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Highlights: 

1. LRTC of EEG in depression following right-side lesion is different from that of the left 

2. Attenuated broadband long-range temporal correlation was found in depression following right lesion 

3. The attenuation in right lesion is associated with depressive symptom severity 

 

Abstract: 

Abnormal long-range temporal correlation (LRTC) in EEG oscillation has been observed in several brain 

pathologies and mental disorders. This study examined the relationship between the LRTC of broadband 

EEG oscillation and depression following cerebral infarction with different hemispheric lesions to provide 

a novel insight into such depressive disorders. Resting EEGs of 16 channels in 18 depressed (9 left and 9 

right lesions) and 21 non-depressed (11 left and 10 right lesions) subjects following cerebral infarction and 

19 healthy control subjects were analysed by means of detrended fluctuation analysis, a quantitative 

measurement of LRTC. The difference among groups and the correlation between the severity of 

depression and LRTC in EEG oscillation were investigated by statistical analysis. The results showed that 

LRTC of broadband EEG oscillations in depressive subjects was still preserved but attenuated in right 

hemispheric lesion subjects especially in left pre-frontal and right inferior frontal and posterior temporal 

regions. Moreover, an association between the severity of psychiatric symptoms and the attenuation of the 

LRTC was found in frontal, central and temporal regions for stroke subjects with right lesions. A high 

discriminating ability of the LRTC in the frontal and central regions to distinguish depressive from 

non-depressive subjects suggested potential feasibility for LRTC as an assessment indicator for depression 

following right hemispheric cerebral infarction. Different performance of temporal correlation in depressed 

subjects following the two hemispheric lesions implied complex association between depression and stroke 

lesion location. 

 

Key words: Depression; Hemispheric cerebral infarction; EEG oscillation; Long-range temporal 

correlation (LRTC); Detrended fluctuation analysis (DFA) 
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1 Introduction 

Neural oscillations are known to show great variability and apparently random changes over time and 

brain conditions (Dimitriadis et al., 2015; Fiol-Veny et al., 2015; Florin and Baillet, 2015; Fields and 

Glazebrook, 2017; Qu et al., 2014). Several studies have proven that neuronal oscillations in the human 

brain possess long-range temporal correlations (LRTC) in frequency, amplitude, duration and recurrence 

(Linkenkaer-Hansen et al., 2005, 2007; Nikulin and Brismar, 2004, 2005). The presence of LRTC is 

thought to be beneficial for a reliable transfer of information in neuronal networks (Beggs and Plenz, 2003; 

Stam et al., 2004). The analysis of LRTC, which provides a quantitative index to dynamical oscillation of 

different time scales, has been applied to study electroencephalographic (EEG) oscillations of the human 

brain under different physiological and pathological states (Bornas et al., 2013, 2015; Lee et al., 2007; 

Montez et al., 2009; Nikulin et al., 2012; Pu et al., 2016; Takahashi et al., 2009).  

Abnormal LRTC in EEG oscillation has been observed in several brain pathologies and mental 

disorders, including anaesthesia (Li et al., 2008), Alzheimer's disease (Montez et al., 2009), schizophrenia 

(Nikulin et al., 2012) and attention deficit hyperactivity disorder (ADHD) (Smit et al., 2011). Furthermore, 

the scaling analysis was supposed to have diagnostic potential in some psychiatric disorders 

(Linkenkaer-Hanse et al., 2005; Smit et al., 2011). Studies have also demonstrated aberrant temporal 

dynamics in patients with depressive disorder (Linkenkaer-Hansen et al., 2005; Lee et al., 2007; Leistedt et 

al., 2007a, 2007b). Linkenkaer-Hansen et al. (2005) found a breakdown of LRTC in the theta-frequency 

band with time scales ranging from 5 to 100 s in patients with major depressive disorder (MDD) compared 

to healthy controls. Lee et al. (2007) found a more persistent tendency of broadband (0.6–46 Hz) LRTC 

over 1-s scales in MDD patients than healthy controls in all brain regions. Correlation between the LRTC 

and the severity of depressed patients was also proved in the above studies. Additionally, negative emotion 

regulation strategies were observed to be associated with the LRTC of both broad- and theta-band 

oscillations in another study, which suggested that aberrant temporal of dynamics may exist before 

depression manifestation (Bornas et al., 2013,2015).  

