
Clemson University
TigerPrints

All Dissertations Dissertations

5-2012

GLOTTAL EXCITATION EXTRACTION OF
VOICED SPEECH - JOINTLY PARAMETRIC
AND NONPARAMETRIC APPROACHES
Yiqiao Chen
Clemson University, rls_lms@yahoo.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Chen, Yiqiao, "GLOTTAL EXCITATION EXTRACTION OF VOICED SPEECH - JOINTLY PARAMETRIC AND
NONPARAMETRIC APPROACHES" (2012). All Dissertations. 897.
https://tigerprints.clemson.edu/all_dissertations/897

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268634087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/897?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F897&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


i 

 

 

 

 

 

 

 

  GLOTTAL EXCITATION EXTRACTION OF VOICED SPEECH－ 

   JOINTLY PARAMETRIC AND NONPARAMETRIC APPROACHES 

 

 

A Dissertation 

Presented to 

the Graduate School of 

Clemson University 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

Electrical Engineering 

 

 

by 

Yiqiao Chen 

May, 2012 

 

 

Accepted by: 

John N. Gowdy, Committee Chair 

Robert J. Schalkoff 

 Stanley T. Birchfield 

Elena Dimitrova 

 



ii 

 

 

ABSTRACT 

 

 

The goal of this dissertation is to develop methods to recover glottal flow pulses, 

which contain biometrical information about the speaker. The excitation information 

estimated from an observed speech utterance is modeled as the source of an inverse 

problem. 

Windowed linear prediction analysis and inverse filtering are first used to 

deconvolve the speech signal to obtain a rough estimate of glottal flow pulses. Linear 

prediction and its inverse filtering can largely eliminate the vocal-tract response which is 

usually modeled as infinite impulse response filter. Some remaining vocal-tract 

components that reside in the estimate after inverse filtering are next removed by 

maximum-phase and minimum-phase decomposition which is implemented by applying 

the complex cepstrum to the initial estimate of the glottal pulses. The additive and 

residual errors from inverse filtering can be suppressed by higher-order statistics which is 

the method used to calculate cepstrum representations. 

Some features directly provided by the glottal source’s cepstrum representation as 

well as fitting parameters for estimated pulses are used to form feature patterns that were 

applied to a minimum-distance classifier to realize a speaker identification system with 

very limited subjects.  
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CHAPTER ONE 

 

INTRODUCTION AND OVERVIEW 

 

 

The topic of the dissertation, the extraction of glottal flow pulses for vowels, has a 

potential benefit for a wide range of speech processing applications. Though some 

progress has been made in extracting glottal source information and applying this data to 

speech synthesis and recognition, there is still room for enhancement of this process. This 

chapter gives a brief overview of research on this topic, and the motivation for extraction 

of glottal flow pulses. The structure of the dissertation is also presented. 

 

Overview of Extraction of Glottal Flow Pulses 

The extraction of glottal flow pulses can provide important information for many 

applications in the field of speech processing since it can provide information that is 

specific to the speaker. This information is useful for speech synthesis, voiceprint 

processing, and speaker recognition. Three major components: glottal source, vocal tract 

and lips radiation, form human speech sounds based on Fant’s acoustic discoveries [1]. If 

we can find a way to estimate the glottal source, the vocal-tract characteristics can be 

estimated by extracting the glottal source from the observed speech utterance. As voiced 

sounds are produced, the nasal cavity coupling with oral cavity is normally not a major 

factor. Therefore, speech researchers focused on properties and effects of vocal-tract 

response. The high percentage of voiced sounds, especially vowels, has been another 

motivation for research of this domain. 
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Given observed speech signals as input data, we can formulate a task to extract 

the glottal source as an inverse problem. There is no way to know what actual pulses are 

like for any voiced sounds. It makes the problem much harder than those ones in 

communication channels for which information source is known. Some glottal pulse 

extraction methods [2], [3] have been proposed as a result of acoustic experiments and 

statistical analysis. They might not be very accurate but they at least can provide rough 

shapes for pulses. The earliest result came from establishing an electrical network for 

glottal waveform analog inverse filtering [2]. Thereafter, some better improvements have 

been made in the past two decades to recover these pulses using signal processing 

methods that involve recursive algorithms for linear prediction analysis. However, 

existing methods here not been able to attain both high accuracy and low complexity. The 

time-variance of these excitation pulses and vocal tract expands the difficulty of the 

extraction problem. The lack of genuine pulses makes it challenging for researchers to 

evaluate their results accurately. In past papers [4], [5] researchers adapted the direct 

shape comparison between an estimated pulse from a synthesized speech utterance and 

the original synthetic excitation pulse. As part of our evaluation, we will parameterize our 

estimated pulses and use these as inputs of a small scale speaker identification system. 

 

Structure of the dissertation 

The next two chapters present backgrounds for basic phonetics, glottal models 

and the source-filter model as well as its discrete-time representations. After a 

background discussion, we will introduce the theme of the dissertation on how to extract 
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glottal flow pulses. Mainstream glottal flow pulses estimation methods are discussed in 

Chapter 4. Two jointly parametric and nonparametric methods are extensively discussed 

in Chapter 5 and 6. The parameterization of estimated glottal flow pulses and their results 

from a vector quantization speaker identification system with limited subjects will be 

discussed in Chapter 7. Then a summary section concludes the dissertation. 
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CHAPTER TWO 

PHONETICS 

 

In this chapter, we will discuss the production of speech sounds from viewpoints 

of acoustics and linguistics. 

 

The Physical Mechanism of Speech Production 

 The generation of human speech can be illustrated by the system shown in Figure 

2.1. The diaphragm is forced by abdominal muscles to push air out of the lungs through 

trachea into the glottis, a slit-like orifice between the two folds, movements of which 

affect air flow. As the speech is produced, it is adjusted by the varying shape of the vocal 

tract above larynx. The air flow forms speech when it leaves the lips and nose. The 

pharynx connects the larynx with the oral cavity that is the main cavity of the vocal tract. 

It can be altered because of activities of the palate, the tongue, the teeth and the lips.  

There are two key factors that researchers cannot ignore as they study the above 

acoustic process of speech production: vocal tract and glottal source. The vocal tract 

where resonances occur in the speech production process can be represented as a multi-

tube lossless model from the vocal folds to the lips with an auxiliary path, the nasal 

cavity. The locations of resonances are controlled by the physical shape of the vocal tract 

of the speaker. Likewise, the shape of vocal tract can be characterized by these resonance 

frequencies. This has been the theoretical basis for many speech synthesis and speaker 

recognition applications. These resonance frequencies were called formants by speech 

pioneers because they can form overall spectrum of the speech utterance.  
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The formants, shown the spectrogram in the Figure 2.2, ordered from lowest 

frequency to highest frequency, are symbolized by   ,   ,   ,…. They are represented by 

horizontal darker strips, and they vary with time. This phenomenon indicates that our 

vocal tract has dynamic characteristics. The lower-frequency formants dominate the 

speaker’s vocal-tract response from an energy perspective.  

In above process, air flow from vocal folds results in a rhythmic open and closed 

Trachea 

Air Flow 

from Lungs 

Oral Cavity 

Lips

s 

Nasal Cavity 

Pharyngeal Cavity 

Vocal Folds 

Figure 2.1 Illustration of human speech production 
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Figure 2.2  The short-time frequency representation of a female speech utterance: 

"What is the mid-way?"  

 

phase of glottal source. In the frequency domain, the glottal flow pulses are normally 

characterized as a low-pass filtering response [6]. On the other hand, the time interval 

between two adjacent vocal-folds opens is called pitch or fundamental period, the 

reciprocal of which is called fundamental frequency. The period of glottal source is an 

important physical feature of a speaker along with the vocal tract determining formants. 

The glottal source in fact plays a role of excitation to both the oral and nasal 

cavities. Speech has two elementary types: voiced and unvoiced, or a combination of 

them [7], e.g., plosives, and voiced fricatives.  
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Voiced excitations are produced from a sort of quasi-periodic movement of vocal-

folds while air flow is forced through glottis. Consequently, a train of quasi-periodic 

puffs of air occurs. The unvoiced excitation is a disordering turbulence caused by air flow 

passing a narrow constriction at some point inside the vocal tract. In most cases, it can be 

treated as noise. These two excitation types and their combinations can be utilized by 

continuous or discrete-time models. 

