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Radiomics analysis has had remarkable progress along with advances in medical

imaging, most notability in central nervous system malignancies. Radiomics refers to

the extraction of a large number of quantitative features that describe the intensity,

texture and geometrical characteristics attributed to the tumor radiographic data. These

features have been used to build predictive models for diagnosis, prognosis, and

therapeutic response. Such models are being combined with clinical, biological, genetics

and proteomic features to enhance reproducibility. Broadly, the four steps necessary

for radiomic analysis are: (1) image acquisition, (2) segmentation or labeling, (3) feature

extraction, and (4) statistical analysis. Major methodological challenges remain prior

to clinical implementation. Essential steps include: adoption of an optimized standard

imaging process, establishing a common criterion for performing segmentation, fully

automated extraction of radiomic features without redundancy, and robust statistical

modeling validated in the prospective setting. This review walks through these steps

in detail, as it pertains to high grade gliomas. The impact on precision medicine will be

discussed, as well as the challenges facing clinical implementation of radiomic in the

current management of glioblastoma.
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INTRODUCTION

Glioblastoma (GBM) is the most common astrocytic primary brain malignancy, with an annual
incidence of 2–3 cases per 100,000 adults in North America and Europe (1, 2). The standard of care
for newly diagnosed GBM combines maximum safe resection followed by chemo-radiation and
adjuvant courses of temozolomide (TMZ) (3). The median overall survival is poor at 14.6 months
and 5-year survival rates are under 10% following standard of care treatment. If patients tolerate
the chemoradiotherapy without progression, they may be considered for tumor-treatment fields.
Even in this setting, the survival is still limited at a median of 20.9 months (4). Given these poor
outcomes, there is hope that up-and-coming therapies will show benefit in the randomized setting
(5, 6). It will be essential to ascertain which patients can benefit from these therapies, highlighting
the need for efficacious tools to offer personalized medicine.
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Magnetic resonance imaging (MRI) is the preferred imaging
modality for both the diagnosis and monitoring of central
nervous system (CNS) malignancies (7). It provides a massive
amount of information to clinicians. Unfortunately, clinicians
are typically restricted to qualitative descriptors or subjective
quantitative assessments to articulate changes in imaging.
The resulting clinical evaluations have a significant potential
for bias.

Clinicians immensely value non-invasive approaches that
can direct patients to the correct therapeutic approach in
an objective fashion. This begins at diagnosis, where various
molecular factors differentiate the diagnosis between low-
grade glioma, high-grade glioma, or GBM (8). Such factors
may also be predict the efficacy of a systemic agent (9,
10). This information requires tissue, introducing patient
morbidity, an additional procedure, and a variety of expensive
molecular assessments.

Radiomics has demonstrated remarkable progress in
demonstrating that it may be a tool that can derive this
information. Radiomics is a field of biomedical imaging
using advanced non-invasive assessments of complex imaging
characteristics within the MRI images that are too complex
for a human to appreciate (11–14). These characteristics are
known as features. Imaging features have been associated with a
CNS tumor’s histological features (14), progression (15) grade
(16), or even overall survival (17–21). Radiomics analysis thus
hosts a major role in producing novel non-invasive biomarkers
acquired from a test—MRI—that is already routinely acquired
from patients as part of the standard of care.

RADIOMICS METHODOLOGY

A standard pipeline of radiomic analysis has been described by
several studies in the past (Figure 1) as mentioned previously
by several studies (12, 13, 19, 21–23). This review discusses
recent studies in the development of MRI-based radiomics
analysis in relationship to this pipeline. For CNS malignancies,
the literature discusses the most significant cause of diagnostic
and management dilemmas—low and high-grade glioma. To
facilitate an understanding of the process, there are sections
on the: (1) preprocessing and image acquisition for developing
a radiomic model; (2) segmentation/labeling of the cancer; (3)
identification of relevant features types that may relate to the
molecular properties of the tumor (14, 24) and (4) statistical
modeling to describe a radiomic profile’s relationship with a
clinical outcomes. Given the number of variables at each step,
collaboration is essential. Radiologists and oncologists must
ensure that the appropriate regions are being assessed and
the right questions are being asked. Molecular scientists must
communicate the relevant genetic and proteomic characteristics
that will influence a patient’s clinical course. Engineering teams
must determine what information can be reliably extracted from
the images and then adapt the machine learning to fashion
a reliable model. Consultation with statisticians will allow for
a methodological approach allows for a potentially statistically
significant solution.

Image Acquisition
MRI radiomics has repeatedly shown the ability to differentiate
low and high-grade glioma, which have different management
strategies (https://www.nccn.org/) and a remarkably different
prognosis (25–28). One reason this data can be more rapidly
generated is that there is a wealth of clinical information
available—glioma patients have regular MRIs throughout their
lives. However, reproducibility is a significant issue at different
stages of the radiomics pipeline. The issues begin at image
acquisition. Different academic groups acquire their MRI images
to different settings at the first step of the pipeline. This is one
reason that radiomic analysis collaboration has been limited
between research groups. Standardization offers a rational
solution to overcome this barrier.

Standardization
Potential variations in images are often secondary to the MRI
scanner model, including image resolution (i.e., pixel size and
slice spacing), image contrast, slice thickness, patient position,
and further variations introduced by different reconstruction
algorithms. When generating or applying a radiomics model,
standardization must occur so the data can be assumed that it
was extracted from similar settings. To accomplish this, volume
datasets are usually re-sampled to a common voxel resolution of
1 mm3 and an image size of 2563 (or 5123) voxels.

A common further step is normalizing the intensities within
each volume image to the [0,1] or [0,255] range. Less commonly
adopted normalization approaches have included gaussian and
Z-score normalization. For example in Ellingson et al. (29),
Gaussian normalization was the best normalization technique for
image intensity correction. The need for standardization would
be reduced if radiomic analysis could be performed with data
acquired at a single geographical site. However, a single site
would only provide a limited dataset. Thus, several studies have
augmented their datasets through the use of multiple sites and an
imputation technique to facilitate standardization (30).

The lack of standardization is a recognized problem. The
Quantitative Imaging Biomarker Alliance offers an expert
consensus after reviewing the available data. This group offers
insightful guidelines for standardization that should be heavily
considered in present and future studies. Such guidelines will be
dynamic. Radiomic features may change from site to site or have
new ways to be extracted or MRI image acquisition may change.
Standardization in either of these contexts will a challenge in the
future. Ongoing communication between institutions and robust
reporting of new methodological approaches will be essential to
groups studying radiomics.