Despite the studies on the LRTC of neuronal oscillations for different frequency and time scales in 

patients with depressive disorders, none of the above focused on depression following cerebral infarction. 

Cerebral infarction is a major cause of adult-onset disability and dependency worldwide, and 

neuropsychiatric disorders are often associated with it. Depressive disorder, which refers to emotional 

disorders with main symptoms of dropped interest and depression, is one of the most common emotional 

disorders afflicting stroke sufferers, which impedes the rehabilitation and recovery process, jeopardizes 

quality of life and severely increases mortality (Berg et al., 2003; Gaete and Bogousslavsky, 2008; De 

Man-Van Ginkel et al., 2013). Its pathophysiological mechanism has not yet been fully elucidated and is 

assumed to be a multifactorial process involving biological, behavioural and social factors (Chemerinski et 

al., 2001; de Coster et al., 2005; Singh et al., 2000; Pedroso et al., 2015; Zhang et al., 2015). Among them, 

biological and psychological perspectives were two main viewpoints. The lesion location hypothesis was 

one of the major biological theories on the post-stroke pathophysiology of depression (Bogousslavsky, 

2003; Sinyor et al., 1986; Zhang et al., 2012). Some studies have proposed that there is a higher risk of 

depression when the lesion is in the left hemisphere (Robinson, 2003, 2006), but other studies were not 

able to replicate the finding (House et al., 1990; Herrmann et al., 1995; Berg et al., 2001). At present, the 

relationship between lesion location and depression is not yet well understood (Carson et al., 2000; Bhogal 

et al., 2004). 

Given that both neuronal oscillation and EEG analysis have been used to investigate 
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neurophysiological changes in depression, we proposed to investigate the LRTC of EEG oscillation in 

depressive subjects after cerebral infarction. In this study, the resting EEG oscillation of depressed and 

non-depressed subjects with unilateral hemispheric basal ganglia infarction and healthy controls was 

evaluated using Detrended Fluctuation Analysis (DFA), a nonlinear analysis technique that permits the 

detection of the LRTC in seemingly non-stationary time series through the value of scaling exponents 

(Peng et al., 1995). Statistical analysis was conducted to find the difference among different groups and 

correlation between the severity of depression and EEG oscillation, hoping to provide a novel insight into 

depression following cerebral infarction. 

2 Materials and Methods 

2.1 Participants 

18 depressed post-infarction (DPI) (9 with left hemispheric lesions and 9 with right); 21 

non-depressed post-infarction (NDPI) (11 with left and 10 with right) and 19 age-matched healthy control 

(HC) subjects were included for this study. All participants were recruited from the Rehabilitation Medical 

Department of Tianjin Union Medical Centre and were informed of the aims and protocols of the 

experiments before the EEG recordings. The study was approved by the Human Experimental Ethics 

committee at the Tianjin Union Medical Centre. All participants were right-handed and free of 

psychotropic drugs for at least one week before the study. For the cerebral infarction patients, the inclusion 

criteria were as follows: ① First onset middle cerebral arterial (MCA) ischaemic stroke with damaged 

lesion of basal ganglia in the unilateral hemisphere confirmed by brain magnetic resonance imaging (MRI). 

② Ability to complete the necessary investigations and questionnaires. ③ Chronic phase with more than 1 

month and less than 12 months after the onset of stroke. Exclusion criteria for all the participants were as 

follows: ① Diagnosis of anxiety, schizophrenia or other psychotic disorders, psychopathic personality 

disorder or alcohol/drug abuse of dependence; ② History of seizures, brain surgery, organic brain disease 

or organic affective disturbance; ③ cognitive dysfunction with Montreal Cognitive Assessment 

(MoCA)>25; ④ EEG abnormalities consistent with encephalitis, or use of medications that could 

confound EEG assessment, such as benzodiazepines, tricyclic antidepressants, or neuroleptic medications. 