 

Classifications of Speech Sounds 

 In linguistics, a phoneme is the smallest unit of speech distinguishing one word 

(or word element) from another. And phones triggered by glottal excitations refer to 

actual sounds in a phoneme class. 

We briefly list some categories of phonemes and their corresponding acoustic 

features [7]: 

Fricatives: Fricatives are produced by exciting the vocal tract with a stable air 

flow which becomes turbulent at some point of constriction along the oral tract. There are 

voiced fricatives in which vocal folds vibrate simultaneously with noise generation, e.g., 

/v/. But vocal folds in terms of unvoiced fricatives are not vibrating, e.g., /h/. 

Plosives: Plosives are almost instantaneous sounds that are produced by suddenly 

releasing the pressure built up behind a total constriction in the vocal tract. Vocal folds in 

terms of voiced plosives vibrate, e.g., /g/. But there are no vibrations for unvoiced 

plosives, e.g., /k/. 
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Affricates: Affricates are formed by rapid transitions from the oral shape 

pronouncing a plosive to that pronouncing a fricative. There can be voiced, e.g., /J/, or 

unvoiced, e.g., /C/. 

Nasals: These are produced when there is voiced excitation and the lips are 

closed, so that the sound emanates from the nose. 

Vowels: These are produced by using quasi-periodic streams of air flows though 

vocal folds to excite a speaker’s vocal-tract in constant shape, e.g., /u/. Different vowels 

have different vocal-tract configurations of the tongue, the jaw, the velum and the lips of 

the speaker. Each of the vowels is distinct from others due to their specific vocal-tract’s 

shape that results in distinct resonance, locations and bandwidths.   

Diphthongs: These are produced by rapid transition from the position to 

pronounce one vowel to another, e.g., /W/. 

The list of phonemes used in American English language is summarized in Table 

2.1.  

The study of vowels has been an important topic for almost any speech 

applications ranging from speech and speaker recognition to language processing. There 

are a number of reasons that make vowels so important. 

The frequency of occurring of vowels leads them to be the major group of 

subjects in the field of speech analysis. As vowels are present in any word in the English 

language, researchers can find very rich information for all speech processing 

applications. And they can be distinguished by locations, widths and magnitudes of 

formants. These parameters are determined by the shape of a speaker’s oral cavity. 
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Finally, the glottal puffs as excitations to vowels are speaker-specific and quasi-periodic. 

Intuitively, the characteristics of these pulses as glottal excitations can be considered as a 

type of features [8] - [11] used for speaker recognition and other applications. 
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Back                    
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Fricatives 
Voiced                 

Unvoiced                 

Whisper     

Affricates         

Nasals             
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Diphthongs                  

Semivowels 
Liquids         

Glides         

Consonants 
Voiced             

Unvoiced             

 

Table 2.1 Phonetic category of American English 

 

However, not until some physical characteristics of speech waves were calibrated 

by experiments that researchers started to assume some important properties of these 

excitation signals [2]. These characteristics laid a milestone to investigate the excitation, 
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channel and lips radiation quantitatively in terms of human speech. Excitation, or glottal 

sources, will be the subject through the dissertation. Some existing models of glottal 

source will be extensively discussed in next chapter. 
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CHAPTER THREE 

MODELS 

The study of speech production has existed for several decades ago. However, 

little progresses in  analyzing the excitation of speech sounds had been made until some 

researchers purposed methods modeling glottal flow pulses [6] - [10]. By combining the 

glottal flow pulses models, glottal noise models and vocal tract resonance frequencies 

transmission models, we can build an overall discrete-time speech production system. 

Furthermore, the synthesis of a whole utterance of speech depends on the analysis of 

interactions between glottal sources and vocal tract of speakers by using digital 

processing techniques.  

 

Glottal Flow Pulse Modeling 

For voiced phonemes, typically vowels, researchers have endeavored to recover 

the glottal flows to characterize and represent distinct speakers in speech synthesis and 

speaker recognition. The term, glottal flow, is an acoustic expression of air flow that 

interacts with vocal tract. Consequently, it is helpful to find some parameters to describe 

models and regard these parameters as some features of speakers. The periodic 

characteristic of the flow is determined by the periodic variation of glottis: Each period 

includes an open phase, return phase and close phase. The time-domain waveform 

representing volume velocity of glottal flows as excitations coming from glottis has been 

an object for modeling in the past decades.  

Rosenberg, Liljencrants and Fant were among those most successful pioneers who 
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contributed to find non-interactive glottal pulse models. 

Rosenberg proposed several models [6] to represent an ideal glottal pulse. The 

preferred model is referred as Rosenberg-B, which represents the glottal pulse as 

 

   ( )  

{
 
 

 
  (

 

  
)

 

  (
 

  
)

 

       

          (
    

  
)
 

           

 (3.1) 

 

This is the first model to relate the quasi-periodic glottal excitations shown in Figure 3.1  

to the periodic activities of vocal folds. Vocal folds are assumed to have a sudden closure 

in their return phase, as shown in the Figure 3.1. 

 

Figure 3.1  Normalized Rosenberg glottal model 
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Klatt and Klatt [9] introduced different parameters to control the Rosenberg glottal 

model.  

A derivative model of glottal flow pulse [10], was proposed in 1986 by Fant. The 

Liljencrants-Fant (LF) model contains the parameters clearly showing the glottal open, 

closed and return phases, and the speeds of glottal opening and closing. It allows for an 

incomplete closure or for a return phase of growing closure rather than a sudden closure, 

a discontinuity in glottal model output.  

Let  ( ) be a single pulse. We might assume  

 ∫   ( )   
  

 

   (3.2) 

then the net gain of the   ( ) within both close and open phase is zero. 

The derivative of  ( ) can be modeled by [11] 

   ( )  {

      
 (    )       (    )         

      [ 
  (    )     (     )]                  

                                                                     

 (3.3) 

where    and    are defined in terms of a parameter    by 

   
  

        (     ) 
 

and 

   
  

     (     )       (     ) 
   

Thus, the glottal model can be expressed by 7 parameters [11]:   , the starting 

time of opening phase;   , the starting time of return phase
1
;   , the starting time of 

                                                 
1
 The starting time of return phase is not defined as the peak value of a complete glottal pulse. 
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closed phase;   , frequency of a sinusoidal signal modulated by exponentially decreasing 

signal in open phase;   , the flow derivative at   ;  , the ratio of    to the largest 

positive value of   ( );  , an exponential factor that control the convergence rate of the 

model from    to zero ( see Figure 3.2) where      and    control the shape of open 

phase and    and   control the shape of the return phase. 

 

 

Figure 3.2  Lijencrants-Fant model with shape-control parameters 

 

 

The transformed LF model as an extension of the original LF model was proposed in 

1995 [12]. It uses a new set of   parameters to represent the T parameters   ,    and    
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involved in the LF model (effective duration of the return phase) and    (the time of zero 

glottal derivative). And a basic shape parameter    is 

    (           ) (
  

   
    )     ⁄  (3.4) 

where   ,    and    are obtained as  

 

{
  
 

  
    

  

  

           
     

  

            
  

   
        

  (3.5) 

Figure 3.3 shows a variety of LF models corresponding to different     values. 

The use of the    parameter largely simplifies the means to control the LF model. If there 

is a need for fitting a glottal flow pulse  ( ) by an LF mode  ̂( ), then a least-squares 

optimization problem exists with the objective function and its constraints which can be 

represented as 

         
           

‖   ̂‖ (3.6) 

  subject to             

                   

  

Both the Rosenberg and Liljencrants-Fant models had been proved to have spectral tilt in 

their frequency representations. The location of the peak of the spectral tilt is right at the 

origin for a Rosenberg model and close to the origin for LF model shown in Figure 3.4.  
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Figure 3.3 LF models set by 3 different Rd values and their corresponding 

frequency responses 
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Figure 3.4  Time and frequency response of Rosenburg and LF model (a) Rosenburg 

model (b) Frequency response of (a)  (c) LF model (d) Frequency response of (c) 
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Consequently, low-pass filtering effects in terms of the magnitude of frequency response 

can be approximations to these glottal models. 

