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Abstract. The importance of intuitionistic temporal logics in Computer
Science and Artificial Intelligence has become increasingly clear in the
last few years. From the proof-theory point of view, intuitionistic tempo-
ral logics have made it possible to extend functional languages with new
features via type theory, while from its semantical perspective several
logics for reasoning about dynamical systems and several semantics for
logic programming have their roots in this framework. In this paper we
propose four axiomatic systems for intuitionistic linear temporal logic
and show that each of these systems is sound for a class of structures
based either on Kripke frames or on dynamic topological systems. Our
topological semantics features a new interpretation for the ‘henceforth’
modality that is a natural intuitionistic variant of the classical one. Us-
ing the soundness results, we show that the four logics obtained from the
axiomatic systems are distinct.

1 Introduction

Intuitionistic logic (IL) [24] enjoys a myriad of interpretations based on compu-
tation, information or topology, making it a natural framework to reason about
dynamic processes in which these phenomena play a crucial role. Thus it should
not be surprising that combinations of intuitionistic logic and linear temporal
logic (LTL) [27] have been proposed for applications within several different con-
texts.

The first involves the Curry-Howard correspondence [17], which identifies
intuitionistic proofs with the λ-terms of functional programming. Several exten-
sions of the λ-calculus with operators from LTL have been proposed in order
to introduce new features to functional languages: Davies [7,8] has suggested
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adding a ‘next’ (◦) operator to IL in order to define the type system λ◦, which
allows extending functional languages with staged computation4 [13]. Davies and

Pfenning [9] proposed the functional language Mini-ML� which is supported by
intuitionistic S4 and allows capturing complex forms of staged computation as
well as runtime code generation. Yuse and Igarashi later extended λ◦ to λ� [29]
by incorporating the ‘henceforth’ operator (�), useful for modelling persistent
code that can be executed at any subsequent state.

Alternately, intuitionistic temporal logics have been proposed as a tool for
modelling semantically-given processes. Maier [23] observed that an intuition-
istic temporal logic with ‘henceforth’ and ‘eventually’ (♦) could be used for
reasoning about safety and liveness conditions in possibly-terminating reactive
systems, and Fernández-Duque [14] has suggested that a logic with ‘eventu-
ally’ can be used to provide a decidable framework in which to reason about
topological dynamics. In the areas of nonmonotonic reasoning, knowledge repre-
sentation (KR), and artificial intelligence, intuitionistic and intermediate logics
have played an important role within the successful answer set programming
(ASP) [5] paradigm for practical KR, leading to several extensions of modal
ASP [6] that are supported by intuitionistic-based modal logics like temporal
here and there [3].

Despite interest in the above applications, there is a large gap to be filled
regarding our understanding of the computational behaviour of intuitionistic
temporal logics. We have successfuly employed semantical methods to show the
decidability of the logic ITLe defined by a natural class of Kripke frames [4] and
shown that these semantics correspond to a natural calculus over the �-free frag-
ment [12]. However, as we will see, in the presence of �, new validities arise which
may be undesirable from the point of view of an extended Curry-Howard isomor-
phism. Thus our goal is to provide semantics for weaker axiomatically-defined
intuitionistic temporal logics in order to provide tools for understanding their
computational behaviour. We demonstrate the power of our semantics by sepa-
rating several natural axiomatically-given calculi, which in particular answers in
the negative a conjecture of Yuse and Igarashi [29] that the Gentzen-style and
the Hilbert-style calculi presented there prove the same set of formulas.

There have already been some notable efforts towards a semantical study of
intuitionistic temporal logics. Kojima and Igarashi [19] endowed Davies’s logic
with Kripke semantics and provided a complete deductive system. Bounded-time
versions of logics with henceforth were later studied by Kamide and Wansing
[18]. Both use semantics based on Simpson’s bi-relational models for intuition-
istic modal logic [28]. Since then, Balbiani and the authors have shown that
temporal here-and-there is decidable and enjoys a natural axiomatization [3].
Topological semantics for intuitionistic modal and tense logics have also been
studied by Davoren et al. [10,11], and Kremer suggested a topologically-defined
intuitionistic variant of LTL with ◦ and � [21]. The decidability of Kremer’s

4 Staged computation is a technique that allows dividing the computation in order to
exploit the early availability of some arguments.



logic remains open, but Fernández-Duque has shown that a similar logic with
‘eventually’ ♦ instead of � is decidable [14].

In this paper we lay the groundwork for an axiomatic treatment of intuitionis-
tic linear temporal logics. We will introduce a ‘minimal’ intuitionistic temporal
logic, ITL0, defined by adding standard axioms of LTL to intuitionistic modal
logic. We also consider additional Fischer Servi axioms and a ‘constant domain’
axiom �(p ∨ q)→ �p ∨ ♦q. Combining these, we obtain four intuitionistic tem-
poral logics, each of them sound for a class of structures: the two logics with the
constant domain axiom are sound for the class of dynamic posets, and the Fischer
Servi axioms correspond to backwards-confluence of the transition function.

