351 research outputs found

    A Review on EEG Signals Based Emotion Recognition

    Get PDF
    Emotion recognition has become a very controversial issue in brain-computer interfaces (BCIs). Moreover, numerous studies have been conducted in order to recognize emotions. Also, there are several important definitions and theories about human emotions. In this paper we try to cover important topics related to the field of emotion recognition. We review several studies which are based on analyzing electroencephalogram (EEG) signals as a biological marker in emotion changes. Considering low cost, good time and spatial resolution, EEG has become very common and is widely used in most BCI applications and studies. First, we state some theories and basic definitions related to emotions. Then some important steps of an emotion recognition system like different kinds of biologic measurements (EEG, electrocardiogram [EEG], respiration rate, etc), offline vs online recognition methods, emotion stimulation types and common emotion models are described. Finally, the recent and most important studies are reviewed

    Emotion Classification through Nonlinear EEG Analysis Using Machine Learning Methods

    Get PDF
    Background: Emotion recognition, as a subset of affective computing, has received considerable attention in recent years. Emotions are key to human-computer interactions. Electroencephalogram (EEG) is considered a valuable physiological source of information for classifying emotions. However, it has complex and chaotic behavior.Methods: In this study, an attempt is made to extract important nonlinear features from EEGs with the aim of emotion recognition. We also take advantage of machine learning methods such as evolutionary feature selection methods and committee machines to enhance the classification performance. Classification performed concerning both arousal and valence factors.Results: Results suggest that the proposed method is successful and comparable to the previous works. A recognition rate equal to 90% achieved, and the most significant features reported. We apply the final classification scheme to 2 different databases including our recorded EEGs and a benchmark dataset to evaluate the suggested approach.Conclusion: Our findings approve of the effectiveness of using nonlinear features and a combination of classifiers. Results are also discussed from different points of view to understand brain dynamics better while emotion changes. This study reveals useful insights about emotion classification and brain-behavior related to emotion elicitation

    Use of recurrence quantification analysis to examine associations between changes in text structure across an expressive writing intervention and reductions in distress symptoms in women wth breast cancer

    No full text
    The current study presents an exploratory analysis of using Recurrence Quantification Analysis (RQA) to analyze text data from an Expressive Writing Intervention (EWI) for Danish women treated for Breast Cancer. The analyses are based on the analysis of essays from a subsample with the average age 54.6 years (SD = 9.0), who completed questionnaires for cancer-related distress (IES) and depression symptoms (BDI-SF). The results show a significant association between an increase in recurrent patterns of text structure from first to last writing session and a decrease in cancer-related distress at 3 months post-intervention. Furthermore, the change in structure from first to last essay displayed a moderate, but significant correlation with change in cancer-related distress from baseline to 9 months post-intervention. The results suggest that changes in recurrence patterns of text structure might be an indicator of cognitive restructuring that leads to amelioration of cancer-specific distress

    Discriminative power of EEG-based biomarkers in major depressive disorder: A systematic review

    Get PDF
    Currently, the diagnosis of major depressive disorder (MDD) and its subtypes is mainly based on subjective assessments and self-reported measures. However, objective criteria as Electroencephalography (EEG) features would be helpful in detecting depressive states at early stages to prevent the worsening of the symptoms. Scientific community has widely investigated the effectiveness of EEG-based measures to discriminate between depressed and healthy subjects, with the aim to better understand the mechanisms behind the disorder and find biomarkers useful for diagnosis. This work offers a comprehensive review of the extant literature concerning the EEG-based biomarkers for MDD and its subtypes, and identify possible future directions for this line of research. Scopus, PubMed and Web of Science databases were researched following PRISMA’s guidelines. The initial papers’ screening was based on titles and abstracts; then full texts of the identified articles were examined, and a synthesis of findings was developed using tables and thematic analysis. After screening 1871 articles, 76 studies were identified as relevant and included in the systematic review. Reviewed markers include EEG frequency bands power, EEG asymmetry, ERP components, non-linear and functional connectivity measures. Results were discussed in relations to the different EEG measures assessed in the studies. Findings confirmed the effectiveness of those measures in discriminating between healthy and depressed subjects. However, the review highlights that the causal link between EEG measures and depressive subtypes needs to be further investigated and points out that some methodological issues need to be solved to enhance future research in this field

    Intelligent Advanced User Interfaces for Monitoring Mental Health Wellbeing

    Get PDF
    It has become pressing to develop objective and automatic measurements integrated in intelligent diagnostic tools for detecting and monitoring depressive states and enabling an increased precision of diagnoses and clinical decision-makings. The challenge is to exploit behavioral and physiological biomarkers and develop Artificial Intelligent (AI) models able to extract information from a complex combination of signals considered key symptoms. The proposed AI models should be able to help clinicians to rapidly formulate accurate diagnoses and suggest personalized intervention plans ranging from coaching activities (exploiting for example serious games), support networks (via chats, or social networks), and alerts to caregivers, doctors, and care control centers, reducing the considerable burden on national health care institutions in terms of medical, and social costs associated to depression cares

    Differential Effects of Simulated Neural Network's Lesions on Synchrony and EEG Complexity

    Get PDF
    Brain function has been proposed to arise as a result of the coordinated activity between distributed brain areas. An important issue in the study of brain activity is the characterization of the synchrony among these areas and the resulting complexity of the system. However, the variety of ways to define and, hence, measure brain synchrony and complexity has sometimes led to inconsistent results. Here, we study the relationship between synchrony and commonly used complexity estimators of electroencephalogram (EEG) activity and we explore how simulated lesions in anatomically based cortical networks would affect key functional measures of activity. We explored this question using different types of neural network lesions while the brain dynamics was modeled with a time-delayed set of 66 Kuramoto oscillators. Each oscillator modeled a region of the cortex (node), and the connectivity and spatial location between different areas informed the creation of a network structure (edges). Each type of lesion consisted on successive lesions of nodes or edges during the simulation of the neural dynamics. For each type of lesion, we measured the synchrony among oscillators and three complexity estimators (Higuchi’s Fractal Dimension, Sample Entropy and Lempel-Ziv Complexity) of the simulated EEGs. We found a general negative correlation between EEG complexity metrics and synchrony but Sample Entropy and Lempel-Ziv showed a positive correlation with synchrony when the edges of the network were deleted. This suggests an intricate relationship between synchrony of the system and its estimated complexity. Hence, complexity seems to depend on the multiple states of interaction between the oscillators of the system. Our results can contribute to the interpretation of the functional meaning of EEG complexity. </jats:p
    • …
    corecore