2,352 research outputs found

    Modeling and control of a pneumatic muscle actuator

    Get PDF
    This thesis presents the theoretical and experimental study of pneumatic servo position control systems based on pneumatic muscle actuators (PMAs). Pneumatic muscle is a novel type of actuator which has been developed to address the control and compliance issues of conventional cylindrical actuators. Compared to industrial pneumatic cylinders, muscle actuators have many ideal properties for robotic applications providing an interesting alternative for many advanced applications. However, the disadvantage is that muscle actuators are highly nonlinear making accurate control a real challenge. Traditionally, servo-pneumatic systems use relatively expensive servo or proportional valve for controlling the mass flow rate of the actuator. This has inspired the research of using on/off valves instead of servo valves providing a low-cost option for servo-pneumatic systems. A pulse width modulation (PWM) technique, where the mass flow is provided in discrete packets of air, enables the use of similar control approaches as with servo valves. Although, the on/off valve based servo-pneumatics has shown its potential, it still lacks of analytical methods for control design and system analysis. In addition, the literature still lacks of studies where the performance characteristics of on/off valve controlled pneumatic systems are clearly compared with servo valve approaches. The focus of this thesis has been on modeling and control of the pneumatic muscle actuator with PWM on/off valves. First, the modeling of pneumatic muscle actuator system controlled by a single on/off valve is presented. The majority of the effort focused on the modeling of muscle actuator nonlinear force characteristics and valve mass flow rate modeling. A novel force model was developed and valve flow model for both simulation and control design were identified and presented. The derived system models (linear and nonlinear), were used for both control design and utilized also in simulation based system analysis. Due to highly nonlinear characteristics and uncertainties of the system, a sliding mode control (SMC) was chosen for a control law. SMC strategy has been proven to be an efficient and robust control strategy for highly nonlinear pneumatic actuator applications. Different variations of sliding mode control, SMC with linear model (SMCL) and nonlinear model (SMCNL) as well as SMC with integral sliding surface (SMCI) were compared with a traditional proportional plus velocity plus acceleration control with feed-forward (PVA+FF) compensation. Also, the effects of PWM frequency on the system performance were studied. Different valve configurations, single 3/2, dual 2/2, and servo valve, for controlling a single muscle actuator system were studied. System models for each case were formulated in a manner to have a direct comparison of the configuration and enabling the use of same sliding mode control design. The analysis of performance included the sinusoidal tracking precision and robustness to parameter variations and external disturbances. In a similar manner, a comparison of muscle actuators in an opposing pair configuration controlled by four 2/2 valves and servo valve was executed. Finally, a comparison of a position servo realized with pneumatic muscle actuators to the one realized with traditional cylinder was presented. In these cases, servo valve with SMC and SMCI were used to control the systems. The analysis of performance included steady-state error in point-to-point positioning, the RMSE of sinusoidal tracking precision, and robustness to parameter variations

    Modeling and control of a pneumatic muscle actuator

    Get PDF
    This thesis presents the theoretical and experimental study of pneumatic servo position control systems based on pneumatic muscle actuators (PMAs). Pneumatic muscle is a novel type of actuator which has been developed to address the control and compliance issues of conventional cylindrical actuators. Compared to industrial pneumatic cylinders, muscle actuators have many ideal properties for robotic applications providing an interesting alternative for many advanced applications. However, the disadvantage is that muscle actuators are highly nonlinear making accurate control a real challenge. Traditionally, servo-pneumatic systems use relatively expensive servo or proportional valve for controlling the mass flow rate of the actuator. This has inspired the research of using on/off valves instead of servo valves providing a low-cost option for servo-pneumatic systems. A pulse width modulation (PWM) technique, where the mass flow is provided in discrete packets of air, enables the use of similar control approaches as with servo valves. Although, the on/off valve based servo-pneumatics has shown its potential, it still lacks of analytical methods for control design and system analysis. In addition, the literature still lacks of studies where the performance characteristics of on/off valve controlled pneumatic systems are clearly compared with servo valve approaches. The focus of this thesis has been on modeling and control of the pneumatic muscle actuator with PWM on/off valves. First, the modeling of pneumatic muscle actuator system controlled by a single on/off valve is presented. The majority of the effort focused on the modeling of muscle actuator nonlinear force characteristics and valve mass flow rate modeling. A novel force model was developed and valve flow model for both simulation and control design were identified and presented. The derived system models (linear and nonlinear), were used for both control design and utilized also in simulation based system analysis. Due to highly nonlinear characteristics and uncertainties of the system, a sliding mode control (SMC) was chosen for a control law. SMC strategy has been proven to be an efficient and robust control strategy for highly nonlinear pneumatic actuator applications. Different variations of sliding mode control, SMC with linear model (SMCL) and nonlinear model (SMCNL) as well as SMC with integral sliding surface (SMCI) were compared with a traditional proportional plus velocity plus acceleration control with feed-forward (PVA+FF) compensation. Also, the effects of PWM frequency on the system performance were studied. Different valve configurations, single 3/2, dual 2/2, and servo valve, for controlling a single muscle actuator system were studied. System models for each case were formulated in a manner to have a direct comparison of the configuration and enabling the use of same sliding mode control design. The analysis of performance included the sinusoidal tracking precision and robustness to parameter variations and external disturbances. In a similar manner, a comparison of muscle actuators in an opposing pair configuration controlled by four 2/2 valves and servo valve was executed. Finally, a comparison of a position servo realized with pneumatic muscle actuators to the one realized with traditional cylinder was presented. In these cases, servo valve with SMC and SMCI were used to control the systems. The analysis of performance included steady-state error in point-to-point positioning, the RMSE of sinusoidal tracking precision, and robustness to parameter variations

    Design, analysis, and control of a cable-driven parallel platform with a pneumatic muscle active support