The constant domain axiom is not derivable from the others, and to show
this, we will consider topological semantics for intuitionistic temporal logic. As
our axioms involve both ♦ and �, we would like to be able to interpret both
tenses. Kremer [21] observed that his semantics for � do not satisfy some key
LTL validities, namely �p→ ◦�p, � ◦ p→ ◦�p, and �p→ ��p. Consequently
ITL0 is not sound for this interpretation. In order to obtain models of ITL0, we
propose an alternative interpretation for �. Our approach is natural from an
algebraic perspective, as we define the interpretation of �ϕ via a greatest fixed
point in the Heyting algebra of open sets. We will show that dynamic topological
systems provide semantics for the logics without the constant domain axiom,
from which we conclude the independence of the latter. Moreover, we show that
the Fischer Servi axioms are valid for the class of open dynamical topological
systems. The constant domain axiom shows that the {♦,�}-logic of dynamic
posets is different from that of dynamic topological systems. We show via an
alternative axiom that the {◦,�}-logics are also different.

Layout. Section 2 introduces the syntax and the four axiomatic systems we
propose for intuitionistic temporal logic. Section 3 reviews dynamic topologi-
cal systems, which are used in Section 4 to provide semantics for our formal
language. Section 5 shows that each of the four logics is sound for a class of
dynamical systems. These soundness results are used in Section 6 to show that
the four logics are pairwise distinct. Finally, Section 7 lists some open questions.

2 Syntax and axiomatics

In this section we will introduce four natural intuitionistic temporal logics. All
of the axioms have appeared either in the intuitionistic logic, the temporal logic,
or the intuitionistic modal logic literature. They will be based on the language
of linear temporal logic, as defined next.

Fix a countably infinite set P of propositional variables. The language L of
intuitionistic (linear) temporal logic ITL is given by the grammar

⊥ | p | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ◦ ϕ | ♦ϕ | �ϕ,

where p ∈ P. As usual, we use ¬ϕ as a shorthand for ϕ → ⊥ and ϕ ↔ ψ as
a shorthand for (ϕ → ψ) ∧ (ψ → ϕ). We read ◦ as ‘next’, ♦ as ‘eventually’,



and � as ‘henceforth’. Given any formula ϕ, we denote the set of subformulas
of ϕ by sub(ϕ).The language L♦ is defined as the sublanguage of L without the
modality �. Similarly, L� is the language without ♦.

We begin by establishing our basic axiomatization. It is obtained by adapting
the standard axioms and inference rules of LTL [22], as well as their dual versions.
To be precise, the logic ITL0 is the least set of L-formulas closed under the
following rules and axioms.

i) All intuitionistic tautologies.

ii) ¬ ◦ ⊥
iii) ◦ (ϕ ∧ ψ)↔ (◦ϕ ∧ ◦ψ);

iv) ◦ (ϕ ∨ ψ)↔ (◦ϕ ∨ ◦ψ);

v) ◦ (ϕ→ ψ)→ (◦ϕ→ ◦ψ);

vi) � (ϕ→ ψ)→ (�ϕ→ �ψ);

vii) � (ϕ→ ψ)→ (♦ϕ→ ♦ψ);

viii) �ϕ→ ϕ ∧ ◦�ϕ;
ix) ϕ ∨ ◦♦ϕ→ ♦ϕ;
x) �(ϕ→ ◦ϕ)→ (ϕ→ �ϕ);
xi) �(◦ϕ→ ϕ)→ (♦ϕ→ ϕ);

xii)
ϕ ϕ→ ψ

ψ
;

xiii)
ϕ

◦ϕ
.

Each axiom is either included in the axiomatization of Goldblatt [16, page
87] or is a mild variant of one of them (e.g., a contrapositive); this is standard
in intuitionistic modal logic, as such variants are needed to account for the
independence of the basic connectives. We do not consider ‘until’ in this paper,
but have studied its intuitionistic semantics in [2]. Modal intuitionistic logics
often involve additional axioms, and in particular Fischer Servi [15] includes the
schema

FS♦(ϕ,ψ)
def
= (♦ϕ→ �ψ)→ � (ϕ→ ψ) .

Recalling that ◦ is self-dual, we also define

FS◦(ϕ,ψ)
def
= (◦ϕ→ ◦ψ)→ ◦ (ϕ→ ψ) .

Later we will show that these schemas lead to strictly stronger logics. Finally,
we consider additional axioms reminiscent of constant domain axioms in first-
order intuitionistic logic. As we will see, in the context of intuitionistic temporal
logics, these axioms separate Kripke semantics from the more general topological
semantics.

