases;

this is also depicted in Fig. 4.6(a).

Simulated clutter

intensity parameters

Shape Scale Noise CNR Estimation ν̂ b̂ p̂n CCDF MSE

ν b pn (dB) method (dB)

IM 0.1000 0.4163 NA -68.00

0.2403 0.7597 -5 NCF 0.1002 0.4161 0.7596 -71.82

0.1
NEIM 0.1003 0.4167 0.7597 -70.17

IM 0.1001 0.1011 NA -29.56

0.9901 0.0099 20 NCF 0.0380 0.0877 0.0186 -65.55

NEIM 0.0914 0.0966 0.0543 -47.13

IM 0.5019 2.0891 NA -67.22

0.2403 0.7597 -5 NM 0.4865 1.9428 0.7708 -64.61

0.5
NEIM 0.5198 2.1124 0.7573 -68.75

IM 0.5007 0.5057 NA -51.65

0.9901 0.0099 20 NCF 0.4663 0.4863 0.0089 -67.02

NEIM 0.4913 0.5009 0.0194 -56.11

Table 4.2: Estimated Intensity Clutter Parameters Using Ns=100,000 Simulated Samples.
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4.4.5 CCDF Fit Performance

Fig. 4.14 shows the parameter estimation performance fitting the estimated CCDF to

the actual data. Equation (2.10) is used to create the estimated CCDF. The IM, NCF and

NEIM methods are compared, using Ns=10,000 samples.
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(a)

(b)

Fig. 4.14: CCDF Using Estimated Parameters for Simulated Data with CNR = 0 dB ; (a)

Shape Parameter ν = 0.1; (b) Shape Parameter ν = 0.5.
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4.4.6 Simulation of Correlated Coherent Sea Clutter

In estimating the ICKD parameters, we showed the dynamics of the sea surface that

have an impact on both the moment based and nonlinear curve fitting estimators. In [7],

the authors provide a method to simulate correlated coherent (CC) sea clutter which also

captures the time-varying spectral characteristics of specific range bins in the provided

CSIR datasets. This is an important model because it adequately captures the time changing

nature of the Doppler spectra, thereby simulating the non-Gaussian statistics that occur near

the spectral edges. The model also generates data in the time domain, thereby preserving

the continuity of both amplitude and phase. Additional work is required in this area to

understand the limitations (if any) to this important model.

Fig 4.15 compares the simulated Doppler spectra with the modeled spectra obtained

from CSIR CFC17_001 (RB 1) we see very good agreement in the time changing Doppler

spectra. Fig. 4.16 compares the amplitude and phase data between the real CSIR CFC17_001

(RB 1) dataset and the simulated data using the method in [7]. It is important to note, that

this model also captures a good continuity in amplitude and phase, meaning there are no

drop-outs or abrupt changes.
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(a)

(b)

Fig. 4.15: Doppler Spectra Using a FFT Size of 512 Samples, a Taylor Window with

NT = 64, n̄ = 4 and SLL = −55; (a) CFC17_001 (RB 1); (b) Simulated CFC17_001 (RB

1).
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Fig. 4.16: Comparison of the Amplitude and Phase Between the Simulated and Real CSIR

CFC17_001 RB1 Sea Clutter.

Fig. 4.17 depicts the PFA, results for the IM, NCF and NEIM methods using the simulated

CC time history data in Fig. 4.16. The goal for this simulation was to match the intensity

statistics along with the temporal characteristics of the CSIR CFC17_001 (RB 1) dataset

[7], therefore we simulated a shape parameter ν = 0.4 and pn = 0.01. Table 4.3 provides

the estimated parameters and we notice the estimation methods can successfully estimate

the parameters using the CC data.
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Fig. 4.17: CCDF Using Estimated Parameters for Correlated Coherent Simulated Data with

CNR = 20 dB, Shape Parameter ν = 0.4.

Estimation Estimated Estimated CNR MSE

Method ν̂ p̂n (dB) (dB)

IM 0.3738 0.0603 11.93 -57.18

NCF 0.3679 0.0176 17.48 -69.65

NEIM 0.4002 0.0274 15.50 -58.85

Table 4.3: Estimated Parameters Using Simulated Correlated Coherent Sea Clutter.
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4.5 K-distribution Parameter Estimation with Real Data

We performed additional NEIM testing using sea echo reflectivity observations using

datasets collected with the Fynmeet RCS measurement facility provided by the Defense,

Peace, Safety, and Security Unit of the Council for Scientific and Industrial Research

(CSIR) in Pretoria, South Africa. We also used datasets collected with the IPIX radar

provided by McMaster University located in Hamilton, Ontario, Canada.

4.5.1 CSIR Fynmeet Radar 3 August 2006

For real sea clutter data, both the NEIM and CEFIM estimators performed similarly

for the same datasets. As a result, we only provide comparisons using the NEIM. Similar

results for the CEFIM method are provided in [18].

4.5.1.1 CSIR Fynmeet Radar

The ICKD parameter estimation methods were used to model sea echo reflectivity datasets

collected by the Fynmeet Radar deployed at Measurement Station 3 in the Denvel Overberg

Test Range facility in 2006 [27, 52]. The datasets were provided by the Defense, Peace,

Safety, and Security Unit of the Council for Scientific and Industrial Research (CSIR) in

Pretoria, South Africa. The radar used a 9 GHz RF center frequency, 100 ns pulse width, 5

kHz pulse repetition frequency and VV polarization. Table 4.4 provides information on the

selected range bins, including environmental conditions. The sea surface dynamics must be

accounted for when modeling real sea echo reflectivity, as they can affect the performance

of both the moment and nonlinear curve fitting estimators. An in-depth analysis of the

CSIR data is provided in [7], together with a method to simulate correlated coherent sea

clutter that can capture the time-varying temporal characteristics of specified range bins.
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Dataset Information CFC17_010 CFC17_009 CFC17_001

Date 08/03/2006 08/03/2006 08/03/2006

Time 14:46:43 14:45:08 13:20:23

Number range cells 48 48 96

Starting range 7,000 m 5,000 m 3,000 m

Selected range bin (RB) 19 32 26, 58, 72

Range resolution 15 m 15 m 15 m

Range bin duration 59.9488 s 59.9636 s 32.7038 s

Total observations (sweep) 299,745 299,819 163,520

Antenna azimuth angle 93.95° 93.95° 165.5°

Antenna elevation angle −0.48° −0.49° −1.06°

Wind speed (Instantaneous) 15 kn 15 kn 15.5 kn

Wind Gusts 26 kn 26 kn 29.2 kn

Wind direction 262.6° 262.3° 246.9°

Significant Wave height 2.38 m 2.37 m 2.22 m

Wave direction 141.3° 141.3° 134.5°

Table 4.4: CSIR Fynmeet Radar Dataset Information

For intensity model parameters, we need to investigate whether the time-varying spec-

tra from the sea surface can affect estimation accuracy. This includes backscatter from the

rough sea surface and surface waves Using empirical data, sea backscattering was modeled

as the linear combination of Bragg, whitecap, and sea-spike scattering [25, 2, 53]. Bragg

scattering results form resonate capillary waves that are modulated by longer duration grav-

ity waves [26, 54]. The non-Bragg whitecap and sea-spike scattering is due to rough surface

created by breaking waves. The whitecap can be very short in duration typically less the
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200 ms, whereas the sea-spike can last for several seconds and does not decorrelate from

pulse to pulse [2, 24].

Fig. 4.18(a) shows CSIR sea clutter intensity data from a single range bin with a non-

Bragg spike component at about 19 s that decorrelates quickly and can affect the curve

shape of the CCDF model. This can result in a poor fit of the ICKD tail as shown in

Fig. 4.18(b). Fig. 4.19(a) shows the same data but with the non-Bragg spike replaced with

data from neighboring cells; this is done in order to demonstrate the impact of sea-spikes

when modeling the CCDF tail, as the better fit is demonstrated in Fig. 4.19(b).

