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Abstract. The main intention of this paper is to scrutinize the problem of internal model-based
dynamic output feedback nonfragile reliable control problem for fractional-order glucose–insulin
system. Specifically, a robust control law that represents the insulin injection rate is designed in
order to regulate the level of glucose in diabetes treatment in the existence of meal disturbance or
external glucose infusion due to improper diet. By the construction of suitable Lyapunov functional,
a novel set of sufficient conditions is derived with the aid of linear matrix inequalities for obtaining
the required dynamic output feedback control law. In particular, the designed controller ensures the
robust stability and disturbance attenuation performance against meal disturbance of the glucose–
insulin system. Numerical simulation results are performed to verify the advantage of the developed
design technique. Specifically, the irregular blood glucose level can be brought down to normal level
by injecting suitable rate of insulin to the patient. The result exposes that the level of blood glucose
is sustained in the identified ranges via the proposed dynamic output feedback control law.

Keywords: fractional-order glucose–insulin system, dynamic output feedback, nonlinear reliable
control, internal model approach.

1 Introduction

In recent years, the applications of fractional calculus play a significant role in the mathe-
matical modeling and control of different kind of real-world problems. In particular, due
to the fact that the fractional calculus is the general case of integer calculus, practical
systems can be modelled more accurately by using fractional models. Moreover, in most
of fractional-order control systems, output tracking, stabilization and stability are the main
objectives to be ensured because of the uncertain models caused by variations in system
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parameters, disturbances and so on [18]. Over the last few decades, the analysis of filtering
problem [9], feedback control [14] and event-triggered scheme [10] for dynamical sys-
tems have received increasing interests of researchers. This is because of the fact that the
complete information of control system states is not easy to be estimated in experimental
process. It is noted that the problem of dynamic output feedback control is somewhat
more complicated than the problem of static output feedback. Some interesting analysis
based on dynamic output feedback control design have been recently discussed in [2].
Thus, robust stability and stabilization via dynamic output feedback control have become
as an exciting important issue for fractional-order control systems [8].

Besides, fractional calculus has been applied to model various control systems such as
humanoid robots, electrical systems and bio-medical sciences. Recently, there are several
interesting works on the study of qualitative property analysis and existence of solutions
for various kinds of fractional models of biological systems [1]. It is well known that
high amount of blood glucose level produces a main long-lasting syndrome called as
diabetes. Diabetes arises due to the main reason that the fault caused by the abnormal
production of insulin or action of insulin or both so that the body could not maintain
the particular glucose level in blood. [6, 12]. Generally, the human body must have the
particular range of glucose concentration level in blood in order to decrease the effect of
diabetes. In particular, either a very greater value or very lower value of glucose level
in blood may produce the serious health issues such as hyperglycemia or hypoglycemia,
respectively. If the level of glucose concentration in blood is decreasing below 50 mg/dl,
then it will result in damage of brain cells, which is known as brain failure. It should be
mentioned that glucagon and insulin are the two hormones, which control or maintain
the normal range of glucose level in the blood [16]. Insulin is antibiotic, which generates
the activity of glucose uptake in human body and in so doing it reduces the level of
glucose in the blood. On the other hand, the glucagon is catabolic, which increases the
glucose production in blood. Normally, in an individual, a less amount of insulin is often
produced or cleared inside pancreas maintaining the insulin basal value Ib. The clearance
increases as the insulin level increases above basal value, but basal secretion increases due
to decrease in basal concentration Gb. Note that for a healthy people, blood glucose level
range is identified as 70−120 mg/dL. If it fails to lie in this range, then many organs on
the body, like heart, brain, eyes, legs, kidneys could be damaged, and periodontal disease
could attack. Therefore, it is necessary and important to study the dynamical behaviors of
the blood glucose concentration or insulin level to regulate the required level of glucose
in the blood. Taking this into consideration, various control techniques have been used
to control the level of blood glucose or insulin rate and to maintain the range of blood
glucose level [3–5, 13, 17].