Segmentation of Brain Tumors
Accurate labeling of brain tumors in the images is required
for radiomic analysis. It first involves defining the tumor
volume, known as the region of interest (ROI), so it can then
have its radiomic features extracted. The act of employing
clinical, pathological and imaging features to mark out the
ROI on the two-dimensional MRI images is called either the
segmentation or labeling process. Segmentation is performed
by clinicians—typically a radiologist or oncologist. The process
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FIGURE 1 | Standard pipeline of the radiomics analysis. (1) MR Image acquisition with a standardization. (2) Tumor labeling viewing in 3D (e.g., red, yellow and cyan

contours). (3) Radiomic features extraction using shape, texture and convolution neural network techniques. (4) Statistical analyses, based significance test and

classifier models, to identify relevant features for predicting the clinical outcome.

is subject to inter-rater variability, as the ROI definition
will inevitably differ between clinicians. An approach to
overcome this variation is different clinicians each generating
their own ROI. The geographical regions common between
the different ROIs is considered the true tumor mask.
This tumor mask is then matched with the corresponding
brain images to then extract the imaging features (i.e.,
radiomic features).

Since MRI generates several image sequences, the registration
step involves matching the mask to the relevant MR series (ex.
T1 weighted, T1-post contrast, T2 weighted, FLAIR), a well-
described process (20, 31). Many tools used to delineate the
ROI, such as the publicly accessible 3D Slicer (32), require
slice by slice labeling on each series to ensure accuracy and
precision (21). For efficiency and to minimize both inter- and
intra-user variability, several studies have explored segmentation
to all relevant MRI sequences without registration across the
sequences (33). Registration distortions between MRI series
may limit this approach (34). Distortion could cause incorrect
localization of the ROI, directing the radiomic analyses to the
incorrect MRI-defined anatomy. More investigation is required
to allow for the trans-sequence application of user-generated
segmentation data.

To overcome user variability in registration,
(semi-)automated segmentation has been explored in various
studies (35–38). Strong signals for a successful model, a
promising Dice Similarity Coefficient (DSC) of 80%, have
been reported with fully automated segmentation based
on an adaptive algorithm with multi-level of thresholding
(38). When deep learning radiomics (DLR) was applied
to multiple tumor regions, the ability to label the tumor
subregions achieved a DSC of 90% (35). DLR has become
a success story for machine learning integral to limiting
user variability. The use of DLR’s convolutional neural
networks (CNNs) to the various steps of the radiomics
pipeline is elegantly described elsewhere (39). As to fully
automated segmentation, further validation is required. Success
here could enable the rapid integration of radiomics into
personalized medicine.

Radiomic Features Extraction
Extracting radiomic features is the first step in analyzing the
segmented image. The features themselves are measures of the
heterogeneity within the ROI (40). The degree to which these
different features are present is a radiomics feature cluster,
perhaps better conceptualized as an ROI’s radiomic signature.
There are different types of features, the most common and
presently relevant are outlined in the Table 1.

Feature-Analyses
Once the features have been extracted, statistical modeling
can highlight relationships between the extent a given feature
is present and a clinical characteristic. There are various
methodologies to analyze this, including minimizing the number
of features likely to contribute to the statistical analysis. Feature
selection methods (60) or reducing dimensionality in another
fashion can accomplish this minimization. This has included
sorting features by their minimum redundancy maximum
relevance, mutual information, principal component analysis
feature rank or the importance of features in other classifier
models (31, 61–65). Once the features that are potentially
relevant for analysis are determined, they are typically subject
to assessments of their significance (e.g., Wilcoxon test, Kruskal-
Wallis, log-rank, etc.) and correlation (e.g., Spearman rank,
Pearson). These forms of univariate analysis determine if a
feature is a significant predictor for the selected clinical outcome,
with significance typically being defined as either a p < 0.01
or 0.05. The p-values should be corrected by the Bonferroni or
Holm-Bonferroni procedure to limit the influence of random
chance, including the false discovery rate (21, 60, 66).

Multivariate Analysis and Model Building
Multivariate analysis fills an essential role in separating seemingly
relevant features on univariate analysis from those that are likely
independent predictors for the clinical outcome being assessed
for. This is a critical step, limiting non-contributory features from
influencing our eventual final statistical model (67). Once these
features are selected from multi-variate analysis, the radiomics
teammust determine howmany of their finite number of clinical
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TABLE 1 | Features extraction techniques used in radiomic analysis.

Histogram features: These are first-order statistics computed from image’s histogram of voxel/pixel intensities. Histogram features (e.g., average, standard

deviation, skewness, kurtosis, energy and entropy) encode the voxel intensities and the shape of the data’s distribution (41, 42). In non-CNS malignancies, these

features have been associated with histological features, subtype and grade (43, 44).

Texture features: Texture features use second order statistics to characterize the spatial relationship between voxel intensities, describing the local spatial

arrangement of intensities in the image. The features encode several matrices that represent the special intensity distribution in several ways. Not included in

the list below are also texture features based on several conventional techniques that have been predictive of clinical outcomes, such as: as scale-invariant feature

transform (SIFT), histogram of oriented gradients (HOG), fractal texture analysis (FTA) and local binary patterns (LBP) (45–47). Elsewise, the most common texture

features are:

Gray-level co-occurrence matrix (GLCM)—the most commonly used texture feature. Considering only voxels within a specific range of gray values, it produces a

matrix of the spatial relationships of pairs of voxels (48).

Joint intensity matrix (JIM)—evaluates the spatial relationships of pairs of voxels within given intensity ranges across different MRI different sequences. This is in

contrast to GLCM, which is restricted to a single MRI sequence (21).

Neighborhood gray-tone difference matrix (NGTDM)—a description of the differences in signal intensity, or gray-tone, between each voxel and its neighboring voxels

(49). It has been used in several topics of images analysis and classifications (45).

Neighboring gray-level dependence matrix (NGLDM)—Similar to NGTDM, is computed from the gray tone relationship between every element in the image and all

of its neighbors at a certain distance (50, 51).

Gray-level run length matrix (GLRLM)—A matrix of all the voxels within the same gray level value (52).

Multiscale texture features: These features have been derived from filters, such as the Laplacian or Gaussian filter (53), that serve as a generic differential

operator. Multiscale texture features provide an excellent description of local image variations, such as edges or blobs. The ROI’s image is filtered in a multiscale

way—from fine to coarse texture—that can be quantified by parameters like entropy (31, 54). The wavelet decomposition of an image generates multiscale

texture images based on multiband frequencies, a radiographic characteristic called a detail. Each of these bands has a scale of the texture inside the image. A

quantifier function then evaluates the texture of the images, using the resultant value as an input for a classifier model (42, 55).

Deep features: These features are derived from deep neural networks, the process of which is well-described in a recent review (56). To accomplish this, a

pre-trained network must be established prior to texture extraction. As a case study from the literature, (1) ImageNET was pretrained to identify textures, (2) the

CNN analyzed a fully connected layer of ImageNet, deriving 4,096 texture features, then (3) these features were used an input for a classifier model, which could

also incorporate a CNN (as described in this review’s Radiomics Analysis step) (39). However, CNNs require numerous examples to develop a reliable model. In

general, studies implementing CNNs require more patients than the number of features being analyzed. Achieving this sample size can be a challenge, so

alternative methods of model generation are needed for many studies. One such example reported the conditional entropy from a texture of the CNN’s feature

map. This was a reliable alternative when implemented into a random forest classifier, instead of another different standard CNN model (57).