The longer duration gravity waves are typically characterized by the height, velocity

and periodicity of the waves. For radars that stare in range, this periodic behavior can

cause a strong temporal modulation, thereby reducing the effective number of time samples

[7, 55]. Fig. 4.20(a) demonstrates the long time intensity autocorrelation for range-bin 72

(RB 72) of the CSIR CFC17_001 dataset. Fig. 4.20(b) shows the IM, NCF, and NEIM

estimated ICKD model distributions. As it can be seen, there is a poor data fit at the tail;

this may be attributed to the reduced number of effective samples due to the strong temporal

correlation [7].
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(a)

(b)

Fig. 4.18: CSIR CFC17_001 (RB 58) with Spike: (a) Time History Intensity Data, (b)

Estimated PFA with Spike.
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(a)

(b)

Fig. 4.19: CSIR Reflectivity CFC17_001 (RB 58) Suppressed Spike: (a) Time History

Intensity Data, and (b) Estimated PFA.
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(a)

(b)

Fig. 4.20: CSIR Reflectivity CFC17_001 (RB 72) : (a) Intensity ACS , and (b) IM, NCF

and NEIM Estimated Probability of False Alarm.
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As the non-Bragg sea spike components affect the fit of the ICKD model, we concen-

trate on analyzing only specific types of datasets. For example, we do not consider data

with horizontal polarization as the ICKD model was shown to fail at low grazing angles

(less than 30°) [8, 9, 56]. Table 4.5 provides the estimated shape parameter ν̂ , thermal noise

power p̂n, and CNR from (4.8) using the IM, NCF, and NEIM methods. The corresponding

PFA curves provided in Fig. 4.21 through Fig. 4.23 demonstrate that the NEIM accuracy is

comparable to that of the IM and NCF.

Range Bin Estimation Method ν̂ p̂n CNR, dB

IM 2.7006 0.2085 5.79

RB 19 NCF 3.1419 0.1211 8.61

NEIM 2.4811 0.2413 4.97

IM 1.2795 0.0146 18.28

RB 26 NCF 1.2684 0.0001 39.45

NEIM 1.3106 0.0027 25.16

IM 1.7624 0.0724 11.08

RB 32 NCF 1.8158 0.0466 13.10

NEIM 1.9366 0.0276 15.47

Table 4.5: CSIR Fynmeet Radar Estimated Range Bins

The PFA curves in Fig. 4.21 through Fig. 4.23 show good tail fits for the selected

range bins while the CNR values in Table 4.5 indicate variability between the IM, NCF,

and NEIM methods. To better understand this, we provide Fig. 4.24(a) which shows the

estimated shape parameter ν̂ for all range bins in the CFC17_010 dataset that show reason-

able agreement between the IM, NCF, and NEIM methods. However Fig. 4.24(b) shows

a disparity in p̂n. The IM non-parametric spectral estimate increases with range, whereas
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the noise estimates for the NCF and NEIM methods are obtained by minimizating (3.20).

This is emphasized in Fig. 4.23 that shows excellent agreement of the PFA curves for the

methods tested. Note, however, that there is variability in the estimated p̂n in Table 4.5.

Fig. 4.24(a) and Fig. 4.24(b) show very good agreement between the NCF and the compu-

tational efficient NEIM.

Fig. 4.21: IM, NCF and NEIM Estimated PFA, CFC17_010 (RB 19).

Sea clutter time-varying spectral components can affect estimation accuracy [57, 58, 59,

31, 60, 61]. It was shown in [62] that time-variation caused different PFA values between

measured and modeled sea clutter. They also cause non-Gaussian amplitude statistics near

the spectrum edges resulting in spiky ICKD estimates. In order to compare the perfor-

mance of the new estimators with the IM under this scenario, we re-produced some PFA

results in Watts paper [7]. Specifically, we used the averaged spectrogram time-frequency

representation (TFR) based approach in [7] to estimate the noise power for the IM before

using it to estimate the shape in (3.5) and scale in (3.6). In our implementation of the

spectrogram (short-time Fourier transform magnitude squared), a length 512 fast Fourier

transforms (FFT) was used on data segmented using a Taylor window. The window pa-
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Fig. 4.22: IM, NCF and NEIM Estimated PFA, CFC17_009 (RB 32).

Fig. 4.23: IM, NCF and NEIM Estimated PFA, CFC17_001 (RB 26).
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(a)

(b)

Fig. 4.24: (a) Shape Parameter ν̂ Estimation for All Range-bins in CFC17_010. (b) Ther-

mal Noise Estimate p̂n for All Range-bins in CFC17_010.
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rameters were selected as NT = 64 sample duration, n̄ = 4 nearly constant-level sidelobes

adjacent to the mainlobe and -55 dB SLL (maximum sidelobe level relative to the mainlobe

peak) [21]. The Taylor window is a variation of the Dolph-Chebyshev window used in [7];

it was used so as to reduce windowing discontinuities effects. Also, the average power of

the window was normalized to select data within the same spectral region and to minimize

noise power estimation bias [63]. Fig. 4.25(a) (Figure 2 in [7]) shows the spectrogram TFR

of the CFC17_001 (RB 1) data. Fig. 4.25(b) (Figure 4 in [7]) shows the CNR that was

estimated from the data using individual Doppler bins for use in the IM.

For our comparisons, we selected noisy data in the -2,500 Hz to -2,100 Hz region. Fig.

4.26(a) and Fig. 4.27(a) (similar to Figure 6 in [7]) show a data segment of duration 32.7

s (corresponding to 2,555 intensity data samples per Doppler bin); they were respectively

obtained from the 0 Hz Doppler bin (with 32.34 dB CNR) and the 302.7 Hz Doppler bin

(with 11.43 dB CNR) in Fig. 4.25(a).

The estimated models provide an adept fit for the two datasets, as shown in Fig. 4.26(b)

and Fig. 4.27(b) for the IM, NCF and NEIM estimators; these figures are similar to those for

the IM in Figure 9 in [7]. Note that the NCF performance is somewhat reduced for lower

PFA values for the 0 Hz Doppler bin data. The accuracy of the estimated model parameters

for the 302.7 Hz Doppler bin data does not seem to be affected despite the reduced shape

and CNR values. Table 4.6 provides the estimated ICKD shape and noise parameters for

the IM, NCF, and NEIM methods used to generate the PFA curves in Figs. 4.26(b) and

4.27(b).
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(a)

(b)

Fig. 4.25: CFC17_001 (RB 1): (a) Spectrogram TFR; (b) CNR for varying averaged

Doppler spectra.
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(a)

(b)

Fig. 4.26: CSIR reflectivity CFC17_001 (RB 1) : (a) Intensity Data in Doppler Bin 0.0 Hz

with CNR = 32.3 dB. (b) IM, NCF and NEIM Estimated Probability of False Alarm.
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(a)

(b)

Fig. 4.27: CSIR Reflectivity CFC17_001 (RB 1) : (a) Intensity Data in Doppler Bin

302.7 Hz with CNR = 11.4 dB. (b) IM, NCF and NEIM Estimated Probability of False

Alarm.
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Doppler bin Estimation Method ν̂ p̂n CNR, dB

0 Hz IM 0.5424 0.0006 32.34

CFC17_001 NCF 0.4358 0.0068 21.62

RB 1 NEIM 0.5375 0.0009 30.24

302.7 Hz IM 0.0322 0.0671 11.43

CFC17_001 NCF 0.0255 0.1034 9.38

RB 1 NEIM 0.0299 0.1001 9.53

Table 4.6: CSIR Fynmeet Radar Estimation Doppler Bins
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4.5.2 McMaster University IPIX Radar, Grimsby Ontario 1998

For this analysis, we use datasets collected by the McMaster University Intelligent

PIXel Processing Radar (IPIX) which was positioned in Grimsby Ontario (Latitude 43.2114°

N, Longitude 79.5985° W), looking at lake Ontario from a height of 20 m [64, 58] . The

Grimsby collection campaign occurred between 4 February and 4 March 1998 resulting

in 222 10-bit, coherent, dual polarized, X-band datasets with different range resolutions

(ρ). Additional IPIX system parameter are provided in APPENDIX C. The radar used the

following parameters for the selected datasets: 9.39 GHz RF center frequency, 100 ns pulse

width, 1 kHz pulse repetition frequency, with both VV and HH polarization.

