1,072 research outputs found

    Non-Fragile Guaranteed Cost Control of Nonlinear Systems with Different State and Input Delays Based on T-S Fuzzy Local Bilinear Models

    Get PDF
    This paper focuses on the non-fragile guaranteed cost control problem for a class of Takagi-Sugeno (T-S) fuzzy time-varying delay systems with local bilinear models and different state and input delays. A non-fragile guaranteed cost state-feedback controller is designed such that the closed-loop T-S fuzzy local bilinear control system is delay-dependent asymptotically stable, and the closed-loop fuzzy system performance is constrained to a certain upper bound when the additive controller gain perturbations exist. By employing the linear matrix inequality (LMI) technique, sufficient conditions are established for the existence of desired non-fragile guaranteed cost controllers. The simulation examples show that the proposed approach is effective and feasible

    Fractional Order Fault Tolerant Control - A Survey

    Get PDF
    In this paper, a comprehensive review of recent advances and trends regarding Fractional Order Fault Tolerant Control (FOFTC) design is presented. This novel robust control approach has been emerging in the last decade and is still gathering great research efforts mainly because of its promising results and outcomes. The purpose of this study is to provide a useful overview for researchers interested in developing this interesting solution for plants that are subject to faults and disturbances with an obligation for a maintained performance level. Throughout the paper, the various works related to FOFTC in literature are categorized first by considering their research objective between fault detection with diagnosis and fault tolerance with accommodation, and second by considering the nature of the studied plants depending on whether they are modelized by integer order or fractional order models. One of the main drawbacks of these approaches lies in the increase in complexity associated with introducing the fractional operators, their approximation and especially during the stability analysis. A discussion on the main disadvantages and challenges that face this novel fractional order robust control research field is given in conjunction with motivations for its future development. This study provides a simulation example for the application of a FOFTC against actuator faults in a Boeing 747 civil transport aircraft is provided to illustrate the efficiency of such robust control strategies

    Dynamic output nonfragile reliable control for nonlinear fractional-order glucose–insulin system

    Get PDF
    The main intention of this paper is to scrutinize the problem of internal model-based dynamic output feedback nonfragile reliable control problem for fractional-order glucose–insulin system. Specifically, a robust control law that represents the insulin injection rate is designed in order to regulate the level of glucose in diabetes treatment in the existence of meal disturbance or external glucose infusion due to improper diet. By the construction of suitable Lyapunov functional, a novel set of sufficient conditions is derived with the aid of linear matrix inequalities for obtaining the required dynamic output feedback control law. In particular, the designed controller ensures the robust stability and disturbance attenuation performance against meal disturbance of the glucose–insulin system. Numerical simulation results are performed to verify the advantage of the developed design technique. Specifically, the irregular blood glucose level can be brought down to normal level by injecting suitable rate of insulin to the patient. The result exposes that the level of blood glucose is sustained in the identified ranges via the proposed dynamic output feedback control law.&nbsp

    Observer-Based Robust Controller Design for Nonlinear Fractional-Order Uncertain Systems via LMI

    Get PDF
    We discuss the observer-based robust controller design problem for a class of nonlinear fractional-order uncertain systems with admissible time-variant uncertainty in the case of the fractional-order satisfying 0<α<1. Based on direct Lyapunov approach, a sufficient condition for the robust asymptotic stability of the observer-based nonlinear fractional-order uncertain systems is presented. Employing Finsler’s Lemma, the systematic robust stabilization design algorithm is then proposed in terms of linear matrix inequalities (LMIs). The efficiency and advantage of the proposed algorithm are finally illustrated by two numerical simulations

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Barrier Lyapunov function-based adaptive fuzzy attitude tracking control for rigid satellite with input delay and output constraint

    Get PDF
    This paper investigates the adaptive attitude tracking problem for the rigid satellite involving output constraint, input saturation, input time delay, and external disturbance by integrating barrier Lyapunov function (BLF) and prescribed performance control (PPC). In contrast to the existing approaches, the input delay is addressed by Pade approximation, and the actual control input concerning saturation is obtained by utilizing an auxiliary variable that simplifies the controller design with respect to mean value methods or Nussbaum function-based strategies. Due to the implementation of the BLF control, together with an interval notion-based PPC strategy, not only the system output but also the transformed error produced by PPC are constrained. An adaptive fuzzy controller is then constructed and the predesigned constraints for system output and the transformed error will not be violated. In addition, a smooth switch term is imported into the controller such that the finite time convergence for all error variables is guaranteed for a certain case while the singularity problem is avoided. Finally, simulations are provided to show the effectiveness and potential of the proposed new design techniques
    • …
    corecore