Recently, N’Doye et al. [15] developed aH∞ control for the stabilization of fractional-
order glucose–insulin system with the use of fractional Lyapunov direct method. The
main benefit of the dissipativity approach is that it offers the flexibility by adjusting
the parameters to obtain H∞, passivity, and mixed H∞ and passivity performances.
Moreover, dissipative control technique acts is an unified approach for designing suitable
control for glucose–insulin system. Further, the static output feedback control strategy
cannot be used always to stabilize an unstable system due to some practical issues, which
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will motivate us to consider the control design together with the dynamic output feed-
back controller. However to the best of authors knowledge, the stabilization of glucose–
insulin system subject to the effect of improper diet via the internal model-based dynamic
output feedback nonfragile reliable control has not yet been reported. Motivated by this
consideration, in this work, we study the stabilization of glucose–insulin system via
dynamic output feedback controller. The important features of this work have been listed
as follows:

• Stabilization of glucose–insulin system is examined via dynamic output feedback
nonfragile reliable control law.

• Developed dynamic output feedback controller is well suited to regulate the glucose
level in the diabetes patients in the presence of meal disturbances.

• Precisely, the proposed control law makes the glucose–insulin system to reach the
equilibrium point by rapidly rejecting meal disturbances.

2 System formulation and preliminaries

In this section, we discuss the stabilization problem for glucose–insulin system described
by fractional-order nonlinear systems via internal model-based dynamic output feed-
back nonfragile reliable controller. Specifically, we consider the state–space equation of
glucose–insulin system in the following form:

CDαx(t) = Ax(t) + Bu(t) +Dd(t) + F
(
x(t)

)
,

y(t) = Cx(t), π(0) = x0,
(1)

where CDα denotes the Riemann–Liouville derivative of commensurate order α with
0 < α < 1; F(x(t)) is the measurable function satisfying the Lipschitz condition;
x(t) = [xT1 (t) xT2 (t) xT3 (t)]T denotes the state vector, here x1(t) and x2(t) indicate the
glucose and insulin concentration in blood, respectively. Also, x3(t) denotes the insulin
excitation; u(t) is the insulin injection rate, which is considered as control variable; d(t)
is the meal disturbance; the output y(t) denotes the blood glucose concentration and
π0 = [xT1 (0) xT2 (0) xT3 (0)]T represents the initial condition. Furthermore, the coefficient
matrices of (1) are given by

A =

−p1 0 0
0 −p2 p3
0 0 −n

 , F
(
x(t)

)
=
[
−xT1 (t)xT2 (t) 0 0

]T
,

B =
[
0 0 1

]T
, D =

[
1 0 0

]T
and C =

[
1 0 0

]
,

where p1 represents the glucose clearance rate independent of insulin; p2 denotes the
diminishing level of insulin reaction at t; p3 represents the raise in insulin uptake ability; n
denotes the decay rate of blood insulin. In order to achieve the stabilization of fractional-
order glucose–insulin system, the dynamic output feedback controller is considered as

CDαxC(t) = ACxC(t) + BCy(t),

yC(t) = KxC(t),
(2)
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whereAC , BC and K are the controller parameters to be computed; xC(t) and yC(t) rep-
resent the state and output vectors of the dynamic output feedback controller, respectively.
In particular, the main motive is to construct an appropriate controller, which makes the
state trajectories of the closed-loop system should converge to the equilibrium values. In
order to do this, the internal model is designed as

CDαxR(t) = ARxR(t) + BR
(
r(t)− x(t)

)
, (3)

where xR(t) is the state of the internal model;AR and BR are known constant parameters;
r(t) = [Gb 0 Ib]

T is the equilibrium value, which has to be traced, where Gb is the
glucose basal value and Ib is the insulin basal value. On the other hand, fluctuations in
control design may occur during the real process due to external disturbances [20, 21].
Taking this into account, a nonfragile controller is defined by u(t) = yC(t) + (KR +
∆KR(t))xR(t) = (K+∆K(t))xC(t) + (KR +∆KR(t))xR(t), where K and KR are the
gain matrices associated with the dynamic output feedback controller and internal model,
respectively;∆K(t) and∆KR(t) are the uncertain matrices given by∆K(t) =MF (t)N
and ∆KR(t) = MF (t)NR, where M, N , NR are known suitable constant matrices.
Also, the time-varying matrix F (t) is Lebesgue measurable and the elements of F (t)
satisfies FT(t)F (t) 6 I . Further, faults in control design (insulin injection rate) occur
naturally in real situations, which will affect the performance of the considered fractional-
order glucose–insulin system and make it unstable. To tackle this, we choose a reliable
controller in the following form:

uF (t) = G
(
K +∆K(t)