4.5.2.1 Grimsby VV Polarization

This analysis uses two different resolution datasets collected on February 5, 1998. Range

bins were specifically chosen to have different sea clutter spike and CNR levels. Table 4.7

provides the radar parameters for each range bin. Environmental data was not available for

the wind and sea states. Table 4.8 provides the estimated shape parameter ν̂ , thermal noise

power p̂n, and the resulting estimated CNR for the IM, NCF, and NEIM methods. The

corresponding PFA curves are provided in Fig. 4.28. The plot shows that the accuracy of

the new NEIM method is comparable to the established IM and NCF methods. For the IM

result, we estimated the thermal noise power with the procedure described in Section 4.5.1

using the spectral region between -500 and -300 Hz on the centered Doppler spectrum.
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Dataset 19980205_191043 19980205_184733

Date 02/05/1998 02/05/1998

Time 19:10:43 18:47:33

Polarization VV VV

Number range cells 28 28

Starting range 3600 m 3201 m

Selected range bin (RB) 3 20

Range resolution (ρ) 15 m 9 m

Range bin duration 60.0 s 60.0 s

Total observations (sweep) 60000 60000

Antenna azimuth angle 357.11° 45.11°

Antenna elevation angle 359.775° 359.769°

Table 4.7: IPIX Grimsby Scene Collection Information

Range ρ Estimation ν̂ p̂n CNR (in (4.8))

Bin method (dB)

IM 0.163 0.187 6.38

RB 3 15 m NCF 0.120 0.358 2.54

NEIM 0.129 0.276 4.18

IM 0.109 0.105 9.29

RB 20 9 m NCF 0.088 0.139 7.92

NEIM 0.102 0.137 7.99

Table 4.8: Estimated Sea Clutter Parameters From Real Sea Reflectivity Collection in Table

4.7.
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(a)

(b)

Fig. 4.28: IM, NCF, and NEIM Estimated Probability of False Alarm Using

Grimsby Reflectivity Observations: (a) 19980205_191043 (RB 3), ρ = 15m, and (b)

19980205_184733 (RB 20), ρ = 9m.
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4.5.2.2 Grimsby HH Polarization

As previously noted, the ICKD provides a well-matched model using real sea clutter sam-

ples with VV polarization but does not provide a matched fit using heavier-tail HH polar-

ization [8]. To test (2.14), we use HH datasets obtained with the IPIX radar deployed at

Grimsby CA staring into Lake Ontario at a hight of 20 m above the surface. Since this is

a land-based radar, the grazing angles φgr are smaller resulting in heavier-tail or spikier

clutter as captured with Equation (3.1), in that smaller values of φgr result in spikier clutter.

We compare two different methods to estimate the (2.14) parameters. In Section 3.8,

we used the MATLAB function fminsearch that implements the 3-D Nelder-Mead search.

Since this is a multi-dimension unconstrained search method, we use it to estimate the

seven parameters of the KK distribution

θKK = [kr,ν1,b1, pn1,ν2,b2, pn2],

NCFK7: pK7(z) =(1− kr)p1(z;ν1,b1, pn1)+ kr p2(z;ν2,b2, pn2). (4.9)

We also test a similar method provided in [56] by using the same shape and thermal noise

parameters for the two KK distributions with one difference in that we also fit the ratio

parameter kr, providing,

NEIMK: pK5(z) =(1− kr)p1(z;ν1,b1, pn1)+ kr p2(z;ν1,b2, pn1). (4.10)

For this analysis, range bins were specifically chosen to have different sea clutter spike and

CNR levels. Table 4.9 provides the radar parameters for each range bin. Environmental

data was not available for the wind and sea states. Fig. 4.29(a) displays the time-history

intensity data for the HH dataset 19980223_184853, (RB10) and Fig. 4.29(b) compares the

fitted results for the NEIM, NCFK7 and NEIMK methods. Since this is an extreme heavy-

tail example, we notice the NEIM and NEIMK do not provide a good fit to the tail. Fig.

4.30 displays the time-history intensity data and fitted results for the compared methods
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(a)

(b)

Fig. 4.29: Grimsby HH Polarization Heavy Tail Clutter Example, Dataset

19980223_184853, (RB10): (a) Spikey or Heavy Tail Time History Intensity Data,

and (b) Heavy Tail Clutter Probability of False Alarm Estimation Results.
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Dataset 19980223_184853 19980227_214328

Date 02/23/1998 02/27/1998

Time 18:48:53 21:43:28

Polarization HH HH

Number range cells 34 28

Starting range 3300 m 3660 m

Selected range bin (RB) 10 1

Range resolution (ρ) 3 m 9 m

Range bin duration 60.0 s 60.0 s

Total observations (sweep) 60000 60000

Antenna azimuth angle 0.11° 45.09°

Antenna elevation angle 359.78° 359.81°

Table 4.9: IPIX Grimsby Scene Collection Information

using the 19980227_214328 (RB1) dataset. We see in this result that both the NCFK7 and

NEIMK provided a good match in the tail, whereas the NEIM does not. Table 4.9 provides

the estimated parameters θKK = [kr,ν1,b1, pn1,ν2,b2, pn2] for the tested methods for (RB

1) using dataset 19980223_184853.
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(a)

(b)

Fig. 4.30: Grimsby HH Polarization Heavy Tail Clutter Example, Dataset

19980227_214328, (RB1): (a) Spikey or Heavy Tail Time History Intensity Data,

and (b) Heavy Tail Clutter Probability of False Alarm Estimation Results.
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Estimation Shape Scale Noise Shape Scale Noise MSE

method ν̂1 b̂1 p̂n1 k̂r ν̂2 b̂2 p̂n2 (dB)

NEIM 0.4143 0.9534 0.5654 0.0 N/A N/A N/A -56.00

NCFK7 0.1502 0.3598 0.5108 0.0692 0.3817 0.4932 0.1683 -86.22

NEIMK 0.4143 0.9534 0.5654 0.1012 0.4143 0.2515 0.5654 -82.12

Table 4.10: Estimated Sea Clutter Parameters From Real Sea Reflectivity Collection, in

Table 4.9.
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4.5.3 DSTO Ingara Radar 15 February 1999

To model maritime surveillance radar performance for systems operating in Australian

environmental conditions, the Australian government Defense Science and Technology Or-

ganization (DSTO), conducted sea trails ESRL 38/97 off the Northern Australian coastline

in February 1999 [65]. To collect the reflectivity datasets and model the Anti-Submarine

Warfare mode of the Elta EL/M 2022A(V)3 radar, the Surveillance Systems Division (SSD)

Ingara airborne radar system was installed on a Beech King Air 350 aircraft.

Three sea clutter datasets were provided from Flight-19, 15 February 1999, when the

radar was operated in its stare mode, with the data being range compressed with a conjugate

chirp, providing 3297 samples at 1.5 meter resolution. We identified specific range-bins

in two of the datasets by using the maximum echo return for each dataset and verifying

the clutter data is free of radio-frequency interference (RFI) or spoking due mainly to the

simultaneous operation of the weather radar of the aircraft and the Ingara radar [65]. We

also verified by analysis of both the time history and spectral response data, that there were

no strong targets captured in the sea echo reflectivity. The available scene collection and

environmental information is provided in Table 4.11.

Our motivation for developing the combined NEIM parameter estimation procedure

was to estimate the parameters for this dataset where we could not clearly identify a noise

floor using the same spectral estimation procedure provided in [7]. This could be due to the

lower CNR for the Ingara datasets or could related to the stare mode of the radar. We know

[65] that the provided data is range compressed, but we have no information concerning

the Doppler or azimuth time processing.

