7,243 research outputs found

    Coarse Brownian Dynamics for Nematic Liquid Crystals: Bifurcation Diagrams via Stochastic Simulation

    Full text link
    We demonstrate how time-integration of stochastic differential equations (i.e. Brownian dynamics simulations) can be combined with continuum numerical bifurcation analysis techniques to analyze the dynamics of liquid crystalline polymers (LCPs). Sidestepping the necessity of obtaining explicit closures, the approach analyzes the (unavailable in closed form) coarse macroscopic equations, estimating the necessary quantities through appropriately initialized, short bursts of Brownian dynamics simulation. Through this approach, both stable and unstable branches of the equilibrium bifurcation diagram are obtained for the Doi model of LCPs and their coarse stability is estimated. Additional macroscopic computational tasks enabled through this approach, such as coarse projective integration and coarse stabilizing controller design, are also demonstrated

    Comparison of a Material Point Method and a Galerkin meshfree method for the simulation of cohesive-frictional materials

    Get PDF
    The simulation of large deformation problems, involving complex history-dependent constitutive laws, is of paramount importance in several engineering fields. Particular attention has to be paid to the choice of a suitable numerical technique such that reliable results can be obtained. In this paper, a Material Point Method (MPM) and a Galerkin Meshfree Method (GMM) are presented and verified against classical benchmarks in solid mechanics. The aim is to demonstrate the good behavior of the methods in the simulation of cohesive-frictional materials, both in static and dynamic regimes and in problems dealing with large deformations. The vast majority of MPM techniques in the literature are based on some sort of explicit time integration. The techniques proposed in the current work, on the contrary, are based on implicit approaches, which can also be easily adapted to the simulation of static cases. The two methods are presented so as to highlight the similarities to rather than the differences fromPeer ReviewedPostprint (published version

    Constrained finite rotations in dynamic of shells and Newmark implicit time-stepping schemes

    Get PDF
    Purpose – Aims to address the issues pertaining to dynamics of constrained finite rotations as a follow-up from previous considerations in statics. \ud \ud Design/methodology/approach – A conceptual approach is taken. \ud \ud Findings – In this work the corresponding version of the Newmark time-stepping schemes for the dynamics of smooth shells employing constrained finite rotations is developed. Different possibilities to choose the constrained rotation parameters are discussed, with the special attention given to the preferred choice of the incremental rotation vector. \ud \ud Originality/value – The pertinent details of consistent linearization, rotation updates and illustrative numerical simulations are supplied.\u

    Thermo-micro-mechanical simulation of bulk metal forming processes

    Full text link
    The newly proposed microstructural constitutive model for polycrystal viscoplasticity in cold and warm regimes (Motaman and Prahl, 2019), is implemented as a microstructural solver via user-defined material subroutine in a finite element (FE) software. Addition of the microstructural solver to the default thermal and mechanical solvers of a standard FE package enabled coupled thermo-micro-mechanical or thermal-microstructural-mechanical (TMM) simulation of cold and warm bulk metal forming processes. The microstructural solver, which incrementally calculates the evolution of microstructural state variables (MSVs) and their correlation to the thermal and mechanical variables, is implemented based on the constitutive theory of isotropic hypoelasto-viscoplastic (HEVP) finite (large) strain/deformation. The numerical integration and algorithmic procedure of the FE implementation are explained in detail. Then, the viability of this approach is shown for (TMM-) FE simulation of an industrial multistep warm forging

    Structured Linearization of Discrete Mechanical Systems for Analysis and Optimal Control

    Full text link
    Variational integrators are well-suited for simulation of mechanical systems because they preserve mechanical quantities about a system such as momentum, or its change if external forcing is involved, and holonomic constraints. While they are not energy-preserving they do exhibit long-time stable energy behavior. However, variational integrators often simulate mechanical system dynamics by solving an implicit difference equation at each time step, one that is moreover expressed purely in terms of configurations at different time steps. This paper formulates the first- and second-order linearizations of a variational integrator in a manner that is amenable to control analysis and synthesis, creating a bridge between existing analysis and optimal control tools for discrete dynamic systems and variational integrators for mechanical systems in generalized coordinates with forcing and holonomic constraints. The forced pendulum is used to illustrate the technique. A second example solves the discrete LQR problem to find a locally stabilizing controller for a 40 DOF system with 6 constraints.Comment: 13 page

    Structured Linearization of Discrete Mechanical Systems for Analysis and Optimal Control

    Full text link
    Variational integrators are well-suited for simulation of mechanical systems because they preserve mechanical quantities about a system such as momentum, or its change if external forcing is involved, and holonomic constraints. While they are not energy-preserving they do exhibit long-time stable energy behavior. However, variational integrators often simulate mechanical system dynamics by solving an implicit difference equation at each time step, one that is moreover expressed purely in terms of configurations at different time steps. This paper formulates the first- and second-order linearizations of a variational integrator in a manner that is amenable to control analysis and synthesis, creating a bridge between existing analysis and optimal control tools for discrete dynamic systems and variational integrators for mechanical systems in generalized coordinates with forcing and holonomic constraints. The forced pendulum is used to illustrate the technique. A second example solves the discrete LQR problem to find a locally stabilizing controller for a 40 DOF system with 6 constraints.Comment: 13 page

    On large deformations of thin elasto-plastic shells: Implementation of a finite rotation model for quadrilateral shell element

    Get PDF
    A large-deformation model for thin shells composed of elasto-plastic material is presented in this work, Formulation of the shell model, equivalent to the two-dimensional Cosserat continuum, is developed from the three-dimensional continuum by employing standard assumptions on the distribution of the displacement held in the shell body, A model for thin shells is obtained by an approximation of terms describing the shell geometry. Finite rotations of the director field are described by a rotation vector formulation. An elasto-plastic constitutive model is developed based on the von Mises yield criterion and isotropic hardening. In this work, attention is restricted to problems where strains remain small allowing for all aspects of material identification and associated computational treatment, developed for small-strain elastoplastic models, to be transferred easily to the present elasto-plastic thin-shell model. A finite element formulation is based on the four-noded isoparametric element. A particular attention is devoted to the consistent linearization of the shell kinematics and elasto-plastic material model, in order to achieve quadratic rate of asymptotic convergence typical for the Newton-Raphson-based solution procedures. To illustrate the main objective of the present approach-namely the simulation of failures of thin elastoplastic shells typically associated with buckling-type instabilities and/or bending-dominated shell problems resulting in formation of plastic hinges-several numerical examples are presented, Numerical results are compared with the available experimental results and representative numerical simulations
    corecore