Shape features: Shape features describe the 3D (or 2D) geometrical composition of the ROI considered the size (e.g., volume), form (e.g., sphericity, solidity,

major length axis) and tumor location. As with traditional radiological assessment, shape is a characteristic that does relate to tumor characteristics with radiomics

as well (19, 58, 59).

cases will be used to produce/train their model and how many
need to be reserved to validate the model.

Increasing the size of the training cohort will increase the
model’s accuracy. Thus, typically 70–80% of the dataset is used for
the training stage. Alternatively, if an external dataset is available,
then all the datasets can train the model. This is the preferred
scenario, allowing for a demonstration of external validity. If the
datasets are limited in size, k-folds cross-validation can mitigate
some of the statistical concerns (31, 68, 69).

Machine learning changes the available options. If
unsupervised, the program can utilize different methods
(e.g., k-means, nearest neighbors) to partition the features
into different groups, then compare the relationships of the
different features within their group—not the clinical data.
After this is completed, the ability of the different groups
to predict the clinical outcome is assessed, even though the
clinical data did not contribution to the model’s development
(70). In comparison, supervised machine learning techniques
(e.g., support vector machine, Bayes model, neural network
nearest neighbors, random forests) will place varying numbers
of the pre-determined relevant features into groups. Then their
relative contribution to the model’s ability to predict for the
clinical outcome is altered until the most reliable combination
of weightings is determined. Random forest classifier is a
simple model that automatically selects the relevant features.
Furthermore, random forest has shown the great ability to

predict for survival (71) and endure an imputation technique
to account for censored patients (31). Alternatively, the least
absolute shrinkage and selection operator (LASSO) Cox
regression model has also been reported reliably predict for
survival in glioma (72, 73).

A third option is semi-supervised machine learning,
wherein some complete clinical data is provided to the
program generating the model, but other data is complete.
For example, the program would have a range of radiomic
features that it knows correspond to high grade glioma and
a range of radiomic features that belong to an unknown
clinical entity. Thus, all the dataset is used for a training
step. The validation step is then a question if the program
can correctly identify the unlabeled data. This process
has been used to suggest brain tumor histology and
prognosis (74).

PROGRESS OF RADIOMICS IN GBM

Radiomics has provided key insight into critical features
of GBM, as advanced radiomic analysis seek to establish
reliable associations between key clinical features and those
features derived from images. For example, radiomics has
been used to predict for clinical, proteomic (e.g., Ki-67
expression), genomic (e.g., IDH1 status) and transcriptomic
characteristics (75–77). This evolution of the radiomics field

Frontiers in Oncology | www.frontiersin.org 4 May 2019 | Volume 9 | Article 374

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chaddad et al. Radiomics With Artificial Intelligence in Glioblastoma

has been titled multi-omics or radiogenomics, dependent on
the source (21, 78–80). This will be part of the future of
radiomics, as these details are pertinent to physicians due to
their influence on treatment and prognosis (8). In addition,
recent advancements have been made in defining radiomic
subtypes. By utilizing T1 and FLAIR sequencing, researchers
were able to define three distinct imaging subtypes—rim
enhancing, irregular and solid. Each subtype represents a
distinct phenotype enriched in unique molecular alterations
such as MGMT methylation and EGFRvIII mutations (37).
Continued advancements in defining tumor heterogeneity using
imaging features may offer a complimentary means with which
to characterize GBM and provide personalized treatments
for patients.

Radiomics analysis has the capacity to answer critical
questions facing clinicians such as the discrimination between
pseudoprogression and progressive disease in GBM patients. For
example, combining the diffusion tensor imaging and dynamic
susceptibility contrast MRI features can improve accuracy
treatment response and may aid in individualized treatment
of patients with GBM (81). Recently, a deep radiomics model
used the MR images with clinical features demonstrate the
capacity to predict the PsP from progression for patients with
GBM (82). While, another study showed that the radiomics
analysis is not able to distinguish between true-progression
and PsP (83). However, many of these steps exist in an early
developmental stage. Combining all such information into an
artificial intelligence model would be a promising direction to
advance personalized medicine.

INTRATUMOURAL HETEROGENEITY
AND RADIOGENOMICS

Perhaps the greatest utility of radiomics in the management of
gliomas lies in the application of radiogenomics. Radiogenomics
implements radiomics analysis to predict specific genetic
characteristics. Classically, gliomas have been managed based
on their grade—a histopathological characterization made
by specialized physicians (neuropathologists) to articulate
the likely behavior of the malignancy. Over the past two
decades, molecular assessment of the tumor’s genome, protein
expression, and epigenetic state have become more common as
the relevance of these features to outcome and/or therapeutic
response is being increasingly understood (84). Given the
relative abundance of high quality MRI data which accumulates
over time during standard of care for glioma patients (85–
87) radiomics offers a potentially efficient and non-invasive
method of tumoral evaluation (37, 88, 89). Indeed, recent efforts
have generated radiomic signatures to predict the majority of
information sought by classical histopathological and modern
molecular assessments including: isocitrate dehydrogenase
mutations (79, 90–92), 1p/19q codeletion loss of heterozygosity
(24, 92, 93), O6-methylguanine-DNA methyltransferase
promoter methylation (45, 94) and ATRX mutations (95). This
has culminated in recent findings demonstrating a conserved

radiomic signature can predict CD8+ T-cell infiltration and
response to immunotherapy (96).

However, intratumoral heterogeneity significantly confounds
both molecular and histopathological assessments as the
entirety of a tumor cannot be assessed by neuropathologists.
Disparate clonal populations may be minimally represented
in histopathological sampling introducing sampling errors and
limiting relevance for informing treatments (97–101). Radiomics
offers an opportunity to overcome this limitation as analysis is
performed upon the complete tumor enabling spatial mapping
of distinct genetic features. In addition, radiomics offers the
means to provide quantitative values (e.g., % of tumor mutated)
rather than binary designations (e.g., mutant or not) to describe
molecular features which may have important implications for
predicting response to therapies. Utilizing co-clinical models,
researchers are starting to establish radiomic signatures which
are closely associated with specific molecular features in an
attempt to describe intratumoral heterogeneity (102). Further
development of pre-clinical models and correlation with clinical
datasets will be essential to drive this field forward toward
improving the utility of radiomics for diagnosis in GBM.

FUTURE RADIOMICS

Radiomics needs massive amounts of biomedical data, so-
called “Big data (103),” to validate it’s deep-learning approaches
and expanding applications. The development of strong public
datasets has empowered these approaches, with such initiatives
including The Cancer Genome Atlas (TCGA) (85), The Cancer
Imaging Archive (86), and The Quantitative Imaging Network
(87). However, there is still the barrier of segmentation—
such as acquiring clinician input to identify the relevant
ROIs. While the clinician will still be sought as the gold
standard, deep-learning strategies have the potential to define
ROIs without the bias of human segmentation (104). To
accomplish this, even larger datasets will be required—further
emphasizing the need for reliable Big Data. These strategies
have begun in part, but developing validated models to all
the clinically relevant questions will simply require more
data (105, 106).