Fig. 4.31(a) shows the STFT for range-bin 11 of the DSTO R22985A dataset, and

Fig. 4.31(b) is the averaged power spectral density. We do see what looks like a minimum
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Dataset Information R22985A R22986

Date 02/15/1999 02/15/1999

Flight 19 19

Number range cells 3297 3297

Starting range 8,307 m 8,028 m

Selected range bin (RB) 11 51

Range resolution 1.5 m 1.5 m

Antenna azimuth angle 93.95° 93.95°

Antenna elevation angle −1.893° −1.957°

Wind speed (Instantaneous) 13 kn 13 kn

Wind Gusts 26 kn 26 kn

Wind direction 260.0° 260.0°

Significant Wave height 1 m 1 m

Wave direction 290.0° 290.0°

Table 4.11: DSTO Ingara Radar Dataset Information

value around -200 Hz, but without having all the processing parameters we cannot com-

pensate for any process or filter gain. Fig 4.32 shows the tail fitted curves for the two data

segments used, and the figures do show a good fit to the actual data. Table 4.12 provides

the estimated parameters for the Ingara reflectivity datasets compared, and we had to use

the estimated p̂n obtained with the one parameter search in (4.2) to provided the estimated

CNR.
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(a)

(b)

Fig. 4.31: (a) STFT of DSTO R22985A (RB 11), (b) Power Spectrum DSTO R22985A

(RB 11).
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(a)

(b)

Fig. 4.32: (a) PFA Using Estimated Parameters for R22985A, (RB 11); (b) PFA Using Esti-

mated Parameters for R22986, (RB 51).
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CNR NEIM

Dataset (dB) ν̂ b̂ p̂n

R22985a (RB 11) 0.1549 1.0572 2.0773 0.4911

R22986 (RB 51) 4.7130 1.5553 2.0807 0.2525

Table 4.12: NEIM Parameter Estimation Using Ingara Sea Echo Reflectivity Data.
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4.6 Results Discussion

4.6.1 Testing with Simulated Data

Since there are many algorithms available for nonlinear curve fitting or minimizing a

MSE, we wanted to provided a comparison of a few methods that are easy to implement

and do not require the use of derivatives. Our comparisons will contrast the parameter

estimation accuracy and computation time performance between both 1-D and 3-D search

methods, we will choose readily available methods to allow a good comparison.

4.6.2 1-D Search Methods

The three 1-D parameter search methods are compared in Fig. 4.2 through Fig. 4.4.

We see in Fig. 4.2(b) that the three methods have almost identical thermal noise parameter

estimation results, meaning the estimated shape and scale parameters derived by fitting the

ICKD using the first two sample intensity moments µ̂1, µ̂2 with equations (4.5), (4.7) will

have minimum error between the results. We see Fig. 4.3(a) compares the total number

of function evaluations being the number of times the goodness of fit measure (4.1) was

called. It is easy to see, the Mathews golden search is stable throughout the CNR range and

completes with less evaluations than fminbnd but more evaluations than the Brent method.

Fig. 4.3(b) shows the time performance and the results are understandable considering the

number of function evaluations depicted in Fig. 4.3(a).

4.6.3 One and Three Dimension Search

In Section 4.4 we compare the 1-D and 3-D estimation methods with the intensity

moments (IM) method with known thermal noise using (3.5) and (3.6). The plots compare
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the estimated shape parameter ν̂ , thermal noise parameter p̂n, computation time (CT) and

curve fitting MSE for CNR in the range of -5 dB to 20 dB and shape parameters ν =

[0.1, 0.5, 1.0]. For all comparisons in the section, we are using MATLAB’s fminsearch for

the NCF method and fminbnd for the NEIM method. For the IM method we use (3.8) and

(3.10) with known thermal noise pn. We summarize the compared shape parameters below.

Section 4.4.1, (ν = 0.1): Overall the NCF method provided better parameter estimation

accuracy with the exception ν̂ diverages beginning at a CNR > 13 dB. The compu-

tation time (CT) performance is overall 30 times better using the NEIM and we are

not comparing the IM since it is a closed form solution, not a curve fitted result.

Section 4.4.2, (ν = 0.5): Overall the NCF method provided better parameter estimation

accuracy. The CT performance varies between 60 and 15 times improved for the

NEIM method where the difference is maximum at CNR -5 dB.

Section ??, (ν = 1.0): Overall the NCF method provided better parameter estimation ac-

curacy with the NEIM method improved below -2 dB. The CT performance varies

between 70 and 10 times improved for the NEIM method where the difference is

maximum at CNR -2 dB.

The results provided in Table 4.1 and Table 4.2 are as expected and we note Table 4.2

correctly captures how the estimated shape parameter ν̂ = 0.1 diverges from the actual

value for a CNR = 20 dB.

4.6.4 Simulation of Correlated Coherent Sea Clutter

In Section 4.4.6 we provide a test case using simulated correlated coherent (CC) clutter

with the same statistical and temporal properties of the CSIR CFC17_001 (RB 1) dataset.

The TFR comparison in Fig. 4.15 clearly shows that the simulated method [7] captures the
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same non-stationarity depicted in the real CC dataset. The importance of this model cannot

be overstated as the non-stationarity caused by the quickly changing sea surface continue

to challenge the modeling of the sea surface for use in detection algorithms [7, 62].

4.6.5 Real Data Results

In this section we provide ICKD parameter estimation results using real sea echo reflec-

tivity data provided with the CSIR Fynmeet, McMaster University IPIX and DSTO Ingara

radars. Having characterized the estimation accuracy and and CT performance, we what to

show that the 1-D search method will have comparable estimation accuracy performance

with the IM method with known thermal noise and 3-D NCF. To that end, we provide

different test cases to show 1-D search result.

Section 4.5.1, CSIR Fynmeet Radar 3 August 2006: The CSIR datasets were specifi-

cally chosen to show the estimation accuracy of the estimators across a range of

ν while also displaying sea clutter phenomenon that result in poor CCDF fits in the

tail of the distribution. For the simulated parameter estimation tests, we knew all the

values we were simulating allowing us to provide direct comparisons with the esti-

mated values. For the real datasets, we do not have any information concerning the

ICKD parameters, therefor we use the fit to the CCDF or PFA curves as a goodness

measure. Also for all estimations using the IM method, we start by estimating the

thermal noise using the non-parametric spectral estimation method provided in Sec-

tion 3.3.2. We provide Fig. 4.18(b) through Fig. 4.20(b) to show the impacts of the

sea surface on the returned clutter and how well the IM, NCF and NEIM methods fit

the data sets. We next provide PFA curves in Fig. 4.21 through Fig. 4.23 that show

good tail fits for the selected range bins while the CNR values in Table 4.5 indicate

variability between the IM, NCF, and NEIM methods. To better understand this vari-
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ably in CNR, we provide Fig. 4.24(a) which shows the estimated shape parameter

ν̂ for all range bins in the CFC17_010 dataset that show reasonable agreement be-

tween the IM, NCF, and NEIM methods. However Fig. 4.24(b) shows a disparity in

p̂n. The IM non-parametric spectral estimate increases with range, whereas the noise

estimates for the NCF and NEIM methods are obtained by minimizing (3.20). This

is emphasized in Fig. 4.23 that shows excellent agreement of the PFA curves for the

methods tested. Note, however, that there is variability in the estimated p̂n in Table

4.5. Fig. 4.24(a) and Fig. 4.24(b) show very good agreement between the NCF and

the computationally efficient NEIM.

Section 4.5.2, McMaster University IPIX Radar, Grimsby Ontario 1998: For the IPIX

Grimsby datasets, we chose specific datasets to compare the estimated ICKD param-

eters using VV polarization at different range resolutions ρ and datasets to test an

initial implementation of a heavy-tail ICKD model using HH polarization. We see

the same good parameter estimation accuracy using the tested IM, NCF and NEIM

methods. Fig. 4.28 depicts the PFA curves of the compared methods with specific

values in Table 4.8. Fig. 4.29 provides an example of heavier-tail sea clutter and the

need to models to accurately capture the parameters. Fig. 4.30(a) depicts the time

history intensity data for a HH polarization collection, with Fig. 4.30(b) showing a

good fit using both a seven parameter search estimating the parameters in (4.9) and

a five parameter fit (4.10). Both of these methods provide reasonable results for this

chosen dataset, however the results did not completely agree with the results in [56]

which we believe to be a result of the Grimsby dataset having a very low grazing

angle.

Section 4.5.3, DSTO Ingara Radar 15 February 1999: As we mentioned our motiva-

tion for developing the combined NEIM parameter estimation procedure was to es-
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timate the parameters for this dataset where we could not clearly identify a noise

floor using the same spectral estimation procedure provided in [7]. This could be

due to the lower CNR for the Ingara datasets or could related to the stare mode of

the radar. Fig. 4.31(b) depicts the averaged Doppler spectra for the DSTO R22985A

(RB 11) dataset and it is easy to see, the noise floor is not as clearly defined as in

Fig. 3.1(b). Fig. 4.32 clearly depicts that the NEIM method accurately models the

two datasets, with the exception of the heavier tail occurring above the normalized

threshold ζ ≥ 11dB.
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Chapter 5

PARAMETER ESTIMATION USING 1-D NONLINEAR CURVE FITTING AND

FRACTIONAL INTENSITY MOMENTS

5.1 Introduction

As demonstrated in [12], more accurate estimates of the intensity compound K-distribution

(ICKD) sea clutter model parameters are obtained using the fractional intensity moment

(FIM) approach (see Section 3.4) than the integer intensity moment (IM) approach (see

Section 3.3). We thus propose a new estimation method that is similar to the noise-power

estimation intensity moments (NEIM) approach, presented in Chapter 4, in that a thermal

noise power estimate is iteratively computed to minimize the curve fitting mean-squared

error (MSE). However, the clutter-to-noise ratio (CNR) estimated fractional intensity mo-

ment (CEFIM) method obtains the shape and scale parameter estimates using the FIM.