After they reviewed the glottal source in the time domain and frequency domain, 

Henrich, Doval and d’Alessandro proposed another Causal-Anticausal Linear Model 

(CALM) [13] which considers the glottal source the impulse response of a linear filter. 

They also quantitatively analyzed the spectral tilt with different model parameters.  

Expressions of Rosenberg and Klatt as well as LF models were investigated in both 

magnitude frequency and phase frequency domain. They proposed that the LF glottal 

model itself can be regarded as a result of the convolution of two truncated signals, one 

causal and one anti-causal, based on its analytical form. The open phase is contributed by 

a causal signal; on the other hand, the return phase is contributed by an anti-causal signal.  

Glottal flow pulse modeled by the LF model consists of minimum-phase and maximum-

phase components, so  it is mixed-phase. In this case, the finite-length anti-casual signal 

can be represented by zeros [13] which result in a simple polynomial rather than a ratio of 

polynomials which includes poles. The existence of the discontinuity at the tail of the 

return phase becomes a criterion for extracting the phase characteristic of glottal models. 

Thus, the Rosenburg model is maximum-phase, but the LF model is mixed-phase. 

 Aspiration, which is the turbulence caused by the vibration in terms of vocal- 

folds’ tense closure, is considered to introduce random glottal noise to the glottal pulse. 

This may occur in a normal speech with phoneme /h/, but it seldom occurs in vowels.  
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Discrete-Time Modeling of Vocal Tract and Lips Radiation 

As the major cavity involving in the production of voiced phonemes, the oral tract 

has a variety of cross-sections caused by altering the tongue, teeth, lips and jaw; its 

lengths varies from person to person. Fant [1] firstly modeled the vocal tract as a 

frequency-selective transmission channel.  

The simplest speech model consists of a single uniform lossless tube with one end 

open end. The resonance frequencies of this model were called formants. The   th 

resonance frequency    can be calculated by  

   
(    ) 

  
 

where   is the transmission rate of the sound wave and   is the length of the vocal tract as 

a single tube. Therefore, the length of the vocal tract will determine the resonance 

frequencies. The vocal tract was found to play a role as filter from acoustic analysis. 

Some acoustics pioneers [1], [14], [15] made great contributions to investigate the 

transfer function for vocal tract. This study involves a more complex but realistic model 

represented by multiple concatenated lossless tubes having different cross-sectional area, 

which is the extension of the single lossless tube model.  

The vocal tract considered as the concatenation of tubes with different lengths and 

different cross-section area   ,   ,    and    is shown in Figure 2.4. The cross-section 

areas of tubes will determine the transmission coefficient     
    and reflection 

coefficient     
     between adjacent tubes. (The concatenated vocal tract with 

transmission and reflection coefficients   
 ,   

  can be modeled by a lattice-ladder 
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discrete-time filter). The transfer function  (  ) of vocal tract together with glottis and 

lips can be represented by these coefficients   
 ,   

  from impedance, two-port and T-

network analysis [16].  

 

 

  

 

 

                                                                                                     

  

 

    

 

 

            Glottis    Vocal tract    Lips 

 

 

 With discrete-time processing  (   ), formants and a vocal tract consisting of 

  th order concatenated tubes can be modeled by the multiplication of   second-order 

infinite impulse response (IIR) resonance filters 

  (   )    ( 
  )  ( 

  )   ( 
  )   (   ) (3.7) 

where 

Figure 3.5  Acoustic tube model of vocal tract 
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  ( 
  )  

 

(        )(    
     )

 

and   ,   
  determine the location of a resonance frequencies    in the discrete-time 

frequency domain of  (   ). As the impulse response of vocal tract  (   ) is always a 

BIBO stable system, we have |  |, |  
 |   . Moreover,   ( 

  ) can be be expressed as 

 
  ( 

  )  
 

   |  |             |  |
      

   (3.8) 

Then the impulse response corresponding to   ( 
  ) is 

      (      )
   |  |

          (   )           

The magnitude |  | determines the decreasing rate of      , and the angle     determines 

the frequency of modulated sinusoidal wave. So a resonance frequency    can be shown 

as 

   (
  
  

)    

where    is the sampling frequency for the observed continuous-time speech signal. Then 

      can be re-expressed as 

      (     )
   |  |

         (   )         

where          ⁄  is the radian frequency of   . 

If conjugate pole pairs are assumed to be separated far enough from one another, 

fairly good estimates of bandwidth of a single resonance frequency shown in Figure 2.4 

can be represented using 

 ̂  (
  
 
)   |  |   
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Figure 3.6  Illustration of -3 dB bandwidth between two dot lines 

for a resonance frequency at 2,000 Hz 

 

  

With the multiplication effect of responses of a variety of resonance frequencies, the 

overall frequency response of the vocal tract,  (   ), is formed to be a spectral shaping 

transfer function with conjugate pole pairs contributed from   second-order IIR filter 

sections whose frequency response can be expressed as 

 

  (   )  
 

∏ (        )(    
     )     

 (3.9) 

 

The peaks as a result of resonance poles become the primary features of this all-pole 

model. If poles {     
 },       are fixed, then  (   ) can be found.  
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Figure 3.7  Resonance frequencies of a speaker’s vocal tract 

 

Though often represented as an all-pole model, the vocal tract can also be 

characterized by pole-zero models with the introduction of zeros due to the nasal cavity 

which is involved in the production of some speech sounds [17].  

Lips radiation modeled as the first-order difference equation  

                  

where     is often combined with the vocal tract to denote a minimum-phase system 

because all zeros and poles of these two parts are inside the unit circle. Glottal source, 

vocal-tract and lips radiation are the three elements in the process of human speech 

production from the above analysis. 
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Source-Filter Model for Speech Production 

 Now we are all set to discuss a complete model about speech production: the 

source-filter model. This model serves as the key of many speech analysis methods and 

applications.  

 Fant [1] considered that the human speech signal can be regarded as the output of 

a system where the excitation signal is filtered by harmonics at resonance frequencies of 

the vocal tract. This model is based on the hypothesis that the operation of acoustic 

dynamics for the overall system is linear and there is no coupling or interaction between 

source and the vocal tract. Time invariance is assumed. This system basically consists of 

three independent blocks: periodic or non-periodic excitations (source), the vocal tract 

(filter) and the effect of lips radiation.  

The periodic excitations are caused by the vocal folds’ quasi-periodic vibrations. 

Vowels can be considered as results of this sort of excitations. But the non-periodic 

excitations are noises occurring when air is forced past a constriction. The transfer 

function of vocal tract  (  ) behaves as a spectral shaping function affecting the glottal 

source   (  ). So the observed speech signal can be represented by 

 

 (  )    (  ) (  ) (  ) 

where  (  ) denotes the lips radiation response. The above expression provides us a 

frequency domain relation among these important blocks involved in the speech 

production process. 
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 A general discrete-time speech production model was proposed in 1978 by 

Rabiner and Shafer [18]. It deems that any speech utterance can be represented by linear 

convolution of glottal source, vocal tract and lips radiation shown in Figure 3.8. For 

discrete-time version this model can be represented as 

  (   )    ( 
  ) (   ) (   ) (3.10) 

It can be expanded as 

 

  (   )  
 (       )

∏ (        )(    
     ) 

   (   ) (3.11) 

The glottal source    (   )  represents white noise for unvoiced sounds and the periodic 

glottal pulses for voiced sounds. 

The time-domain response of the corresponding speech signal can be represented 

as  

      (      )    (3.12) 

where  
        
↔   ,   

        
↔    ,  

        
↔    and  

        
↔   . The convolution relation in (3.12) as a 

linear operation provides a way to decompose the observed speech signal and find 

parameters to estimate signal components using digital techniques. The glottal source 

signal      , if it is not noise, can be recovered from the observed speech signal      by 

applying deconvolution. This process uses estimate of the vocal tract      response 

modeled as an all-pole model and lips radiation      modeled as a first-order difference 

equation with parameter         . Properties and assumptions about glottal models 

discussed in this chapter are based on the work of [1].   
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  Given the overall discrete-time model of speech production in Figure 3.8, 

consisting of glottal flow pulses models, all-pole and first-order difference for lips 

radiation, we are able to apply digital signal processing techniques to produce a voiced 

speech utterance using the glottal models introduced previously and recover glottal flow  

 

 

 

 

 

 

 

 

 

 

 

pulses whose information is embedded in the waveforms of observed human speech 

sounds. These discrete-time signal processing techniques including linear prediction and 

phase separation are core aspects of the algorithms used to estimate glottal pulses in next 

chapter.  

