
Answer Set Programming for Qualitative
Spatio-Temporal Reasoning: Methods and
Experiments
Christopher Brenton1, Wolfgang Faber2, and Sotiris Batsakis3

1 School of Computing and Engineering, University of Huddersfield,
Huddersfield, United Kingdom
christopher.brenton@hud.ac.uk

2 School of Computing and Engineering, University of Huddersfield,
Huddersfield, United Kingdom
w.faber@hud.ac.uk

3 School of Computing and Engineering, University of Huddersfield,
Huddersfield, United Kingdom
s.batsakis@hud.ac.uk

Abstract
We study the translation of reasoning problems involving qualitative spatio-temporal calculi into
answer set programming (ASP). We present various alternative transformations and provide a
qualitative comparison among them. An implementation of these transformations is provided
by a tool that transforms problem instances specified in the language of the Generic Qualitative
Reasoner (GQR) into ASP problems. Finally, we report on an experimental analysis of solving
consistency problems for Allen’s Interval Algebra and the Region Connection Calculus with eight
base relations (RCC-8).

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases answer set programming, qualitative spatio-temporal reasoning

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.4

1 Introduction

In this paper, we study the translation of reasoning problems involving qualitative spatio-
temporal calculi into answer set programming (ASP). Qualitative spatio-temporal calculi
were developed in order to deal with situations in which precise time-points or coordinates
are not known. They rather deal with spatio-temporal regions and relationships that hold
among them. Perhaps the best known of these are Allen’s Interval Algebra [1] and the family
of Region Connection Calculi (RCC) [6]. More recently, quite many of these calculi have
been defined and described in a uniform way that allows for calculus-independent reasoning
systems such as GQR [14]. Qualitative spatio-temporal calculi have a number of applications,
for instance in planning, but also in Semantic Web applications inside GeoSPARQL [3].

This work has been conducted to lay the foundations for a larger project, in which the
aim is to support expressing and reasoning with preferences over spatio-temporal relations,
and also query answering and expressing defaults. We envision that the methods developed
in this paper can be extended to accommodate preferences using the system asprin1 [5].

1 http://www.cs.uni-potsdam.de/asprin/

© Christopher Brenton, Wolfgang Faber, and Sotiris Batsakis;
licensed under Creative Commons License CC-BY

Technical Communications of the 3d2nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 4; pp. 4:1–4:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62923072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ICLP.2016.4
http://www.cs.uni-potsdam.de/asprin/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

Recently, there has been another approach to spatio-temporal reasoning using ASP in [13];
however, in that work the focus is on combining quantitative and qualitative reasoning and
it uses ASPMT as an underlying mechanism. The latter would make the integration of
preferences more difficult.

In a previous work, Li [9] proposed a transformation of reasoning problems over qualitative
spatio-temporal calculi into ASP. Li’s description is by example, using RCC-8 (RCC with
eight base relations), and does not discuss many alternatives. Moreover, a supporting tool
seems to have been lost (J. Li, personal correspondence, November 2014). In this paper we
elaborate on Li’s results and propose a generically described family of transformations. The
transformations differ in what kinds of ASP constructs they use and what representational
assumptions are taken. Our longer term perspective is to endow qualitative spatio-temporal
calculi with language constructs that allow for reasoning with incomplete knowledge, default
assumptions, and preferences, which makes ASP an attractive language for supporting these.

All of these transformations are implemented in the tool GQRtoASPConverter, which
accepts consistency problems over qualitative spatio-temporal calculi specified in the language
of GQR, and produces logic programs that conform to the ASP-Core-2 standard. We also
provide a simple nomenclature for the various transformations, so that they are easy to
remember and identify.

Finally, we have conducted an experimental analysis of the various transformations on
consistency problems over Allen’s Interval Algebra and the RCC-8 calculus. While this
paper is based on [4], it has been substantially revised and expanded. This paper describes
additional transformations, has more formal definitions of the transformations and provides
a proof for the main correctness theorem. A bug that was identified just before preparing the
camera-ready version of [4] has been fixed, which yields a somewhat different picture in the
experimental results, which have also been considerably extended. Our findings show that a
number of encodings perform persistently well, and that several of them also outperform the
direct encoding presented by Li. Unfortunately, the performance of special-purpose tools
such as GQR appears to be out of reach using the techniques in this and [9]. Even so, the
ASP transformations allow for a range of reasoning problems, for instance query answering,
rather than for solving just consistency problems. They will in particular prove useful as a
basis of our larger project, which will involve preferences and defaults.

This work also provides an interesting set of new benchmark problems for ASP. In
particular, some of the transformations create numerous disjunctive rules that can also be
cyclic, which seems to trigger some suboptimal behaviour in current grounding algorithms.

2 Preliminaries

2.1 Qualitative Spatio-temporal Calculi
Temporal and spatial (e.g., topological) information often lacks precise values. For instance,
in spatial reasoning, the exact location of an area might not be known. This calls for
qualitative representations, which can be seen as abstractions of representations that involve
precise values. Still, the relationships holding between such abstractly represented elements
may be known. For example, the exact spatial location of “Europe” and “Italy” may not be
known, while it is known that “Italy” is “inside” “Europe”.

In temporal reasoning, the exact time frame in which an event occurs may not be known.
Still, as with spatial reasoning, the relationships holding between events may be known. For
example, it may not be known at what times breakfast and lunch were taken or at what time
a newspaper was read, but it is known that breakfast occurred before lunch and may be the
case that the newspaper was read during lunch.

