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Abstract
Neural network-based models that generate glottal excita-

tion waveforms from acoustic features have been found to give
improved quality in statistical parametric speech synthesis. Un-
til now, however, these models have been trained separately
from the acoustic model. This creates mismatch between train-
ing and synthesis, as the synthesized acoustic features used for
the excitation model input differ from the original inputs, with
which the model was trained on. Furthermore, due to the er-
rors in predicting the vocal tract filter, the original excitation
waveforms do not provide perfect reconstruction of the speech
waveform even if predicted without error. To address these is-
sues and to make the excitation model more robust against er-
rors in acoustic modeling, this paper proposes two modifica-
tions to the excitation model training scheme. First, the excita-
tion model is trained in a connected manner, with inputs gen-
erated by the acoustic model. Second, the target glottal wave-
forms are re-estimated by performing glottal inverse filtering
with the predicted vocal tract filters. The results show that both
of these modifications improve performance measured in MSE
and MFCC distortion, and slightly improve the subjective qual-
ity of the synthetic speech.
Index Terms: statistical parametric speech synthesis, excitation
modeling

1. Introduction
Statistical parametric speech synthesis (SPSS) [1] has gained
popularity due to its several favorable properties, such as good
generalization to unseen text, flexible model adaptation to new
speakers with relatively small amount of data, and small run-
time resource requirements compared to unit-selection synthe-
sis [2]. The emergence of the neural network-based acoustic
models has improved the quality of SPSS systems [3, 4], and
the use of sequence models, such as Long Short-Term Memory
(LSTM) networks [5, 6] has become widely adopted in SPSS.

Traditionally, the back-end of a SPSS system consists of
two separate parts: speech parametrization and waveform gen-
eration are done with a vocoder, such as STRAIGHT [7], and
an acoustic model is trained to map linguistic features onto the
speech parameters. In conjunction, the two major issues in
SPSS, over-smoothness of the generated acoustic parameters,
and ”buzzy” synthetic sound quality have been attributed to the
acoustic model and vocoder, respectively. Recent efforts have
improved the acoustic model performance resulting in more nat-
ural synthetic parameter trajectories using, for example, autore-
gressive mixture density networks [8], or generative adversarial
network-based post-filtering [9]. However, the performance of
these systems is still upper-bounded by the analysis-synthesis

quality of the vocoder.
Recently, there has been growing interest in joint optimiza-

tion for the acoustic model and speech parametrization. One
such approach was proposed in [10, 11], where a network map-
ping text features to a cepstrum was trained directly on speech
waveforms. Another viable approach to direct speech model-
ing operates in the spectrogram domain: deep auto encoders
for spectral envelope prediction were proposed in [12] and
full spectrogram prediction with phase recovery-based synthe-
sis was presented in [13]. The emergence of advanced neural
net-based waveform generation methods [14, 15] also seems
to lead towards a closer integration between acoustic models
and waveform synthesis. Indeed, success in training end-to-
end speech synthesis systems with these methods has been re-
ported [16, 17]. Although connected end-to-end, these sys-
tems are still initially trained to map text to pre-estimated low-
dimensional acoustic features, i.e. mel-generalized cepstrum
(MGC) [16] and filter-bank mel-frequency cepstral coefficients
(MFCC) [17]. Overall, these two proposed end-to-end systems
retain the general structure of parametric TTS systems, while
all the system parts are now interconnected neural nets.

Training end-to-end neural TTS systems can be difficult,
and they require considerable amounts of training data and com-
putational resources. Furthermore, when a system is fine-tuned
end-to-end, any initial intermediate representations, such as fil-
ter parameters, lose their interpretability and can not be used
directly in signal processing. From the perspective of human
voice production, the source-filter model is still relevant, and
the explicit use of auto-regressive filters to model the vocal tract
is powerful and widespread in many speech applications. The
glottal source, the excitation of voiced speech, is a more el-
ementary signal than the speech waveform itself because the
glottal source is generated at the level of vocal folds and there-
fore does not include resonances of the vocal tract. Hence, the
glottal excitation is an attractive domain for generative wave-
form modeling. Indeed, glottal excitation generation with neu-
ral nets has been applied successfully to TTS in e.g. [18, 19],
while still using relatively lightweight networks for the task.
With this approach, glottal pulse excitation waveforms can be
generated from acoustic features with a simple feedforward net.