 

 

 

Glottal flow pulses 

model 

Uncorrelated noise 

All-pole 

model  
  𝛼𝑒 𝑗𝜔 Voiced/Unvoiced 

Figure 3.8  The discrete-time model of speech production 



27 

 

CHAPTER FOUR 

 

THE ESTIMATION OF GLOTTAL SOURCE 

 

This chapter is devoted to details involved in existing methods to extract glottal 

waveforms of flow pulses. All these methods can be categorized into two classes: those 

based on parametric models and those that are parameters free. Linear prediction is a 

major tool for those belonging to the first class. The latter depends on homomorphic 

filtering to implement phase decomposition as well as glottal closure instants (GCI) 

detection to determine the data analysis region. 

 

Two Methods of Linear Prediction 

Until very recently, the linear prediction based methods have dominated the task 

of building models to find the glottal flow pulses waveform [20], [21], [22]  for different 

speakers. Normally, either an estimator based on the second order statistics or an 

optimization algorithm is required to find the best parameters in statistical and 

optimization senses with respect to the previously chosen model. Two methods, the 

autocorrelation method and the covariance method [23], are available to estimate the 

parametric signal model in the minimum-mean-square estimation (MMSE) sense and the 

least-squares estimation (LSE) sense, respectively. The autocorrelation method assumes 

the short-time wide sense stationarity of human speech sounds to set up the Yule-Walker 

equation set. 

Given a  th-order linear predictor and an observed quasi-stationary random 

vector {          } sampled from a speech signal  ( )  a residual error signal    is 
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defined as 

 

      ∑      

 

   

   (4.1) 

Then a MMSE problem can be formulated as 

        
  {          }

 |    ̂ |
 
 (4.2) 

where 

  ̂  ∑      

 

   

 (4.3) 

from which we obtain the coefficient vector   of the predictor by solving the problem 

represented by (4.2). From (4.1) we have Yule-Walker equations which have the form: 

       (4.4) 

where 

   [
  ( )    (   )

   
  (   )    ( )

] 

denotes the autocorrelation matrix of   ,         , and              , where 

   is the square root of the residual error’s power.   ( ) is the autocorrelation function 

for the signal  ( ), The correlation             ,            can be estimated 

by an average estimator 

            
 

  
〈 ( )  ( )〉 (4.5) 
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where  ( ) and  ( ) denote  -unit and  -unit right shift of  . Levinson Recursion is able 

to efficiently find the optimum solution    of the Yule-Walker equation set in the MSEE 

sense. 

 In the autocorrelation method, the order of linear prediction fixes the dimension 

of the Toeplitz matrix   . It gives a rise to fairly large error since the order of the 

predictor can’t be high. Additionally, since the autocorrelation method just minimizes the 

mean-square error and requires strong stationarity for a fairly accurate second order 

statistical result, it has limitations to achieving the good performance in some 

environments if it is compared with the covariance method [23]. 

 The covariance method is based on linear least-squares regression of linear 

equations without relying on any statistical feature of the observed sequence. To set up its 

own data matrix, the acquisition of observed data is realized by an analysis window on 

the objective speech signal. As in the autocorrelation method, the dimension of columns 

is uniquely determined by the order of linear prediction. But the dimension of rows for 

the covariance method depends on the number of shift positions of linear predictor inside 

the external analysis window. The number of rows is often larger than that of columns. 

 Given a  th-order linear predictor and a length-  analysis window of random 

vector                 
  sampled from a speech signal  ( ) , by shifting the 

predictor inside the window we can form an data matrix  ̃ which leads to solving a 

problem of the form  ̂   ̃  by a variety of windowing ways. Here  ̃       is an over-

determined system with rank   that might not equal to   or  . That is,  ̃ can be a rank-
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deficient matrix. A LSE problem to minimize the   -norm of ‖   ̂‖ can be formulated 

as 

       
 

‖   ̃ ‖ (4.6) 

There exists a method of algorithms to solve above over-determined least-squares 

problem. One option is to employ Singular Value Decomposition (SVD) in its 

computation [24].  

The minimum   -norm can also be found by decomposing  ̃ shown as [25] 

 ‖   ̃ ‖  ‖       ‖  ‖        ‖ (4.7) 

where   contains singular values of  ̃ and               are orthogonal matrices 

with                and   [          ] . That is,       and      . Let 

       and        be projections of   and  ; then we can obtain another equivalent 

expression 

       
  

‖      ‖ (4.8) 

where 

‖      ‖  ∑|  
      

 | 
 

   

 ∑ |  
 | 

 

     

 

which is minimized if and only if   
    

       
      for       and   

    for 

       . The least-squares solution    is 

   ∑(
  

  

  
)

 

   

   

or  
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      ̃   

where  ̃  ∑ (    
   ⁄ ) 

    is the pseudo-inverse of  ̃.  

The determination of the rank of a low dimensional matrix is easy theoretically, 

but it becomes more complicated in practical applications. The conventional recursive 

least-squares (RLS) algorithm has been the major tool for speech processing 

implementations since there doesn’t exist special consideration about the rank of  ̃. The 

overall procedure can be summarized as below [25], [26] 

i. Initialize the coefficient vector and the inverse correlation matrix by  (  )  

  and  (  )     where   is the forgetting factor. 

ii.               , where   is the length of the analysis window using 

{
 ̅ ( )   (   ) ̃( )

  ( )     ̅ 
 ( ) ̃( )

 

      we can compute the adaptation gain and update the inverse correlation matrix                

 ( )  
 ̅ ( )

  ( )
 

      and  

 ( )     [ (   )   ( ) ̅ 
 ( )] 

iii. Filter the data and update coefficients 

 ( )   ( )    (   ) ̃( ) 

      and 

 ( )   (   )   ( ) ( )   

There are other versions [27], [28] of RLS algorithms used for the covariance 

method to solve (4.7).  



32 

 

The autocorrelation method of MMSE has low computation costs to solve Yule-

Walker equations; however, the RLS method involves more computational costs. And it 

has been proven to have better performance on voiced signals than autocorrelation 

method [29]. Basically, the covariance method is considered as a pure optimization 

problem; however, the autocorrelation method works on second-order statistics. These 

two methods share a mutual characteristic: the model type and order for linear prediction. 

For the covariance method, the length of the analysis window should be known as a priori 

information. 

In some cases, we need other methods, which don’t rely on any a priori 

information of the given signal, to process the speech signal and extract the information 

of interest. 

 

Homomorphic Filtering 

Suppose an observed sequence      is the output of a system      excited by a 

sequence      as represented by 

     (   )    

We have 

   (   )    | (   )|     (   ) 

which will result in phase discontinuities in the principal value of the phase at      if 

there exists a linear phase response in   (   ).  
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From another viewpoint, let     
        
↔   (   ) ,     

        
↔   (   )  and     

        
↔   (   )  then the logarithm can be applied to  (   )  to separate logarithm 

transformations of  (   ) and  (   ) as 

    (   )     (   )     (   ) (4.9) 

 The cepstral relation can be obtained 

  ̂ ( )   ̂ ( )   ̂ ( ) (4.10) 

where  ̂ ( )
        
↔     (   ) ,  ̂ ( )

        
↔     (   )  and  ̂ ( )

        
↔     (   ) . Based on 

this relation, the linear deconvolution of      and      can be implemented. If  ̂ ( ) and 

 ̂ ( ) are not overlapped in the quefrency domain, then a “lifter” can be used to separate 

these two cepstral representations. The deconvolution in the homomorphic domain 

provides a way to discriminate a glottal-excitation response and a vocal-tract response if 

their cepstral representations are separable in the quefrency domain [13], [19]. Note: 

phase unwrapping is used to compensate for the issue of phase discontinuities, as 

described in chapter 5. 

 

Glottal Closure Instants Detection 

In terms of voiced speech, the major acoustic excitation in the vocal tract usually 

occurs at instants of vocal-fold closure defined as the glottal closure instants. Each glottal 

closure indicates the beginning of the closed phase, during which there is little or no 

glottal airflow through the glottis, of the volume velocity of the glottal source. The 
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detection of glottal closure instants plays an important role in extracting glottal flow 

pulses synchronously and tracking the variation of acoustic features of speakers.  