CD(ϕ,ψ)
def
= �(ϕ ∨ ψ)→ �ϕ ∨ ♦ψ

BI(ϕ,ψ)
def
= �(ϕ ∨ ψ) ∧�(◦ψ → ψ)→ �ϕ ∨ ψ.

Here, CD stands for ‘constant domain’ and BI for ‘backward induction’.
From a constructive perspective CD might not be desirable, as from �(ϕ∨ψ)

one cannot in general extract an upper bound for a witness for ♦ψ.5 The axiom
BI is meant to be a ♦-free approximation to CD, as witnessed by the following.

5 For example, if ϕ represents the ‘active’ states and ψ the ‘halting’ states of a program,
then CD would require us to decide whether the program halts, which is not possible
to do constructively.



Proposition 1. ITL0 ` CD(p, q)→ BI(p, q).

Proof. We reason within ITL0. Assume that 1) CD(p, q), 2) �(◦q → q), and
3) �(p ∨ q). From 1) and 3) we obtain �p ∨ ♦q, which together with 2) and
axiom xi) gives us �p ∨ q, as needed.

With this, we define the following logics:

ITLFS ≡ ITL0 + FS◦ + FS♦, ITLCD ≡ ITL0 + CD, ITL1 ≡ ITLFS + ITLCD.

We are also interested in logics over sublanguages of L. For any logic Λ defined
above, let Λ� be defined by restricting similarly all rules and axioms to L�,
except that when CD is an axiom of Λ, we add the axiom BI to Λ�. The logic
ITL0� is similar to a Hilbert calculus for the ∧,∨-free fragment considered by
Yuse and Igarashi [29], although they do not include induction but include the
axioms �ϕ→ ��ϕ and � ◦ϕ↔ ◦�ϕ. It is not difficult to check that the latter
are derivable from our basic axioms, and hence their logic is contained in ITL0�.

We also define Λ♦ be the logic obtained by restricting all rules and axioms to
L♦, and adding the rules ϕ→ψ

♦ϕ→♦ψ and ◦ϕ→ϕ♦ϕ→ϕ . Note that these rules correspond to

axioms vii), xi), respectively, but do not involve �. In this paper we are mostly
concerned with logics including ‘henceforth’, but �-free logics are studied in
detail in [12].

3 Dynamic topological systems

The four logics over L defined above are pairwise distinct. We will show this
by introducing semantics for each of them. They will be based on dynamic
topological systems (or dynamical systems for short), which, as was observed in
[14], generalize their Kripke semantics [4]. Let us first recall the definition of a
topological space [25]:

Definition 1. A topological space is a pair (X, T ) , where X is a set and T a
family of subsets of X satisfying a) ∅, X ∈ T ; b) if U, V ∈ T then U ∩ V ∈ T , and
c) if O ⊆ T then

⋃
O ∈ T . The elements of T are called open sets.

If x ∈ X, a neighbourhood of x is an open set U ⊆ X such that x ∈ U . Given
a set A ⊆ X, its interior, denoted A◦, is the largest open set contained in A. It
is defined formally by

A◦ =
⋃
{U ∈ T : U ⊆ A} . (1)

Dually, we define the closure A as X \ (X \ A)◦; this is the smallest closed set
containing A.

If (X, T ) is a topological space, a function S : X → X is continuous if,
whenever U ⊆ X is open, it follows that S−1[U ] is open. The function S is open
if, whenever V ⊆ X is open, then so is S[V ]. An open, continuous function is an
interior map, and a bijective interior map is a homeomorphism.

A dynamical system is then a topological space equipped with a continuous
function:



Definition 2. A dynamical (topological) system is a triple X = (X, T , S) such
that (X, T ) is a topological space and S : X → X is continuous. We say that
X is invertible if S is a homeomorphism, i.e., S is bijective and S−1 is also a
continuous function, and open if S is an interior map.

Topological spaces generalize posets in the following way. Let F = (W,4)
be a poset; that is, W is any set and 4 is a transitive, reflexive, antisymmetric
relation on W . To see F as a topological space, define ↑w = {v : w 4 v} . Then
consider the topology T4 on W given by setting U ⊆ W to be open if and only
if, whenever w ∈ U , we have ↑w ⊆ U . A topology of this form is a up-set topology
[1]. The interior operator on such a topological space can be computed by

A◦ = {w ∈W : ↑w ⊆ A}; (2)

i.e., w lies on the interior of A if whenever v < w, it follows that v ∈ A.
Throughout this text we will often identify partial orders with their corre-

sponding topologies, and many times do so tacitly. In particular, a dynamical
system generated by a poset is called a dynamic poset. It will be useful to char-
acterize the continuous and open functions on posets:

Lemma 1. Consider a poset (W,4) and a function S : W →W . Then,

1. S is continuous with respect to the up-set topology if and only if, whenever
w 4 w′, it follows that S(w) 4 S(w′), and

2. S is open with respect to the up-set topology if whenever S(w) 4 v, there is
w′ ∈W such that w 4 w′ and S(w′) = v.

These are confluence properties common in multi-modal logics; open, continuous
maps on a poset are called persistent.

w

w′

S

4

S

4

(a) Continuity

w

vw′

S

4

S

4

(b) Openness

Fig. 1: On a dynamic poset the above diagrams can always be completed if S is
continuous or open, respectively.