C. Brenton, W. Faber, and S. Batsakis 4:3

X Y

(a) DC (X, Y)

X Y

(b) EC (X, Y)

X Y

(c) PO(X, Y)

X Y

(d) EQ(X, Y)

Y
X

(e) TPP(X, Y)

Y
X

(f) NTPP(X, Y)

X
Y

(g) TPPi(X, Y)

X
Y

(h) NTPPi(X, Y)

Figure 1 RCC-8 Base Relations.

More formally, a qualitative (spatio-temporal) calculus describes relations between elements
of a set of elements D (possibly infinite). The set of base (or atomic) relations B is such
that for each element in D×D exactly one base relation holds when complete information is
available. Usually one is however confronted with a situation with incomplete or indefinite
information, in which case for each element in D ×D more than one definite base relation is
known to possibly hold, but it is not known which one of these. In this case, we associate a
set of base relations (those that possibly hold) to each pair of elements, formally one can do
this by a labeling function l : D2 → 2B. A set of base relations can be viewed as a disjunction
of base relations, and the empty set represents inconsistency.

I Definition 1. Given a set of elements D (the domain) and a finite set of base relations
B, a (possibly partial) configuration is a labeling function l : D2 → 2B. A configuration l

is complete if ∀(i, j) ∈ D2 : |l(i, j)| = 1, in which case we can simplify the notation of the
labeling function to l : D2 → B.

As an example, consider the Region Connection Calculus with eight base relations (RCC-
8) [6], one of the main ways of representing topological relations. Figure 1 shows the intuitive
meaning of the base relations (DC for disconnected, EC for externally connected, TPP for
tangential proper part, NTPP for non-tangential proper part, PO for partially overlapping,
EQ for equal, TPPi for tangential proper part inverse, and NTTPi for non-tangential proper
part inverse). In our earlier example, the statement that Italy is inside Europe actually
refers to a disjunction of base relations, as “inside” can refer to TPP or NTTP. So assuming
Italy ∈ D and Europe ∈ D, one would represent this as Italy{TPP, NTPP}Europe or, in
a more logic-oriented notation, TPP (Italy, Europe) ∨NTTP (Italy, Europe).

As another example, consider Allen’s Interval Algebra [1], one of the main ways of
representing temporal information. Figure 2 shows an intuitive graphical representation of
the base relations (b for before, m for meets, o for overlaps, d for during, s for starts, f for
finishes, bi for before inverse, mi for meets inverse, oi for overlaps inverse, di for during inverse,
si for starts inverse, fi for finishes inverse, and eq for equal). To continue with the previous
temporal example stating that breakfast was taken before lunch and a newspaper was read
during lunch, we can see that before refers to the b and during refers to d. If we assume for this
example that {take_breakfast, take_lunch, read_newspaper} ⊆ D then the relationships
could be represented as take_breakfast{b}take_lunch and read_newspaper{d}take_lunch

or, in a more logic-oriented notation, the two facts b(take_breakfast, take_lunch). and
d(read_newspaper, take_lunch).

ICLP 2016 TCs

4:4 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

Figure 2 Allen’s Interval Algebra Base Relations.

A qualitative (spatio-temporal) calculus will additionally identify which of the base
relations is the equality relation (it is assumed to be present), which base relations are
inverses of each other, and it will specify a composition table. The latter states for each
pairs of base relations {R, S} ⊆ B and elements {X, Y, Z} ⊆ D, if R(X, Y) and S(Y, Z) hold,
which base relations possibly hold between X and Z. Formally, the composition table is a
function c : B2 → 2B.

I Definition 2. A qualitative (spatio-temporal) calculus (QSTC) is a tuple 〈B, e, i, c〉 where
B is a finite set of base relations, e ∈ B identifies the equality relation, i : B → B is a function
that identifies the inverse for each base relation, and c : B2 → 2B is the composition table.

For RCC-8, EQ is the equality relation, EQ, DC, PO, and EC are inverses of themselves,
while TPP is the inverse of TPPi, and NTTP is the inverse of NTTPi. For Allen’s Interval
Algebra, eq is the equality relation, and b, m, o, d, s, and f have inverse relations in bi, mi,
oi, di, si, and fi respectively.

The most studied reasoning problem with qualitative calculi is the consistency problem,
which asks whether a given configuration is consistent, that is, whether there is a complete
subconfiguration (a solution) that is consistent with the composition table. This problem
is known to be NP-hard in the general case, however tractable scenarios (i.e., solvable by
polynomial time algorithms) have been identified [12]. There are also other, less studied,
reasoning problems, such as asking whether a given relation holds between two given elements
in some solution, or in all solutions.

I Definition 3. Given a QSTC Q = 〈B, e, i, c〉, a set of elements D, and a configuration
l : D2 → 2B, a solution is a complete configuration s : D2 → B such that ∀(i, j) ∈ D2 :
s(i, j) ∈ l(i, j), ∀(i, j), (j, k) ∈ D2 : s(i, k) ∈ c(s(i, j), s(j, k)), ∀(i, j) ∈ D : s(i, j) = i(s(j, i)),
and ∀i ∈ D : s(i, i) = e. Let us denote the set of all solutions by sol(Q,D, l). A configuration
l over D is consistent with respect to a QSTC Q iff sol(Q,D, l) 6= ∅.

