560 research outputs found

    Glottal Source Cepstrum Coefficients Applied to NIST SRE 2010

    Get PDF
    Through the present paper, a novel feature set for speaker recognition based on glottal estimate information is presented. An iterative algorithm is used to derive the vocal tract and glottal source estimations from speech signal. In order to test the importance of glottal source information in speaker characterization, the novel feature set has been tested in the 2010 NIST Speaker Recognition Evaluation (NIST SRE10). The proposed system uses glottal estimate parameter templates and classical cepstral information to build a model for each speaker involved in the recognition process. ALIZE [1] open-source software has been used to create the GMM models for both background and target speakers. Compared to using mel-frequency cepstrum coefficients (MFCC), the misclassification rate for the NIST SRE 2010 reduced from 29.43% to 27.15% when glottal source features are use

    Reducing mismatch in training of DNN-based glottal excitation models in a statistical parametric text-to-speech system

    Get PDF
    Neural network-based models that generate glottal excitation waveforms from acoustic features have been found to give improved quality in statistical parametric speech synthesis. Until now, however, these models have been trained separately from the acoustic model. This creates mismatch between training and synthesis, as the synthesized acoustic features used for the excitation model input differ from the original inputs, with which the model was trained on. Furthermore, due to the errors in predicting the vocal tract filter, the original excitation waveforms do not provide perfect reconstruction of the speech waveform even if predicted without error. To address these issues and to make the excitation model more robust against errors in acoustic modeling, this paper proposes two modifications to the excitation model training scheme. First, the excitation model is trained in a connected manner, with inputs generated by the acoustic model. Second, the target glottal waveforms are re-estimated by performing glottal inverse filtering with the predicted vocal tract filters. The results show that both of these modifications improve performance measured in MSE and MFCC distortion, and slightly improve the subjective quality of the synthetic speech.Peer reviewe

    Novel Pitch Detection Algorithm With Application to Speech Coding

    Get PDF
    This thesis introduces a novel method for accurate pitch detection and speech segmentation, named Multi-feature, Autocorrelation (ACR) and Wavelet Technique (MAWT). MAWT uses feature extraction, and ACR applied on Linear Predictive Coding (LPC) residuals, with a wavelet-based refinement step. MAWT opens the way for a unique approach to modeling: although speech is divided into segments, the success of voicing decisions is not crucial. Experiments demonstrate the superiority of MAWT in pitch period detection accuracy over existing methods, and illustrate its advantages for speech segmentation. These advantages are more pronounced for gain-varying and transitional speech, and under noisy conditions

    GLOTTAL EXCITATION EXTRACTION OF VOICED SPEECH - JOINTLY PARAMETRIC AND NONPARAMETRIC APPROACHES

    Get PDF
    The goal of this dissertation is to develop methods to recover glottal flow pulses, which contain biometrical information about the speaker. The excitation information estimated from an observed speech utterance is modeled as the source of an inverse problem. Windowed linear prediction analysis and inverse filtering are first used to deconvolve the speech signal to obtain a rough estimate of glottal flow pulses. Linear prediction and its inverse filtering can largely eliminate the vocal-tract response which is usually modeled as infinite impulse response filter. Some remaining vocal-tract components that reside in the estimate after inverse filtering are next removed by maximum-phase and minimum-phase decomposition which is implemented by applying the complex cepstrum to the initial estimate of the glottal pulses. The additive and residual errors from inverse filtering can be suppressed by higher-order statistics which is the method used to calculate cepstrum representations. Some features directly provided by the glottal source\u27s cepstrum representation as well as fitting parameters for estimated pulses are used to form feature patterns that were applied to a minimum-distance classifier to realize a speaker identification system with very limited subjects

    Improving Automatic Speech Recognition on Endangered Languages

    Get PDF
    As the world moves towards a more globalized scenario, it has brought along with it the extinction of several languages. It has been estimated that over the next century, over half of the world\u27s languages will be extinct, and an alarming 43% of the world\u27s languages are at different levels of endangerment or extinction already. The survival of many of these languages depends on the pressure imposed on the dwindling speakers of these languages. Often there is a strong correlation between endangered languages and the number and quality of recordings and documentations of each. But why do we care about preserving these less prevalent languages? The behavior of cultures is often expressed in the form of speech via one\u27s native language. The memories, ideas, major events, practices, cultures and lessons learnt, both individual as well as the community\u27s, are all communicated to the outside world via language. So, language preservation is crucial to understanding the behavior of these communities. Deep learning models have been shown to dramatically improve speech recognition accuracy but require large amounts of labelled data. Unfortunately, resource constrained languages typically fall short of the necessary data for successful training. To help alleviate the problem, data augmentation techniques fabricate many new samples from each sample. The aim of this master\u27s thesis is to examine the effect of different augmentation techniques on speech recognition of resource constrained languages. The augmentation methods being experimented with are noise augmentation, pitch augmentation, speed augmentation as well as voice transformation augmentation using Generative Adversarial Networks (GANs). This thesis also examines the effectiveness of GANs in voice transformation and its limitations. The information gained from this study will further augment the collection of data, specifically, in understanding the conditions required for the data to be collected in, so that GANs can effectively perform voice transformation. Training of the original data on the Deep Speech model resulted in 95.03% WER. Training the Seneca data on a Deep Speech model that was pretrained on an English dataset, reduced the WER to 70.43%. On adding 15 augmented samples per sample, the WER reduced to 68.33%. Finally, adding 25 augmented samples per sample, the WER reduced to 48.23%. Experiments to find the best augmentation method among noise addition, pitch variation, speed variation augmentation and GAN augmentation revealed that GAN augmentation performed the best, with a WER reduction to 60.03%
    • 

    corecore