5.2 Description of Proposed Method

Similar to the iterative NEIM method, the simulated complementary cumulative density

function (CCDF) ΦZ
(
zk; θ̂θθ

(i))
is used at the ith iteration to select M (out of L) tail CCDF

points. These points are then used to compute the curve fitting MSE in (3.20). The noise

power estimate p̂(i)n is obtained using the one-dimensional (1-D) search in Equation (4.2).

This estimate is used in (3.11) to obtain the CNR estimate as

η̂
(i) =

µ̂1− p̂(i)n

p̂(i)n

(5.1)

where µ̂1 is computed using(4.3). To obtain the shape parameter estimate, we use the

relationship ν/η =
√

ν νeff−ν from Equation (3.12) to replace νeff with the estimated η in
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(3.14). The resulting estimated shape parameter is given by [12, 18]

ν̂
(i) =

ρ(ρ +1)η̂(i)
(
η̂(i)+1

)
(

1−ρ β̂ρ,1/(η̂
(i)+1)

α̂ρ,1−1−ρ

)
(5.2)

where β̂ρ,1 and α̂ρ,1 are obtained using sample moment estimates µ̂ρ+1, µ̂ρ−1, and µ̂ρ ,

computed using

µ̂p =
1
Ns

Ns

∑
k=1

zp
k . (5.3)

The estimated scale parameter b̂(i) is obtained using (4.6) and θ̂θθ
(i)

= [ν̂(i) b̂(i) p̂(i)n ], is

used to simulate the CCDF points Φsim
Z (zm), m = 1, . . . ,M for use in the next iteration. Itera-

tion convergence is again based on pre-determined stopping criteria, and the final estimated

θ̂θθ is obtained after convergence.

Fig. 5.1 provides a flowchart of the CEFIM algorithm. For input, it requires the mean-

normalized clutter intensity observations, the fractional moment ratios β̂ρ,1 and α̂ρ,1, in

Equation (3.13), the estimated first moment µ̂1 in (4.3), and a range of values for the thermal

noise power parameter pn ∈ Rp. The steps of the algorithm are summarized with Algorithm

3. Similar to the NEIM, the stopping criteria of the iterative algorithm are based on the

convergence of estimated thermal noise term p̂n. At the ith iteration, the difference in step

size is |p̂(i+1)
n − p̂(i)n | < εX , where εX is the minimum step size provided in Table 3.2. The

optimization algorithm used in this method finds the minimum of a single-variable function

over a fixed interval using the golden search method and parabolic interpolation [49]. In

MATLAB, the function that implements this minimization is fminbnd.
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Algorithm 3: Iteration Steps for CEFIM

• Input: Initial range of CNR η and range of CNR η ∈ Rp, mean-normalized intensity

observations, zk, k = 1, . . . ,Ns, minimum step size εX , PFA ≥ 0.003

• Using zk, simulate Φsim
Z (z`), `= 1, . . . ,L, using the intensity data provided; this is

simulated as Φsim
Z (z`)= Pr(Z > z`)

• Obtain M (out of L), the number of tail CCDF points, as the number of intensity

samples zm such that PFA ≥ 0.003, where PFA = Pr(Z > zm)= Φsim
Z (zm)

• At the ith iteration, i = 0, . . . , Imax, compute the tail M modeled CCDF points

ΦZ(zm);θθθ
(i), m = 1, . . . ,M using ΦZ(z;θθθ)=

∫
∞

z pZ(ζ ;θθθ)dζ , where pZ(ζ ;θθθ) is the

ICKD model PDF with parameter vector θθθ . Also, θθθ
(i) are all allowable vector

values of θθθ over which the search is performed. This is accomplished by first

obtaining the optimal p̂(i)n (4.2), computing CNR from p(i)n using (5.1), then

calculating the estimated shape ν̂(i) and scale b̂(i) using (5.2) and (4.6)

• Compute the curve fitting MSE as EZ(θθθ
(i))= 1

M ∑
L−M
m=1

(
Φsim

Z (zm)−ΦZ(zm;θθθ
(i))
)2

• Find p̂(i)n that minimizes the curve fitting MSE,

EZ(p(i)n ) = 1
M ∑

L−M
m=1

(
Φsim

Z

(
zm

)
−ΦZ

(
zm; p(i)n

))2

• Stopping criteria: for a given εX , stop iteration when |p̂(i+1)
n − p̂(i)n |< εX
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Fig. 5.1: CNR Estimated Fractional Intensity Moment (CEFIM), Flowchart Using a One

Dimensional Search Algorithm.
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5.3 Performance of CEFIM Method Using Simulated Sea Clutter Intensity

We compare the IM and FIM ICKD model parameter estimation methods with the

NEIM and the new CEFIM method. We simulate clutter intensity observations following

the simulation environment and algorithm parameters described in Section 3.7. We selected

CNR values between 0 and 10 dB and a shape parameter value between 0.1 and 3. We

selected L CCDF points such that the minimum probability of false alarm in (3.18) satisfies

PFA = Φ(z`) ≥ 0.003, `= 1, . . . ,L. This is important in order to avoid fitting the tail of the

CCDF to regions where the clutter is very spiky with minimal samples and where the fit is

poor [6, 19].

According to Reference [12], the fractional order p = 0.5 provides the minimum MSE

with single-pulse data. It was also observed that negative CNR values resulted from large

estimated values of the shape parameter. As we also observed this behavior, we provide

minimum comparison of the CEFIM with the FIM method. We concentrate instead on

comparing the parameter estimation performance between the intensity moment method

with known thermal noise (IMN), the fractional moment method with known CNR (FMC),

the three-dimensional (3-D) nonlinear curve fitting (NCF), the NEIM and the new CEFIM.

Unless otherwise noted, we use Ns=10,000 samples and run 1,000 Monte Carlo simulations.

For the FMC and CEFIM, single-pulse data was used and fractional order p = 0.5. All the

simulated observations are also normalized by their mean.

Table 5.1 and Table 5.2 provide the estimated shape and thermal noise parameters,

along with the variance and bias estimates for different shape and CNR levels. For the

estimated bias measure, we use the squared difference (E[θ̂ ]−θ)2, where the parameter θ

can correspond to the shape parameter ν , scale b or noise power pn.
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Simulated Estimation Estimation

parameters method results

Shape Noise CNR E[ν̂ ] Var(ν̂) (E[ν̂ ]−ν)2 Time

ν pn (dB) (log10) (log10) (sec)

IMN 0.1034 -3.59 -4.91 0.0000

FMC 0.1017 -3.67 -5.49 0.0025

0.1 0.5000 0 NCF 0.1596 -1.58 -2.45 5.0252

NEIM 0.1054 -3.37 -4.52 0.1463

CEFIM 0.1024 -3.68 -5.21 0.2207

IMN 0.5058 -2.73 -4.50 0.0000

FMC 0.5024 -3.16 -5.27 0.0025

0.5 0.0909 10 NCF 0.5023 -1.95 -5.50 4.2329

NEIM 0.5085 -2.21 -4.17 0.1012

CEFIM 0.5024 -2.41 -5.40 0.1001

IMN 1.5164 -1.74 -3.75 0.0000

FMC 1.5101 -1.95 -4.28 0.0025

1.5 0.2303 5 NCF 1.5154 -0.44 -4.47 8.7020

NEIM 1.5979 -0.68 -2.07 0.0871

CEFIM 1.5704 -0.82 -2.39 0.0856

Table 5.1: Estimated Shape, Variance and Squared-bias for the IMN, FMC, NCF, NEIM

and CEFIM Methods.
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Simulated Estimation Estimation

parameters method results

Shape Noise CNR E[p̂n] Var(p̂n) (E[p̂n]− pn)
2 Time

ν pn (dB) (log10) (log10) (sec)