2.2 Answer Set Programming
The complete current ASP standard ASP-Core-2 is available at https://www.mat.unical.
it/aspcomp2013/ASPStandardization. In the following, we present an overview of a subset
of the ASP language used in the paper. For further background, we refer to [8, 2, 7]

A predicate atom is of the form p(t1, . . . , tn), where p is a predicate name, t1, . . . , tn are
terms (constants or variables) and n ≥ 0 is the arity of the predicate atom. A construct

https://www.mat.unical.it/aspcomp2013/ASPStandardization
https://www.mat.unical.it/aspcomp2013/ASPStandardization

C. Brenton, W. Faber, and S. Batsakis 4:5

not a, where a is a predicate atom, is a negation as failure (NAF) literal. A choice atom is
of the form i{a1; . . . ; an}j where a1, . . . , an are predicate atoms and n ≥ 0, i ≥ 0, and j ≥ 0.
A literal is either a NAF literal or a choice atom. A rule is of the form

h1 | . . . | hm ← b1, . . . , bn.

where h1, . . . , hm are predicate or choice atoms (forming the rule’s head) and b1, . . . , bn are
literals (forming the rule’s body) for m ≥ 0 and n ≥ 0. The rule is called an integrity
constraint if m = 0, fact if m = 1 and n = 0, and disjunctive fact if m > 1 and n = 0. In
facts and disjunctive facts, the ← sign is usually removed for better readability. An ASP
program is a set of rules.

Given a program P , the Herbrand universe of P consists of all constants that occur in P .
The Herbrand base of P is the set of all predicate atoms that can be built by combining
predicate names appearing in P with elements of the Herbrand universe of P . A (Herbrand)
interpretation I for P is a subset of the Herbrand base of P , and contains all atoms interpreted
as true by I. The grounding P g of a program P is obtained by replacing the variables in each
rule by all combinations of constants in the Herbrand universe and collecting all resulting
rules. In the following, we will identify a program with its grounding. Given an interpretation
I, a variable-free predicate atom a, I |= a iff a ∈ I; for a NAF literal not a, I |= not a

iff I 6|= a; for a choice atom i{a1, . . . , an}j iff i ≤ |{ak | I |= ak, 0 ≤ k ≤ n}| ≤ j. A rule
is satisfied by I if for some head element hi of the rule I |= h whenever I |= bj for all
body elements bj . A program is satisfied by I iff all rules are satisfied by I. A satisfying
interpretation is also called a model of the program. A model M of a program P is a minimal
model, if no N ⊂M satisfies P . The reduct of a program with respect to an interpretation
consists of those rules for which I |= bj for all body elements bj . An interpretation I is an
answer set of P if I is a minimal model of the reduct P I . Let AS(P) denote the set of all
answer sets of program P .

3 Transformations of Qualitative Spatio-temporal Calculi to
Answer-set Programming

Given the specification of a qualitative calculus, there are various ways to create an ASP
program such that, together with a suitable representation of an input labeling, each answer
set corresponds to one solution. Some first transformations of this kind were presented in
[9]. In this section, we present a different and more systematic approach. Throughout the
section we assume a domain D, a configuration l and a QSTC 〈B, e, i, c〉 to be given.

3.1 Representing Base Relations and Domain
To start with, each element of the domain will give rise to a fact.

I Definition 4. Given the domain D, we will generate a fact

element(x). (1)

for each x ∈ D.

For each base relation r ∈ B we will use a predicate of arity 2 for its ASP representation.
This is different to [9], in which a single predicate label of arity 3 was used.

The simplest and most natural representation is to use one predicate for each base relation.
For example, for RCC-8 we would consider eight predicates dc, ec, po, eq, tpp, ntpp, tppi,

ICLP 2016 TCs

4:6 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

ntppi. The fact that two elements x and y are labeled by the base relation TPPi would then
be represented by the atom tppi(x, y).

There is, however, a slight redundancy in this representation. For each pair of distinct
inverse relations r and s, whenever r(x, y) holds, it is clear that s(y, x) also holds and r(y, x)
and s(x, y) do not hold. We could use a single predicate for the pair of distinct inverse
relations instead. For example for the inverse relations TPP and TPPi of RCC-8, we could
use the single predicate tpp, and the fact that two elements x and y are labeled by the base
relation TPPi would then be represented by the atom tpp(y, x).

Since these two approaches differ in how they deal with pairs of distinct inverse relations,
we refer to the first approach as two-predicates-per-pair and the second one as one-predicate-
per-pair.

3.2 Representing the Search Space
The next issue to decide on is how to represent the search space (by representing all possible
labelings). Let us assume that we use one of the representation methods described in
Section 3.1, denoting by r(X, Y) the atom representing the fact that X and Y are labeled
by r.

We will provide two encodings, which we will refer to as disjunctive and choice encodings.
For the disjunctive encoding, we use a disjunctive rule together with a number of integrity
constraints, ensuring that at most one of the base relations can hold between a pair of
elements, and an auxiliary rule to handle the easy case of pairs of equal elements.

I Definition 5 (Disjunctive Encoding). If B = {r1, . . . , rn}, the disjunctive encoding includes
the disjunctive rule

r1(X, Y) | . . . | rn(X, Y)← element(X), element(Y), X ! = Y. (2)

where X ! = Y is a built-in predicate stating that X is distinct from Y . Moreover, for each
pair of base relations {r, s} ⊆ B an integrity constraint

← r(X, Y), s(X, Y). (3)

is added.
Finally, a single rule

re(X, X)← element(X). (4)

is added in order to deal with the equality relation e on equal elements (note that the equality
relation can additionally also hold for two different elements.

For example, for RCC-8 and the one-predicate-per-pair approach, the disjunctive encoding
results in

dc(X, Y) | ec(X, Y) | po(X, Y) | eq(X, Y) | tpp(X, Y) | ntpp(X, Y)
| tppi(X, Y) | ntppi(X, Y)← element(X), element(Y), X ! = Y.