The potential applications for radiomics is expanding, with
logistical and technical challenges needing to be overcome
prior to true clinical deployment. We view these as: (1)
expanding what is included in and the access to Big Data,
(2) establishing common criteria from image acquisition to
feature definitions, (3) agreement on the clinical questions
that radiomics must address, and (4) developing a clinically
implementable and prospectively validated statistical model to
answer those questions.

CONCLUSIONS

This review explained how the vast amount of radiological data
not used by the clinicians managing CNS malignancies can be
used to generate radiological signatures that can predict the
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characteristics of these brain tumours. In a step-by-step process
we outlined how this data can be used to predict for numerous
pertinent biological outcomes. With constant progress in deep-
learning processes and expanding public access to Big Data,
radiomics has the potential to non-invasively address numerous
clinical questions or support clinical decision making. There are
numerous future directions for radiomics, but a continued focus
on ensuring there is public access to large databases of clinical and
radiological correlated data will be instrumental to seeing those
directions leading to a desirable destination.

AUTHOR CONTRIBUTIONS

AC conception and design. AC, PD, and MK drafting
the manuscript and review of the literature. MK,
PD, BJ-C, TN, SS, and BA critical revision of
the manuscript.

ACKNOWLEDGMENTS

Research supported by grant from Varian Medical System.

REFERENCES

1. Koca T, Basaran H, Sezen D, Karaca S, Ors Y, Arslan D, Aydin A.

Comparison of linear accelerator and helical tomotherapy plans for

glioblastomamultiforme patients.Asian Pac J Cancer Prev. (2014) 15:7811–6.

doi: 10.7314/APJCP.2014.15.18.7811

2. OstromQT, GittlemanH, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS.

CBTRUS statistical report: primary brain and other central nervous system

tumors diagnosed in the United States in 2011–2015. Neuro Oncol. (2018)

20:iv1–86. doi: 10.1093/neuonc/noy131

3. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC,

et al. Effects of radiotherapy with concomitant and adjuvant temozolomide

versus radiotherapy alone on survival in glioblastoma in a randomised phase

III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. (2009)

10:459–66. doi: 10.1016/S1470-2045(09)70025-7

4. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B,

et al. Effect of tumor-treating fields plus maintenance temozolomide

vs maintenance temozolomide alone on survival in patients with

glioblastoma: a randomized clinical trial. JAMA. (2017) 318:2306–16.

doi: 10.1001/jama.2017.18718

5. Kong X-T, Nguyen NT, Choi YJ, Zhang G, Nguyen HN, Filka E,

et al. Phase 2 Study of bortezomib combined with temozolomide and

regional radiation therapy for upfront treatment of patients with newly

diagnosed glioblastoma multiforme: safety and efficacy assessment. Int J

Radiation Oncol Biol Phys. (2018) 100:1195–203. doi: 10.1016/j.ijrobp.2018.

01.001

6. Desjardins A, Gromeier M, Herndon JE, Beaubier N, Bolognesi DP,

Friedman AH, et al. Recurrent glioblastoma treated with recombinant

poliovirus. N Engl J Med. (2018) 379:150–61. doi: 10.1056/NEJMoa1716435

7. Cao Y, Tseng C-L, Balter JM, Teng F, Parmar HA, Sahgal A. MR-

guided radiation therapy: transformative technology and its role

in the central nervous system. Neuro Oncol. (2017) 19:ii16–29.

doi: 10.1093/neuonc/nox006

8. Louis DN, Perry A, Reifenberger G, Deimling A von, Figarella-Branger D,

Cavenee WK, et al. The 2016 World Health Organization classification of

tumors of the central nervous system: a summary. Acta Neuropathol. (2016)

131:803–20. doi: 10.1007/s00401-016-1545-1

9. Kaley T, Touat M, Subbiah V, Hollebecque A, Rodon J, Lockhart

AC, et al. BRAF Inhibition in BRAFV600-mutant gliomas: results

from the VE-BASKET study. JCO. (2018) JCO.2018.78.9990.

doi: 10.1200/JCO.2018.78.9990

10. Alexander BM, Trippa L, Gaffey SC, Arrillaga I, Lee EQ, Tanguturi SK, et al.

Individualized screening trial of innovative glioblastoma therapy (INSIGhT).

Am Soc Clin Oncol. (2017). doi: 10.1200/JCO.2017.35.15_suppl.TPS2079

11. Aerts HJWL. The potential of radiomic-based phenotyping

in precision medicine: a review. JAMA Oncol. (2016) 2:1636.

doi: 10.1001/jamaoncol.2016.2631

12. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P,

Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging

using a quantitative radiomics approach. Nat Commun. (2014) 5:5644.

doi: 10.1038/ncomms5644

13. Chaddad A, Daniel P, Niazi T. Radiomics evaluation of histological

heterogeneity using multiscale textures derived from 3D wavelet

transformation of multispectral images. Front Oncol. (2018) 8:96.

doi: 10.3389/fonc.2018.00096

14. Chaddad A, Desrosiers C, Toews M. GBM heterogeneity characterization by

radiomic analysis of phenotype anatomical planes. In: Martin AS, Elsa DA,

editors. Medical Imaging 2016 Image Processing. Orlando, FL: International

Society for Optics and Photonics. p. 978424.

15. Abrol S, Kotrotsou A, Hassan A, Elshafeey N, Hassan I, Idris T, et al.

Radiomic analysis of pseudo-progression compared to true progression in

glioblastoma patients: a large-scale multi-institutional study. Am Soc Clin

Oncol. (2017). doi: 10.1200/JCO.2017.35.15_suppl.2015

16. Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER,

et al. Classification of brain tumor type and grade using MRI texture and

shape in a machine learning scheme. Magn Reson Med. (2009) 62:1609–18.

doi: 10.1002/mrm.22147

17. Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett

GH, et al. Residual tumor volume versus extent of resection: predictors of

survival after surgery for glioblastoma. J Neurosurg. (2014) 121:1115–23.

doi: 10.3171/2014.7.JNS132449

18. Cui Y, Ren S, Tha KK, Wu J, Shirato H, Li R. Volume of high-risk

intratumoral subregions at multi-parametric MR imaging predicts overall

survival and complements molecular analysis of glioblastoma. Eur Radiol.

(2017) 27:3583–92. doi: 10.1007/s00330-017-4751-x

19. Chaddad A, Desrosiers C, Hassan L, Tanougast C. A quantitative

study of shape descriptors from glioblastoma multiforme phenotypes

for predicting survival outcome. Br J Radiol. (2016) 89: 20160575.

doi: 10.1259/bjr.20160575

20. Chaddad A, Tanougast C. Extracted magnetic resonance texture features

discriminate between phenotypes and are associated with overall survival in

glioblastoma multiforme patients.Med Biol Eng Comput. (2016) 54:1707–18.

doi: 10.1007/s11517-016-1461-5

21. Chaddad A, Daniel P, Desrosiers C, ToewsM, Abdulkarim B. Novel radiomic

features based on joint intensity matrices for predicting glioblastoma

patient survival time. IEEE J Biomed Health Informat. (2019) 23:795–804.

doi: 10.1109/JBHI.2018.2825027

22. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al.