IMN known NA NA 0.0000

FMC known NA NA 0.0025

0.1 0.5000 0 NCF 0.4695 -2.06 -3.03 5.0252

NEIM 0.4969 -3.41 -5.01 0.1463

CEFIM 0.4990 -3.64 -5.98 0.2207

IMN known NA NA 0.0000

FMC known NA NA 0.0025

0.5 0.0909 10 NCF 0.0920 -3.20 -5.80 4.2329

NEIM 0.0901 -3.45 -6.41 0.1012

CEFIM 0.0913 -4.07 -6.57 0.1001

IMN known NA NA 0.0000

FMC known NA NA 0.0025

1.5 0.2303 5 NCF 0.2490 -1.68 -4.11 8.7020

NEIM 0.2300 -2.17 -3.98 0.0871

CEFIM 0.2334 -2.30 -4.32 0.0856

Table 5.2: Estimated Thermal Noise pn, Variance and Squared-bias for the IMN, FMC,

NCF, NEIM and CEFIM Methods.
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5.4 Performance of CEFIM Method Using Real Sea Clutter

We validated the CEFIM performance using sea clutter observations from a database

provided by the Council for Scientific and Industrial Research (CSIR) [66]. The data was

collected using the Fynmeet Radar deployed at Measurement Station 3 in the Overberg

Test Range. The trials were conducted between 25 July and 4 August 2006 [27]. Table 5.3

provides information on the selected range bins, including environmental conditions. The

sea surface dynamics must be accounted for when modeling real sea echo reflectivity, as

they can affect the performance of both the moment and nonlinear curve fitting estimators.

An in-depth analysis of the CSIR data is provided in [7], together with a method to simulate

correlated coherent sea clutter that can capture the time-varying spectral characteristics of

specified range bins.

Fig. 5.2: IM, FMC, NEIM and CEFIM Estimated Probability of False Alarm Using CSIR

Sea Clutter Observations CFC17_001 (RB 26).
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Dataset Information CFC17_010 CFC17_001

Date 08/03/2006 08/03/2006

Time 14:46:43 13:20:23

Number range cells 48 96

Starting range 7,000 m 3,000 m

Selected range bin (RB) 19 2, 26

Range resolution 15 m 15 m

Range bin duration 59.9488 s 32.7038 s

Total observations (sweep) 299,745 163,520

Antenna azimuth angle 93.95° 165.5°

Antenna elevation angle −0.48° −1.06°

Wind speed (Instantaneous) 15 kn 15.5 kn

Wind Gusts 26 kn 29.2 kn

Wind direction 262.6° 246.9°

Significant Wave height 2.38 m 2.22 m

Wave direction 141.3° 134.5°

Table 5.3: CSIR Fynmeet Radar Dataset Information

110



Table 5.4 provides the estimated shape parameter ν̂ , thermal noise power p̂n, and the

resulting estimated CNR for the IMN, FMC, NCF, NEIM and CEFIM methods. The cor-

responding PFA curves are provided in Figure 5.2, where the accuracy of the NEIM and

CEFIM methods is comparable to that of the IMN and NCF methods. For the IMN and

FMC results, we estimated the thermal noise power using the time-averaging spectral esti-

mation method in [7].

Dataset Estimation ν̂ p̂n CNR ((4.8)) MSE ((3.20))

Range Bin method (dB) (dB)

IMN 0.356 0.014 18.53 -67.86

FMC 0.337 0.014 18.53 -73.83

RB 2 NCF 0.304 0.005 23.18 -75.47

NEIM 0.358 0.011 19.59 -68.33

CEFIM 0.331 0.017 17.54 -74.58

IMN 1.279 0.015 18.28 -62.46

FMC 1.240 0.015 18.28 -63.84

RB 26 NCF 1.379 0.035 14.34 -72.06

NEIM 1.311 0.002 26.36 -63.06

CEFIM 1.277 0.003 25.66 -64.28

IMN 3.332 0.121 8.62 -65.46

FMC 3.441 0.121 8.62 -66.66

RB 19 NCF 3.142 0.121 8.60 -63.85

NEIM 2.478 0.241 4.96 -68.28

CEFIM 2.354 0.266 4.41 -78.43

Table 5.4: Estimated Sea Clutter Parameters for CSIR Datasets.
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5.5 Results Discussion

It is expected that the CEFIM estimation method will have similar performance when

compared to the NEIM.

5.5.1 Testing with Simulated Data

We see in Table 5.1 and Table 5.2 we see the variance and squared-bias of the estimated

shape ν̂ and thermal noise p̂n values are improved for the CEFIM estimator for all tested

levels. Also, the CEFIM has overall lower computation time (CT) for the curve fitting

methods with the exception of the ν = 0.1, pn = 0.5 test case.

5.5.2 Real Data Results

We validate the CEFIM performance using the CSIR datasets in Table 5.3. We see

very good agreement between all compared methods in the PFA curves provided in Figure

5.2. Table 5.4 provides the estimation results for the compared methods and see the MSE

is lowest for the NCF and CEFIM methods. This is a good result because we can obtain

almost identical results using the CEFIM without the CT burden of the 3-D search NCF

method. We also see for (RB 19), the CEFIM had the best MSE performance.
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Chapter 6

ESTIMATION ERROR ANALYSIS

6.1 Variance Analysis and the Cramér Rao Lower Bound

As demonstrated in [18], both the IM and FIM based estimators of the ICKD model

parameters provide consistent estimation error performance, even for smaller sample sizes,

when an accurate thermal noise estimate is available. Note that, according to [67], moment-

based estimators are asymptotically consistent and asymptotically unbiased. As the new

NEIM and CEFIM estimators use the IM and FIM, respectively, to iteratively provide im-

proved estimates, we want to investigate their asymptotic estimation error performance.

This is performed by numerically computing the CRLB of the shape parameter estimate

that provides a lower bound on the variance of unbiased shape estimates. Since there is no

closed form solution of the CKD PDF in (2.10), we use numerical methods to calculate the

CRLB of the shape parameter estimate as [68]

CRLB(ν) =
1

Ns

∫
∞

0

(
∂

∂ν

(
ln pZ(z)

))2
pZ(z)dz

. (6.1)

Note that the CRLB for the shape parameter does not depend on the scale parameter [68].

We numerically computed the CRLB in (6.1) and compared it to the sample variance of

the shape parameter estimates obtained from the LIM, NCF, and the new NEIM and CEFIM

estimators. The comparison for ν = 1 and varying CNR is provided in Fig. 6.1(a); these

results were obtained using Ns = 10,000 intensity observation samples and 1,000 Monte

Carlo simulations. For the LIM estimate, Equation (3.16) was used with νeff obtained from

the estimated moments in (3.12). As it can be seen in this figure, the CEFIM and NCF
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sample variances are closest to the CRLB for high CNR. In order to investigate whether

the estimators are unbiased, Fig. 6.1(b) provides the squared-bias of the estimated shape

parameter. This bias decreases with increasing CNR. The CEFIM has the lowest bias at

high CNR. The lowest estimation MSE in Fig. 6.1(c) is achieved by the NCF; however, as

this method requires a 3-D search, it is more computationally intensive when compared to

the CEFIM. Similar results are provided in Fig. 6.2 for varying shape parameter ν and 5

dB CNR. The IM performance is also included in this figure in order to demonstrate that,

even with 10,000 samples, its estimation accuracy is low. As mentioned in [12], the FIM

estimator is also expected to perform poorly when estimating all three ICKD parameters

without pulse-to-pulse integration.