Until now, however, the models for generating glottal exci-
tation waveforms have been trained separately from the acoustic
model, and it is therefore not known whether combining the two
into an end-to-end framework would benefit the synthesis qual-
ity. Specifically, the separate training of excitation and acous-
tic models leads to mismatch between training and synthesis at
both the excitation model input and the desired output. This
paper addresses the mismatch by proposing connected training
of the system: first the acoustic model is trained normally and



fixed, after which the excitation model training (both inputs and
outputs) are changed to compensate for the errors in the acoustic
model, as detailed in Section 2. Synthesis systems are trained
with the suggested modifications for female and male voices in
Section 3, and evaluated with objective measures and listening
tests. Finally, conclusions are drawn in Section 4.

2. Synthesis system
This paper uses the same text features and the same acoustic
model as in [20], while training of the glottal excitation model
is modified. For details on using glottal pulses in DNN train-
ing, see [18]. Fig. 1 shows an overview of the synthesis system.
There are three variants in training the excitation model (right
side in figure): (1) the baseline training scheme corresponds to
[20], whereas (2) uses generated acoustic inputs for training,
and (3) additionally performs inverse filtering with generated
vocal tract filters, as elaborated on in Sections 2.4 and 2.5, re-
spectively. The acoustic model part (left side in figure) is shared
in all the variants, and the variations marked with (1–3) only af-
fect how the excitation model is trained.

Speech signal
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parametrization Inverse filtering

Excitation
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LSTM trainingLSTM trainingText
features

LSTM feature
generation
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Figure 1: Overview of the speech synthesis system. The baseline
approach (1) uses the original estimated vocal tract filter for
both inverse filtering and training the excitation model, whereas
systems (2) and (3) are trained with features generated by the
acoustic model. Furthermore, the system (3) re-estimates the
target waveforms by inverse filtering with the generated vocal
tract filter.

2.1. Text features

In this work, text features refer to the acoustic model neural
network inputs, which are derived from full-context linguis-
tic labels extracted from text. The full-context labels include
phoneme, syllable, word, phrase, and sentence level informa-
tion and are created using the Flite [21] speech synthesis front-
end and the Combilex [22] lexicon. The text and acoustic fea-

tures are aligned with the HMM-based speech synthesis system
(HTS) [23] and the resulting durations are combined with the
labels to create 396-dimensional (per time-frame) text features.

2.2. Acoustic model

In the training phase, acoustic features are estimated from
speech signal at a 5-ms frame rate similarly to [20]. The vo-
cal tract filter is estimated with the Quasi Closed Phase (QCP)
[24] algorithm, and parametrized with line spectral frequencies
(LSFs). Fundamental frequency (log f0) and voicing decisions
(VUV) are extracted with RAPT [25], and Reaper [26] is used
for glottal closure instant (GCI) detection. Additionally, glot-
tal source spectral envelope and harmonic-to-noise ratio (HNR)
are estimated similarly to [27].

For training the acoustic model, deltas and delta-deltas of
the acoustic features are included. The model is a bidirectional
LSTM network that maps the frame-rate text features (see Sec-
tion 2.1) to the dynamic acoustic features. The network config-
uration is given in Table 1. At synthesis stage, acoustic features
are generated on given text inputs, after which the maximum
likelihood parameter generation (MLPG) is applied to produce
smooth feature trajectories. Additionally, the generated vocal
tract parameters are post-filtered with the formant enhancement
method presented in [28]. Voiced excitation signal is obtained
from the excitation model by conditioning it on the generated
acoustic features, while white noise excitation is used for un-
voiced speech.

2.3. DNN-based excitation model

Glottal excitation pulses are processed by first performing in-
verse filtering, and then extracting a two pitch-period segment
with one GCI in the middle and two at the both ends (see left
side of Fig. 2 for illustration). These pulses are then cosine-
windowed and zero-padded to a constant length of 400 sam-
ples. Pulses are associated with acoustic features by assigning
the pulse nearest to the mid-point of the 5-ms frame, and un-
voiced frames are excluded from the training sequences to ac-
commodate LSTM. The network structure used for the excita-
tion models is listed in Table 1. At synthesis time, generated
acoustic features are fed into the excitation model, after which
the generated pulses are windowed, scaled to the desired energy,
and joined with pitch-synchronous overlap-add (PSOLA) [29].
In the baseline excitation model training scheme [18, 20], the
original estimated acoustic features are used as input, and the
corresponding original glottal pulses are set as the target out-
puts.

2.4. Training with generated acoustic features

The first issue to be observed in the excitation model training
is the difference between how the model is trained and how it
is used in synthesis: if the model is trained with the original
acoustic features as the input, a mismatch occurs because only
synthetic acoustic features will be available at test time. This
problem is straightforward to fix by using the acoustic model
to generate the training set acoustic features from the text input,
and further feed them into the excitation model inputs at training
time. This modification is denoted in Fig. 1 by number (2).