Automatic identification of glottal closure instants has been an important topic for 

speech researchers in the past two decades.  Because the measured speech signal is the 

response of the vocal tract to the glottal excitation, it is a challenge to perform accurate 

estimation of these instants in a recorded speech utterance.  

Many methods have been proposed about this topic. A widely used approach is to 

detect a sharp minimum in a signal corresponding to a linear model of speech production 

[30], [31]. In [30], the detection of glottal closure instants is obtained by the lower ratio 

between residual errors and original signal after the linear prediction analysis is applied 

to a speech utterance.  Group delay measures [30], [32] can be another method to 

determine these instants hidden in the observed voiced speech sounds. They estimate the 

frequency-averaged group delay with a sliding window on residual errors after linear 

prediction. An improvement was achieved by employing a Dynamic Programming 

Projected Phase-Slope Algorithm (DYPSA) [31]. Best results come from analysis on the 

differentiated Electroglottograph (EGG) [33] (or Laryngograph signal [34]) from the 

measurement of the electrical conductance of the glottis captured during speech 

recordings. However, good automatic GCI detection methods with better estimations 

have a high computation cost. 
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Parametric Approaches to Estimate Glottal Flow Pulses 

Applications of covariance analysis to the problem of extraction of glottal flow 

pulses have been performed successfully for short voiced phoneme utterances by some 

researchers [20], [21]. All parametric estimation methods to extract glottal flow pulses 

have three components: application of linear prediction analysis, normally using the 

covariance method; selection of the optimum linear prediction coefficients set to 

represent the vocal-tract response; and deconvolution of the original speech using 

estimated linear prediction coefficients to extract glottal flow pulses.  

Wong, Markel and Gray proposed the first parametric approach [21] using 

covariance analysis. Their approach can be summarized as follows. Assume an all-pole 

model  ( ) for the vocal-tract and fix the model order. The size of an analysis frame is 

selected to ensure that the sliding window has all data needed between the two ends of 

the analysis frame. Then set up an over-determined system using data inside all sliding 

windows and employ the least square algorithm to find the optimum parameters. Then the 

parameter set and the   -norm of the residual error vector are both recorded 

corresponding to the current specific location of the sliding window. Finally, access the 

recorded parameters corresponding to the location where the power ratio between 

residual errors and the original signal is minimized. Consequently, that chosen parameter 

set is used to form the inverse system of the vocal-tract model, through which the inverse 

filtering for deconvolution is applied to the original speech sequence. The result of the 

operation is the combination of the glottal pulse and lips radiation. Furthermore, we can 

estimate the glottal pulse waveform by removing lips radiation  ( ) from the overall 
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response of the speech utterance denoted by  ( ). The procedure for estimating the 

glottal pulse      is described by 

         { ( )   ( )   ( )}   (4.11) 

The mismatch of locating the glottal closure phase estimated as above will introduce 

inaccuracies to the final estimation of pulses.  

 Alku proposed another method [4], iterative adaptive inverse filtering (IAIF), to 

extract glottal flow pulses by two iterations. It requires a priori knowledge about the 

shape of the vocal tract transfer function which can be firstly estimated by covariance 

analysis of linear prediction after the tilting effect of glottal pulse in frequency domain 

has been eliminated from the observed speech. In the first iteration, the effect of the 

glottal source estimated by a first-order linear prediction all-pole model was used to 

inverse filter the observed speech signal. A higher-order covariance analysis was applied 

to the resulting signal after inverse filtering. Then a second coarse estimate is obtained by 

integration to remove the lips radiation from last inverse filtering result. Another two 

rounds of covariance analysis are applied in a second process. Correspondingly, two 

inverse-filtering procedures are involved in the whole iteration. A refined glottal flow 

pulse is estimated after another stage of lips radiation cancellation. Compared with the 

previous method, an improvement in the quality of estimation has been achieved with a 

sophisticated process, in which four stages of linear prediction have been used. 

 In addition to these two approaches based on all-pole models, there are other 

approaches based on different model types [22]. Using a priori information about model 

type and order, these parametric methods can estimate and eliminate the vocal-tract 
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response. However, the number of resonance frequencies needed to represent a specific 

speaker and his pronounced phonemes is unknown. This uncertainty about orders of the 

all-pole model might largely affect the accuracy of the estimation of the vocal-tract 

response. Some researchers found another way to extract the glottal excitations to 

circumvent these uncertainties about linear prediction models. These are summarized 

below. 

 

Nonparametric Approaches to Estimate Glottal Flow Pulses 

The LF model has been widely accepted as a method for representing the 

excitation for voiced sounds since it contains an asymptotically closing phase to 

correspond to the activity of speaker’s closing glottis. 

The LF model’s closed and open phases have been shown to consist of 

contributions by maximum-phase components [13]. The LF model offers an opportunity 

to use nonparametric models to recover an individual pulse. Meanwhile, a linear system’s 

phase information becomes indispensable in the task of glottal pulse estimation. The 

Zeros of   -transform (ZZT) method and the complex cepstrum (CC) method [19], [20] 

have been applied to the speech waveform present within one period of vocal-folds 

between closed phases of two adjacent pulses. Then maximum-phase and minimum-

phase components can be classified as the source (glottal pulse) and tract (vocal-tract) 

response, respectively. For nonparametric approaches the vocal tract is considered to be 

contributing only to the minimum-phase components of the objective sequence. And 

maximum-phase components correspond to the glottal pulse. 
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It has been recognized that human speech is a mixed-phase signal where the 

maximum-phase contributions corresponds to the glottal open phase while the vocal tract 

component is assumed to be minimum-phase. The “zeros of the  -transform” method [19] 

technique can be used to achieve causal and anti-causal decomposition.  

It has been discussed that the complex cepstrum representation can be used for 

source-tract deconvolution based on pitch-length duration with glottal closure as its two 

ends. But there are some weaknesses in terms of nonparametric methods as discussed 

below.  

The pinpoint of the two instants to fix the analysis region will be necessary for all 

these existing nonparametric methods. Although there have been some glottal closure 

instants detection algorithms proposed, selecting the closed phase portion of the speech 

waveform has still been a challenge to ensure the high-quality glottal closure instants 

detection. This adds computational costs to the estimation of glottal flow pulses. On the 

other hand, the minimum-phase and maximum-phase separation assumes the finite-length 

sequence is contributed by zeros which contradicts the fact that vocal-tract response is 

usually regarded as the summation of infinite attenuating sinusoidal sequences that might 

be longer than one pitch. 

Any finite-length speech utterance      can be viewed as the impulse response of 

a linear system containing both maximum-phase and minimum-phase components. The 

 -transform of the signal can be represented as 

  ( )  
  ∏ (     

  ) ∏ (     )   
 

∏ (       )(    
    ) 

 (4.12) 
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where {  } {  } {     
 } all have magnitude less than one and      is the linear phase 

terms as the result of maximum-phase zeros. 

With the homomorphic filtering operation, the human speech utterance as a 

system response can be separated into maximum and minimum phase components. The 

factors of  ( ) are classified into time-domain responses contributed by maximum-phase 

and minimum-phase components. Then both maximum-phase and minimum-phase parts 

can be separated by calculating the complex cepstrum  ̂    of the speech signal      

during adjacent vocal fold periods. As we indicated before, pitch detection will be needed 

to ensure those two types of phase information can be included in the analysis window. 

 

Summary 

In this chapter, we summarized both parametric and nonparametric methods 

involving linear prediction, homomorphic filtering, and GCI detection to estimate glottal 

flow pulses from a voiced sound excited by periodic glottal flow pulses. However, these 

two major classes of methods have their own weaknesses caused by the characteristics of 

these respective processing schemes. These weaknesses sometimes can largely reduce the 

accuracies of the estimation of pulses and introduce distortions to them. For the 

remaining chapters, the challenge confronting us changes  from extracting excitation 

pulses to preserving recognizable features of pulses with the largest possible fidelity.  
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CHAPTER FIVE 

 

JOINTLY PARAMETRIC AND NONPARMETRIC ESTIMATION  

APPROACHES OF GLOTTAL FLOW PULSES I 

 

 Linear prediction and complex cepstrum approaches have been shown to be 

effective for extracting glottal flow pulses. However, all of these approaches have their 

limited effectiveness. After the weaknesses of both parametric and nonparametric 

methods [17], [18], [19] presented had been considered seriously, a new hybrid 

estimation scheme is proposed in this chapter. It employs an odd-order LP analyzer to 

find parameters of an all-pole model by least-squares methods and obtains the coarse 

GFP by deconvolution. It then applies CC analysis to refine the GFP by eliminating the 

remaining minimum-phase information contained in the glottal source estimated by the 

first step.  