The clinical diagnosis of depression subtypes was established prospectively using the Diagnostic and 

Statistical Manual, Fourth Edition (DSM-IV) criteria for major depression (American Psychiatric 

Association, 1994). The severity of depression was assessed by the 24-item Hamilton Depression Rating 

Scale (HDRS) (Hamilton, 1960), which was administered by the same trained psychiatric interviewer. 

2.2 Experimental conditions and EEG recordings 

Resting-state EEGs were collected in the study. All subjects were instructed to close their eyes and 

maintain consciousness during the recording. They were also asked to avoid blinking and unnecessary 

movements. The acquisition room remained quiet with dim light and was free from electromagnetic 

interference. Eight minutes of EEGs were collected with a NicoletOne digital video electroencephalograph 

using 16 Ag/AgCl scalp electrodes (Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, P3, P4, O1, O2, T5 and T6) 

placed according to the international 10–20 electrode position system (American Electroencephalographic 

Society, 1994). The impedance of all electrodes was below 10 kΩ. The EEG data were recorded in the 

0.1–70 Hz frequency range and sampled at 250 Hz, and linked earlobes were chosen to be the reference 

electrodes.  

2.3 Data analysis 

The collected 8 min EEG data were preprocessed before long-range temporal correlation analysis. 

The original EEG data were visually inspected, and segments containing artefacts were rejected. After that, 
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the raw EEG was band-pass filtered with finite impulse response filtering (3rd order, Hamming window) in 

the 0.5–30 Hz range for broadband oscillations. This range was chosen because approximately 98% of 

spectral power lies within these limits (Fingelkurts and Fingelkurts, 2015). Finally, 200 s of consecutive 

filtered EEG data were selected for the LRTC analysis. The length 200 s EEG data was chosen to 

accommodate subjects who got the shortest length after removing artefacts. 

The preprocessed EEG data were segmented into 20 s with a 5 s overlap. We could obtain 13 

segments of EEG data after that to do the LRTC analysis. The following detrended fluctuation analysis 

(DFA) method was used to quantify the LRTC (Peng et al., 1995; Karkare et al., 2009). The LRTC of one 

subject was described by the mean value of the DFA parameters of the 13 segments. 

We assumed time series x(i), i={1,2,…,N} represent the EEG signals of one channel, the DFA was 

calculated using the following algorithm. 

First, cumulative sum sequences y(m) minus the mean value were constructed according to formula 

(1), where <x> is the average of time series x(i). Second, the integrated sequences y(m) were divided into 

nonoverlapping windows of size n which corresponded to time scales t of length n/250 s. In this study, 

values of t were varied from 0.2 to 10 s with a sampling interval of 0.1 s. Linear fitting sequences ( )ny m  

were obtained with least squares for every subsequence. The root mean square of the time series detrended 

fluctuation F(n) was calculated by formula (2). The procedure of calculating F(n) was repeated for 

different time scales t. Finally, n and F(n) were plotted in a double logarithmic coordinate system. If the 

time series x(i) had the property of self-similarity, the graph would display a linear scaling region. The 

slope of the least-squares line in this graph is called the scaling exponent, which is the result of DFA and 

quantifies the LRTC. All routines above were implemented in MATLAB (MathWorks, Inc). 
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The scaling exponent provided a quantitative measure for the LRTC of EEG signals. The scaling 

exponent in the 0.5–1 range indicates the presence of persistent temporal correlations. A larger DFA 

exponent in the interval of 0.5 to 1.0 indicates a greater persistence of temporal correlations (stronger 

autocorrelations). According to the above calculation method, the linear scaling region with the slope of 

0.5 to 1 was found in the time range of 0.2 to 3 seconds, which means the broadband EEG oscillation 

showed LRTC in the range of 0.2-3 s. Figure 1 shows three examples of the linear relationship in a double 

logarithmic plot between the magnitude of fluctuation F(n) and n for the FP1 channel in three subjects 

from DPI, NDPI and HC groups separately. Scaling exponents were calculated for broadband oscillations 

in each channel and data segment. 