← dc(X, Y), ec(X, Y). . . . ← tppi(X, Y), ntppi(X, Y).
eq(X, X)← element(X).

There are 56 integrity constraints in this encoding.
Alternatively, one can equivalently state the same using a rule with a choice atom, arriving

at the choice encoding.

C. Brenton, W. Faber, and S. Batsakis 4:7

I Definition 6 (Choice Encoding). For B = {r1, . . . , rn}, the choice encoding contains the
rule

1{r1(X, Y); . . . ; rn(X, Y)}1← element(X), element(Y), X ! = Y. (5)

It also contains rule (4) for dealing with the equality relation e.

For example, for RCC-8 and the two-predicates-per-pair approach, the choice encoding
results in

1{dc(X, Y); ec(X, Y); po(X, Y); eq(X, Y); tpp(X, Y); ntpp(X, Y);
tppi(X, Y); ntppi(X, Y)}1← element(X), element(Y), X ! = Y.

Only if the two-predicates-per-pair approach is taken, one can replace X ! = Y by
X < Y . We will refer to this as the antisymmetric optimisation. The idea is to avoid
representing one inverse relation, for instance instead of having both tpp(1, 2) and tppi(2, 1)
in the choice, this optimisation causes only tpp(1, 2) to be in the choice. However, the inverse
relations still need to be derived, so other rules are needed to achieve this.

I Definition 7 (Disjunctive Encoding with Antisymmetric Optimisation). For B = {r1, . . . , rn},
the disjunctive encoding with antisymmetric optimisation includes the disjunctive rule

r1(X, Y) | . . . | rn(X, Y)← element(X), element(Y), X < Y. (6)

and for each pair of inverse relations ri and r (that is, ri, r ∈ B : i(r) = ri)

ri(X, Y)← r(Y, X), Y < X. (7)

together with constraints (3) and rule (4).

I Definition 8 (Choice Encoding with Antisymmetric Optimisation). For B = {r1, . . . , rn}, the
choice encoding with antisymmetric optimisation contains the rule

1{r1(X, Y); . . . ; rn(X, Y)}1← element(X), element(Y), X < Y. (8)

rules (7) and rule (4).

We would like to point out that the encodings in [9] have an analogue of the antisymmetric
optimisation, but fail to include rules (7), resulting in correctness issues.

3.3 Representing the Composition Table
As described in Section 2.1, the function c represents the composition table of the calculus.
For each pair of relations r, s in B, we will create a number of constructs unless c(r, s) = B.
The constructs created will depend on the chosen approach, as described below.

The first approach, which we will refer to as the rule encoding, creates one disjunctive
rule for each pair of relations, an immediate way of representing the composition table.

I Definition 9 (Rule Encoding). For all r, s ∈ B such that c(r, s) = {r1, . . . , rn} 6= B, the
rule encoding contains

r1(X, Z) | . . . | rn(X, Z)← r(X, Y), s(Y, Z). (9)

ICLP 2016 TCs

4:8 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

For RCC-8, the composition of TPP and EC (resulting in DC or EC) is translated to the
following rule encoding:

dc(X, Z) | ec(X, Z)← tpp(X, Y), ec(Y, Z).

The second approach, which we will refer to as integrity constraint encoding, creates
the rule (9) only if n = 1; in all other cases integrity constraints are created instead. This
amounts to representing which relations must not hold in the composition.

I Definition 10 (Integrity Constraint Encoding). For all r, s ∈ B such that B \ c(r, s) =
{s1, . . . , sk} and 1 < |c(r, s)| < |B|, the integrity constraint encoding contains

← s1(X, Z), r(X, Y), s(Y, Z). . . . ← sk(X, Z), r(X, Y), s(Y, Z). (10)

and if c(r, s) = {r1} then it contains

r1(X, Z)← r(X, Y), s(Y, Z). (11)

For RCC-8, the composition of TPP and EC (resulting in DC or EC) is translated to the
following integrity constraint encoding (assuming the two-predicates-per-pair approach):

← po(X, Z), tpp(X, Y), ec(Y, Z). ← eq(X, Z), tpp(X, Y), ec(Y, Z).
← tpp(X, Z), tpp(X, Y), ec(Y, Z). ← ntpp(X, Z), tpp(X, Y), ec(Y, Z).
← tppi(X, Z), tpp(X, Y), ec(Y, Z). ← ntppi(X, Z), tpp(X, Y), ec(Y, Z).

Rule and integrity constraints encodings can be mixed, we consider imposing a limit n

for |c(r, s)| up to which rules will be created, and beyond which integrity constraints will be
created.

I Definition 11 (Integrity Constraint Beyond n Encoding). For a fixed n < |B| and all r, s ∈ B
such that B \ c(r, s) = {s1, . . . , sk} and |c(r, s)| > n, the integrity constraint beyond n

encoding contains integrity constraints (10) and if c(r, s) = {r1, . . . , rk} with k ≤ n then it
contains rule (9).

3.4 Representing the Input
As described in Definition 1 in Section 2.1, the input is a partial configuration (or labeling
function) l over pairs of elements. Assuming l(a, b) = {r1, . . . , rn} for {a, b} ⊆ D, we note that
the signature of the labeling function is identical to the composition table function. Therefore,
we follow the same approach as for representing the composition table, depending on whether
the rule, integrity constraint, or integrity constraint beyond n encoding is employed. If
l(a, b) = B, nothing will be created in any of the approaches.