 

Introduction 

We present here a jointly parametric and nonparametric approach to use an odd-

order all-pole predictor to implement the LP analysis. Covariance methods of linear 

prediction analysis typically based on all-pole models representing the human vocal tract 

once dominated the task of glottal pulse extraction [20], [21]. They adapted a least-square 

optimization algorithm to find parameters for their models given the order of models, and 

the presence or absence of zeros. These models with a priori information involve strong 

assumptions, which ignore some other information that might be potentially helpful for 

more accurate separation. 
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The introduction of the residual errors from LP analysis, normally regarded as 

Gaussian noise, affects the glottal pulse extraction results. On the other hand, an 

individual LF model [10], [12] has a return phase corresponding to the minimum-phase 

components [19]. The return phase can recovered by polynomial roots analysis. This 

method can be used to perform decomposition of the maximum-phase part and minimum-

phase part of speech signals. Decomposition results have proven helpful for achieving the 

source-tract separation. The decompositions are carried out on a finite-length windowed 

speech sequence where the window end points are set to the glottal closure instants [19], 

[35]. ZZT and CC, which involve polynomial factorization are effective for the 

decomposition in terms of the phase information of the finite-length speech sequence. 

There are two factors that might affect the final separation results. The finite number of 

zeros might be insufficient to represent the vocal tract. Also, accurate detection of GCIs 

involves high computation costs. 

If the vocal-tract is not lossless [17], it is assumed to be minimum-phase and 

represented by complex conjugate poles of an all-pole model. Any individual glottal 

pulse is forced to be represented using at least one real pole from the model.  

Based on the above consideration, we refined previous separation results using the 

CC to realize the phase decomposition. Simulation results shown later in this chapter 

demonstrate that, compared with existing parametric and nonparametric approaches, the 

presented approach has better performance to extract the glottal source. 

The vocal-tract is assumed to be a minimum-phase system represented by 

complex conjugate poles of an all-pole model. With extending the covariance analysis 
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window, the variance coming from different locations of the window will be largely 

reduced as Figure 5.1 shows. We can therefore utilize the covariance methods in the 

normal LP analysis applications free of sensitive location of the window [36], [37]. 

Therefore, any individual glottal pulse is forced to be represented using at least one real 

pole in the LS regression process. Then we refined separation results with CC to realize 

the phase decomposition. 

Based on the estimated performance for both synthetic and real speech utterances, 

our simulation results demonstrate, like existing completely parametric and 

nonparametric approaches, that the presented approach also has effective and promising 

performance to extract the glottal flow pulses.  Additionally, the new approach won’t 

consume much computational resource. 
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Figure 5.1 Illustration of vocal-tract response from linear prediction 

analysis with overlapped Blackman windows 
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Odd-Order Linear Prediction Preprocessing and Inverse Filtering 

Consider the voiced speech signal      for which the  -transform is denoted by 

  ( )   ( ) ( ) (5.1) 

where  ( ) is response of glottal flow pulses (GFPs) and the lip radiation, and  ( ) is 

the response of vocal tract that is a minimum-phase system and it might contain zeros. 

 ( ) can be represented by 

 ( )     ( )   ( )   

Here    ( ) denotes all-zero part and    ( )  denotes all-pole part of the vocal-tract 

response. The determination of  ( ) and  ( ) leads to the source-tract separation. 

 Covariance methods of LP analysis, usually with even order, have become a 

major tool for the parametric analysis of voiced speech utterances. On the other hand, an 

odd-order all-pole model expressed by 

 ̂  ( )  
 

  ∑          
   

 

guarantees that at least one real pole is included to represent the low-pass tilting effect of 

the glottal source. We can separate  ̂  ( ) into two systems  ̂       ( ) contributed by 

complex pole pairs and  ̂       ( ) contributed by real poles. 

Let    [  
( )

     
( )

]
 

    be a windowed discrete-time speech frame and 

 ̂   ̃   
  be the optimum estimate of    in the Least-Squares (LS) sense. Then the all-

pole model coefficients vector    [  
( )

        
( )

]
 

 is found to minimize the    norm 

error between the observed signal    and its estimate  ̂ . In general, 
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‖    ̃   
 ‖ (5.2) 

where  ̃     (    ) is defined by 

  ̃  

[
 
 
 
     

( )
      

( )
    

( )
  

( )

      
( )

      
( )

   
( )

  
( )

     

       
( )

     
( )

     
( )

    
( )

]
 
 
 
 

 (5.3) 

 

which is a data matrix formed with a shifted version of the current observation data frame; 

   and  ̂  can be determined by recursive LS algorithms. 

 Given a predictor coefficient vector  ̂  with odd elements, there exists at least one 

real root     , such that 

 (     
  )    ∑  ̂    

    

   

 

as the result of LS estimation. Then the remaining complex poles     , excluding    

from the set  ,  are reserved for the representation of the coarse vocal-tract response. 

Here   is the set of all roots of the above polynomial. 

 These estimated complex conjugate poles further form a linear filter which can be 

used to deconvolve the observed speech signal to obtain the coarse representation of the 

glottal source corresponding to the current speech frame. Thus, it results in the estimated 

glottal excitation     
          
↔    ( ) expressed by 

  ( )  
 ( )

 ̂       ( )
  ( )   ( )        ( )   ( ) (5.4) 

where  ( ) on the right hand side of (7) can be further expressed by 
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  ( )  
        ( )

 ̂       ( )
 (5.5) 

which denotes the ratio between         ( )  and its estimate  ̂       ( ). Because 

|  |   ,       ,  ̂       ( ) is minimum-phase. The ratio  ( ) is a minimum-phase 

system as well. Therefore, the coarse estimate of GFPs will still be a mixed-phase system 

affected by cancelling effects of the ratio between         ( ) and  ̂       ( ). A new 

estimate      can be defined by 

      (     )    (5.6) 

where      is an individual glottal pulse,      is the error introduced by the inverse 

filtering and      is an impulse train defined by 

      ∑         

 

 (5.7) 

with the pitch length   and the random phase distortion  . This information in      is 

much more obvious from the illustration in Figure 5.2 than from the original speech 

waveforms.  

 

Figure 5.2 Analysis region after LP analysis 
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This enables us to employ a simpler system to obtain the GFP information using the 

phase decomposition to extract the minimum phase parts in      which is mixed-phase. 

 

Phase Decomposition 

Results from the covariance method of odd-order LP analysis form a good 

foundation for further processing. After the inverse filtering, phase decomposition can be 

used to refine the estimate of the glottal pulse by removing the minimum-phase part. It 

also  can be used for synchronized GFP  recovery.  

Fixing   for each pulse, we are able to detect the glottal closure instants in      

for its pulses’ refinements. Let  ̃    be a portion of the glottal excitation      between 

two adjacent GCIs and  ̃   
          
↔    ̃( ) where 

  ̃    ( ̃     ̃   )     (5.8) 

 

 ̃    can be analyzed by homomorphic filtering to separate the minimum-phase 

and maximum-phase sequences. The region between the two solid lines in Figure 5.2 for 

CC analysis spans slightly longer than one pitch between two GCIs. Notice the tilting 

effect due to the bias [21]. 

 After phase unwrapping and determination of the algebraic sign of the gain   of 

 ̃( ), the computation of the finite-length CC of  ̃   , which can be regarded as a higher-

order polynomial can be performed using [23] 
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         | |     
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   ∑
  

  

 
 

    

 (5.9) 

 

where coefficients    and    are the polynomial’s minimum-phase roots and maximum-

phase roots’ reciprocals, respectively. The quantities of the cepstrum representation on 

the left side of the origin contribute to the maximum-phase components of  ̃    for the 

current pulse. Due to time-domain aliasing, the low-index terms of the maximum-phase 

components are not taken into account for the following inverse transform to recover the 

current GFP. As shown in Figure 5.3 round dots for the maximum-phase are reserved as 

the input for the following operation that converts the response from the cepstrum 

domain back to the time-domain. 