For the comparisons in this section we first note that Brent’s method [50] in Fig. 4.3(a)

has the better function count and computation CT performance compared to the Mathews

and fminbnd routines, therefore the results in this section for the NEIM and CEFIM meth-

ods were obtained using MATLAB’S mex API with the method provided by [51]. We also

compared mex implementation of Nelder-Mead [48] used in the NCF but did not see any

performance improvements, therefore we are using MATLAB’S fminsearch for all NCF

comparisons.
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(a)

(b)

(c)

Fig. 6.1: Estimated Shape Parameter: (a) Variance; (b) Squared-bias; and (c) MSE for

Varying CNR and ν = 1.
115



(a)

(b)

(c)

Fig. 6.2: Estimated Shape Parameter: (a) Variance; (b) Squared-bias; and (c) MSE for

Varying ν and 5 dB CNR.
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6.2 Mean-squared Error Performance Analysis

The MSE performance of the IM, NCF, LIM, NEIM and CEFIM estimators was com-

pared using 1,000 Monte Carlo simulations. Using ν = 0.1 and varying the thermal noise

power as in (4.8), Fig. 6.3 shows the estimation MSE for the shape and noise power pa-

rameters and each method’s computational time (CT). As expected, the IM is the fastest

to compute but results in the largest overall MSE without the use of very large data vec-

tors. Compared to the LIM and NCF, the new NEIM and CEFIM methods have the lowest

CT. For this very small value of the shape parameter, the LIM does not perform as well

as for ν = 1 in Fig. 6.1(c). Also, both the NCF and CEFIM shape estimation performance

decreases after about 12 dB CNR. The performance of all the methods is as expected when

the same figures are provided for ν = 1.5 in Fig. 6.4.

For the comparisons in this section we first note that Brent’s method [50] in Fig. 4.3(a)

has the better function count and computation CT performance compared to the Mathews

and fminbnd routines, therefore the results in this section for the NEIM and CEFIM meth-

ods were obtained using MATLAB’S mex API with the method provided by [51]. We also

compared mex implementation of Nelder-Mead [48] used in the NCF but did not see any

performance improvements, therefore we are using MATLAB’S fminsearch for all NCF

comparisons.

In Tables 6.1 and 6.2, additional performance results are provided for varying values of

ν and CNR. In some cases, the number of samples were reduced to determine the effect

of data record size on the MSE performance. We selected four shape parameter values,

ν = 0.1, 0.5, 1, 1.5.

Computational Time: Using a large number of samples, Ns = 10,000, the NCF CT (in

green) is between 20 to 50 times larger than the NEIM and CEFIM CTs (in red); the

difference in CT appears to increase with increasing ν and increasing CNR. The LIM CT
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(a)

(b)

(c)

Fig. 6.3: Estimated Shape for Varying CNR and ν = 0.1: (a) Shape MSE; (b) Thermal

Noise Power MSE; (c) CT.
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(a)

(b)

(c)

Fig. 6.4: Estimated Shape for Varying CNR and ν = 1.5: (a) Shape MSE; (b) Thermal

Noise Power MSE; (c) CT.
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is about 1.5-3.5 times larger than the NEIM and CEFIM CTs. The NEIM and CEFIM CTs

appear to be relatively robust to increases in ν and CNR values; the CTs remain around 0.1

to 0.2 s and slightly increase with decreasing ν , CNR and the sample number. Note that

the NEIM and CEFIM CTs appear to be very similar.

MSE Estimation Accuracy: As the MSE is computed using semilog scale, the larger the

negative number, the better the performance. For Ns = 10,000 and the ν values considered,

the NCF method performs somewhat better than the new methods. The difference in shape

estimation MSE performance varies from -3.90 to 0.02 for the NCF and -3.68 to 0.11 for

the CEFIM. As with the CT, the CEFIM MSE performance is slightly better than the one

for the NEIM, and they are both close in accuracy to the NCF. Note that the accuracy of the

LIM appears to be dependent on the value of ν ; the shape estimate MSE improves higher

ν values and smaller number of samples. Similar results are observed for the noise power

estimate MSE using the NEIM and CEFIM in that the accuracy improves for smaller ν val-

ues, larger sample sizes, and increasing CNR. The table also shows that overall, the CEFIM

has the best noise power MSE, considering all simulated shape, CNR and samples sizes.
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Simulation Estimation Estimation Results

Parameters method log10 log10 Time, s

MSEν̂ MSEp̂n

ν = 0.1 IM -2.21 -1.76 0.0012

pn = 0.5 NCF -3.90 -3.61 5.1746

0 dB CNR LIM -3.18 -2.65 0.3116

Ns = 10,000 CEFIM -3.68 -3.63 0.2148

NEIM -3.37 -3.41 0.16

ν = 0.1 IM -0.62 -0.43 0.0001

pn = 0.2403 NCF -3.05 -2.71 5.6341

5 dB CNR LIM -2.12 -1.79 0.2912

Ns = 500 CEFIM -2.65 -2.80 0.1493

NEIM -2.27 -2.60 0.155

ν = 0.5 IM -1.04 -1.37 0.0012

pn = 0.0909 NCF -3.16 -4.14 3.3571

10 dB CNR LIM -2.32 -3.18 0.2809

Ns = 10,000 CEFIM -2.87 -4.05 0.1062

NEIM -2.42 -3.45 0.1042

Table 6.1: Estimated Shape ν and Noise Power pn, Estimation MSE and Computational

Time for IM, NCF, LIM, CEFIM, NEIM Methods.
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Simulation Estimation Estimation Results

Parameters method log10 log10 Time, s

MSEν̂ MSEp̂n

ν = 1 IM -0.31 -1.19 0.0012

pn = 0.0099 NCF -2.58 -3.96 4.0322

20 dB CNR LIM -1.88 -3.33 0.3160

Ns = 10,000 CEFIM -2.51 -4.40 0.0922

NEIM -2.13 -4.32 0.0934

ν = 1.5 IM 0.54 -1.08 0.0012

pn = 0.2403 NCF -0.81 -2.27 5.3770

5 dB CNR LIM -0.75 -2.24 0.3160

Ns = 10,000 CEFIM -0.80 -2.28 0.0937

NEIM -0.68 -2.17 0.0897

ν = 1.5 IM 13.95 4.96 0.0002

pn = 0.2403 NCF 0.02 -1.45 5.8762

5 dB CNR LIM -0.32 -1.93 0.5727

Ns = 1,000 CEFIM 0.11 -1.57 0.1134

NEIM 0.22 -1.52 0.115

Table 6.2: Estimated Shape ν and Noise Power pn, Estimation MSE and Computational

Time for IM, NCF, LIM, CEFIM, NEIM Methods.
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6.3 Results Discussion

6.3.1 Estimation Error Analysis

The estimation error comparisons in Section 6.1 and Section 6.2 are provided for the

following methods: IM, LIM, CEFIM, NEIM, and NCF. All comparisons are accomplished

using Ns = 10,000 samples and are averaged over 1,000 Monte-Carlo simulations.

Section 6.1, Cramér-Rao Lower Bound: The comparison for ν = 1 and varying CNR is

provided in Fig. 6.1(a). Fig. 6.1(b) provides the squared-bias of the estimated shape

parameter. This bias decreases with increasing CNR. The CEFIM has the lowest

bias at high CNR. The lowest estimation MSE in Fig. 6.1(c) is achieved by the NCF;

however, as this method requires a 3-D search, it is more computationally intensive

when compared to the CEFIM. Similar results are provided in Fig. 6.2 for varying

shape parameter ν and 5 dB CNR. The IM performance is also included in this figure

in order to demonstrate that, even with 10,000 samples, its estimation accuracy is low.

Section 6.2, Mean-squared Error Analysis: Fig. 6.3 shows the estimation MSE for the

shape and noise power parameters and each method’s computational time (CT). As

expected, the IM is the fastest to compute but results in the largest overall MSE

without the use of very large data vectors. Compared to the LIM and NCF, the new

NEIM and CEFIM methods have the lowest CT. For this very small value of the

shape parameter, the LIM does not perform as well as for ν = 1 in Fig. 6.1(c). Also,

both the NCF and CEFIM shape estimation performance decreases after about 12 dB

CNR. The performance of all the methods is as expected when the same figures are

provided for ν = 1.5 in Fig. 6.4.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Maritime environment conditions can affect the intensity of sea clutter reflections; thus,

different statistical models are needed to characterize the various types of sea clutter in or-

der to maintain high radar performance. Whereas time-varying models need to be used

for rapidly-varying sea clutter at very low grazing angles [60, 61], the intensity-based

compound K-distribution (ICKD) is a well-matched clutter amplitude distribution model

with added thermal noise. In this paper, we considered a new computationally efficient

and accurate curve fitting approach to estimate the ICKD model parameters. The method

combines the intensity moments estimation method with fitting sea clutter intensity ob-

servations to a one-dimensional ICKD model. We also extended this model for use with

fractional moments and demonstrated that the new approach is comparable in estimation

performance, but more computationally efficient to the multidimensional Nelder-Mead un-

constrained optimization method. This was shown with simulated and real sea clutter re-

flectivity observations. We also compare the estimation accuracy of the shape parameter

with the numerically-computed Cramér-Rao lower bound.
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7.2 Future Work

7.2.1 Covariance Matrix Estimation

Researchers have been studying both non-coherent and coherent target detection for

many years for which the estimation of the sea clutter covariance matrix is necessary. The

dynamic time changing nature of the sea surface makes accurate matrix estimation a diffi-

cult task [7] and it has recently been reported that compound Gaussian clutter such as the

CKD, can provide a CFAR gain provided the underlying texture is correlated [20].