2.4 Statistical analysis 

Statistical analysis of clinical characteristic and scaling exponents was performed using the IBM 

SPSS statistics 19.0 software program. We described the demographic and clinical characteristics in DPI, 

NDPI and HC subjects using analysis of variance (ANOVA) (Gutiérrez and Ramírez-Moreno, 2016) and 

an independent samples t-test.  

For the broadband LRTC of different subjects, multiple analysis of variance (MANOVA) was first 

used to evaluate the difference in scaling exponents among the five groups (DPI subjects with 
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left-hemisphere lesions, DPI subjects with right-hemisphere lesions, NDPI subjects with left-hemisphere 

lesions, NDPI subjects with right-hemisphere lesions and HC subjects). Post hoc analysis using the 

Bonferroni test was used to compare the between-differences of HC, DPI and NDPI subjects with left- and 

right-hemisphere lesions separately. To explore the influences of unilateral stroke damage on the LRTC of 

broadband EEG oscillation without the effect of depressive disorder, we also compared the 

between-differences of HC, NDPI subjects with left- and right-hemisphere lesions. Then, Pearson linear 

correlation analysis between scaling exponents and HDRS scores was used to examine the relationship 

between EEG oscillation and depressive symptoms. Because of small numbers of depressive subjects for 

each lesion side, we performed the correlation analysis in infarction subjects for each lesion. The 

correlation coefficients and significance level were corrected for multiple comparisons using the Benjamini 

and Hochberg False Discovery Rate (BH FDR). Finally, receiver operating characteristic (ROC) curves 

were used to estimate the discriminating ability of scaling exponents to distinguish DPI subjects from 

NDPI subjects through quantifying the balance between sensitivity/specificity. The mean area under curves 

(AUCs) of ROC near the upper-left corner is close to 1, indicating better diagnostic capabilities. 

3 Results 

3.1 Demographic information and descriptive data 

Relevant demographic (age and gender) and clinical (HDRS, lesion side and time post-infarction) 

characteristics are shown in Table 1. According to the ANOVAs, no statistically significant difference (p > 

0.05) was found for gender and age among DPI, NDPI and HC subjects. There was also no significant 

difference in post-stroke time among DPI and NDPI patients with different lesion sides. The HDRS scores 

showed a significant difference among DPI, NDPI and HC groups (p < 0.001). The post hoc test with least 

significant difference (LSD) indicated that the HDRS score of DPI subjects was higher than that of the HC 

and NDPI (p <0.001). The HDRS was also higher in NDPI subjects than the HC (p < 0.01). However, we 

noted that compared with the HC group, the main cause of elevated scores in the NDPI group was the 

diminished capacity of daily living activities instead of a depressed mood. The HDRS score and 7 items of 

sub-scores showed no significant difference between the left and right lesion sides in DPI subjects. 

According to the percentage of sub-scores to the whole HDRS, we could see that the common depressive 

symptoms for DPI were retardation, desperation, anxiety/somatization and sleep with no difference 

between right and left lesion sides. 

3.2 Difference of the LRTC in broadband EEG among different groups 

All scaling exponents of the three group subjects were in the interval of 0.5 to 1.0 in the range of 

0.2–3 s, indicating persistent LRTC of EEG oscillation. The spatial distribution of the scaling exponents is 

presented in Figure 2. According to the MANOVA analysis, significantly different scaling exponents of the 

five groups were found in regions FP1, FP2, F3, F4, C3, P4, O1, F7, F8 and T6 (p < 0.05). For DPI 

subjects with left lesion side, post hoc testing showed no significant difference with HC and NDPI subjects. 

