21 research outputs found

    Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework

    Get PDF
    Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of “radiomics and genomics” has been considered under the umbrella of “radiogenomics”. Furthermore, AI in a radiogenomics’ environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor’s characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them

    Prediction of Molecular Mutations in Diffuse Low-Grade Gliomas Using MR Imaging Features

    Get PDF
    Diffuse low-grade gliomas (LGG) have been reclassified based on molecular mutations, which require invasive tumor tissue sampling. Tissue sampling by biopsy may be limited by sampling error, whereas non-invasive imaging can evaluate the entirety of a tumor. This study presents a non-invasive analysis of low-grade gliomas using imaging features based on the updated classification. We introduce molecular (MGMT methylation, IDH mutation, 1p/19q co-deletion, ATRX mutation, and TERT mutations) prediction methods of low-grade gliomas with imaging. Imaging features are extracted from magnetic resonance imaging data and include texture features, fractal and multi-resolution fractal texture features, and volumetric features. Training models include nested leave-one-out cross-validation to select features, train the model, and estimate model performance. The prediction models of MGMT methylation, IDH mutations, 1p/19q co-deletion, ATRX mutation, and TERT mutations achieve a test performance AUC of 0.83 ± 0.04, 0.84 ± 0.03, 0.80 ± 0.04, 0.70 ± 0.09, and 0.82 ±0.04, respectively. Furthermore, our analysis shows that the fractal features have a significant effect on the predictive performance of MGMT methylation IDH mutations, 1p/19q co-deletion, and ATRX mutations. The performance of our prediction methods indicates the potential of correlating computed imaging features with LGG molecular mutations types and identifies candidates that may be considered potential predictive biomarkers of LGG molecular classification

    Model-Based Approach for Diffuse Glioma Classification, Grading, and Patient Survival Prediction

    Get PDF
    The work in this dissertation proposes model-based approaches for molecular mutations classification of gliomas, grading based on radiomics features and genomics, and prediction of diffuse gliomas clinical outcome in overall patient survival. Diffuse gliomas are types of Central Nervous System (CNS) brain tumors that account for 25.5% of primary brain and CNS tumors and originate from the supportive glial cells. In the 2016 World Health Organization’s (WHO) criteria for CNS brain tumor, a major reclassification of the diffuse gliomas is presented based on gliomas molecular mutations and the growth behavior. Currently, the status of molecular mutations is determined by obtaining viable regions of tumor tissue samples. However, an increasing need to non-invasively analyze the clinical outcome of tumors requires careful modeling and co-analysis of radiomics (i.e., imaging features) and genomics (molecular and proteomics features). The variances in diffuse Lower-grade gliomas (LGG), which are demonstrated by their heterogeneity, can be exemplified by radiographic imaging features (i.e., radiomics). Therefore, radiomics may be suggested as a crucial non-invasive marker in the tumor diagnosis and prognosis. Consequently, we examine radiomics extracted from the multi-resolution fractal representations of the tumor in classifying the molecular mutations of diffuse LGG non-invasively. The proposed radiomics in the decision-tree-based ensemble machine learning molecular prediction model confirm the efficacy of these fractal features in glioma prediction. Furthermore, this dissertation proposes a novel non-invasive statistical model to classify and predict LGG molecular mutations based on radiomics and count-based genomics data. The performance results of the proposed statistical model indicate that fusing radiomics to count-based genomics improves the performance of mutations prediction. Furthermore, the radiomics-based glioblastoma survival prediction framework is proposed in this work. The survival prediction framework includes two survival prediction pipelines that combine different feature selection and regression approaches. The framework is evaluated using two recent widely used benchmark datasets from Brain Tumor Segmentation (BraTS) challenges in 2017 and 2018. The first survival prediction pipeline offered the best overall performance in the 2017 Challenge, and the second survival prediction pipeline offered the best performance using the validation dataset. In summary, in this work, we develop non-invasive computational and statistical models based on radiomics and genomics to investigate overall survival, tumor progression, and the molecular classification in diffuse gliomas. The methods discussed in our study are important steps towards a non-invasive approach to diffuse brain tumor classification, grading, and patient survival prediction that may be recommended prior to invasive tissue sampling in a clinical setting

    Domain Mapping and Deep Learning from Multiple MRI Clinical Datasets for Prediction of Molecular Subtypes in Low Grade Gliomas

    Get PDF
    Brain tumors, such as low grade gliomas (LGG), are molecularly classified which require the surgical collection of tissue samples. The pre-surgical or non-operative identification of LGG molecular type could improve patient counseling and treatment decisions. However, radiographic approaches to LGG molecular classification are currently lacking, as clinicians are unable to reliably predict LGG molecular type using magnetic resonance imaging (MRI) studies. Machine learning approaches may improve the prediction of LGG molecular classification through MRI, however, the development of these techniques requires large annotated data sets. Merging clinical data from different hospitals to increase case numbers is needed, but the use of different scanners and settings can affect the results and simply combining them into a large dataset often have a significant negative impact on performance. This calls for efficient domain adaption methods. Despite some previous studies on domain adaptations, mapping MR images from different datasets to a common domain without affecting subtitle molecular-biomarker information has not been reported yet. In this paper, we propose an effective domain adaptation method based on Cycle Generative Adversarial Network (CycleGAN). The dataset is further enlarged by augmenting more MRIs using another GAN approach. Further, to tackle the issue of brain tumor segmentation that requires time and anatomical expertise to put exact boundary around the tumor, we have used a tight bounding box as a strategy. Finally, an efficient deep feature learning method, multi-stream convolutional autoencoder (CAE) and feature fusion, is proposed for the prediction of molecular subtypes (1p/19q-codeletion and IDH mutation). The experiments were conducted on a total of 161 patients consisting of FLAIR and T1 weighted with contrast enhanced (T1ce) MRIs from two different institutions in the USA and France. The proposed scheme is shown to achieve the test accuracy of\ua074.81%\ua0on 1p/19q codeletion and\ua081.19%\ua0on IDH mutation, with marked improvement over the results obtained without domain mapping. This approach is also shown to have comparable performance to several state-of-the-art methods

    Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation

    Get PDF
    Radiomics analysis has had remarkable progress along with advances in medical imaging, most notability in central nervous system malignancies. Radiomics refers to the extraction of a large number of quantitative features that describe the intensity, texture and geometrical characteristics attributed to the tumor radiographic data. These features have been used to build predictive models for diagnosis, prognosis, and therapeutic response. Such models are being combined with clinical, biological, genetics and proteomic features to enhance reproducibility. Broadly, the four steps necessary for radiomic analysis are: (1) image acquisition, (2) segmentation or labeling, (3) feature extraction, and (4) statistical analysis. Major methodological challenges remain prior to clinical implementation. Essential steps include: adoption of an optimized standard imaging process, establishing a common criterion for performing segmentation, fully automated extraction of radiomic features without redundancy, and robust statistical modeling validated in the prospective setting. This review walks through these steps in detail, as it pertains to high grade gliomas. The impact on precision medicine will be discussed, as well as the challenges facing clinical implementation of radiomic in the current management of glioblastoma

    Deep Learning Methods for Classification of Gliomas and Their Molecular Subtypes, From Central Learning to Federated Learning

    Get PDF
    The most common type of brain cancer in adults are gliomas. Under the updated 2016 World Health Organization (WHO) tumor classification in central nervous system (CNS), identification of molecular subtypes of gliomas is important. For low grade gliomas (LGGs), prediction of molecular subtypes by observing magnetic resonance imaging (MRI) scans might be difficult without taking biopsy. With the development of machine learning (ML) methods such as deep learning (DL), molecular based classification methods have shown promising results from MRI scans that may assist clinicians for prognosis and deciding on a treatment strategy. However, DL requires large amount of training datasets with tumor class labels and tumor boundary annotations. Manual annotation of tumor boundary is a time consuming and expensive process.The thesis is based on the work developed in five papers on gliomas and their molecular subtypes. We propose novel methods that provide improved performance. \ua0The proposed methods consist of a multi-stream convolutional autoencoder (CAE)-based classifier, a deep convolutional generative adversarial network (DCGAN) to enlarge the training dataset, a CycleGAN to handle domain shift, a novel federated learning (FL) scheme to allow local client-based training with dataset protection, and employing bounding boxes to MRIs when tumor boundary annotations are not available.Experimental results showed that DCGAN generated MRIs have enlarged the original training dataset size and have improved the classification performance on test sets. CycleGAN showed good domain adaptation on multiple source datasets and improved the classification performance. The proposed FL scheme showed a slightly degraded performance as compare to that of central learning (CL) approach while protecting dataset privacy. Using tumor bounding boxes showed to be an alternative approach to tumor boundary annotation for tumor classification and segmentation, with a trade-off between a slight decrease in performance and saving time in manual marking by clinicians. The proposed methods may benefit the future research in bringing DL tools into clinical practice for assisting tumor diagnosis and help the decision making process

    Tumor heterogeneity in glioblastoma:a real-life brain teaser

    Get PDF

    Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors

    Get PDF
    Purpose of review: This review will explore the latest in advanced imaging techniques, with a focus on the complementary nature of multiparametric, multimodality imaging using magnetic resonance imaging (MRI) and positron emission tomography (PET). Recent findings: Advanced MRI techniques including perfusion-weighted imaging (PWI), MR spectroscopy (MRS), diffusion-weighted imaging (DWI), and MR chemical exchange saturation transfer (CEST) offer significant advantages over conventional MR imaging when evaluating tumor extent, predicting grade, and assessing treatment response. PET performed in addition to advanced MRI provides complementary information regarding tumor metabolic properties, particularly when performed simultaneously. 18F-fluoroethyltyrosine (FET) PET improves the specificity of tumor diagnosis and evaluation of post-treatment changes. Incorporation of radiogenomics and machine learning methods further improve advanced imaging. The complementary nature of combining advanced imaging techniques across modalities for brain tumor imaging and incorporating technologies such as radiogenomics has the potential to reshape the landscape in neuro-oncology. Keywords: Advanced MRI; Amino acid PET; Brain tumor; Chemical exchange saturation transfer; Diffusion-weighted imaging; FET; Glioblastoma; Glioma; High-grade malignancy; Hybrid PET/MRI; MR spectroscopy; Metastasis; Perfusion-weighted imaging; Progression; Pseudoprogression; Pseudoresponse; Radiation necrosis; Radiogenomics; Radiomics; Treatment-related change; Tumor grading

    Brain Tumor Growth Modelling .

    Get PDF
    Prediction methods of Glioblastoma tumors growth constitute a hard task due to the lack of medical data, which is mostly related to the patients’ privacy, the cost of collecting a large medical dataset, and the availability of related notations by experts. In this thesis, we study and propose a Synthetic Medical Image Generator (SMIG) with the purpose of generating synthetic data based on Generative Adversarial Network in order to provide anonymized data. In addition, to predict the Glioblastoma multiform (GBM) tumor growth we developed a Tumor Growth Predictor (TGP) based on End to End Convolution Neural Network architecture that allows training on a public dataset from The Cancer Imaging Archive (TCIA), combined with the generated synthetic data. We also highlighted the impact of implicating a synthetic data generated using SMIG as a data augmentation tool. Despite small data size provided by TCIA dataset, the obtained results demonstrate valuable tumor growth prediction accurac
    corecore