665 research outputs found

    N-dimensional nonlinear prediction with MLP

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Toulouse, France, 200

    Self-Adaptive Hierarchical Sentence Model

    Full text link
    The ability to accurately model a sentence at varying stages (e.g., word-phrase-sentence) plays a central role in natural language processing. As an effort towards this goal we propose a self-adaptive hierarchical sentence model (AdaSent). AdaSent effectively forms a hierarchy of representations from words to phrases and then to sentences through recursive gated local composition of adjacent segments. We design a competitive mechanism (through gating networks) to allow the representations of the same sentence to be engaged in a particular learning task (e.g., classification), therefore effectively mitigating the gradient vanishing problem persistent in other recursive models. Both qualitative and quantitative analysis shows that AdaSent can automatically form and select the representations suitable for the task at hand during training, yielding superior classification performance over competitor models on 5 benchmark data sets.Comment: 8 pages, 7 figures, accepted as a full paper at IJCAI 201

    LSTM Networks for Data-Aware Remaining Time Prediction of Business Process Instances

    Full text link
    Predicting the completion time of business process instances would be a very helpful aid when managing processes under service level agreement constraints. The ability to know in advance the trend of running process instances would allow business managers to react in time, in order to prevent delays or undesirable situations. However, making such accurate forecasts is not easy: many factors may influence the required time to complete a process instance. In this paper, we propose an approach based on deep Recurrent Neural Networks (specifically LSTMs) that is able to exploit arbitrary information associated to single events, in order to produce an as-accurate-as-possible prediction of the completion time of running instances. Experiments on real-world datasets confirm the quality of our proposal.Comment: Article accepted for publication in 2017 IEEE Symposium on Deep Learning (IEEE DL'17) @ SSC

    Classifying Network Data with Deep Kernel Machines

    Full text link
    Inspired by a growing interest in analyzing network data, we study the problem of node classification on graphs, focusing on approaches based on kernel machines. Conventionally, kernel machines are linear classifiers in the implicit feature space. We argue that linear classification in the feature space of kernels commonly used for graphs is often not enough to produce good results. When this is the case, one naturally considers nonlinear classifiers in the feature space. We show that repeating this process produces something we call "deep kernel machines." We provide some examples where deep kernel machines can make a big difference in classification performance, and point out some connections to various recent literature on deep architectures in artificial intelligence and machine learning

    Deep Divergence-Based Approach to Clustering

    Get PDF
    A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps
    • …
    corecore