For DPI subjects with right lesion side, LRTC was significantly attenuated (p < 0.05) in the pre-frontal and 

occipital of the left hemisphere (FP1 and O1) and inferior frontal and posterior temporal areas of the right 

hemisphere (F8 and T6) in contrast to NDPI subjects, and in the pre-frontal and central of the left 

hemisphere (FP1 and C3) and frontal and posterior temporal areas of the right hemisphere (F4, F8 and T6) 

in contrast to HC subjects. Table 2 shows the post hoc testing results for DPI subjects in a right lesion with 

NDPI and HC subjects separately. The most abnormal area for DPI subjects with a right lesion was the left 

pre-frontal (FP1), right inferior frontal (F8) and posterior temporal (T6), in which the scaling exponents 

were significantly different from both NDPI and HC subjects. Additionally, there was no significant 
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difference among NDPI and HC subjects (p > 0.05), indicating no significant influences of unilateral 

stroke damage to the LRTC of broadband EEG oscillation without the effect of a depressive disorder.  

3.3 Correlation of LRTC with severity of depressive symptoms 

Linear correlation between scaling exponents and HDRS scores was analysed in stroke subjects with 

the right lesion side to find the relationship between LRTC abnormality and depressive severity. The result 

showed that the scaling exponents in the frontal (FP1, FP2, F7 and F8), central (C3 and C4) and temporal 

(T3 and T4) areas significantly declined with increasing HDRS scores (p < 0.05) (shown in Figure 3). 

3.4 Discriminating ability of the LRTC for depressive disorders with right hemispheric 

lesion 

The ROC curves estimated the capability of scaling exponents of different regions to distinguish DPI 

subjects from NDPI subjects with right stroke lesions. Figure 4 displays the ROC curves and AUCs of 

scaling exponents for 16 channels. AUCs in the frontal (FP1, FP2, F7 and F8), central (C3 and C4) and 

right posterior temporal (T6) were up to 0.8, indicating a high diagnostic ability of scaling exponents in 

these areas to depressive disorders. 

4 Discussion and conclusion 

In this study, spontaneous broadband (0.5–30 Hz) EEG oscillation in DPI, NDPI and HC subjects was 

analysed by means of DFA, a quantitative measurement of the LRTC, to find the relationship between EEG 

oscillation and DPI with different lesion sides. The main finding of our study was that broadband EEG 

oscillations in DPI, NDPI and HC subjects all exhibit LRTC in the range of 0.2–3 s. Lesion lateralization 

of stroke had little effect on the LRTC of EEG oscillation. However, the persistence of LRTC was 

attenuated in most of the brain regions, especially the frontal and temporal areas for DPI subjects with the 

right lesion side but not with the left. Moreover, we observed an association between the severity of 

psychiatric symptoms and attenuation of LRTC in the frontal, central and temporal regions for stroke 

subjects with right lesions. The relatively high discriminating ability of scaling exponents in the frontal and 

central regions distinguishing DPI subjects from NDPI subjects, which suggested potential feasibility for 

LRTC as assessment indicators of depression with a right lesion stroke. 

All scaling exponents of participants were found in the interval of 0.5 to 1.0, which demonstrated an 

LRTC of broadband EEG oscillation regardless of their neurologic and psychiatric condition. The values of 

the scaling exponents agreed with the previous studies showing an existence of LRTC in neuronal 

oscillations recorded with EEG/MEG (Linkenkaer-Hansen et al., 2001, 2005; Lee et al., 2007; Nikulin et 

al., 2012; Nikulin and Brismar, 2004, 2005). Neither left nor right lesion sides subjects without depression 

showed difference from healthy controls, indicating that the infarct lesion side had little influence on the 

LRTC of EEG oscillation. This may be because EEG oscillation tends to be normal along with recovery in 

the chronic phase of a stroke (Juhász et al., 1997). 

The persistence of the LRTC was attenuated in depressive patients with a right lesion location in most 

brain regions and was associated with the severity of psychiatric symptoms in right lesion stroke subjects, 

especially some emotion-related areas, such as frontal and temporal (Bhogal et al., 2004; Robinson, 1980; 

Yuvaraj and Murugappan, 2016), but not in the left lesion. There is evidence that the right hemisphere is 

selectively involved in processing negative emotions, pessimistic thoughts and unconstructive thinking 

styles, all of which comprise the cognitive phenomenology of depression and in turn contribute to elevated 

anxiety and stress (Hecht, 2010; Robinson and Starkstein, 1989; Spalletta et al., 2007; Yuvaraj and 