Radiomics: the process and the challenges. Magn Reson Imaging. (2012)

30:1234–48. doi: 10.1016/j.mri.2012.06.010

23. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van

Timmeren J, et al. Radiomics: the bridge between medical imaging

and personalized medicine. Nat Rev Clin Oncol. (2017) 14:749–62.

doi: 10.1038/nrclinonc.2017.141

24. Lu C-F, Hsu F-T, Hsieh KL-C, Kao Y-CJ, Cheng S-J, Hsu JB-K, et al. Machine

learning-based radiomics for molecular subtyping of gliomas. Clin Cancer

Res. (2018). 24:4429–36. doi: 10.1158/1078-0432.CCR-17-3445

25. Qin J, Liu Z, Zhang H, Shen C, Wang X, Tan Y, et al. Grading of gliomas

by using radiomic features on multiple magnetic resonance imaging (MRI)

sequences.Med Sci Monit. (2017) 23:2168–78. doi: 10.12659/MSM.901270

26. Zhang X, Yan L-F, Hu Y-C, Li G, Yang Y, Han Y, et al. Optimizing

a machine learning based glioma grading system using multi-parametric

MRI histogram and texture features. Oncotarget. (2017) 8:47816–30.

doi: 10.18632/oncotarget.18001

27. Chang K, Bai HX, Zhou H, Su C, Bi WL, Agbodza E, et al. Residual

convolutional neural network for the determination of IDH status in low-and

Frontiers in Oncology | www.frontiersin.org 6 May 2019 | Volume 9 | Article 374

https://doi.org/10.7314/APJCP.2014.15.18.7811
https://doi.org/10.1093/neuonc/noy131
https://doi.org/10.1016/S1470-2045(09)70025-7
https://doi.org/10.1001/jama.2017.18718
https://doi.org/10.1016/j.ijrobp.2018.01.001
https://doi.org/10.1056/NEJMoa1716435
https://doi.org/10.1093/neuonc/nox006
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1200/JCO.2018.78.9990
https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS2079
https://doi.org/10.1001/jamaoncol.2016.2631
https://doi.org/10.1038/ncomms5644
https://doi.org/10.3389/fonc.2018.00096
https://doi.org/10.1200/JCO.2017.35.15_suppl.2015
https://doi.org/10.1002/mrm.22147
https://doi.org/10.3171/2014.7.JNS132449
https://doi.org/10.1007/s00330-017-4751-x
https://doi.org/10.1259/bjr.20160575
https://doi.org/10.1007/s11517-016-1461-5
https://doi.org/10.1109/JBHI.2018.2825027
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1158/1078-0432.CCR-17-3445
https://doi.org/10.12659/MSM.901270
https://doi.org/10.18632/oncotarget.18001
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chaddad et al. Radiomics With Artificial Intelligence in Glioblastoma

high-grade gliomas from MR imaging. Clin Cancer Res. (2018) 24:1073–81.

doi: 10.1158/1078-0432.CCR-17-2236

28. Cho H, Park H. Classification of low-grade and high-grade glioma using

multi-modal image radiomics features. In: Engineering in Medicine and

Biology Society (EMBC), 2017 39th Annual International Conference of the

IEEE (Jeju Island: IEEE), 3081–4.

29. Ellingson BM, Zaw T, Cloughesy TF, Naeini KM, Lalezari S, Mong

S, et al. Comparison between intensity normalization techniques for

dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood

volume (CBV) in human gliomas. J Magn Reson Imag. (2012) 35:1472–7.

doi: 10.1002/jmri.23600

30. Newman DA. Longitudinal modeling with randomly and systematically

missing data: a simulation of ad hoc, maximum likelihood, and multiple

imputation techniques, Longitudinal Modeling with Randomly and

Systematically Missing Data: a simulation of ad hoc, maximum likelihood,

and multiple imputation techniques. Organ Res Methods. (2003) 6:328–362.

doi: 10.1177/1094428103254673

31. Chaddad A, Sabri S, Niazi T, Abdulkarim B. Prediction of survival with

multi-scale radiomic analysis in glioblastoma patients.Med Biol Eng Comput.

(2018) 1–14. doi: 10.1007/s11517-018-1858-4

32. 3D Slicer. Available online at: http://www.slicer.org/ (accessed October 20,

2014).

33. Zhou H, Vallières M, Bai HX, Su C, Tang H, Oldridge D, et al. MRI features

predict survival and molecular markers in diffuse lower-grade gliomas.

Neuro-oncology. (2017) 19:862–70. doi: 10.1093/neuonc/now256

34. Lin JS, Fuentes DT, Chandler A, Prabhu SS, Weinberg JS,

Baladandayuthapani V, et al. Performance assessment for brain MR

imaging registration methods. AJNR Am J Neuroradiol. (2017) 38:973–80.

doi: 10.3174/ajnr.A5122

35. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon

DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for

accurate brain lesion segmentation. Med Image Anal. (2017) 36:61–78.

doi: 10.1016/j.media.2016.10.004

36. Bakas S, Zeng K, Sotiras A, Rathore S, Akbari H, Gaonkar B, et al.

GLISTRboost: combining multimodal MRI segmentation, registration, and

biophysical tumor growth modeling with gradient boosting machines for

glioma segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke

and Traumatic Brain Injuries Lecture Notes in Computer Science. (Cham:

Springer), 144–155.

37. Rathore S, Akbari H, Rozycki M, Abdullah KG, Nasrallah MP, Binder ZA,

et al. Radiomic MRI signature reveals three distinct subtypes of glioblastoma

with different clinical and molecular characteristics, offering prognostic

value beyond IDH1. Sci Rep. (2018) 8:5087. doi: 10.1038/s41598-018-

22739-2

38. Chaddad A, Tanougast C. Quantitative evaluation of robust skull stripping

and tumor detection applied to axial MR images. Brain Inform. (2016)

3:53–61. doi: 10.1007/s40708-016-0033-7

39. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep

convolutional neural networks. In: Pereira F, Burges CJC, Bottou L,

Weinberger KQ, editors. Advances in Neural Information Processing Systems

(Lake Tahoe, NV: Curran Associates Inc.), 1097–1105.

40. McGarry SD, Hurrell SL, Kaczmarowski AL, Cochran EJ, Connelly J,

Rand SD, et al. Magnetic resonance imaging-based radiomic profiles

predict patient prognosis in newly diagnosed glioblastoma before therapy.