)
xC(t) +G(KR +∆KR(t))xR(t) + g

(
u(t)

)
, (4)

where uF (t) is the faulty control input, G is the actuator fault matrix given by G =
diag{h1, h2, . . . , hm}, hi ∈ [hi, hi], 0 6 hi 6 hi 6 hi 6 1, i = 1, 2, . . . ,m, where hi is
an unknown constant; hi and hi denote the lower and upper bounds of hi, respectively. If
hi is taken as 0, then the actuator fails completely. The actuator works without any fault
if hi = 1 and fails partially for hi ∈ (0, 1). In (4), g(u(t)) describes the nonlinear fault
term in control input. Then it is obvious that gT(u(t))g(u(t)) 6 (uT(t)Ξ1u(t)), where
Ξ1 = diag{σ1, σ2, . . . , σm}. The stability of the system is independent of basal values.
Therefore, we assume that r(t) = 0. From (1)–(4), an augmented nonlinear system can
be written as

CDαΩ(t) = ÃΩ(t) + F̃F
(
x(t)

)
+ B̃g

(
u(t)

)
+ D̃d(t), (5)

where Ω(t) = [xT(t) xTC(t) xTR(t)]T and

Ã =

 A BG(K +∆K(t)) BG(KR +∆KR(t))
BCC AC 0
−BR 0 AR

 ,

F̃ =

1
0
0

 , B̃ =

B0
0

 and D̃ =

D0
0

 .
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With the aid of the following assumption, we will derive the main result in the forthcoming
section.

Assumption 1. The nonlinear function F(x(t)) with F(0) = 0 for any L1 > 0 satisfies
the Lipschitz condition ‖F(x(t))‖ 6 ‖L1x(t)‖.

3 Main results

In this section, the dissipative and internal model-based dynamic output feedback non-
fragile reliable controller will be designed to ensure the stabilization of the fractional-
order glucose–insulin system (1). First, we obtain a set of criteria to analyze the stability
of the augmented fractional-order nonlinear system (5) with known control gain parame-
ters. Then the result is extended to the case of unknown control gain parameters.

Theorem 1. Let Assumption 1 be hold. For given positive scalars α1, β1, γ1, ρ1, ρ2, real
constant matrices L1 > 0, G > 0, Ξ1 > 0, Q, S, R and gain matrices K, KR, the
augmented fractional-order nonlinear system (5) with 0 < α < 1 reaches the equilibrium
point with strictly (QSR)-dissipativity if there exist symmetric matrices P1 > 0, P2 > 0,
P3 > 0 such that the below linear matrix inequality (LMI) holds:

Ψ = [Ψ ]9×9 < 0, (6)
where

Ψ11 = ATP1

α1
+
P1

α1
A, Ψ12 = CTBTC

P2

β1
+
P1

α1
BGK,

Ψ13 = −BTR
P3

γ1
+
P1

α1
BGKR, Ψ14 =

P1

α1
, Ψ15 =

P1

α1
B,

Ψ16 = ρ1L
T
1 , Ψ18 =

P1

α1
D − CTS, Ψ19 =

√
−QCT,

Ψ22 = AT
C

P2

β1
+
P2

β1
AC , Ψ27 = −K, Ψ33 = AT

R

P3

γ1
+
P3

γ1
AR,

Ψ37 = −KR, Ψ44 = −ρ1, Ψ55 = −ρ−12 , Ψ66 = −I,

Ψ77 = −ρ2Ξ−11 , Ψ88 = −R, Ψ99 = −I,

and the remaining terms are zero.