Murugappan, 2016). Investigators have recognized that emotional indifference was frequently the 

consequence of right frontal brain lesions (Denny-Brown et al., 1952; Bowers et al., 1991), and right 
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hemisphere damage may influence the presentation of depressive disorders after stroke by disrupting 

emotion processing mechanisms (Paradiso et al., 2008). Some biochemical and behavioural responses 

related to depression were observed in experimental animal models following right-side infarcts but not 

left-side (Robinson and Coyle, 1980). The LRTC described the dynamics of neuronal activations over long 

stretches of time. The attenuation of scaling exponents in depressive patients with right lesions indicates 

that the neuronal events in time are more loosely relating to each other than in infarction patients with no 

depressive and healthy controls. Thus, the attenuation is most likely due to the increased variability in 

neuronal activity (Nikulin et al., 2012). Because depression can be conceptualized as a syndrome of 

cortical-subcortical dysrhythmia with prefrontal or limbic abnormal activity marked by persistent 

resonance of several oscillations (Fingelkurts and Fingelkurts, 2015), we hypothesize that the weaker 

temporal correlations might thus correspond to the basal ganglia infarction in the right side, which is 

related to emotion processing in depressive subjects.  

Lesion location was one of the major biological theories on the pathophysiology of post-stroke 

depression (Pedroso et al., 2015; Zhang et al., 2012; Robinson, 2003, 2006; Robinson and Coyle, 1980), 

despite the inconsistency in association between depression and the location of brain lesions as a result of a 

stroke. Stroke lateralization was not related to depressive occurrence and symptoms in the present study, 

but a definite difference of the LRTC in broadband EEG oscillation was found among depressive patients 

with different lesion sides, which implied that the generation of depressive disorders with different 

hemisphere damage may be different and supports the notion that the association between depression 

following cerebral infarction and lesion location may be more complex than previously suggested (Sinyor 

et al., 1986; Bhogal et al., 2004; Wang et al., 2017). 

In conclusion, this study found attenuated long-range temporal correlations of broadband EEG 

oscillation in depressive patients with right hemispheric cerebral infarction, which provided a novel insight 

into depression following stroke and may develop a new means to evaluate it. There are some limitations 

of the study. Although definite abnormality was found in depressive patients with right hemispheric lesions, 

more samples would be needed to obtain more reliable results regarding the abnormal brain regions and 

association with depressive symptoms. Because the EEG oscillatory pattern may be considered as a 

spatiotemporally organized superposition of multiple EEG oscillations in many frequency bands, different 

timescales and narrow frequency bands, including delta, theta, alpha and beta, will also be explored in 

future work to comprehensively prospect abnormal changes in depressive subjects following cerebral 

infarction.  
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Figure 1. An example of the linear relationship in a double logarithmic plot in the 

range of 0.2–3 s between the magnitude of fluctuation F(n) and n for the FP1 channel 

in three subjects from depression post-infarction (DPI) and non-depression 

post-infarction (NDPI) with right hemispheric lesion and healthy control (HC). The 

scaling exponents of the three subjects were 0.760 (DPI), 0.863 (NDPI) and 0.860 

(HC). 
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Figure 2. Topographic plots of the scaling exponents of broadband oscillations in 

depression post-infarction (DPI) and non-depression post-infarction (NDPI) subjects 

with left and right hemispheric lesions and healthy control (HC) subjects. The pink 

colour of electrode locations of HC and NDPI with right hemispheric lesions 

represents p values of the t-test compared to DPI less than 0.05. The pink colour of 

electrode locations of DPI indicates the channel in which both p values of the t-test 

with HC and NDPI were less than 0.05. 

 



 
Figure 3. Scatter diagram of the scaling exponents and HDRS scores in stroke 

subjects with right hemispheric lesions. r represents the Pearson correlation 

coefficient, and p represents the significance value.  

  



 

 

Figure 4. ROC curves of scaling exponents for 16 channels in cerebral infarction 

subjects with right hemispheric lesions. Boldface indicates that the area under the 

curve (AUC) was greater than 0.8. 
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Table 1. Demographic (age and gender) and clinical (HDRS, lesion sides and time post-infarction) characteristics in depression post-infarction (DPI), non-depression post-infarction (NDPI) 

and healthy control (HC) subjects. 