I Definition 12 (Rule Input Encoding). For all a, b ∈ D such that l(a, b) = {r1, . . . , rn} 6= B,
the rule input encoding contains

r1(a, b) | . . . | rn(a, b). (12)

I Definition 13 (Integrity Constraint Input Encoding). For all a, b ∈ D such that B \ l(a, b) =
{s1, . . . , sk} and 1 < |l(a, b)| < |B|, the integrity constraint input encoding contains

← s1(a, b). · · · ← sk(a, b). (13)

and if l(a, b) = {r1} then it contains

r1(a, b). (14)

C. Brenton, W. Faber, and S. Batsakis 4:9

I Definition 14 (Integrity Constraint Beyond n Input Encoding). For all a, b ∈ D, a fixed n <

|B| and all r, s ∈ B such that B\l(a, b) = {s1, . . . , sk} and |l(a, b)| > n, the integrity constraint
beyond n input encoding contains integrity constraints (10) and if l(a, b) = {r1, . . . , rk} with
k ≤ n then it contains rule (9).

As an example, consider two regions italy and europe in the context of RCC-8, and assume
that we know that TPP or NTPP holds between italy and europe (i.e., l(italy, europe) =
{TPP, NTPP}). The rule encoding will create one disjunctive fact

tpp(italy, europe) | ntpp(italy, europe).

whereas the integrity constraint encoding (assuming the one-predicate-per-pair approach)
yields

← dc(italy, europe). ← ec(italy, europe). ← po(italy, europe).
← eq(italy, europe). ← tppi(italy, europe). ← ntppi(italy, europe).

I Theorem 15. Given a qualitative calculus Q = 〈B, e, i, c〉, a set of elements D, and a
configuration l : D2 → 2B, let P be the ASP program generated by a transformation obtained
by any admissible combination of options and optimisations presented in this section. There
is a one-to-one correspondence between sol(Q,D, l) and AS(P).

4 Proof of Theorem 15

Proof. We will first show that for each s ∈ sol(Q,D, l), At(s) = {element(x) | x ∈ D} ∪
{b(i, j) | (i, j) ∈ D2, s(i, j) = b ∈ B} ∈ AS(P) if the two-predicate-per-pair approach is
chosen, and Ao(s) = {element(x) | x ∈ D}∪ {b(i, j) | (i, j) ∈ D2, s(i, j) = b ∈ B} ∈ AS(P) if
the one-predicate-per-pair approach is chosen and b = i(b) if i(b) represents b in the encoding,
and b = b otherwise.

Rules (1) are trivially satisfied by ∀(i, j) ∈ D2 : s(i, j) ∈ l(i, j). Rules (2) are satisfied
because s is a function, hence for each (i, j) ∈ D2 where i 6= j the body of the corresponding
ground rule is satisfied and exactly one of the head atoms is satisfied in At(s) (resp. Ao(s)). For
the same reason, constraints (3) are satisfied, too. Finally, rules (4) because ∀i ∈ D : s(i, i) = e

holds. From the observation for (5) it immediately follows that (5) is satisfied as well. The
ground instantiations of (6) with a true body are a subset of those of (5), and by the
observation above are satisfied as well, similar for (5) and (8). Rules (7) are satisfied since
∀(i, j) ∈ D : s(i, j) = i(s(j, i)) holds.

Next, rules (9) are satisfied by both At(s) and Ao(s) because ∀(i, j), (j, k) ∈ D2 :
s(i, k) ∈ c(s(i, j), s(j, k)) and we observe that exactly one head atom is true whenever
the body holds with respect to At(s) (resp. Ao(s)), which also shows satisfaction of (11).
Integrity constraints (10) hold because ∀(i, j), (j, k) ∈ D2 : s(i, k) ∈ c(s(i, j), s(j, k)) implies
∀(i, j), (j, k) ∈ D2 : s(i, k) 6∈ B \ c(s(i, j), s(j, k)).

Finally, rules (12) are satisfied by At(s) and Ao(s) because ∀(i, j) ∈ D2 : s(i, j) ∈ l(i, j)
holds. Note that exactly one of the disjuncts is true. Constraints (13) are satisfied because
∀(i, j) ∈ D2 : s(i, j) ∈ l(i, j) implies ∀(i, j) ∈ D2 : s(i, j) 6∈ B \ l(i, j).

If the antisymmetric optimisation is not employed, At(s) is a minimal model of the reduct
of P since any subset of At(s) does not satisfy one of the rules (1) or one of the ground
instances of (4) and either (2) (recall that At(s) satisfies exactly one head atom for each of
these) or (5), all of which are present in the reduct. The same reasoning shows that Ao(s) is
a minimal model of the reduct if the one-predicate-per-pair approach gave rise to P .

ICLP 2016 TCs

4:10 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

If the antisymmetric optimisation is employed, At(s) is a minimal model of the reduct
of P since any subset of At(s) does not satisfy one of the rules (1) or one of the ground
instances of (4) and either (6) (again, recall that At(s) satisfies exactly one head atom for
each of these), or (8), or (7), all of which are present in the reduct. The same reasoning
shows that Ao(s) is a minimal model of the reduct if the one-predicate-per-pair approach
gave rise to P .

Now let us assume that A ∈ AS(P). We will show that sT (A) : D2 → B (for the two-
predicate-per-pair approach) or sO(A) : D2 → B (for the one-predicate-per-pair approach) are
in sol(Q,D, l), where the functions are defined as follows for all (x, y) ∈ D2: sT (A)(x, y) = b if
b(x, y) ∈ A; sO(A)(x, y) = i(b) if b(x, y) ∈ A and b was used to represent i(b), sO(A)(x, y) = b

if b(x, y) ∈ A otherwise.
First of all, we observe that the functions are well-defined because if the antisymmetric

optimisation is not employed, the ground instances of (4) and (2) or (5) require at least
one b(x, y) ∈ A for some b ∈ B for each (x, y) ∈ D2. If the antisymmetric optimisation is
employed, then the rules (4) and one of (6) or (8), and (7) also require at least one b(x, y) ∈ A

for some b ∈ B for each (x, y) ∈ D2. Moreover, for each (x, y) ∈ D2 b(x, y) ∈ A holds for
exactly one b ∈ B because of either (3), (5), or (6).

