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Abstract
In statistical parametric speech synthesis (SPSS) systems us-
ing the high-quality vocoder, acoustic features such as mel-
cepstrum coefficients and F0 are predicted from linguistic fea-
tures in order to utilize the vocoder to generate speech wave-
forms. However, the generated speech waveform generally suf-
fers from quality deterioration such as buzziness caused by uti-
lizing the vocoder. Although several attempts such as improv-
ing an excitation model have been investigated to alleviate the
problem, it is difficult to completely avoid it if the SPSS sys-
tem is based on the vocoder. To overcome this problem, there
have recently been attempts to directly model waveform sam-
ples. Superior performance has been demonstrated, but com-
putation time and latency are still issues. With the aim to con-
struct another type of DNN-based speech synthesizer with nei-
ther the vocoder nor computational explosion, we investigated
direct modeling of frequency spectra and waveform generation
based on phase recovery. In this framework, STFT spectral am-
plitudes that include harmonics information derived from F0 are
directly predicted through a DNN-based acoustic model and we
use Griffin and Lim’s approach to recover phase and generate
waveforms. The experimental results showed that the proposed
system synthesized speech without buzziness and outperformed
one generated from a conventional system using the vocoder.
Index Terms: Statistical parametric speech synthesis, DNN,
FFT spectrum, Phase reconstruction, Vocoder

1. Introduction
Research on statistical parametric speech synthesis (SPSS) has
been advancing recently due to deep neural networks (DNNs)
with many hidden layers. For systems where waveform signals
are generated using a high-quality vocoder such as STRAIGHT
[1], WORLD [2, 3], or sinusoidal models, DNNs, recurrent neu-
ral networks, long-short term memories, etc. have been used
to learn the relationship between input texts and vocoder pa-
rameters [4, 5, 6, 7]. Recently, generative adversarial networks
[8] have also been used as a post-process module to refine the
outputs of the speech synthesizers, and the resulting synthetic
speech has become statistically less significant compared to
analysis-by-synthesis samples [9]. In addition, there have been
new attempts for directly modeling waveform signals using neu-
ral networks such as WaveNet [10] and SampleRNN [11].

In this work, we investigate the direct modeling of fre-
quency spectra that contains both spectral envelopes and har-
monic structures together obtained by a simple deterministic
frequency transform such as ordinary short-term Fourier trans-
form (STFT). Figure 1 shows examples of a STFT spectral am-
plitude and spectral envelope obtained by a simple frequency
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(a) STFT spectral amplitude
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(b) WORLD spectral envelope

Figure 1: A STFT spectral amplitude and WORLD spectral
envelope obtained via a simple frequency transformation or
WORLD spectral analysis.

transform and WORLD spectral analysis, respectively. Com-
pared to our previous work, where we concentrated on the ex-
traction of low-dimensional features from the frequency spectra
by using a deep auto-encoder [12], the focus of the present work
is about waveform generation using the frequency spectra pre-
dicted by DNNs (but without using a vocoder).

The advantages of the proposed waveform generation are
that a) the representation is much “closer” to original wave-
form signals compared to vocoder parameters and b) DNNs
need to be used per frame, whereas for direct waveform mod-
eling, DNNs need to be used per waveform sample. To en-
able the proposed waveform generation, it is necessary to build
DNNs that can accurately predict high-dimensional frequency
spectra including harmonics structures. Note that the dimension
of frequency spectra is typically much higher than the vocoder
parameters. We also need to recover phase information if we
model amplitude spectra only.

For constructing such a high-quality acoustic model for
STFT spectral amplitudes, we investigate 1) the use of F0 infor-
mation as well as linguistic features as the input, 2) an objective
criterion based on Kullback-Leibler divergence (KLD), and 3)
peak enhancement of predicted STFT spectral amplitudes. For
the phase recovery and waveform generation, we use a well-
known conventional phase reconstruction algorithm proposed
by Griffin and Lim [13]. We compared synthetic speech based
on the proposed waveform generation with ones based on the
vocoder.

The rest of this paper is organized as follows. Section 2 of
this paper presents a DNN-based acoustic model and objective
criteria to train it. Section 3 describes the procedure of wave-
form generation used in the proposed systems. The experimen-
tal results are presented in Section 4. We conclude in Section 5
with a brief summary and mention of future work.
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Figure 2: DNN architectures for the proposed waveform gener-
ation

2. Direct modellnig of frequency spectra
2.1. Architecture

The left part in Fig. 2 shows the framework of the conventional
DNN-based acoustic model used for the vocoder. The DNN-
based acoustic models are normally used to represent the rela-
tionship between linguistic and vocoder features [4, 14, 5, 15].