Tomography. (2016) 2:223. doi: 10.18383/j.tom.2016.00250

41. Chaddad A, Tanougast C. High-throughput quantification of phenotype

heterogeneity using statistical features. Adv Bioinform. (2015) 2015:e728164.

doi: 10.1155/2015/728164

42. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P,

Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging

using a quantitative radiomics approach. Nat Commun. (2014) 5:4006.

doi: 10.1038/ncomms5006

43. Downey K, Riches SF, Morgan VA, Giles SL, Attygalle AD, Ind TE,

et al. Relationship between imaging biomarkers of stage I cervical cancer

and poor-prognosis histologic features: quantitative histogram analysis of

diffusion-weighted MR images. AJR Am J Roentgenol. (2013) 200:314–20.

doi: 10.2214/AJR.12.9545

44. Rosenkrantz AB. Histogram-based apparent diffusion coefficient analysis: an

emerging tool for cervical cancer characterization? AJR Am J Roentgenol.

(2013) 200:311–3. doi: 10.2214/AJR.12.9926

45. Li Z-C, Bai H, Sun Q, Li Q, Liu L, Zou Y, et al. Multiregional radiomics

features from multiparametric MRI for prediction of MGMT methylation

status in glioblastoma multiforme: a multicentre study. Eur Radiol. (2018)

28:3640–50. doi: 10.1007/s00330-017-5302-1

46. Chen Y, Li Z, Wu G, Yu J, Wang Y, Lv X, et al. Primary central

nervous system lymphoma and glioblastoma differentiation based on

conventional magnetic resonance imaging by high-throughput SIFT

features. Int J Neurosci. (2018) 128:608–18. doi: 10.1080/00207454.2017.14

08613

47. Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A. Evaluation of tumor-

derived MRI-texture features for discrimination of molecular subtypes and

prediction of 12-month survival status in glioblastoma. Med Phys. (2015)

42:6725–35. doi: 10.1118/1.4934373

48. Haralick RM, Shanmugam K, Dinstein I. Textural features for image

classification. IEEE Trans Syst Man Cyber. (1973) SMC-3:610–21.

doi: 10.1109/TSMC.1973.4309314

49. Amadasun M, King R. Textural features corresponding to textural

properties. IEEE Trans Syst Man Cyber. (1989) 19:1264–74.

doi: 10.1109/21.44046

50. Sun C, Wee WG. Neighboring gray level dependence matrix for texture

classification. Comp Vision Graphics Image Process. (1983) 23:341–52.

doi: 10.1016/0734-189X(83)90032-4

51. Berry JR, Goutsias J. A comparative study of matrix measures for maximum

likelihood texture classification. IEEE Trans Syst Man Cyber. (1991) 21:252–

61. doi: 10.1109/21.101156

52. Chu A, Sehgal CM, Greenleaf JF. Use of gray value distribution of

run lengths for texture analysis. Pattern Recogn Lett. (1990) 11:415–9.

doi: 10.1016/0167-8655(90)90112-F

53. Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Using

MATLAB. Pearson Education India (2004).

54. Skogen K, Schulz A, Helseth E, Ganeshan B, Dormagen JB, Server

A. Texture analysis on diffusion tensor imaging: discriminating

glioblastoma from single brain metastasis. Acta Radiol. (2018) 60:356–66.

doi: 10.1177/0284185118780889

55. Chaddad A, Bouridane A, Hassan L, Tanougast C. Wavelet based radiomics

for brain tumour phenotypes discrimination. In Proceedings—CIE 45:

2015 International Conference on Computers and Industrial Engineering

(Metz: NY Curran Associates Inc.), 1167–74. Available online at: http://nrl.

northumbria.ac.uk/26740/ (accessed October 24, 2017).

56. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian

M, van der Laak JAWM, van Ginneken B, Sánchez CI. A

survey on deep learning in medical image analysis. Medical

Image Analysis. (2017) 42:60–88. doi: 10.1016/j.media.2017.

07.005

57. Chaddad A, Desrosiers C, Niazi T. Deep radiomic analysis of MRI

related to Alzheimer’s disease. IEEE Access. (2018) 6:58213–21.

doi: 10.1109/ACCESS.2018.2871977.

58. Chaddad A, Desrosiers C, Toews M. Phenotypic characterization of

glioblastoma identified through shape descriptors. In: Proceedings Volume

9785, Medical Imaging 2016: Computer-Aided Diagnosis. San Diego, CA:

International Society for Optics and Photonics (2016).

59. Czarnek N, Clark K, Peters KB, Mazurowski MA. Algorithmic three-

dimensional analysis of tumor shape in MRI improves prognosis of survival

in glioblastoma: a multi-institutional study. J Neurooncol. (2017) 132:55–62.

doi: 10.1007/s11060-016-2359-7

60. Yu L, Liu H. Feature selection for high-dimensional data: a fast correlation-

based filter solution. In: T. Fawcett, and N. Mishra (Eds.), Proceedings,

Twentieth International Conference on Machine Learning. Vol. 2 (2003), pp.

856–863.

61. Xing EP, Jordan MI, Karp RM. Feature selection for high-dimensional

genomic microarray data. In: ICML (Citeseer), 601–608.

62. Nguyen HT, Franke K, Petrovic S. Towards a generic feature-

selection measure for intrusion detection. In: Pattern Recognition (ICPR),

2010 20th International Conference on (Istanbul: IEEE), 1529–1532.

Frontiers in Oncology | www.frontiersin.org 7 May 2019 | Volume 9 | Article 374

https://doi.org/10.1158/1078-0432.CCR-17-2236
https://doi.org/10.1002/jmri.23600
https://doi.org/10.1177/1094428103254673
https://doi.org/10.1007/s11517-018-1858-4
http://www.slicer.org/
https://doi.org/10.1093/neuonc/now256
https://doi.org/10.3174/ajnr.A5122
https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.1038/s41598-018-22739-2
https://doi.org/10.1007/s40708-016-0033-7
https://doi.org/10.18383/j.tom.2016.00250
https://doi.org/10.1155/2015/728164
https://doi.org/10.1038/ncomms5006
https://doi.org/10.2214/AJR.12.9545
https://doi.org/10.2214/AJR.12.9926
https://doi.org/10.1007/s00330-017-5302-1
https://doi.org/10.1080/00207454.2017.1408613
https://doi.org/10.1118/1.4934373
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/21.44046
https://doi.org/10.1016/0734-189X(83)90032-4
https://doi.org/10.1109/21.101156
https://doi.org/10.1016/0167-8655(90)90112-F
https://doi.org/10.1177/0284185118780889
http://nrl.northumbria.ac.uk/26740/
http://nrl.northumbria.ac.uk/26740/
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1109/ACCESS.2018.2871977
https://doi.org/10.1007/s11060-016-2359-7
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chaddad et al. Radiomics With Artificial Intelligence in Glioblastoma

63. Ramírez-Gallego S, Lastra I, Martínez-Rego D, Bolón-Canedo V, Benítez JM,

Herrera F, et al. Fast-mRMR: fast minimum redundancymaximum relevance

algorithm for high-dimensional big data. Int J Intelligent Syst. 32:134–52.

doi: 10.1002/int.21833

64. Chaddad A. Automated feature extraction in brain tumor by magnetic

resonance imaging using gaussianmixture models. Int J Biomed Imag. (2015)

11:868031. doi: 10.1155/2015/868031

65. Song F, Guo Z, Mei D. Feature selection using principal component

analysis. In: Engineering Design and Manufacturing Informatization 2010

International Conference on System Science (Yichang).p. 27–30.

66. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat.

(1979) 6:65–70.

67. Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and

Techniques, Second Edition. San Francisco, CA: Morgan Kaufmann (2005).

68. Arlot S, Celisse A. A survey of cross-validation procedures for model

selection. Statist Surv. (2010) 4:40–79. doi: 10.1214/09-SS054

69. Krstajic D, Buturovic LJ, Leahy DE, Thomas S. Cross-validation pitfalls when

selecting and assessing regression and classification models. J Cheminform.

(2014) 6:10. doi: 10.1186/1758-2946-6-10

70. Guan X, Vengoechea J, Zheng S, Sloan AE, Chen Y, Brat DJ, et al. Molecular

subtypes of glioblastoma are relevant to lower grade glioma. PLoS ONE.

(2014) 9:e91216. doi: 10.1371/journal.pone.0091216

71. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL.Machine learning

methods for quantitative radiomic biomarkers. Sci Rep. (2015) 5:13087.

doi: 10.1038/srep13087

72. Lao J, Chen Y, Li Z-C, Li Q, Zhang J, Liu J, et al. A deep learning-based

radiomics model for prediction of survival in glioblastoma multiforme. Sci

Rep. (2017) 7:10353. doi: 10.1038/s41598-017-10649-8

73. Kim H, Bredel M. Feature selection and survival modeling in The Cancer

Genome Atlas. Int J Nanomed. (2013) 8:57–62. doi: 10.2147/IJN.S40733

74. Cruz-Barbosa R, Vellido A. Semi-supervised analysis of human brain

tumours from partially labeled MRS information, using manifold learning

models. Int J Neural Syst. (2011) 21:17–29. doi: 10.1142/S0129065711002626

75. Kong D-S, Kim J, Ryu G, You H-J, Sung JK, Han YH, et al. Quantitative

radiomic profiling of glioblastoma represents transcriptomic expression.

Oncotarget. (2018) 9:6336–45. doi: 10.18632/oncotarget.23975

76. Kickingereder P, Burth S, Wick A, Götz M, Eidel O, Schlemmer H-

P, et al. Radiomic profiling of glioblastoma: identifying an imaging

predictor of patient survival with improved performance over established

clinical and radiologic risk models. Radiology. (2016) 280:880–9.

doi: 10.1148/radiol.2016160845

77. Zhang B, Tian J, Dong D, Gu D, Dong Y, Zhang L, et al. Radiomics

features of multiparametric MRI as novel prognostic factors in advanced

nasopharyngeal carcinoma. Clin Cancer Res. (2017) 23:4259–69.

doi: 10.1158/1078-0432.CCR-16-2910

78. Beig N, Patel J, Prasanna P, Partovi S, Varadhan V, Madabhushi A, et al.

Radiogenomic analysis of hypoxia pathway reveals computerized MRI

descriptors predictive of overall survival in Glioblastoma. In: SPIE Medical

Imaging (International Society for Optics and Photonics), p. 101341U

79. Mazurowski MA, Clark K, Czarnek NM, Shamsesfandabadi P, Peters KB,

et al. Radiogenomics of lower-grade glioma: algorithmically-assessed tumor

shape is associated with tumor genomic subtypes and patient outcomes in

a multi-institutional study with The Cancer Genome Atlas data. J Neuro-

Oncol. (2017) 133:27–35. doi: 10.1007/s11060-017-2420-1

80. Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth

S, et al. Radiogenomics of glioblastoma: machine learning–based

classification of molecular characteristics by using multiparametric

and multiregional MR imaging features. Radiology. (2016) 281:907–18.

doi: 10.1148/radiol.2016161382

81. Wang S, Martinez-Lage M, Sakai Y, Chawla S, Kim SG, Alonso-Basanta

M, et al. Differentiating tumor progression from pseudoprogression

in patients with glioblastomas using diffusion tensor imaging and

dynamic susceptibility contrast MRI. Am J Neuroradiol. (2016) 37:28–36.

doi: 10.3174/ajnr.A4474

82. Jang B-S, Jeon SH, Kim IH, Kim IA. Prediction of Pseudoprogression versus

progression using machine learning algorithm in glioblastoma. Sci Rep.

(2018) 8:12516. doi: 10.1038/s41598-018-31007-2

83. Rowe LS, Butman JA, Mackey M, Shih JH, Cooley-Zgela T, Ning H,

et al. Differentiating pseudoprogression from true progression: analysis of

radiographic, biologic, and clinical clues in GBM. J Neurooncol. (2018)

139:145–52. doi: 10.1007/s11060-018-2855-z

84. van den Bent MJ, Dubbink HJ, Marie Y, Brandes AA, Taphoorn

MJB, Wesseling P, et al. IDH1 and IDH2 mutations are prognostic

but not predictive for outcome in anaplastic oligodendroglial tumors:

a report of the European Organization for Research and Treatment

of Cancer Brain Tumor Group. Clin Cancer Res. (2010) 16:1597–604.

doi: 10.1158/1078-0432.CCR-09-2902

85. Cancer Genome Atlas Research Network. Comprehensive genomic

characterization defines human glioblastoma genes and core pathways.

Nature. (2008) 455:1061–8. doi: 10.1038/nature07385

86. Prior FW, Clark K, Commean P, Freymann J, Jaffe C, Kirby J, et al. TCIA: an

information resource to enable open science. Conf Proc IEEE Eng Med Biol

Soc. (2013) 2013:1282–5. doi: 10.1109/EMBC.2013.6609742

87. Kalpathy-Cramer J, Freymann JB, Kirby JS, Kinahan PE, Prior

FW. Quantitative imaging network: data sharing and competitive

algorithmvalidation leveraging the cancer imaging archive. Transl Oncol.

(2014) 7:147–52. doi: 10.1593/tlo.13862

88. Liu Y, Xu X, Yin L, Zhang X, Li L, Lu H. Relationship between glioblastoma

heterogeneity and survival time: an MR imaging texture analysis. Am J

Neuroradiol. (2017) 38:1695–701. doi: 10.3174/ajnr.A5279

89. Chow D, Chang P, Weinberg BD, Bota DA, Grinband J, Filippi CG. Imaging

genetic heterogeneity in glioblastoma and other glial tumors: review of

current methods and future directions. Am J Roentgenol. (2017) 210:30–38.

doi: 10.2214/AJR.17.18754

90. Liang S, Zhang R, Liang D, Song T, Ai T, Xia C, et al. Multimodal 3D

DenseNet for IDH genotype prediction in gliomas. Genes. (2018) 9:9080382.

doi: 10.3390/genes9080382

91. Eichinger P, Alberts E, Delbridge C, Trebeschi S, Valentinitsch A, Bette

S, et al. Diffusion tensor image features predict IDH genotype in

newly diagnosed WHO grade II/III gliomas. Sci Rep. (2017) 7:13396.

doi: 10.1038/s41598-017-13679-4

92. Delfanti RL, Piccioni DE, Handwerker J, Bahrami N, Krishnan A,

Karunamuni R, et al. Imaging correlates for the 2016 update on WHO

classification of grade II/III gliomas: implications for IDH, 1p/19q and ATRX

status. J Neurooncol. (2017) 135:601–9. doi: 10.1007/s11060-017-2613-7

93. Han Y, Xie Z, Zang Y, Zhang S, Gu D, Zhou M, et al. Non-invasive

genotype prediction of chromosome 1p/19q co-deletion by development and

validation of an MRI-based radiomics signature in lower-grade gliomas. J

Neurooncol. (2018) 140:297–306. doi: 10.1007/s11060-018-2953-y

94. Wei J, Yang G, Hao X, Gu D, Tan Y, Wang X, et al. A multi-sequence

and habitat-based MRI radiomics signature for preoperative prediction of

MGMT promoter methylation in astrocytomas with prognostic implication.