 

Figure 5.3 Finite-length complex cepstrum of  ̃   . (Round dots 

will be reserved for the inverse transform to recover the pulse.) 
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Figure 5.4 shows an overall signal flow diagram for  the procedures described in this 

section. 

 

Waveform Simulations 

In order to evaluate the performance of the proposed approach in terms of 

individual GFPs, two sets of experiments with 8 kHz sampling rate were conducted. 

 

 

CC 

Analysis 

Inverse 

Filtering 

Odd-order LP 

Analysis 

Synchronization  

Figure 5.4 The odd-order LP and CC flow (CC analysis consists 

of 𝓓      , liftering, 𝓓 
−𝟏     , left-right hand separation where 

𝓓       denotes cepstrum transformation) 
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Figure 5.5 Estimation of glottal pulse for a real vowel /a/. (a) Normalized GFP  

(b) Derivative waveform 

 

Figure 5.5 shows the estimation of an individual GFP and its derivative waveform 

for a real vowel     from a male speaker after 13th-order LP analysis and phase 

decomposition. We notice the smooth curve occurring at the tail of the return phase of the 

glottal flow pulses in (a).. In Figure 5.5(b), the derivative of the signal of Figure 5.5(a) 

demonstrates the effects of lips radiation.  

Another individual glottal flow pulse estimated for a synthetic voice sound 

generated by source-filter model is shown in Figure 5.6. The original glottal flow pulses 

were synthesized by the convolution of two exponential sequences [39] which guarantees 

the generated individual glottal flow pulses are of maximum-phase. Six pairs of complex 

conjugate poles were used to represent the vocal-tract response. Based on Figure 5.6(a) 

there is no curve present in the tail of the return phase. Note that a time shift occurs in 
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Figure 5.6(b), and there are some subtle distortions present in the open phase compared 

with Figure 5.6(a). 

 

 

 

Figure 5.6 Comparison between (a) Original pulse and (b) Estimated pulse 
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Though the above comparison in Figure 5.6(a) and Figure 5.6(b) is direct, it is 

still an intuitive evaluation of our approach based on checking the difference between 

waveforms. 

  

Simulations of Data Fitting 

We can formulate a nonlinear least-square problem to evaluate the performance of 

the extraction approach by following steps: 

Use LF pulses determined by a fixed parameter sets to produce excitation pulses. 

Then apply the excitation pulses to artificial vocal-tract response modeled by several 

pairs of complex conjugate poles to generate a speech signal. Next, employ the 

estimation approach to recover the original glottal derivative pulse used. Comparing the 

nonlinear LS fitting result of estimation with the original synthetic  

LF derivative pulses, we can make the evaluation more quantitatively than before. 

Let  ̂    be the discrete form of derivative pulse (see equation (3.3)) fitting the estimated 

pulse [39] by our approach. Then we can formulate an objective value   which is defined 

by 

  ‖   ̂‖  

   ∑|      ̂   | 

 

 

  ∑      

         

 ∑ {        
 (    )       (    ) }

     

    

 

 ∑ {       [ 
  (    )     (     )]}
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  (5.10) 

where       and    are discrete correspondances of       and   ; 

             (     ) ⁄  

and 

          (     )       (     ) ⁄ . 

So the objective function is formulated as 

   
                 

    

 There are many potential algorithms to solve this nonlinear programming LS 

problem [40] - [47]. However, some standard optimization methods, like Gauss–Newton 

with convenient and effective approximations for the Hessians, are not good candidates 

for a large   that might give rise to a rank-deficient Jacobian matrix occurring in 

iterations for the current piecewise data-fitting problem [11], [48]. This sort of weakness 

can be overcome by the introduction of a trust-region strategy. 

The Levenberg-Marquardt method [49] - [51] or other Trust-Region methods [52] 

-[60] using the trust-region framework work well concerning this optimization case, 

especially the Interior-Point Trust-Region version, which were used in our experiments 

about nonlinear fitting. They can be regarded as an improvement on the limited memory 

quasi-Newton [52] method within trust regions. 

The Interior-Point Trust-Region approach defines a region, normally represented 

by     distance from the current reference point. The next stage of iteration is constrained 

to be within this region to present  an overly long step from the current reference point. 

An objective function modeled within this region chooses the direction and size 
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simultaneously for the next step. If the next potential step is not successful, the method 

will adaptively reduce the size of current region and formulate the next minimizer. On the 

other hand, if the potential step is successful, the size of the current region will be 

enlarged. The size of the trust region is central to each step. The objective function value 

won’t move much closer to the minimum point in the next step if the region is too small; 

otherwise, the objective function value of the model will be far from the minimum point 

of the objective function. Thus, the previous iteration’s performance will uniquely 

determine the size of the region. A successful step explained below indicates that the 

current model is good over the current region and its size can be increased. A failed step 

indicates that the current modeling of the objective function is an inadequate expression 

of the objective function, and then the step size will be decreased.  

A trust-region method will yield longer steps and a larger reduction in the 

function to be minimized, towards its potential minimum point in its trust region, than 

line search methods. With the iterations and adjustments of the trust region included in 

the optimization procedure, the algorithm converges to the local extreme value in the 

trust region.  

For a nonlinear objective function 

    
 

{ ( )        } (5.11) 

        is the objective function with lower and upper bounds interior with a 

feasible set   {            } where   is an interior box-bounded region. Thus, 

the scaled feasible point  ̂  maintains the equivalent unit distance to all nearest bounds in 

the region  . Distance   can be determined using 
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     ̂    
         (         ) (5.12) 

where 

  
               (         ) 

     

More flexibility is provided for reducing the value of the objective function [61] - [65]. 

By Taylor’s theorem associated with the objective function   at a value   , we 

have the expression 

  (     )   (  )   [
  (  )

   
]
 

   
 

 
  

 [
   (      )

   
 ]    

where       and the term   (     )  
 

 
  

 [
   (      )

   
 ]    is the mean-value 

form of remainder. Then we are seeking the solution to the subproblem below for the  th 

step 

    
     

{ (  )   [
  (  )

   
]

 

   
 

 
  

 [
   (  )

   
 

]     ‖    ‖     } (5.13) 

where            within a sufficiently small neighborhood of elliptical trust region 

‖    ‖     centered at    for current variable   ;    is a scaling matrix and    is the 

size of trust region.  

Combining both lower and upper bounds of  , a new function          can 

be defined by 
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 (5.14) 

 

Let    be a diagonal matrix for affine scaling such that 

        ( √| (  )|⁄ )    (5.15) 

Then 

  
  

  (  )

   
   

will be the solution to the above subproblem if the trust region size    is sufficiently 

large in the interior neighborhood   of a local minimizer. By the affine transformation, 

we have 

 ̂     , 

 ̂    
    

      (| (  )|
 
 ) 

and 

 ̂    
  (     )  

       (  )  
  

where   
  is the Jacobian for | (  )|,    is an approximation for 

   (  )

   
  and 

         (  )  
    

where    is a positive semi-definite diagonal matrix that contains the information  of 

constraints.  
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The nonlinear function 

 (    )   (     ) 

can be approximated by the quadratic  (  ) using the Taylor Theorem. Let    

  
   ̂ ; then 

   
  

{  (  )   (  )    
    

 

 
  

 (
   (  )

   
 

   )    ‖    ‖    } (5.16) 

where 

    
  (  )

   
 

In the neighborhood of a local minimum value, the Newton step [66] used to solve 

  
    (  )

   
   is in fact a solution to the above trust-region problem if    is sufficiently 

large. 

Then the trust region   is computed for use in the  th step or iteration. Since 

  (  ) is an approximation to  (     )   (  )  
 

 
  

     , the size of trust region 

   would be  updated by a rule based on a  degree of approximation that can be 

measured by the ratio between actual reduction of   and predictive reduction of  : 

    
 (  )   (     )  

 
   

     

  ( )    (  )
   (5.17) 

If      which is a predefined threshold between 0 and 1, the current trust region will 

be enlarged by adjusting    to indicate that the objective function was reduced 

successfully at the  th step. If     , then the trust region would be compacted to imply 
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that the objective function was not reduced successfully at the  th step. The overall 

procedure can be summarized in [53] as below: 

Initialization: Find a point      for       

For         

1. Find  (  ),   ,   , and   .  

2. Compute    as an approximate solution based on the quadratic model 

 (  )    
    

 

 
  

 (     )   

to ensure        . 