Considering the importance with target detection, additional work is necessary into

more advanced covariance matrix estimators such as a space-time covariance matrix esti-

mator provided in [61].

7.2.2 Temporal Correlation Impacts on CKD Parameter Estimation

A goal of real-time target detection is to estimate the needed clutter parameters a

quickly as possible using a minimal number of data samples. To this end, we question

how much data is necessary to achieve a given PFA? In Fig. 3.5 we show that for a given

CKD shape and CNR level, the minimum PFA will decrease with increasing sample size;

however the authors in [7] indicate that the strong correlation as depicted in Fig. 4.20 has

resulted in the poor curve fit in the tail, caused by a reduction in the effective number of

samples. This may suggest that reduced sample sizes are possible if we know the data has

strong temporal correlation.
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7.2.3 Non-stationary Sea Clutter

The non-stationary, or temporal variations of the sea clutter Doppler spectra has re-

mained an active area of research [57, 58, 59, 31] and has been attributed to order of

magnitude differences between the PFA of measured and modeled sea clutter data [62]. In

addition, the temporal variations cause non-Gaussian amplitude statistics near the spectrum

edges resulting in spiky CKD estimates. In this work, we have estimated the non-Gaussian

amplitude statistics using our proposed NEIM estimator, however additional work needs to

be completed to understand aspects like sample size, correlation, Doppler frequency, CNR,

spikiness attributes, and temporal impacts to accurate estimation results.
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LIST OF SYMBOLS AND ABBREVIATIONS
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Symbols:

Γ(·) Gamma function
Γ(·, ·) incomplete Gamma function

∆R delta range
εX lower bound of the function step size
εF lower bound of the function difference
ζ normalized threshold
η clutter-plus-noise ratio
θs is the aspect angle with respect to swell direction
λ radar wavelength

µ1,µ2,µ3 first three intensity moments
µc, pulse compression gain

ν , ν̂ shape parameter (estimated) for Gamma and K-distribution
ρµ ratio of KK-distribution scale parameters

σ0 area reflectivity (normalized clutter RCS)
Φ(·) complementary cumulative distribution

φgr grazing angle in degrees

A sea clutter amplitude
Ac radar resolved area

b, b̂ scale parameter (estimated) for Gamma and K-distribution
dB decibel

dBc decibel relative to the carrier
EZ(·) goodness of fit measure

G antenna gain
GHz gigahertz

H horizontal polarization
I in-phase component out of quadrature detector

Imax maximum number of function iterations
k Boltzmann’s constant

kpol radar transmit and receive polarization parameter
kr distribution ratio parameter

kHz kilohertz
km kilometer
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kW kilowatt
Lµ microwave losses
La atmospheric and propagation loss
L number of distribution points

M number of MSE distribution points
m meters

MHz megahertz
µs microseconds
N number of pulses non-coherently integrated
ns nanoseconds
n̄ number of nearly constant-level sidelobe levels for the Taylor window

Ns number of samples
NT number of Taylor weighting coefficients

p fractional moment order
pA(A) PDF of the sea clutter amplitude

pA(A|·) conditional PDF of sea clutter amplitude
pZ(z) PDF of clutter intensity

pZ(z|·) conditional PDF of sea clutter intensity
pc mean clutter power

PFA(ζ ) probability of false alarm for normalized threshold ζ

pn thermal noise power
pt peak transmit power
Q quadative-phase component out of quadrature detector

SLL maximum Taylor window sidelobe level
V vertical polarization
x local mean clutter power

z, ẑ clutter intensity (normalized)
〈z〉 mean clutter intensity
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Abbreviations:

1-D one-dimensional
3-D three-dimensional
CC correlated coherent

CCDF complementary cumulative distribution function
CD compact disk

CDF cumulative distribution function
CEFIM clutter-to-noise ratio estimated fractional intensity moment
CRLB Cramér-Rao lower bound

CNR clutter-to-noise ratio
CSIR Council for Scientific and Industrial Research

CT computation time
CW continuous wave
FFT fast Fourier transform
FIM fractional intensity moment

ICKD intensity-based compound K-distribution
IDL interactive data language
IFS intermediate frequency sampler
IM intensity moment

IPIX Intelligent PIXel Processing Radar
LIM log-based intensity moment
MC Monte-Carlo

MSE mean-squared error
NCF nonlinear curve fitting

NEIM noise-power estimation intensity moment
NM Nelder-Mead

RCS radar cross section
rpm revolutions per minute

ROC receiver operating characteristic
STFT short-time Fourier transform
TFR time-frequency representation

TWT traveling-wave tube
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DESCRIPTION OF FYNMEET RADAR
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The CSIR Fynmeet dynamic Radar Cross Section (RCS) measurement facility is a cal-
ibrated, coherent, staring, pulsed radar system that was deployed along the coast of South
Africa at Measurement Station 3 in the Overberg Test Range [52] to conduct small boat
reflectivity and sea clutter trials, between 25 July and 4 August 2006 [27]. The system
relevant parameters are depicted below, and can also be found in [69, 52].

1. Transmitter

• Frequency range: 6.5-17.5 GHz
• Peak power: 2 kW
• PRF range: 0-30 kHz
• Waveforms: 100 ns, 300 ns and 4 µs pulsed CW, fixed/pulse-to-pulse frequency

agile
• Agile bandwidth: 500 MHz pulse-to-pulse

2. Receiver

• Dynamic range: 60 dB (instantaneous) / 120 dB (total)
• Sensitivity: 0.1 m2 at 10 km
• Instrumented range: 200 m - 15 km
• Range gates: 1 - 64; ∆R = 100 ns, 300 ns or 4 µs
• Sampler type: Intermediate frequency sampler (IFS)
• Encoding type: Quadrature
• Image rejection: ≤ -41 dBc

3. Antenna

• Type: Dual-offset reflector
• Gain: ≥ 30 dB
• Beamwidth: ≤ 2° (3 dB beamwidth)
• Sidelobes: ≤ -25 dB
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DESCRIPTION OF IPIX RADAR SYSTEM
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The McMaster University Intelligent PIXel Processing Radar (IPIX) System is a trans-
portable experimental coherent, dual polarized, X-band system that provides datasets with
configurable range resolutions. A brief description of the datasets and pertinent IPIX radar
parameters is provided in References [54, 70] and the information below is a duplicate of
Table 1.1 in Reference [70].

1. Transmitter

• 8 kW peak power TWT
• H or V polarization, switchable pulse-to-pulse
• Frequency fixed (9.39 GHz) or agile over 8.9 to 9.4 GHz
• Pulse width 20-200 ns (20 ns steps), 200 ns to 5000 ns (200 ns steps)
• Pulse repetition frequency up to 20 kHz, limited by duty cycle (2%) or polar-

ization switch (4 kHz)
• Pulse repetition interval, configurable on a per-pulse basis

2. Receiver

• Fully coherent reception
• Two linear receivers: H or V on each receiver (usually one H and V for dual

polarized reception)
• Instantaneous dynamic range > 50 dB
• 4 A/Ds: I and Q for each of two receivers
• Range sampling up to 50 MHz
• Full-bandwidth digitized data saved to disk, archived onto CD

3. Antenna

• 2.4 m diameter parabolic dish
• Pencil beam, beamwidth 0.9°
• 44 dB gain
• Sidelobes < −30 dB
• Cross-polarization isolation
• Computer controlled positioner
• −3° to 90° in elevation
• Rotation through 360° in azimuth, 0 to 10 rpm

4. General

• Radar system configuration and operation completely under computer control
• User operates radar withing an IDL environment
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