4 Semantics

In this section we will see how dynamical systems can be used to provide a
natural intuitionistic semantics for the language of linear temporal logic.



Formulas are interpreted as open subspaces of a dynamical system. Each
propositional variable p is assigned an open set JpK, and then J·K is defined
recursively for more complex formulas according to the following:

Definition 3. Given a dynamical system X = (X, T , S), a valuation on X is a
function J·K : L → T such that:

J⊥K = ∅
Jϕ ∧ ψK = JϕK ∩ JψK
Jϕ ∨ ψK = JϕK ∪ JψK
Jϕ→ ψK =

(
(X \ JϕK) ∪ JψK

)◦
J◦ϕK = S−1 JϕK
J♦ϕK =

⋃
n≥0

S−n JϕK

J�ϕK =
⋃ {

U ∈ T : S[U ] ⊆ U ⊆ JϕK
}

A tuple M = (X, T , S, J·K) consisting of a dynamical system with a valuation
is a dynamic topological model, and if T is generated by a partial order, we will
say that M is a dynamic poset model.

All of the semantic clauses are standard from either intuitionistic or temporal
logic, with the exception of that for �ϕ, which we discuss in greater detail below.
It is not hard to check by structural induction on ϕ that JϕK is uniquely defined
given any assignment of the propositional variables to open sets, and that JϕK
is always open. We define validity in the standard way, and with this introduce
four additional semantically-defined logics, two of which were already studied by
us in Boudou et al. [4].

Definition 4. IfM = (X, T , S, J·K) is any dynamic topological model and ϕ ∈ L
is any formula, we write M |= ϕ if JϕK = X. Similarly, if X = (X, T , S) is a
dynamical system, we write X |= ϕ if for any valuation J·K on X , we have that
(X , J·K) |= ϕ. Finally, if Ω is a class of structures, we write Ω |= ϕ if for every
A ∈ Ω, A |= ϕ, in which case we say that ϕ is valid on Ω.

We denote the set of formulas valid over the class of all dynamical systems by
ITLc, over the class of all dynamic posets by ITLe, over the class of all persistent
posets by ITLp and over the class of all open dynamical systems by ITLo. If Λ is
one of these four logics we define Λ� = Λ ∩ L� and Λ♦ = Λ ∩ L♦.

In practice, it is convenient to have a ‘pointwise’ characterization of the
semantic clauses of Definition 3. For a model M = (X, T , S, J·K), x ∈ X and
ϕ ∈ L, we write M, x |= ϕ if x ∈ JϕK, and M |= ϕ if JϕK = X. Then, in
view of (1), given formulas ϕ and ψ, M, x |= ϕ→ ψ if and only if there is a
neighbourhood U of x such that for all y ∈ U , if M, y |= ϕ then M, y |= ψ;
note that this is a special case of neighbourhood semantics [26].

Using (2), this can be simplified somewhat in the case that T is generated
by a partial order 4:

Proposition 2. If (X,4, S, J·K) is a dynamic poset model, x ∈ X, and ϕ, ψ are
formulas, then M, x |= ϕ→ ψ if and only if whenever y < x and M, y |= ϕ, it
follows that M, y |= ψ.



This is the standard relational interpretation of implication, and thus topo-
logical semantics are a generalization of the usual Kripke semantics. Now let us
discuss the topological interpretation of ‘henceforth’, which is the main novelty
in our semantics. In classical temporal logic, J�ϕK is the largest set contained
in JϕK which is closed under S. In our semantics, J�ϕK is the greatest open set
which is closed under S. From this perspective, our interpretation is the natural
intuitionistic variant of the classical one. If M, x |= �ϕ, this fact is witnessed
by an open, S-invariant neighbourhood of x, where U ⊆ X is S-invariant if
S[U ] ⊆ U .

Proposition 3. If (X, T , S, J·K) is a dynamic topological model, x ∈ X, and ϕ
is any formula, then M, x |= �ϕ if and only if there is an S-invariant neigh-
bourhood U of x such that for all y ∈ U , M, y |= ϕ.