It holds that ∀(i, j) ∈ D2 : sT (A)(i, j) ∈ l(i, j) (resp. ∀(i, j) ∈ D2 : sO(A)(i, j) ∈ l(i, j)
because rules (12) or integrity constraints (13) would otherwise not be satisfied by A.

We have ∀(i, j), (j, k) ∈ D2 : sT (A)(i, k) ∈ c(sT (A)(i, j), sT (A)(j, k)) (resp. ∀(i, j), (j, k)
∈ D2 : sO(A)(i, k) ∈ c(sO(A)(i, j), sO(A)(j, k))) as otherwise rules (9) or integrity constraints
(10) would not be satisfied by A.

Also, ∀i ∈ D : sT (A)(i, i) = e and ∀i ∈ D : sO(A)(i, i) = e trivially hold because of rules
(4).

Finally, we can see ∀(i, j) ∈ D : sT (A)(i, j) = i(sT (A)(j, i)) and ∀(i, j) ∈ D : sO(A)(i, j) =
i(sO(A)(j, i)) because the composition table needs to contain c(sT (A)(i, j), e) = i(sT (A)(j, i)).
Then, because of the arguments in the previous two paragraphs, ∀(i, j) ∈ D : sT (A)(i, j) =
i(sT (A)(j, i)) holds. J

5 Implementation of Transformations

The transformation tool GQRtoASPConverter2 is a command line tool implemented using
Java 1.7 and JavaCC version 5.0. Its calculi and input definitions are in the syntax of GQR3

[14].
The tool defines a grammar from which it is possible to construct a number of abstract

syntax trees over the composition file and input file provided. Using the transformation
specified, it is possible to parse these abstract syntax trees using the visitor option within
JavaCC and rebuild them according to the techniques described employed within. It
implements all transformations obtained by combining the various options described in
Section 3. The transformations were designed in a modular fashion and we will refer to them
using a three letter nomenclature. Each letter represents how each module was implemented.

The first module denotes how the search space is opened, either using the disjunctive
encoding D or the choice encoding C. The second module denotes how to encode pairs of
inverse base relations. T refers to the two-predicate-per-pair approach, while O refers to the
one-predicate-per-pair approach. The third module denotes how composition tables and the

2 Available at https://github.com/ChrisBrenton/GQRtoASPConverter.
3 http://sfbtr8.informatik.uni-freiburg.de/r4logospace/Tools/gqr.html

https://github.com/ChrisBrenton/GQRtoASPConverter
http://sfbtr8.informatik.uni-freiburg.de/r4logospace/Tools/gqr.html

C. Brenton, W. Faber, and S. Batsakis 4:11

input are represented. R is used to refer to the rule encoding, while I refers to the integrity
constraint encoding.

As an example, CTI uses the choice encoding, the two-predicate-per-pair approach, and
the integrity constraint encoding. In total, the following are available: DTR, CTR, DOR,
COR, DTI, CTI, DOI, COI.

The modifier A is added to the end of the name if the antisymmetric optimisation
mentioned at the end of Section 3.2 is employed. This optimisation is present in all encodings
where the two-predicate-per-pair approach is employed as described in Section 3.1, thus the
following are available: CTIA, DTIA, CTRA, DTRA.

Transformations that implement the integrity constraint encoding, as defined in definition
10 are extended to produce rules as defined in definition 11. These transformations are
denoted by the presence of a number at the end of their transformation name. Currently,
values of n between 1 and 7 inclusive are supported, where the lack of a number present
in the name indicates n = 1. By example using the CTI family of transformations, a rule
where 3 possible relations may hold would be transformed into integrity constraints by CTI
and CTI2, and into rules with disjunctive heads by CTI3, CTI4, CTI5, CTI6, and CTI7.
This is achieved by counting the number of child nodes present in an abstract syntax tree at
the node representing the disjunction of possible relations, and producing a disjunctive rule
or a number of integrity constraints accordingly.

The tool can also produce the “direct encoding” of [9], which is similar to CTIA, but uses
a different encoding of base relations, and it is slightly different from the integrity constraint
encoding, as it creates integrity constraints also if |c(r, s)| = 1 or |l(a, b)| = 1, while our
approach would creates a single rule in these cases. We will in the following refer to this
encoding as LiDir.

In total, this tool can produce 49 encodings.
GQRtoASPConverter can be used by running a command of the following structure:

java GqrCalculusParser [switch] [GQR spec] [GQR problem] [outputdir]

Here, the switch is the three/four letter abbreviation of the desired transformation in lower
case characters, prefixed with a hyphen, such as -cti3 or -doi. The GQR spec file is a meta-file
describing a calculus. It contains an identification of the equality relation, the size of the
calculus, and references to two other files. These are one file that describes the composition
table of a calculus as described in Section 2.1, and a converse file that describes the inverses
of relations. The problem file is the file that should be translated by the tool, and should be
in the format accepted by GQR. The outputdir is a folder in which the tool should put all
translations.

By example, using -ctia4 as the switch, ∼/Documents/GQR/gqr-1500/data/rcc8.spec as
the GQR specification file, ∼/Documents/GQR/gqr-1500/data/rcc8/csp/example-10x10.csp
as the GQR problem file, and ∼/Documents/RCC8/Example10x10 as the output directory
will produce transformations according to the techniques employed within CTIA4.