Since we want to use the acoustic model outputs for signal
processing, we fix the acoustic model after training, and only
alter the excitation model to retain connectivity at the input.
The acoustic model will inevitably produce some errors, and
the synthetic acoustic features will be corrupted versions of the



original ones. As a result, this mismatch may cause the wave-
form model to overfit the natural acoustic features, while gener-
alizing poorly with the synthetic acoustic input. This behavior
is illustrated in Fig. 3 (training details in section 3.2). The use
of generated acoustic features for excitation model input can
also been seen as a form of regularization, where training with
corrupted input helps to prevent overfitting.

2.5. Re-estimating glottal excitation waveforms

The second mismatch issue is related to the output of the ex-
citation model: since the acoustic model is fixed after training,
synthesized vocal tract filters will differ from the original (see
Fig. 2), and can no longer give perfect reconstruction even with
the original excitation waveform. However, we can re-estimate
the excitation model target waveforms by performing inverse
filtering with the predicted filter—this aims to compensate for
the errors made in acoustic modeling. A similar idea has been
adopted in speech coding, where the encoder uses quantized fil-
ter parameters (that are always utilized by the decoder), rather
than using the more accurate non-quantized filter parameters,
e.g. [30]. This change is denoted in Fig. 1 by number (3).

Ref.

(1)

(2)

(3)

f [Hz]

A
[d

B
]

Original filter

f [Hz]

A
[d

B
]

Generated filter

Figure 2: Since the excitation waveforms are re-estimated for
system (3), comparing generated excitations (left) directly with
the reference excitation is not meaningful. Instead, objective
metrics are calculated in speech signal domain (right) by fil-
tering the excitations with either the true vocal tract filter (top
mid) or the generated one (bottom mid).

3. Experiments
3.1. Speech material

Two speaker-specific systems were trained for the experiments.
Both speakers (one male, one female) are professional British
English voice talents. The dataset for the male speaker ”Nick”
comprises 2542 utterances, totaling 1.8 hours, and the dataset
for the female speaker ”Jenny” comprises 4314 utterances, to-
taling 4.8 hours. For both speakers, 100 utterances were ran-
domly selected for both validation and testing, while the rest
were used for training the systems. The material was downsam-
pled to 16 kHz sample rate from the original 48 kHz rate.

3.2. Training

The acoustic model network consist of two feedforward (FF)
layers with logistic activation function, with two bidirectional
LSTM layers stacked on top of them. The model was trained
with stochastic gradient descent and early stopping was applied
after 5 epochs of no improvement on validation set. Dynamic
features were included for the acoustic model outputs.

The excitation models were trained similarly, but now only
static acoustic features were used at the model input. This is
because we want to exactly match the domain of the acoustic

Table 1: Two types of networks are used in the system: acoustic
model maps text features (TXT) to acoustic (AC) delta-features,
while excitation model maps acoustic features to glottal pulse
waveforms (GL).

Network layer Acoustic model Excitation model
Input (size) TXT (396) AC (47)
Hidden (size) FF (512) LSTM (128)

FF (512) FF (512)
LSTM (256) FF (512)
LSTM (256) FF (512)

Output (size) AC (142) GL (400)

features being used at waveform synthesis, which for generated
features includes MLPG and the vocal tract formant enhance-
ment post-filter. To illustrate the mismatch issue, Fig. 3 shows
the excitation model training and test set errors as a function
of epochs. Direct comparison is applicable between the two
systems which attempt to predict the original glottal waveform,
either from the original (AC-GL) or the generated (GEN-AC-
GL) acoustic features. In the first case, poor generalization on
test set is evident for both voices: excitation model fits tightly
to the original acoustic features of the training set, while the test
set performance does not improve. On the other hand, training
with the generated acoustic features does not reach as low train-
ing error, but performs considerably better on the test set. The
third system using re-estimated target waveforms was trained
with network structure and generated acoustic inputs similar to
GEN-AC-GL. The CURRENNT toolkit [31] was utilized for
training all the networks.

3.3. Objective evaluation

For objective evaluation, we aim to measure the difference be-
tween the target speech signal and the synthesised speech af-
ter filtering the generated excitation. Since the systems were
trained with the MSE criterion, the same metric should be used
for the evaluation. However, measuring point-wise errors di-
rectly on the final synthetic speech waveform is difficult, since
synchronism is broken in overlap-add due to the original and
generated pitch being different. Nevertheless, the final result
can be closely approximated by individually filtering the gener-
ated pulses frame-by-frame, as illustrated in Fig. 2. The target
waveform is created by filtering the original estimated glottal
pulse with the original vocal tract filter, whereas the generated
pulses from various systems are filtered with the filter given by
the acoustic model.