In fact, the open, S-invariant sets form a topology; that is, the family of
S-invariant open sets is closed under finite intersections and arbitrary unions.
This topology is coarser than T , in the sense that every S-invariant open set is
(tautologically) open. Thus � can itself be seen as an interior operator based on
a coarsening of T , and J�ϕK is always an S-invariant open set.

Example 1. As usual, the real number line is denoted by R and we assume that
it is equipped with the standard topology, where U ⊆ R is open if and only if it
is a union of intervals of the form (a, b). Consider a dynamical system based on
R with S : R → R given by S(x) = 2x. We claim that for any model M based
on (R, S) and any formula ϕ, M, 0 |= �ϕ if and only if M |= ϕ.

To see this, note that one implication is obvious since R is open and S-
invariant, so if JϕK = R it follows that M, 0 |= �ϕ. For the other implication,
assume that M, 0 |= �ϕ, so that there is an S-invariant, open U ⊆ JϕK with
0 ∈ U . It follows from U being open that for some ε > 0, (−ε, ε) ⊆ U . Now,
let x ∈ R, and let n be large enough so that |2−nx| < ε. Then, 2−nx ∈ U , and
since U is S-invariant, x = Sn(2−nx) ∈ U . Since x was arbitrary, U = R, and it
follows that M |= ϕ.

On the other hand, suppose that 0 < a < x and (a,∞) ⊆ JϕK. Then, (a,∞)
is open and S-invariant, so it follows that x ∈ J�ϕK. Hence in this case we do
not require that JϕK = R. Similarly, if x < a < 0 and (−∞, a) ⊆ JϕK, we readily
obtain x ∈ J�ϕK.

As was the case for implication, our interpretation for � becomes familiar
when restricted to Kripke semantics.

Lemma 2. Let M = (W,4, S, J·K) be any dynamic poset model, w ∈ W and
ϕ ∈ L. Then, the following are equivalent:

a) M, w |= �ϕ; b) w ∈
(⋂

n<ω S
−n JϕK

)◦
; c) for all n < ω, M, Sn(w) |= ϕ.

Proof. First we prove that a) implies b). Assume that M, w |= �ϕ, so that
there is an S-invariant neighbourhood U of w with U ⊆ JϕK. To see that w ∈(⋂

n<ω S
−n JϕK

)◦
, we must show that if v < w, then v ∈

⋂
n<ω S

−n JϕK. So fix



such a v and n < ω. Since U is S-invariant, Sn(w) ∈ U , and since Sn(v) < Sn(w)
and U is open, Sn(v) ∈ U , as needed. Thus v ∈

⋂
n<ω S

−n JϕK, and since v < w
was arbitrary, b) holds.

That b) implies c) is immediate from(⋂
n<ω

S−n JϕK

)◦
⊆
⋂
n<ω

S−n JϕK ,

so it remains to show that c) implies a). Suppose that for all n < ω,M, Sn(w) |=
ϕ, and let U =

⋃
n<ω ↑Sn(w). That the set U is open follows from each ↑Sn(w)

being open and unions of opens being open. If v ∈ U , then v < Sn(w) for
some n < ω and hence by upwards persistence, from M, Sn(w) |= ϕ we obtain
M, v |= ϕ; moreover, S(v) < Sn+1(w) so S(v) ∈ U . Since v ∈ U was arbitrary, we
conclude that U is S-invariant and U ⊆ JϕK. Thus U witnesses thatM, w |= �ϕ.

Remark 1. Kremer [21] uses b) as the definition of J�ϕK. However, as we men-
tioned in the introduction, even our minimal axiomatic system ITL0 is not sound
for such an interpretation over arbitrary dynamical systems.

5 Soundness

In this section we will show that the four logics we have considered are sound
for semantics based on different classes of dynamic topological systems. First we
show that our minimal logic is sound for the class of all dynamical systems. The
following simple observation will be useful.

Lemma 3. If M = (X, T , S, J·K) is any model and ϕ,ψ ∈ L, then M |= ϕ→ ψ
if and only if JϕK ⊆ JψK.

Proof. If JϕK ⊆ JψK then (X \ JϕK) ∪ JψK = X, so Jϕ→ ψK =
(
(X \ JϕK) ∪

JψK
)◦

= X◦ = X. Otherwise, there is z ∈ JϕK such that z /∈ JψK, so that

z /∈
(
(X \ JϕK) ∪ JψK

)◦
, i.e. z /∈ Jϕ→ ψK.

Theorem 1. ITL0 is sound for the class of dynamical systems; that is, ITL0 ⊆
ITLc.