6 Experimental Evaluation

Experiments involving consistency problems over the Region Connection Calculus with eight
base relations (RCC-8) [6] and Allen’s Interval Algebra [1] were carried out. Both calculi are
widely used, and many of their properties have been investigated.

In the first set of experiments, GQRtoASPConverter was used with the problem files

ICLP 2016 TCs

4:12 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

cti3 ctia4 coi7 doi7 dti2 dtia4 cor ctr ctra dor dtr dtra lidir

S
o
lv

in
g
 T

im
e
 (

s
e
c
o
n
d
s
)

Transformations

Solving Times of the Best Performing Transformations over GQR Problem Set

Figure 3 Results of the best performing transformation from each family on GQR RCC-8
problems.

provided with GQR version 1500 4, the output of which were then solved using the ASP
solver clingo [7] by means of the Pyrunner benchmarking tool5. Times given include the
entire clingo process, from executing the command to receiving an output. Benchmarks were
performed on an Intel® CoreTM i7-4790 CPU @ 3.60GHz × 8 processor machine with a 300
second time out with 4GB memory available and using clingo version 4.4.06.

Results presented in this section will make use of box-and-whisker plots, where the
whiskers represent maximum and minimum values for each transformation, and the boxes
represent the interquartile range. The horizontal bar found within the boxes are used to
represent the median time taken for each transformation.

Figure 3 shows the best performing transformation of each family of transformations
over the RCC-8 problem set provided with GQR. Over this problem set, the COI, DOI, CTI,
CTIA, DTI, and DTIA families of transformations hold the better performing transform-
ations according to the maximum time taken to solve. A consistency in these families of
transformations is that they all make use of the Integrity Constraint Beyond n Encoding as
described in Definition 11. A more complete picture for all values of n is provided online7, to
show how transformations of the better performing families compare over the set of problems
provided with GQR over RCC-8. This trend was also identified with the set of problems for
Allen’s Interval Algebra provided by GQR, the best performing of which are shown in figure
4, though variance exists on the value of n. Also, important to note is that no problem
with a domain size greater than 20 was solved within the time and memory limits set for all
transformations; all graphs provided only show problems that successfully solved.

For the second set of benchmarks, qualitative spatio-temporal constraint networks were
randomly generated according to the algorithm described in [11]. Networks were generated
with domain sizes ranging from 20 to 50 in increments of 10. In order to fall within the
phase transition region for RCC-8, where all base relations are available, networks were
generated with an average degree for each element varying between 8 and 10 in increments of

4 http://sfbtr8.informatik.uni-freiburg.de/r4logospace/Tools/gqr.html
5 https://github.com/alviano/python
6 http://sourceforge.net/projects/potassco/files/clingo/4.4.0/
7 https://selene.hud.ac.uk/chrisbrenton/aspforqstr.php

http://sfbtr8.informatik.uni-freiburg.de/r4logospace/Tools/gqr.html
https://github.com/alviano/python
http://sourceforge.net/projects/potassco/files/clingo/4.4.0/
https://selene.hud.ac.uk/chrisbrenton/aspforqstr.php

C. Brenton, W. Faber, and S. Batsakis 4:13

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

coi5 cti3 ctia3 doi4 dti4 dtia4

S
o
lv

in
g
 T

im
e
 (

s
e
c
o
n
d
s
)

Transformations

Solving Times of the Best Performing Transformations over GQR Problem Set

Figure 4 Results of the best performing transformations on GQR Allen problems.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

coi7 cti3 ctia4 doi7 dti2 dtia4

S
o
lv

in
g
 T

im
e
 (

s
e
c
o
n
d
s
)

Transformations

Solving Times of the Best Performing Transformations over GQR Problem Set

Figure 5 Results of the best performing transformations on randomly generated RCC-8 problems.

0.5 with an average label size of 4. For each combination of domain size and average degree,
20 networks were generated. Networks were also generated for Allen’s Interval Algebra with
domain sizes also ranging between 20 and 50 in increments of 10, with an average degree
between 5 and 8 and an average label size of 6.5 in order to fall within the phase transition
region for the calculus.

Figure 5 shows how the best performing transformations performed over the set of
randomly generated networks for RCC-8. Notable is that the same family of transformations
again prove to perform the most efficiently with respect to time taken to solve, though again
the value of n does vary. All problems of all network sizes and degrees were solved within
the set time and memory limits for RCC-8.

In the set of generated problems over Allen’s Interval Algebra, all transformations solved
all problems with a domain size of 20 within the set time and memory limits. In problems
with domain size 30, CTIA, DTI7, and DTRA failed to solve one problem. DOR and DTR
failed to solve 5 problems. LiDir failed to solve all problems within the set time and memory
limits.

ICLP 2016 TCs

4:14 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

In the set of generated problems over Allen’s Interval Algebra with domain size 40, only
COI5, COI6, and COI7 managed to solve all problems within the set time and memory
limits.

In the set of generated problems over Allen’s Interval Algebra with domain size 50, none
of the transformations solved all problems, with COI7 and DOI7 solving the most at 45 out
of 70.

GQR was also run over the set of generated problems for comparison; it is significantly
faster than any of our approaches taking less than one second on all problems. However,
we would like to note that while GQR is optimised for deciding consistency problems, it is
limited to providing one solution. Answer set programming systems usually do not have this
limitation, which will prove to beneficial in future work, and readily support query answering.