The right part in the figure shows a new DNN architec-
ture to be used for the proposed waveform generation. High-
dimensional STFT spectral amplitudes are the outputs and we
explicitly use F0 information, i.e., log F0 and voiced/unvoiced
values, in addition to linguistic features as the inputs. We ex-
pect that spectral envelopes can be predicted by linguistic fea-
tures and that harmonic structures can be predicted by the F0
information.

2.2. KLD based training

In general, least square error (LSE) is used as an objective cri-
terion to train a DNN-based acoustic model. An objective crite-
rion using LSE is defined as

λ̂LSE = argmin
λ

1

2

T∑
t=1

D∑
d=1

(ot,d − yt,d)
2, (1)

where ot,d, lt, t, d, and λ represent an observation (i.e., an
acoustic feature), an input (i.e., a linguistic feature and F0 infor-
mation), a frame index, a dimension and the model parameters
of a DNN, respectively. Also, yt,d = g

(λ)
d (lt) and a function

g(λ)(·) is non-linear transformation represented by a DNN.
In contrast to [4], in this paper we use the high-dimensional

STFT spectral amplitudes directly as the output references to
train a DNN-based acoustic model. To utilize the benefit of di-
rect use of the STFT spectral amplitudes and construct a more
appropriate model, we define an objective criterion based on
Kullback-Leibler divergence (KLD), which has been success-
fully used for source separation with non-negative matrix fac-
torization [16, 17], as

λ̂KL = argmin
λ

T∑
t=1

D∑
d=1

ot,d log
ot,d
ỹt,d
− ot,d + ỹt,d, (2)

ỹt,d = sdyt,d + bd, (3)

where sd and bd represent fixed values calculated from training
data for performing unnormalization. For using a KLD-based
objective criterion, observations and ỹt,d have to be positive.
However, there is no guarantee about output range if the DNN
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back to the original value

，
Step 4: Generate a new waveform using invert STFT

Figure 3: Flow chart of phase reconstruction algorithm. Here,
A, Â, θ, and θ̂ represent predicted and new spectral ampli-
tudes, initial and new phase values, respectively.

directly outputs ỹt,d using a linear output layer. To avoid this
problem, we adapted the sigmoid function for an output layer to
predict normalized values ranged from 0 to 1 so that an objec-
tive criterion is defined on the basis of KLD.

By using pairs of input and output features obtained from
the training dataset, the parameters of a DNN can be effectively
trained by using SGD [18] with derivative w.r.t. yt,d as

∂ELSE

∂yt,d
= yt,d − ot,d, (4)

∂EKL

∂yt,d
= sd

(
1− ot,d

sdyt,d + bd

)
. (5)

2.3. Post-filter of predicted STFT spectral amplitudes

Although the accuracy of the STFT spectral amplitudes pre-
dicted by the DNNs is good, we saw that refinement of the
amplitudes gains the final performance. We therefore apply a
signal processing-based post-filter (PF) [19] for enhancing the
spectral peaks of predicted STFT spectral amplitudes. The pro-
cess is as follows: 1) predicted STFT spectral amplitudes are
converted into linear-scale cepstrum vectors that have the same
dimensions as the STFT amplitudes, 2) the post-filter is applied
to the cepstrum vectors for the peak enhancement, and 3) the
cepstrum vectors after post-filtering are converted back into the
spectral amplitudes.

3. Waveform generation based on phase
recovery

This section describes the speech waveform generation algo-
rithm based on phase recovery. In this work, we adapted the
well-known phase reconstruction algorithm proposed by Grif-
fin and Lim [13], the flow chart of which is shown in Fig. 3.
The algorithm consists of the following iterative steps.

1. Generate initial speech waveforms using inverse STFT
of predicted STFT spectral amplitudesAwith or without
postfilter and random phase θ at each frame, followed by
overlap-add operations.

2. Window the speech waveforms and apply STFT at each
frame to obtain new spectral amplitude Â and phase val-
ues θ̂.

3. Replace the STFT spectral amplitudes Â back to the
original valuesA at each frame.



Table 1: Inputs, output references, and objective criteria for training each acoustic model are listed in this table. Here, v/uv and bap
represent voiced/unvoiced values and band aperiodicity measures, respectively.