Proof. Let M = (X, T , S, J·K) be any dynamical topological model; we must
check that all the axioms i)-xi) are valid on M and the rules xii), xiii) preserve
validity. Note that all intuitionistic tautologies are valid due to the soundness for
topological semantics [24]. Many of the other axioms can be checked routinely,
so we focus only on those axioms involving the continuity of S or the semantics
for �.

v) Suppose that x ∈ J◦(ϕ→ ψ)K. Then, S(x) ∈ Jϕ→ ψK. Since S is continuous
and Jϕ→ ψK is open, U = S−1 Jϕ→ ψK is a neighbourhood of x. Then, for y ∈ U ,
if y ∈ J◦ϕK, it follows that S(y) ∈ JϕK∩Jϕ→ ψK, so that S(y) ∈ JψK and y ∈ J◦ψK.



Since y ∈ U was arbitrary, x ∈ J◦ϕ→ ◦ψK, thus J◦(ϕ→ ψ)K ⊆ J◦ϕ→ ◦ψK, and
by Lemma 3 (which we will henceforth use without mention), v) is valid onM.

vi) Suppose that x ∈ J�(ϕ→ ψ)K. Then, there is an S-invariant neighbourhood
U of x such that U ⊆ Jϕ→ ψK. We claim that if y ∈ U ∩ J�ϕK it follows that
y ∈ J�ψK, from which we obtain x ∈ J�ϕ→ �ψK, as needed. If y ∈ U ∩ J�ϕK,
let U ′ be an S-invariant neighbourhood of y such that U ′ ⊆ JϕK, and define
V = U ∩ U ′. Then, the set V is an S-invariant neighbourhood of y. Moreover,
if z ∈ V , then z ∈ U ⊆ Jϕ→ ψK, while z ∈ U ′ ⊆ JϕK, hence z ∈ JψK. It follows
that V ⊆ JψK, and thus y ∈ J�ψK, as desired.

vi) Observe that J�(ϕ→ ψ)K is an S-invariant open subset of Jϕ→ ψK. Similarly,
J�ϕK is an S-invariant open subset of JϕK. Let

U = J�(ϕ→ ψ)K ∩ J�ϕK .

Since U is open, it suffices to prove that U ⊆ J�ψK. Moreover, U is S-invariant,
therefore it suffices to prove that U ⊆ JψK, which is direct because U ⊆ Jϕ→ ψK∩
JϕK and Jϕ→ ψK ⊆ (X \ JϕK) ∪ JψK.

vii) As before, suppose that x ∈ J�(ϕ→ ψ)K, and let U be an S-invariant neigh-
bourhood of x such that U ⊆ Jϕ→ ψK. If y ∈ U ∩ J♦ϕK, then Sn(y) ∈ JϕK for
some n; since U is S-invariant, Sn(y) ∈ U , hence Sn(y) ∈ JψK and y ∈ J♦ψK. We
conclude that x ∈ J♦ϕ→ ♦ψK.

viii) Suppose that x ∈ J�ϕK, and let U ⊆ JϕK be an S-invariant neighbourhood
of x. Then, x ∈ U , so x ∈ JϕK. Moreover, U is also an S-invariant neighbourhood
of S(x), so S(x) ∈ J�ϕK and thus x ∈ J◦�ϕK. We conclude that x ∈ Jϕ ∧ ◦�ϕK.

x) Supppose that x ∈ J�(ϕ→ ◦ϕ)K. If x ∈ JϕK, then U = JϕK ∩ J�(ϕ→ ◦ϕ)K
is open (by the intuitionistic semantics) and S-invariant, since if y ∈ U , from
y ∈ Jϕ→ ◦ϕK we obtain S(y) ∈ JϕK. It follows that U is an S-invariant neigh-
bourhood of x, so x ∈ J�ϕK.

xi) Suppose that x ∈ J�(◦ϕ→ ϕ)K∩ J♦ϕK. Let U ⊆ J◦ϕ→ ϕK be an S-invariant
neighbourhood of x. Let n be least so that Sn(x) ∈ JϕK; if n > 0, since U
is S-invariant we see that Sn−1(x) ∈ U ⊆ J◦ϕ→ ϕK, hence Sn−1(x) ∈ JϕK,
contradicting the minimality of n. Thus n = 0 and x ∈ JϕK.

The additional axioms we have considered are valid over specific classes of
dynamical systems. Specifically, the constant domain axiom is valid for the class
of dynamic posets, while the Fischer Servi axioms are valid for the class of open
systems. Let us begin by discussing the former in more detail.

Theorem 2. ITLCD and ITLCD� are sound for the class of dynamic posets; that
is, ITLCD ⊆ ITLe and ITLCD� ⊆ ITLe�.

Proof. LetM = (X,4, S, J·K) be a dynamic poset model; in view of Theorem 1,
it only remains to check that CD and BI are valid on M. However, by Propo-
sition 1, BI is a consequence of CD, so we only check the latter. Suppose that
x ∈ J�(ϕ ∨ ψ)K, but x 6∈ J�ϕK. Then, in view of Lemma 2, for some n ≥ 0,
Sn(x) 6∈ JϕK. It follows that Sn(x) ∈ JψK, so that x ∈ J♦ψK.