Variables DPI (N=18) NDPI (N=21) HC(N=19) F df p 

Lesion side Left (N=9) Right (N=9) Left (N=11) Right (N=10) -    

Gender (Female/ Male) 5/4 4/5 4/7 4/6 11/8 0.381 4/53 0.821 

Age (M±SD) 61.4±8.7 60.2±2.3 61.1±10.5 58.5±7.2 55.2±9.3 1.337 4/53 0.268 

TPI (M±SD)(/mon) 4.3±4.1 7.06±6.0 6.3±4.6 3.0±2.7 - 1.676 3/35 0.190 

HDRS (M±SD) 23.6±5.1 20.0±5.1 5.5±1.6 6.6±4.6 1.79±2.46 78.844 4/53 0.000** 

      T df p 

Anxiety/Somatization (M±SD (PCT)) 4.6±2.1 (19.1%) 3.4±1.7 (16.9%) - - - -1.161 16 0.265 

Weight (M±SD (PCT)) 0.43±0.79 (1.8%) 0±0 (0%) - - - -1.441 16 0.200 

Cognize (M±SD (PCT)) 1.6±1.0 (6.6%) 2.56±1.59 (12.7%) - - - 1.435 16 0.173 

Diurnal variation (M±SD (PCT)) 0.7±1.0 (2.9%) 1.1±0.78 (5.4%) - - - 0.917 16 0.375 

Retardation (M±SD (PCT)) 6.0±2.6 (24.9%) 4.9±2.3 (24.3%) - - - -0.917 16 0.375 

Sleep (M±SD (PCT)) 4.4±2.1 (18.3%) 2.7±2.1 (13.4%) - - - -1.639 16 0.124 

Desperation (M±SD (PCT)) 6.3±1.5 (26.1%) 5.4±1.9 (26.7%) - - - -0.968 16 0.350 

   Note: M: Mean; SD: Standard deviation; mon: Month; HDRS: Hamilton Depression Rating Scales; PCT: The percentage of sub-scores to the whole HDRS; TPI: Time post-infarction.  
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Table 2. Post hoc testing results of scaling exponents in the time range of 0.2 to 3 seconds in depression 

post-infarction (DPI) subjects with right-hemisphere lesion and non-depressed post-infarction (NDPI) subjects 

with right-hemisphere lesion and healthy controls (HC). 

Channel 
       Mean (±SD)                           Sig 

DPI NDPI HC DPI VS NDPI DPI VS HC 

FP1 0.763±0.076 0.910±0.105 0.904±0.112 .038* .010* 

FP2 0.792±0.100 0.922±0.088 0.868±0.078 .062 .259 

F3 0.764±0.112 0.883±0.107 0.867±0.085 .054 .075 

F4 0.753±0.089 0.866±0.096 0.883±0.117 .281 .017* 

C3 0.740±0.103 0.870±0.086 0.868±0.135 .218 .037* 

C4 0.780±0.077 0.890±0.092 0.867±0.137 .641 .206 

P3 0.757±0.103 0.882±0.153 

0.130 

0.856±0.166 .244 .658 

P4 0.781±0.067 0.858±0.110 0.859±0.124 1.000 .133 

O1 0.786±0.112 0.995±0.249 0.861±0.139 .029* 1.000 

O2 0.780±0.123 0.916±0.130 0.939±0.197 1.000 .162 

F7 0.826±0.099 0.973±0.131 0.971±0.126 .206 .056 

F8 0.839±0.135 0.993±0.080 0.966±0.096 .016* .008* 

T3 0.856±0.127 0.991±0.132 0.911±0.113 .261 1.000 

T4 0.848±0.106 0.970±0.129 0.940±0.129 .455 .476 

T5 0.873±0.107 0.987±0.174 0.907±0.143 .645 1.000 

T6 0.791±0.144 0.979±0.115 0.980±0.161 .039* .004* 

*p<0.05 

 