Proof. According to [11, Lemma 1], the augmented fractional-order nonlinear system (5)
can be modified in the following form:

∂z($, t)

∂t
= −$z($, t) + ÃΩ(t) + F̃F

(
x(t)

)
+ B̃g

(
u(t)

)
+ D̃d(t),

Ω(t) =

∞∫
0

λ($)z($, t) d$, (7)
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where z($, t) is the frequency distributed state. Now, we consider a monochromatic
Lyapunov function with respect to the weighting frequency λ($) as follows:

W($, t) = zT($, t)Pz($, t),

where

P = PT = diag

{
P1

α1
,
P2

β1
,
P3

γ1

}
is positive definite. Let v(t) be the Lyapunov function given by

v(t) =

∞∫
0

λ($)W($, t) d$ =

∞∫
0

λ($)zT($, t)Pz($, t) d$.

Taking the time derivative of v(t) along the trajectories of (7), we obtain

v̇(t) =

∞∫
0

λ($)
{
−$zT($, t) +ΩT(t)ÃT+ FT

(
x(t)

)
F̃T+ gT

(
u(t)

)
B̃T+ dT(t)D̃T

}
× Pz($, t) d$

+

∞∫
0

λ($)zT($, t)

× P
{
−$z($, t) + ÃΩ(t) + F̃F

(
x(t)

)
+ B̃g

(
u(t)

)
+ D̃d(t)

}
d$

=

∞∫
0

−2λ($)$zT($, t)Pz($, t) d$ + 2ΩT(t)PÃΩ(t) + 2ΩT(t)P B̃g
(
u(t)

)
+ 2ΩT(t)PF̃F

(
x(t)

)
+ 2ΩT(t)PD̃d(t). (8)

Since the first term of the above inequality (8) is negative, it is sufficient to prove that
Λ < 0, where

Λ = 2ΩT(t)PÃΩ(t) + 2ΩT(t)P B̃g
(
u(t)

)
+ 2ΩT(t)PF̃F

(
x(t)

)
+ 2ΩT(t)PD̃d(t).

It follows from Assumption 1 and (5) that for any ρ1 > 0, ρ2 > 0, we can have the
following inequalities:

−ρ1(FT
(
x(t)

)
F
(
x(t)

)
+ ρ1(xT(t)LT1 L1x(t)) > 0,

ρ−12 (gTu(t))g
(
u(t)

)
6 ρ−12 (uT(t)Ξ1u(t)).

(9)

By combining (8) and (9) and considering

J = −yT(t)Qy(t) + 2yT(t)Sd(t) + dT(t)Rd(t),
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we can get

v̇(t)− J 6 χT(t)Ψ̄1χ(t), (10)

where

χ(t) =
[
xT(t) xTC(t) xTR(t) FT(x(t)) gT(u(t)) dT(t)

]T
and Ψ̄1 = [Ψ̄ ]6×6,

Ψ̄1,1 = ATP1

α1
+
P1

α1
A+ CTQC + ρ1L

T
1 L1,

Ψ̄1,2 = CTBTC
P2

β1
+
P1

α1
BGK, Ψ̄1,3 = −BTR

P3

γ1
+
P1

α1
BGKR,

Ψ̄1,4 =
P1

α1
, Ψ̄1,5 =

P1

α1
B, Ψ̄1,6 =

P1

α1
D − CTS,

Ψ̄2,2 = AT
C

P2

β1
+
P2

β1
AC + ρ−12 Ξ1KTK,

Ψ̄3,3 = AT
R

P3

γ1
+
P3

γ1
AR + ρ−12 Ξ1KT

RKR,

Ψ̄4,4 = −ρ1, Ψ̄5,5 = −ρ−12 and Ψ̄6,6 = −R,

and the remaining terms are zero in Ψ̄ . By applying Schur complement in (10) and it
follows from (6) that

v̇(t)− J < 0. (11)

To prove that the augmented fractional-order closed-loop system (5) reaches the equi-
librium point, we consider d(t) = 0. Then it is obtained from (11) that the monotonic
decreasing function v(t) > 0 satisfies ‖x(t)‖2 → 0 as t→∞. Therefore, the augmented
fractional-order closed-loop system (5) reaches the equilibrium point. To prove the dis-
sipativity of augmented fractional-order closed-loop system (5), we consider d(t) 6= 0.
Hence, from (11) and Definitions 3.1 and 3.2 in [19] we obtain the dissipativity condition
as v̇(t) +yT(t)Qy(t)−2yT(t)Sd(t)−dT(t)Rd(t) 6 0. Thus, the augmented fractional-
order closed-loop system (5) reaches the equilibrium point and (QSR)-dissipativity.