Note that the relational semantics are used in an essential way, since Lemma 2
is not available in the topological setting, and indeed we will show in Proposi-
tion 4 that these axioms are not topologically valid. But before that, let’s turn
our attention to the Fischer Servi axioms.

Theorem 3. ITLFS ⊆ ITLo, i.e. ITLFS is sound for the class of open dynamical
systems.

Proof. Let M = (X, T , S, J·K) be a dynamical topological model where S is an
interior map. We check that axioms FS◦ and FS♦ are valid on M.

(FS◦) Suppose that x ∈ J◦ϕ→ ◦ψK, and let U ⊆ J◦ϕ→ ◦ψK be a neighbourhood
of x. Since S is open, V = S[U ] is a neighbourhood of S(x). Let y ∈ V ∩ JϕK,
and choose z ∈ U so that y = S(z). Then, z ∈ U ∩ J◦ϕK, so that z ∈ J◦ψK,
i.e. y ∈ JψK. Since y ∈ V was arbitrary, S(x) ∈ Jϕ→ ψK, and x ∈ J◦(ϕ→ ψ)K.

(FS♦) Suppose that x ∈ J♦ϕ→ �ψK, and let U ⊆ J♦ϕ→ �ψK be a neighbour-
hood of x. Set V =

⋃
n<ω S

n[U ]; since S is open and unions of opens are open,
V is open as well. Moreover, V is clearly S-invariant, as if x ∈ V , then x ∈ Sn[U ]
for some n ≥ 0, so that S(x) ∈ Sn+1[U ] ⊆ V .

We claim that V ⊆ Jϕ→ ψK, from which we obtain a witness that M, x |=
�(ϕ→ ψ). Suppose that y ∈ V ∩ JϕK. By the definition of V , y = Sn(z) for
some n < ω and some z ∈ U . Then, z ∈ U ∩ J♦ϕK, so that z ∈ J�ψK. From this
we may choose an S-invariant neighbourhood Z ⊆ JψK of z. But y = Sn(z) ∈ Z
so that y ∈ JψK, and since y ∈ V was arbitrary we see that V ⊆ Jϕ→ ψK, as
needed.

As an easy consequence, we mention the following combination of Theorems 2
and 3. Recall that dynamic posets with an interior map are also called persistent.

Corollary 1. ITL1 and ITL1� are sound for the class of persistent dynamic
posets, that is, ITL1 ⊆ ITLp and ITL1� ⊆ ITLp�.

6 Independence

In this section we will use our soundness results to show that the four logics we
have considered are pairwise distinct. First we note that the formulas CD and
BI separate Kripke semantics from the general topological semantics.

Proposition 4. The formulas CD(p, q) and BI(p, q) are not valid over the class
of invertible dynamical systems based on R, hence ITLFS 6` CD(p, q) and ITLFS 6`
BI(p, q).

Proof. Define a modelM on R, with S(x) = 2x, JpK = (−∞, 1) and JqK = (0,∞).
Clearly Jp ∨ qK = R, so that J�(p ∨ q)K = R as well.

Let us see that M, 0 6|= CD(p, q). Since M, 0 |= �(p ∨ q), it suffices to show
thatM, 0 6|= �p ∨ ♦q. It is clear thatM, 0 6|= ♦q simply because Sn(0) = 0 6∈ JqK



for all n. Meanwhile, by Example 1, M, 0 |= �p if and only if JpK = R, which is
not the case. We conclude that M, 0 6|= CD(p, q).

To see that M, 0 6|= BI(p, q) we proceed similarly, where the only new ingre-
dient is the observation thatM, 0 |= �(◦q → q). But this follows easily from the
fact that if M, x |= ◦q, then x > 0 so that M, x |= q, hence J◦q → qK = R.

Proposition 5. The formula BI(p, q)→ CD(p, q) is not valid over the class of
invertible dynamical systems based on R.

Proof. Consider a model M similar to that used in the proof of Proposition 4,
except that JqK = R\[−1/2, 1/2]. Then, �(p∨q)→ �p∨♦q fails at 0 (by essentially
the same reasoning). However, it could easily be checked that J�(◦q → q)K = JqK.
Hence 0 ∈ J¬�(◦q → q)K, from which it readily follows that 0 satisfies

�(◦q → q)→
(
�(p ∨ q)→ �p ∨ q

)
.

Therefore BI(p, q) does not imply CD(p, q) over the class of invertible dynamical
systems.

Note, however, that Proposition 5 does not necessarily imply that there are
no formulas ϕ, ψ such that BI(ϕ,ψ) → CD(p, q) is derivable, and hence it is
reasonable to use BI in place of CD to axiomatize ♦-free logics.