The generated problem sets for both RCC-8 and Allen’s Interval Algebra are available
online.8

In summary, we observed that the COI7 encoding is the best performing one for the
tested benchmark set. It also significantly outperforms the LiDir encoding. While not as
performant as GQR, it provides the necessary flexibility for our future work that GQR does
not offer.

7 Conclusion and Future Work

In this work a systematic approach to transforming qualitative spatio-temporal calculi
and reasoning problems was developed. A number of options were identified that differ in
representational issues and make use of different constructs of ASP. These were implemented in
GQRtoASPConverter, which also supports a transformation previously suggested by Li [9]. An
extensive set of benchmarks was run in order to identify the best-performing transformation
or family of transformations. This turned out to be the COI family of transformations,
particularly the COI7 encoding.

While not discussed at length in this paper, also the transformations that turned out to
be computationally inferior provided interesting insights. For instance, for many encodings
involving numerous disjunctions, the grounders of the tested solvers (DLV and clingo) appear
to create by far more ground rules than would be necessary. This can be observed in particular
when creating problems that are easy (deterministic) to solve. One avenue for future work
would be analysing whether grounding methods could be improved to deal with these kinds
of programs (numerous disjunctions, possibly with cycles) in better ways.

There are also further options in the transformations that would be worth looking into.
For instance, one could also translate the input into choice rules rather than disjunctive
rules. Also completely different methods, such as using hybrid ASP and CSP solvers appear
promising.

Also, we would like to enlarge the set of calculi considered for benchmarks, which in this
paper were limited to RCC-8 and Allen’s interval algebra. While these calculi appear to
be the best-studied, also others, such as OPRAm [10], could yield interesting benchmark
problems.

Finally, at the moment only consistency problems were benchmarked. One of the potential
advantages of using ASP in these domains is that also other problems such as query answering
could be easily supported. Therefore, experimentally testing ASP on these problems would

8 https://selene.hud.ac.uk/chrisbrenton/solving-qstr.php

https://selene.hud.ac.uk/chrisbrenton/solving-qstr.php

C. Brenton, W. Faber, and S. Batsakis 4:15

be particularly interesting. As a further step, we would extend the methods developed in
this paper and extend them to support preferences and defaults.

References
1 James F. Allen. An interval-based representation of temporal knowledge. In Patrick J.

Hayes, editor, Proceedings of the 7th International Joint Conference on Artificial In-
telligence (IJCAI’81), Vancouver, BC, Canada, August 1981, pages 221–226. William
Kaufmann, 1981.

2 Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

3 Robert Battle and Dave Kolas. Enabling the geospatial semantic web with parliament and
geosparql. Semantic Web, 3(4):355–370, 2012.

4 Christopher Brenton, Wolfgang Faber, and Sotiris Batsakis. Solving qualitative spatio-
temporal reasoning problems by means of answer set programming: Methods and exper-
iments. In Proceedings of the Eighth Workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP 2015), Cork, Ireland, 2015.

5 Gerhard Brewka, James P. Delgrande, Javier Romero, and Torsten Schaub. Implement-
ing preferences with asprin. In Francesco Calimeri, Giovambattista Ianni, and Miroslaw
Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning – 13th Interna-
tional Conference (LPNMR 2015), volume 9345 of Lecture Notes in Computer Science,
pages 158–172. Springer, 2015.

6 Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts. Qualitative
spatial representation and reasoning with the region connection calculus. GeoInformatica,
1(3):275–316, 1997.

7 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set
Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

8 Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic Program-
ming. In Logic Programming: Proceedings Fifth Intl Conference and Symposium, pages
1070–1080, Cambridge, Mass., 1988. MIT Press.

9 Jason Jingshi Li. Qualitative spatial and temporal reasoning with answer set programming.
In IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012,
pages 603–609, 2012.

10 Till Mossakowski and Reinhard Moratz. Qualitative reasoning about relative direction of
oriented points. Artificial Intelligence, 180–181:34–45, 2012.

11 Jochen Renz and Bernhard Nebel. Efficient methods for qualitative spatial reasoning.
Journal of Artificial Intelligence Research, 15:289–318, 2001.

12 Jochen Renz and Bernhard Nebel. Qualitative spatial reasoning using constraint calculi. In
Marco Aiello, Ian Pratt-Hartmann, and Johan van Benthem, editors, Handbook of Spatial
Logics, pages 161–215. Springer, 2007.

13 Przemysław Andrzej Wałega, Mehul Bhatt, and Carl P. L. Schultz. ASPMT(QS): non-
monotonic spatial reasoning with answer set programming modulo theories. In Francesco
Calimeri, Giovambattista Ianni, and Mirosław Truszczyński, editors, Logic Programming
and Nonmonotonic Reasoning – 13th International Conference (LPNMR 2015), volume
9345 of Lecture Notes in Computer Science, pages 488–501. Springer, 2015.

14 Matthias Westphal, Stefan Wölfl, and Zeno Gantner. GQR: a fast solver for binary qualit-
ative constraint networks. In Benchmarking of Qualitative Spatial and Temporal Reasoning
Systems, Papers from the 2009 AAAI Spring Symposium, Technical Report SS-09-02, Stan-
ford, California, USA, March 23-25, 2009, pages 51–52, 2009.

ICLP 2016 TCs

	Introduction
	Preliminaries
	Qualitative Spatio-temporal Calculi
	Answer Set Programming

	Transformations of Qualitative Spatio-temporal Calculi to Answer-set Programming
	Representing Base Relations and Domain
	Representing the Search Space
	Representing the Composition Table
	Representing the Input

	Proof of Theorem 15
	Implementation of Transformations
	Experimental Evaluation
	Conclusion and Future Work