Next, by assuming the gain matrix to be unknown, a design method of dynamic output
feedback nonfragile reliable controller for the considered fractional glucose–insulin sys-
tem (1) is presented, which admits that the augmented system (5) reaches the equilibrium
point and satisfies the desired dissipative performance index.

Theorem 2. For given scalars α1 > 0, β1 > 0, γ1 > 0, ρ1 > 0, ρ2 > 0, ρ3 > 0 and
real constant matrices L1 > 0, G > 0, Ξ1 > 0, Q, S, R, M , N , NR, the augmented
fractional-order closed-loop system (5) reaches the equilibrium point and strictly (QSR)-
dissipativity if there exist symmetric matrices P1 > 0, P2 > 0, P3 > 0 and scalar ε > 0,
such that the following LMIs hold:

ψ < 0, (12)(
−ρ3 CW1 − VBC
∗ −I

)
< 0, (13)
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where

ψ = [ψ]11×11, ψ1,1 = α1AW1 + α1W1AT, ψ1,2 = β1BGX2 + α1CTNB ,
ψ1,3 = −α1W1BTR + γ1BGX3, ψ1,4 = I, ψ1,5 = B,

ψ1,6 = D − α1CTSW1, ψ1,7 = α1

√
−QW1CT, ψ1,8 = α1W1

√
ρ1L

T
1 ,

ψ1,10 = εBGM, ψ2,2 = NA + β1MW2, ψ2,9 = −X2β1KT,

ψ2,11 = β1W2NT, ψ3,3 = γ1ARW3 + γ1W3AT
R, ψ3,9 = −γ1X3KT

R,

ψ3,11 = γ1W3NT
R , ψ4,4 = −ρ1, ψ5,5 = −ρ−12 ,

ψ6,6 = −R, ψ7,7 = −I, ψ8,8 = −I, ψ9,9 = −ρ2Ξ−11 ,

ψ9,10 = εM, ψ10,10 = −ε, ψ11,11 = −ε,

and the remaining terms are zero in ψ. Also, the control parameters are given by AC =
NA(W2)−1, BC = NB(VB)−1, K = X2(W2)−1 and KR = X3(W2)−1.

Proof. The proof is obtained by following the similar procedure as in Theorem 1 with
some changes. Then, with the aid of Schur complement, the inequality Φ = [Φ]11×11 < 0
can be obtained from Theorem 1 by replacing K and KR with K + ∆K(t) and KR +
∆KR(t), respectively, where

Φ1,1 = ATP1

α1
+
P1

α1
A, Φ1,2 = CTBTC

P2

β1
+
P1

α1
BGK,

Φ1,3 = −BTR
P3

γ1
+
P1

α1
BGK, Φ1,4 =

P1

α1
, Φ1,5 =

P1

α1
B,

Φ1,6 =
√
ρ1L

T
1 , Φ1,8 = D − CTS, Φ1,9 =

√
−QCT,

Φ1,10 =
P1

α1
εBGM, Φ2,2 = AT

C

P2

β1
+
P2

β1
AC , φ2,7 = −KT,

Φ2,11 =
P2

β1
NT Φ3,3 = AT

R

P3

γ1
+
P3

γ1
AR, Φ3,7 = −KT

R,

Φ3,11 =
P3

γ1
NT
R , Φ4,4 = −ρ1, Φ5,5 = −ρ−12 , Φ6,6 = −I,

Φ7,7 = −ρ2Ξ−11 , Φ8,8 = −R, Φ9,9 = −I,

Φ9,10 = −εM, Φ10,10 = −ε, Φ11,11 = −ε,

and the remaining values of Φ are zero. In order to obtain the controller parameters, let
us choose W1 = P−11 , W2 = P−12 , W3 = P−13 and CW1 = VBC. Pre- and post-
multiplying Φ by

diag{α1W1, β1W2, γ1W3, I, . . . , I︸ ︷︷ ︸
8 times

},

condition (12) is obtained. In addition, the assumption CW1 = VBC cannot be solved by
using Matlab LMI toolbox directly. Therefore, by considering the optimization technique,
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CW1 = VBC is rewritten as trace[(CW1−VBC)T(CW1−VBC)] = 0. Then, by applying
Schur complement to the above transformation, for any ρ3 > 0, condition (13) is satisfied.
Thus, if the conditions (12) and (13) are satisfied, then the augmented fractional-order
closed-loop system reaches the equilibrium point with a satisfactory dissipative perfor-
mance index, which completes the proof.