Eur Radiol. (2019) 29:877–88. doi: 10.1007/s00330-018-5575-z

95. Hong EK, Choi SH, Shin DJ, Jo SW, Yoo R-E, Kang KM, et al.

Radiogenomics correlation between MR imaging features and major

genetic profiles in glioblastoma. Eur Radiol. (2018) 28:4350–61.

doi: 10.1007/s00330-018-5400-8

96. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR,

et al. A radiomics approach to assess tumour-infiltrating CD8 cells

and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging

biomarker, retrospective multicohort study. Lancet Oncol. (2018) 19:1180–

91. doi: 10.1016/S1470-2045(18)30413-3

97. Scherer HJ. Cerebral astrocytomas and their derivatives. Am J Cancer.

(1940) 40:159–198.

98. Kros JM, van Run PR, Alers JC, Avezaat CJ, Luider TM, van Dekken H.

Spatial variability of genomic aberrations in a large glioblastoma resection

specimen. Acta Neuropathol. (2001) 102:103–9. https://www.ncbi.nlm.nih.

gov/pubmed/11547944

99. Woodworth GF, McGirt MJ, Samdani A, Garonzik I, Olivi A, Weingart

JD. Frameless image-guided stereotactic brain biopsy procedure: diagnostic

yield, surgical morbidity, and comparison with the frame-based technique. J

Neurosurg. (2006) 104:233–7. doi: 10.3171/jns.2006.104.2.233

100. Steinmetz MP, Barnett GH, Kim BS, Chidel MA, Suh JH. Metastatic

seeding of the stereotactic biopsy tract in glioblastoma multiforme: case

Frontiers in Oncology | www.frontiersin.org 8 May 2019 | Volume 9 | Article 374

https://doi.org/10.1002/int.21833
https://doi.org/10.1155/2015/868031
https://doi.org/10.1214/09-SS054
https://doi.org/10.1186/1758-2946-6-10
https://doi.org/10.1371/journal.pone.0091216
https://doi.org/10.1038/srep13087
https://doi.org/10.1038/s41598-017-10649-8
https://doi.org/10.2147/IJN.S40733
https://doi.org/10.1142/S0129065711002626
https://doi.org/10.18632/oncotarget.23975
https://doi.org/10.1148/radiol.2016160845
https://doi.org/10.1158/1078-0432.CCR-16-2910
https://doi.org/10.1007/s11060-017-2420-1
https://doi.org/10.1148/radiol.2016161382
https://doi.org/10.3174/ajnr.A4474
https://doi.org/10.1038/s41598-018-31007-2
https://doi.org/10.1007/s11060-018-2855-z
https://doi.org/10.1158/1078-0432.CCR-09-2902
https://doi.org/10.1038/nature07385
https://doi.org/10.1109/EMBC.2013.6609742
https://doi.org/10.1593/tlo.13862
https://doi.org/10.3174/ajnr.A5279
https://doi.org/10.2214/AJR.17.18754
https://doi.org/10.3390/genes9080382
https://doi.org/10.1038/s41598-017-13679-4
https://doi.org/10.1007/s11060-017-2613-7
https://doi.org/10.1007/s11060-018-2953-y
https://doi.org/10.1007/s00330-018-5575-z
https://doi.org/10.1007/s00330-018-5400-8
https://doi.org/10.1016/S1470-2045(18)30413-3
https://www.ncbi.nlm.nih.gov/pubmed/11547944
https://www.ncbi.nlm.nih.gov/pubmed/11547944
https://doi.org/10.3171/jns.2006.104.2.233
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chaddad et al. Radiomics With Artificial Intelligence in Glioblastoma

report and review of the literature. J Neurooncol. (2001) 55:167–71.

doi: 10.1023/A:1013873431159

101. Perrin RG, Bernstein M. Iatrogenic seeding of anaplastic astrocytoma

following stereotactic biopsy. J Neurooncol. (1998) 36:243–6.

doi: 10.1023/A:1005823805767

102. Zinn PO, Singh SK, Kotrotsou A, Hassan I, Thomas G, Luedi MM,

et al. A coclinical radiogenomic validation study: conserved magnetic

resonance radiomic appearance of periostin-expressing glioblastoma in

patients and xenograft models. Clin Cancer Res. (2018) 24:6288–99.

doi: 10.1158/1078-0432.CCR-17-3420

103. McNutt TR, Benedict SH, Low DA, Moore K, Shpitser I, JiangW, et al. Using

big data analytics to advance precision radiation oncology. Int J Radiation

Oncol Biol Phys. (2018) 101:285–91. doi: 10.1016/j.ijrobp.2018.02.028

104. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. (2015) 521:436–44.

doi: 10.1038/nature14539

105. Djuric U, Zadeh G, Aldape K, Diamandis P. Precision histology: how

deep learning is poised to revitalize histomorphology for personalized

cancer care. Precision Oncol. (2017) 1:22. doi: 10.1038/s41698-017-

0022-1

106. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL.

Artificial intelligence in radiology. Nat Rev Cancer. (2018) 18:500–10.

doi: 10.1038/s41568-018-0016-5

Conflict of Interest Statement: Author PD’s fellowship was partly funded by a

grant from Varian Medical System. The funder had no role in study design, data

collection and analysis, or preparation of the manuscript.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Chaddad, Kucharczyk, Daniel, Sabri, Jean-Claude, Niazi and

Abdulkarim. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 9 May 2019 | Volume 9 | Article 374

https://doi.org/10.1023/A:1013873431159
https://doi.org/10.1023/A:1005823805767
https://doi.org/10.1158/1078-0432.CCR-17-3420
https://doi.org/10.1016/j.ijrobp.2018.02.028
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41698-017-0022-1
https://doi.org/10.1038/s41568-018-0016-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation
	Introduction
	Radiomics Methodology
	Image Acquisition
	Standardization
	Segmentation of Brain Tumors
	Radiomic Features Extraction
	Feature-Analyses
	Multivariate Analysis and Model Building

	Progress of Radiomics in GBM
	Intratumoural Heterogeneity and Radiogenomics
	Future Radiomics
	Conclusions
	Author Contributions
	Acknowledgments
	References