In addition to MSE, MFCC distortion is calculated, as this
measure is commonly used in speech applications and roughly
correlates with perceptual differences. The MFCCs were calcu-
lated with a filterbank size of 24, 13 cepstrum coefficients were
used, and the distortion based on squared MFCC error is given
in decibels. Fig. 4 shows the average MSE and MFCC distor-
tions over the voiced frames in the test set. The trend is clear for
both voices: training with generated acoustic features reduces
the objective errors, and using re-estimated target waveforms
further improves performance.

3.4. Listening experiment

For the listening test samples, text features with forced align-
ment durations were used as the acoustic model input in or-
der to focus on the combined performance of the acoustic and
excitation generation models. An A-B preference test was per-
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Figure 3: Errors on the training (thick lines) and test (thin lines)
sets for female (top) and male (bottom) voices illustrate the is-
sue with disconnected training. Training set acoustic feature
inputs are either the original (AC-GL) or generated (GEN-AC-
GL) from the acoustic model, while the test set inputs are always
generated. Due to the mismatch effect, AC-GL does not gener-
alize well on the test set.

formed on the three DNN excitation models, where the listeners
were asked to evaluate the overall quality of the two samples,
and indicate which one they preferred. Additionally, an option
to give no preference was allowed. The listening test was im-
plemented on the CrowdFlower [32] crowd-sourcing platform
CrowdFlower. The test material consisted of 20 samples for
both voices and each method pair, presented in random order.
Additionally, 10 samples degraded with added noise in the ex-
citation and over-smoothed acoustic feature trajectories were
included for post-screening of subjects. Participants who an-
swered less than 70% of the screening questions correctly were
excluded. The test was made available in English-speaking
countries, in addition with the top four countries in EF English
Proficiency Index [33]. 50 listeners participated in the test, re-
sulting in a total 3084 of pair comparisons after screening. Re-
sults are listed in Table 2. The p-values were calculated with
a binomial test between A and B, excluding the no-preference
(neutral) answers from the calculation.

The results show a small but statistically significant differ-
ence in favor of the proposed training schemes (2) and (3) us-
ing generated acoustic features over the baseline approach (1).
Training on the re-estimated glottal waveforms (3) also seems
to the improve performance slightly.

4. Conclusions
This study addresses two sources of mismatch that occur when
glottal excitation models and acoustical models are trained
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Figure 4: Average test set MSE and MFCC distortion with 95%
confidence intervals for the male (M) and the female (F) voice.
The baseline training scheme (1) consistently gives higher er-
rors than the ones (2–3) trained with generated acoustic fea-
tures. Using re-estimated excitation waveforms in training (3)
further reduces the errors.

Table 2: A-B preference test scores (system numbering as
above). Systems trained with generated acoustic features were
slightly preferred over the baseline training scheme. Given p-
values were calculated with a binomial test between A-B, while
excluding the no-preference ratings from the calculation.

speaker (1) (2) (3) neutral p-value
Female 7.98 14.79 77.2 0.0008

9.30 12.98 77.7 0.0464
5.81 12.79 81.4 0.0002

Male 6.30 12.60 81.1 0.0007
9.34 11.09 79.6 0.2176

7.36 12.02 80.6 0.0105

and used for parameter generation in TTS. The results show
that training the excitation model with inputs generated by the
acoustic model improved generalization to test set, reduced
the objective error metrics and slightly improved the perceived
quality of synthetic speech. Additionally, training with excita-
tion waveforms re-estimated by glottal inverse filtering with the
generated vocal tract filters further improved both objective and
subjective performance.

Apart from the proposed training scheme, another way to
reduce mismatch between original and generated acoustic fea-
tures is to improve the acoustic model. Nevertheless, the ideas
presented here still apply while the acoustic features are used
to control generative neural models. The shortcomings in the
acoustic model can be addressed in the future with the use
of more advanced models, such as mixture density network
LSTMs [8].

From a waveform generation perspective, the current DNN-
based excitation models trained with the squared error crite-
rion are inherently limited to generating conditional averages.
As such, they cannot reproduce the stochastic properties desir-
able in excitation signals. Potential extensions to our excitation
modeling framework include the use of more powerful genera-
tive neural network methods, such as generative adversarial net-
works, or some form of the recent powerful sample-by-sample
generative methods, e.g. [15, 14].
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