Model name Input Output Criterion Post-filter Waveform generation
Baseline linguistic features mel-cep. log F0, v/uv, bap LSE vocoder

Baseline+PF linguistic features mel-cep. log F0, v/uv, bap LSE
√

vocoder
LSE linguistic features SFTF spectral amplitude LSE phase recovery
KLD linguistic features STFT spectral amplitude KLD phase recovery

LSE+F0 linguistic features, log F0, v/uv STFT spectral amplitude LSE phase recovery
KLD+F0 linguistic features, log F0, v/uv STFT spectral amplitude KLD phase recovery

LSE+F0+PF linguistic features, log F0, v/uv STFT spectral amplitude LSE
√

phase recovery
KLD+F0+PF linguistic features, log F0, v/uv STFT spectral amplitude KLD

√
phase recovery

4. Generate a new speech waveform using inverse STFT of
original STFT spectral amplitudes A and updated phases
θ̂, followed by overlap-add operations.

5. Go back to step 2 until convergence.

4. Experiments
4.1. Experimental conditions

We used the database that was provided for the Blizzard Chal-
lenge 2011 [20], which contains approximately 17 hours of
speech data comprising 12K utterances. All data were sampled
at 48 kHz. Two hundred sentences that are not included in the
database were used as a test set.

We constructed two baseline and six proposed systems
listed in Table 1. In addition to investigating the effectiveness
of the objective criterion based on KLD, post-filter, and wave-
form generation, we also look into the effectiveness of using
F0. For the baseline system, the WORLD analysis was used
for obtaining spectral envelopes that were then converted into
mel-cepstrum coefficients. The WORLD vocoder was used to
generate a waveform from the predicted acoustic features.

For the proposed systems, STFT spectral amplitudes were
used as the output references. The KLD-based objective crite-
rion was used for training systems notated KLD, KLD+F0, and
KLD+F0+PF, while the LSE-based objective criterion was used
for other proposed systems. The F0 information was added as
the input for training systems LSE+F0, LSE+F0+PF, KLD+F0,
and KLD+F0+PF, while only the linguistic features were used
as the input for the other proposed system. We have applied
PF for systems LSE+F0+PF and KLD+F0+PF and used the re-
sults of the post-filter as the initial values of phase recovery.
For other proposed systems, we used the outputs of DNNs as
the the initial values of phase recovery. For the baseline sys-
tem, we used the conventional cepstral-based post-filter [19]
to ensure fair comparison. For each waveform, we extracted
its frequency spectra with 2049 STFT points. The feature vec-
tors for the baseline system comprised 259 dimensions: 59 di-
mensional bark-cepstral coefficients (plus the 0th coefficient),
log F0, 25 dimensional band aperiodicity measures, their dy-
namic and acceleration coefficients, and voice/unvoiced values.
The context-dependent labels were built using the pronuncia-
tion lexicon Combilex [21]. The linguistic features for DNN
acoustic models comprised 396 dimensions. Five hidden layer
feed-forward neural networks with a sigmoid-based activation
function were used for acoustic models. In the synthesis phase,
we used log F0 and voiced/unvoiced values predicted by using
the baseline system as the inputs of the LSE+F0, LSE+F0+PD,
KLD+F0, and KLD+F0+PF.

For subjective evaluation, MUSHRA tests were conducted

to evaluate the naturalness of synthesized speech. Natural
speech was used as a hidden top anchor reference. Fourteen
native subjects participated in the experiments. Twenty sen-
tences were randomly selected from the test set for each par-
ticipant. The experiments were carried out using headphones in
quiet rooms.

4.2. Experimental results

4.2.1. Synthetic spectrogram

Fig. 4 shows the low-frequency parts (8 kHz) of synthetic spec-
tral amplitude in each system. First, we can see from the fig-
ures that harmonics information was clearly predicted when F0
information was explicitly used for inputs of the DNN-based
acoustic models (LSE+F0 and KLD+F0). Systems based on
LSE and KLD, in which F0 information was not used as inputs,
could not sufficiently predict harmonics information, though
parts of the harmonics were faintly generated compared them
with ones generated by the baseline system.