4 Simulation results

To demonstrate the potential of the proposed internal model-based dynamic output feed-
back nonfragile reliable controller for glucose–insulin system (1), the numerical example
with simulation results are provided. The parameters of glucose–insulin system are taken
from [7] as p1 = 0.028735, p2 = 0.028344, p3 = 0.00005035 and n = 0.22. It
should be noted that excess food intake or irregular diet may be routine habit for some
persons, which eventually leads to insufficient production of glucose in the human body.
Precisely, excess food intake or irregular diet is taken as the disturbance input. Here, the
disturbance input is chosen as a periodic function, which is modeled by using sinusoidal
term β sin(ωt) with amplitude β and frequency ω, where ω = 2π/T and β = 10 mg/dl,
T = 6 h. The main work of the proposed controller is to maintain blood sugar level in
70−110 mg/dl by forcing the states x1(t), x2(t) and x3(t). Let the basal value of glucose
and insulin be Gb and Ib, respectively. Let us consider the remaining parameters as

AR =

−0.01 0 0
0 −0.01 0
0 0 −0.01

 , BR =

1 0 0
0 1 0
0 0 1

 ,

ρ1 = 4, ρ2 = 0.001, ρ3 = 0.1,M = 0.0009, N = [0.008 0.008 0], NR = [0.1 0 0.1],
G = 0.8, Q = −0.00009, S =

√
0.09, R = 5 and g(u(t)) = 0.5 sin(u(t)). Then

the controller parameters are obtained by solving the Theorem 2. The corresponding
controller parameters are given by

K =
[
−0.0000 0.0000 0.00054

]
, KR =

[
0.0050 0.0068 0.0062

]
,

AC =

−0.5174 0.0058 −0.2950
−0.0058 −0.2351 0.0321
−0.2950 0.0321 −0.5182


and

BC =
[
2.2420 0.0734 1.9709

]T × 103.

The initial values of the states are taken as x(0) = [380 0.0001 210]T.
Figures 1–3 represent the state responses of the glucose concentration, insulin ex-

citable tissue glucose and insulin concentration, respectively. It is observed from Figs. 1
and 3 that after injecting insulin to a patient, the glucose concentration and insulin concen-
tration drop down to their corresponding basal valuesGb = 200 and Ib = 15, respectively.
Precisely, the glucose concentration level of a diabetic patient decreases and reaches the
basal value, after a time period of 550 minutes, whichhas been displayed
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Figure 1. State trajectory of the glucose concentration with α = 0.8, 0.9, 1.

Figure 2. State trajectory of insulin-excitable tissue glucose with α = 0.8, 0.9, 1.

Figure 3. State trajectory of the insulin concentration with α = 0.8, 0.9, 1.
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in Fig. 1. It is also described in Figs. 1–3 that the state responses of the considered
system with the fractional-order against the integer-order to analyze the performance of
the obtained results. Thus, the simulation results provided through Figs. 1–3 describe the
potential of the proposed dynamic output feedback controller for glucose–insulin system.
More precisely, the irregular blood glucose level can be brought down to normal level by
injecting suitable rate of insulin to the patient. The result eventually concludes that the
glucose–insulin control system described by fractional-order model is more suitable one
for studying the control of blood glucose levels in diabetic patients.

5 Conclusion

In this paper, the stabilization problem of glucose–insulin system in the presence of
meal disturbances described by fractional-order nonlinear systems is studied. A novel
class of sufficient conditions has been developed as LMIs with the use of Lyapunov
approach for the design of dynamic output feedback nonfragile reliable controller of
nonlinear fractional-order systems. The performance of the proposed controller has been
verified by using numerical simulations. Based on the obtained results, it is concluded
that the proposed control strategy can achieve its desired objective in the presence of
meal disturbance.
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