16 research outputs found

    Reasoning about Qualitative Direction and Distance between Extended Objects using Answer Set Programming

    Full text link
    In this thesis, we introduce a novel formal framework to represent and reason about qualitative direction and distance relations between extended objects using Answer Set Programming (ASP). We take Cardinal Directional Calculus (CDC) as a starting point and extend CDC with new sorts of constraints which involve defaults, preferences and negation. We call this extended version as nCDC. Then we further extend nCDC by augmenting qualitative distance relation and name this extension as nCDC+. For CDC, nCDC, nCDC+, we introduce an ASP-based general framework to solve consistency checking problems, address composition and inversion of qualitative spatial relations, infer unknown or missing relations between objects, and find a suitable configuration of objects which fulfills a given inquiry.Comment: In Proceedings ICLP 2019, arXiv:1909.0764

    Answer Set Programming Modulo `Space-Time'

    Full text link
    We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of `space-time' regions as first-class objects. We present an empirical evaluation (with scalability and robustness results), and include diverse application examples involving interpretation and control tasks

    Answer Set Programming for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

    Get PDF
    We study the translation of reasoning problems involving qualitative spatio-temporal calculi into answer set programming (ASP). We present various alternative transformations and provide a qualitative comparison among them. An implementation of these transformations is provided by a tool that transforms problem instances specified in the language of the Generic Qualitative Reasoner (GQR) into ASP problems. Finally, we report on an experimental analysis of solving consistency problems for Allen\u27s Interval Algebra and the Region Connection Calculus with eight base relations (RCC-8)

    Axiomatic systems and topological semantics for intuitionistic temporal logic

    Get PDF
    We propose four axiomatic systems for intuitionistic linear temporal logic and show that each of these systems is sound for a class of structures based either on Kripke frames or on dynamic topological systems. Our topological semantics features a new interpretation for the `henceforth' modality that is a natural intuitionistic variant of the classical one. Using the soundness results, we show that the four logics obtained from the axiomatic systems are distinct. Finally, we show that when the language is restricted to the `henceforth'-free fragment, the set of valid formulas for the relational and topological semantics coincide

    A Trajectory Calculus for Qualitative Spatial Reasoning Using Answer Set Programming

    Get PDF
    Spatial information is often expressed using qualitative terms such as natural language expressions instead of coordinates; reasoning over such terms has several practical applications, such as bus routes planning. Representing and reasoning on trajectories is a specific case of qualitative spatial reasoning that focuses on moving objects and their paths. In this work, we propose two versions of a trajectory calculus based on the allowed properties over trajectories, where trajectories are defined as a sequence of non-overlapping regions of a partitioned map. More specifically, if a given trajectory is allowed to start and finish at the same region, 6 base relations are defined (TC-6). If a given trajectory should have different start and finish regions but cycles are allowed within, 10 base relations are defined (TC-10). Both versions of the calculus are implemented as ASP programs; we propose several different encodings, including a generalised program capable of encoding any qualitative calculus in ASP. All proposed encodings are experimentally evaluated using a real-world dataset. Experiment results show that the best performing implementation can scale up to an input of 250 trajectories for TC-6 and 150 trajectories for TC-10 for the problem of discovering a consistent configuration, a significant improvement compared to previous ASP implementations for similar qualitative spatial and temporal calculi. This manuscript is under consideration for acceptance in TPLP.Comment: Paper presented at the 34th International Conference on Logic Programming (ICLP 2018), Oxford, UK, July 14 to July 17, 2018, 20 pages, LaTeX, 16 figure
    corecore