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The neck is an important part of the body that connects the head to the torso, supporting the weight and generating the movement of the head. In this paper, a cable-driven parallel platform with a pneumatic muscle active support (CPPPMS) is presented for imitating human necks, where cable actuators imitate neck muscles and a pneumatic muscle actuator imitates spinal muscles, respectively. Analyzing the stiffness of the mechanism is carried out based on screw theory, and this mechanism is optimized according to the stiffness characteristics. While taking the dynamics of the pneumatic muscle active support into consideration as well as the cable dynamics and the dynamics of the Up-platform, a dynamic modeling approach to the CPPPMS is established. In order to overcome the flexibility and uncertainties amid the dynamic model, a sliding mode controller is investigated for trajectory tracking, and the stability of the control system is verified by a Lyapunov function. Moreover, a PD controller is proposed for a comparative study. The results of the simulation indicate that the sliding mode controller is more effective than the PD controller for the CPPPMS, and the CPPPMS provides feasible performances for operations under the sliding mode control

    Nonlinear Mathematical Modeling in Pneumatic Servo Position Applications

    Get PDF
    This paper addresses a new methodology for servo pneumatic actuators mathematical modeling and selection from the dynamic behavior study in engineering applications. The pneumatic actuator is very common in industrial application because it has the following advantages: its maintenance is easy and simple, with relatively low cost, self-cooling properties, good power density (power/dimension rate), fast acting with high accelerations, and installation flexibility. The proposed fifth-order nonlinear mathematical model represents the main characteristics of this nonlinear dynamic system, as servo valve dead zone, air flow-pressure relationship through valve orifice, air compressibility, and friction effects between contact surfaces in actuator seals. Simulation results show the dynamic performance for different pneumatic cylinders in order to see which features contribute to a better behavior of the system. The knowledge of this behavior allows an appropriate choice of pneumatic actuator, mainly contributing to the success of their precise control in several applications

    Diseño de un controlador de seguimiento para un sistema SISO de servoposicionamiento neumático

    Get PDF
    Pneumatic systems have many advantages, such as simplicity, reliability, low-cost, long life, etc. making them attractive for rapid development and widespread application, but the complexity of the airflow through the valve port and the friction between the cylinder and piston make it difficult to establish an exact mathematical model and control the pneumatic system with high precision. Experiments were conducted with a 25 mm bore rod-less pneumatic cylinder and a 5/3 way proportional control valve. In this contribution, I propose a nonlinear robust tracking control strategy to solve the tracking problem of the servo pneumatic positioning system. The approach is novel in the sense that it takes into account the nonlinearities inherent to pneumatic servo positioning systems and considers position, velocity and pressure difference in the chambers of the pneumatic cylinder as feedback states. The suggested control strategy is implemented in simulation and on the real system. Experimental results from an implementation on a test ring show a high position tracking control performance.Los sistemas neumáticos tienen varias ventajas que permitieron su rápido desarrollo y uso generalizado, tales como: simplicidad, confiabilidad, bajo costo, larga vida etc. Sin embargo, la complejidad del flujo de aire a través de los orificios de la válvula y la naturaleza de la fuerza de fricción entre las paredes del cilindro y el pistón, dificultan la obtención de modelos matemáticos exactos y el control de los sistemas neumáticos con alta precisión. Experimentos fueron llevados a cabo con un cilindro sin vástago de 25 mm de diámetro y una válvula de control proporcional de 5 puertos -3 vías. En este artículo, proponemos una estrategia de control de posicionamiento robusta para solucionar el problema de un sistema de servo posicionamiento neumático. El enfoque es novedoso en el sentido de que tiene en cuenta las no linealidades inherentes a los sistemas de servo posicionamiento neumático y considera posición, velocidad y diferencia de presiones en las cámaras del cilindro neumático como estados de retroalimentación.  La estrategia de control propuesta es implementada en simulación y sobre el sistema real. Los resultados experimentales de la implementación de la estrategia en el sistema de servo-posicionamiento  neumático muestran un alto desempeño en el control de seguimiento de posición

    controller. The result shows that the proposed controller reduced the overshoot and steady state error of the pneumatic actuator system to no overshoot and 0.025mm respectively. Index terms: System identification, recursive least square, ARX, dead zone compensator, pneumatic actuator

    Get PDF
    In this paper, a nonlinear mathematical modeling based on fundamental physical derivation is presented. The mass flow rate, pressure dynamic and equation of motion are derived referring to the previous research. Simulation work is done to confirm the model based on this derivation. Cascade control based on PID and P controller is designed through simulation in SIMULINK where the parameters of the controller are obtained through PID with optimization toolbox. The results reveal that both step and sinusoidal response test, the cascade controller consistently indicates outperform performance compared to classical PID method. In future, it is recommended to apply this technique to the real-time implementation

    Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial Pneumatic Actuators Combined with a Stereo Vision System

    Get PDF
    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot’s end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H∞ tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control

    Characterization of Pneumatic Artificial Muscle System in an Opposing Pair Configuration

    Get PDF
    Pneumatic artificial muscle (PAM) is a pneumatic actuator that commonly used in the biomimetic robotic devices in rehabilitation applications due to its advantageous in high powerto-weight ratio and high degree of safety in use characteristics. Several techniques exist in the literature for the PAM system modeling, and these include theoretical modeling, phenomenological modeling and empirical modeling. This paper focuses on explaining the experimental setup of an opposing pair configuration of PAM system, and gives an analysis of the pneumatic muscle system dynamic in the theoretical modeling. The simulated dynamic model is compared with the actual PAM system for the validation in the open-loop step and sinusoidal positioning responses and pressures. It is concluded that the simulation result is verified and agreed with the actual system
    • …
    corecore