Second, when we compare the synthetic spectral ampli-
tudes of objective criteria based on LSE and KLD, we can see
that peaks of harmonics parts were enhanced by using the cri-
terion based on KLD. This demonstrates that an objective cri-
terion based on KLD is more appropriate to model the STFT
spectral amplitude including harmonics information.

Finally, we can see from the figures that using the post-filter
(PF) further enhanced the peaks of the harmonics information.
These results indicates that using F0 information as inputs, an
objective criterion based on KLD for training, and the post-filter
would be effective for generating STFT spectra including har-
monics information.

4.2.2. Subjective results

Figure 5 shows the subjective results with 95% confidence in-
tervals in the experiments. The result for natural speech is ex-
cluded from the figures to make the comparison easier. For
the subjective tests, we additionally trained an acoustic model
called KLD+F0+PF (32 kHz) with down sampled data (32 kHz)
using the same strategy as KLD+F0+PF. This is because the
original speech quality between audios sampled at 32 kHz and
48 kHz are comparable, but the number of STFT points can
be reduced and training a DNN would then become easier. At
synthesis time, this means computationally efficient and low
latency. Therefore, STFT spectra with 1025 points were used
for KLD+F0+PF(32kHz). The speech generation speed of this
system was 5 times faster than that using 48kHz. We used
six systems constructed on the basis of Baseline, Baseline+PF,
LSE+F0, KLD+F0, KLD+F0 +PF, and KLD+F0+PF (32 kHz)
for the listening test.

First, among the systems without the post-filter, we can



0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Fr
e
q
u
e
n
cy

 (
kH

z)

(a) Baseline

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

(b) Baseline+PF

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

(c) LST

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

(d) KLD

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Fr
e
q
u
e
n
cy

 (
kH

z)

(e) LSE+F0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

(f) KLD+F0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

(g) LSE+F0+PF

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

(h) KLD+F0+PF

Figure 4: Low-frequency parts (8 kHz) of synthetic spectral amplitudes in each system. PF means the post-filter.
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Figure 5: Subjective results.

see from the figure that the system using the KLD-based ob-
jective criterion (KLD+F0) statistically outperformed the one
using the LSE-based objective criterion (LSE+F0). This in-
dicates that the KLD based objective criterion was more ap-
propriate to use for modeling the STFT spectral amplitudes
than using the LSE based objective criterion. However, these
systems using the STFT spectral amplitudes without the post-
filter (LSE+F0, KLD+F0) outputs worse quality of synthetic
speech than ones synthesized by the baseline system based on
the WORLD vocoder.

Second, we can see from the figure about the proposed
systems with and without the post-filter that the quality of
speech synthesized by the systems with the post-filter, i.e.,
KLD+F0+PF and KLD+F0+PF(32kHz), were significantly im-
proved from one synthesized by the systems without the post-
filter (KLD+F0). The proposed system with the post-filter out-
puts synthetic speech with less noise caused by reconstructing
inappropriate phase compared with one generated from the sys-
tems without the post-filter. This means that enhancing the
STFT spectral amplitudes using the post-filter was effectively
utilized to perform phase recovery and waveform generation.
The computationally efficient system using audio sampled at 32

kHz was as good as the one using audio sampled at 48 kHz
because the difference between these two systems was not sta-
tistically significant.

Finally, it can be seen from the figure that the proposed
systems with the post-filter, i.e., KLD+F0+PF and KLD+F0+P
F(32 kHz), outperforms the baseline system based on the post-
filter, i.e., Baseline+PF.

5. Conclusion
We presented our investigation of direct modeling of frequency
spectra and waveform generation based on phase recovery to-
wards constructing another type of DNN-based speech synthe-
sis system without a vocoder. Experimental results demon-
strated that explicit use of F0 information as the input of a
DNN-based acoustic model and an objective criterion defined
using KLD were effective to model STFT spectral amplitudes
that include harmonics information. Also, the results of a sub-
jective listening test showed that although the prediction accu-
racy of STFT spectral amplitudes from the DNN-based acoustic
model was still insufficient, the post-filter could enhance the
spectral peaks, and the proposed systems with the post-filter
outperformed the conventional DNN-based synthesizer using a
vocoder with the post-filter.

We have also attempted to replace the signal process-
ing post-filter with a generative adversarial nets (GAN)-based
model [8] for further improvement, which will be reported in
our another paper [22].
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