The Fischer Servi axioms are also not valid in general, as shown in Boudou
et al. [2]. From this and the soundness of ITLFS (Theorem 3), we immediately
obtain that they are not derivable in ITL0.

p

S
S

S

4

Fig. 2: A dynamic poset model falsifying both Fischer Servi axioms. Propositional
variables that are true on a point are displayed; only one point satisfies p and
no point satisfies q. It can readily be checked that FS◦(p, q) and FS♦(p, q) fail
on the highlighted point on the left. Note that S is continuous but not open, as
can easily be seen by comparing to Figure 1.

Proposition 6. FS◦(p, q) and FS♦(p, q) are not valid over the class of dynamic
posets, hence ITLCD 6` FS◦(p, q) and ITLCD 6` FS♦(p, q).

Proof. Let {p, q} be a set of propositional variables and let us consider the
model M = (W,4, S, V ) defined by 1) W = {w, v, u}; 2) S(w) = v, S(v) = v
and S(u) = u; 3) v 4 u; 4) V (p) = {u}, and 5) V (q) = ∅ (see Figure 2).
Clearly, M, u 6|= p→ q, so M, v 6|= p→ q. By definition, M, w 6|= ◦ (p→ q) and



M, w 6|= � (p→ q); however, M, w |= ◦p → ◦q and M, w |= ♦p → �q since
the negation of each antecedent holds, so M, w 6|= (◦p→ ◦q) → ◦ (p→ q) and
M, w 6|= (♦p→ �q)→ � (p→ q).

Remark 2. As mentioned previously, Yuse and Igarashi [29] present a Hilbert-
calculus which yields a sub-logic of ITL0�. They also present a Gentzen-style
calculus and conjecture that their two calculi prove the same set of formulas.
However, Kojima and Igarashi [19] show that the formula FS◦(p, q) is derivable
in this Gentzen calculus. Thus Proposition 6 shows that the two calculi are not
equivalent.

The above independence results are sufficient to see that each of our four
syntactically-defined logics, as well as each of our four semantically-defined log-
ics, are pairwise distinct.

Theorem 4. The logics ITL0, ITLFS, ITLCD and ITL1 are pairwise distinct, as
are ITL0�, ITLFS� , ITLCD� and ITL1�. Similarly, ITLc, ITLo, ITLe and ITLp are pair-
wise distinct, as are ITLc�, ITLo�, ITLe� and ITLp�.

Proof. By Proposition 4 and the definition of ITLCD, CD(p, q) ∈ ITLCD \ ITLFS;
similarly, by Proposition 6, FS◦(p, q) ∈ ITLFS \ ITLCD. Thus ITLFS and ITLCD

are incomparable, from which we conclude that ITL0, which is contained in their
intersection, is strictly smaller than either of them, while ITL1, which contains
their union, is strictly larger. The arguments for the logics over L� are analogous,
except that CD is replaced with BI, as is the argument for semantically-defined
logics.

7 Concluding Remarks

We have proposed a natural ‘minimalist’ intuitionistic temporal logic, ITL0, along
with possible extensions including Fischer Servi or constant domain axioms. We
have seen that relational semantics validate the constant domain axiom, leading
us to consider a wider class of models based on topological spaces, with a novel
interpretation for ‘henceforth’ based on invariant neighbourhoods. With this,
we have shown that the logics ITL0, ITLCD, ITLFS and ITL1 are sound for the
class of all dynamical systems, of all dynamical posets, of all open dynamical
systems, and of all persistent dynamical posets, respectively, which we have used
in order to prove that the logics are pairwise distinct. Of course this immediately
raises the question of completeness, which we have not addressed. Specifically,
the following are left open.

Question 1. Are the logics:

– ITL0 and ITL0� complete for the class of dynamical systems?
– ITLCD and ITLCD� complete for the class of dynamic posets?
– ITLFS, ITLFS♦ and ITLFS� complete for the class of open dynamical systems?

– ITL1, ITL1♦ and ITL1� complete for the class of persistent dynamic posets?



We already know that ITL0♦ is sound and complete for the class of dynamic

posets [12]. However, the completeness of ITLFS♦ and ITL1♦ is likely to be a more

difficult problem than that of ITL0♦, as in these cases it is not even known if the
set of valid formulas is computably enumerable, let alone decidable.

Question 2. Are any of the logics Λ, Λ♦, or Λ� with Λ ∈ {ITLp, ITLo} decidable
and/or computably enumerable?

In any of these cases a negative answer is possible, since that is the case
for their classical counterparts [20] and these logics do not have the finite model
property [4]. Nevertheless, the proofs of non-axiomatizability in the classical case
do not carry over to the intuitionistic setting in an obvious way, and these remain
challenging open problems.
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5. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Communications of the ACM 54(12), 92–103 (2011)
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