3. Compute   . 

4. If     , then set           . Otherwise, let        . 

5. Update    and   . 

6. Repeat, stating at stage 1. 

The convergence analysis of the above algorithm is shown in [53]. 

For an arbitrary single pulse estimated by different approaches ranging from 

LP+CC, IAIF to ZZT to be fitted by Trust-Region methods, the pulse will be aligned with 

the location -    of the maximum negative value of the glottal pulse in Figure 5.7(a) and 

normalized by dividing the value of the flow derivative at    -   . Then the fitting 

operation is applied to the normalized version of the estimated waveform with    fixed. 

To minimize the    error, the shifted and normalized version is nonlinearly fitted by 

fixing the location of    and normalizing the amplitude of    at    according to the 

procedure summarized above. Furthermore, the estimated and fitted waveforms spanning 
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an interval of one pitch period will be parameterized quantitatively if the data fitting 

process converges successfully [67] - [73] by the above nonlinear least-square optimizer 

with or without constraint about net gain of the overall fitting pulse shape. By comparing 

the predetermined parameter set for generating the LF excitation pulse and the parameter 

values resulting in the fitting pulses, we can evaluate the estimation performance with a 

variety of approaches listed before. The parameters associated with different methods are 

summarized in Table 5.1.  
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Figure 5.7 (a) Synthetic LF excitation pulse (b) Estimated pulse (black dash line) by LP+CC method 
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A variety of LF model based synthetic pulses containing a pulse like that shown 

in Figure 5.7 (a) were cascaded as the excitation to an artificial vocal-tract all-pole model 

with 12 complex conjugate poles to represent its coefficients. Thus, a synthetic speech 

utterance was generated.  

The waveform estimated by the LP+CC approach in this chapter is shown in 

Figure 5.7(b). The open-phase portion of the waveform represented by solid gray line in 

Figure 5.7(b) matches well with the original synthetic pulse well; however, the returning 

phase expressed by a sudden discontinuity doesn’t appear like the waveform in Figure 5.7 

(a) because of the mix-phase characteristics of an LF model in its return-phase portion. It 

indicates that the LP+CC approach can deal with the pure phase components of an 

excitation signal of a speech utterance better than mix-phase components. Also the open-

phase part of the response in Figure 5.7(b) is close to that in Figure 5.7(a).  

A similar phenomenon is present for the estimation and fitting results shown in 

Figure 5.8 for a single pulse by the IAIF method consisting of several Linear Prediction 

analysis and inverse filters according to the fitting rule mentioned above. The return 

phase of the estimated pulse shows the discontinuity exhibited in Figure 5.7(b). 

Meanwhile, the   optimization operation based on trust-region provides a fairly good 

LF-fitting performance over the open-phase portion for the estimated waveform 

represented by the black dash-dot line with amplitude distortions which were largely 

suppressed by LP+CC estimation in Figure 5.7(a). However, the peak of open-phase 

portion is higher than the original excitation pulse. 
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.  
 

Figure 5. 8 Estimated pulse (black dash line) by IAIF method 

 

 

 
 

Figure 5. 9 Estimated pulse (black dash line) by ZZT method 
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 The ZZT method that separates maximum-phase from minimum-phase of speech 

signal has an inferior estimation and resulting fitting results in Figure 5.9 comparing with 

its counterpart in Figure 5.7(b) and Figure 5.8. 

 Although methods like LP+CC and IAIF have noticeable distortion when used to 

recover the information contained in the close-phase region of LF model, they still 

recover valuable information inside the open-phase region. All LF shaping parameters 

and their quantities associated with these three distinct excitation estimation methods are 

listed in Table 5.2 with their sample estimated pulses truncated by the window with 

length of the synthetic pulse positioned at   . 

 

Table 5.1 Comparison of parameters of synthetic and fitting excitation pulses from different methods  

 

Based on the quantities summarized in Table 5.1, we conclude that the two 

estimation methods involving LP analysis and inverse filtering (LP+CC and IAIF) have 

an advantage over the ZZT method. The separation of vocal-tract and GFP information 

based on phase separation can be used to improve the result. But this approach lacks 

 
        β 

   error/ Energy 

(Percent) 

Synthetic Pulse 1 32 0.095 0.69 N/A 

Fitting Pulse 

( LP+CC) 
1.881    30.22 0.094 15.451 12.18  

Fitting Pulse 

( IAIF) 
1.004 30.197 0.058 12.4346 16.64% 

Fitting Pulse 

( ZZT) 
1 25.55 0.0037 0.0756 63.21  
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some accuracy while dealing with the LF synthetic model in this set of experiments. The 

fidelity of the open-phase portion of the original excitation information can be largely 

preserved by LP analysis and its inverse filtering. Thus, it becomes at least a practical 

benefit to extract real speakers’ excitation pulses for vowels and voiced sounds as their 

private physical features as described in chapter 7.  

 

Summary 

 In this chapter, we presented an improved approach based on the jointly 

parametric and nonparametric estimation for vowels. Unlike most existing conventional 

LP applications, we formulated an odd-order all-pole model to cancel the formants from 

the vocal-tract response by inverse filtering, the result of which gives a way for further 

refinement in terms of GFPs because of the obtaining of rough pulses after LP analysis 

and inverse filtering. The phase characteristics of GFP and vocal-tract responses enable 

us to employ the CC as a phase-decomposition based method to split the maximum-phase 

and minimum-phase components of the signal from each another. Thus, this gives us an 

effective way to enhance the estimation results from LP analysis.  

As we employ limited data for each shifted LP window and apply inverse filtering 

to estimate individual glottal pulses represented by open, return and close phase, we can 

easily cascade these estimated pulses together to form a train together with the 

information of pitch length variation. Therefore, the estimation results can be further 

developed synchronously to recover a pulse train. The high computation-cost closely 

associated with the detection of GCIs to locate an adequate pitch for analysis in phase-
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decomposition methods can be avoided. According to what we have achieved in this 

chapter, we can evaluate the effectiveness of the proposed method for extracting features 

of real speech for a number of speech processing applications. An example of these 

applications will be introduced in chapter 7 as another approach to evaluate our method. 
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CHAPTER SIX 

 

JOINTLY PARAMETRIC AND NONPARMETRIC ESTIMATION  

METHODS OF GLOTTAL FLOW PULSES II 

 

Covariance methods of LP analysis typically based on all-pole models 

representing the human vocal tract once dominated the glottal pulse extraction task [17], 

[18]. They adapt LS algorithms to find the parameters for their models given the model 

type and the number of parameters. Model-based approaches must assume model types 

and model orders as a priori information; however, a priori information is generally 

unknown. Thus, there are always some inaccuracies in these model-base approaches.   

As a single LF model [7] was found by polynomial analysis to have the glottal 

pulse return phase being mixed-phase [10]. Some nonparametric methods [31], [32] have 

been used for the decomposition between the maximum-phase and minimum-phase parts 

of speech signals. The decomposition results proved helpful to perform the source-tract 

separation. Also the introduction of LS residual errors as a result of LP analysis affects 

the extraction. Both of these two concerns will be taken into accounts while we design a 

further processing procedure. 

Higher-order homomorphic filtering is able to deal with the phase decomposition 

and the suppression of noise introduced by the LP analysis and its corresponding inverse 

filtering upon the speech sequence. The bicepstrum expression can be used to separate 

the maximum and minimum-phase components [74]. The cumulant and cepstrum are 

based on higher-order statistical (HOS) methods which help suppress effects of additive 

noise and whitening residual errors which are byproducts of inverse filtering by 

coefficients of LP analysis. 
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We here design an odd-order all-pole predictor to implement the LP analysis. If 

the vocal-tract is lossy, it is assumed to be minimum-phase and represented by inside-

unit-circle complex conjugate poles of an all-pole model. Therefore, any individual 

glottal pulse will be represented by at least one real pole from the model. First, we can 

get a rough representation after the inverse filtering was applied to the original observed 

speech sequence. Then we can improve the inverse-filtering results by applying HOS 

processing to perform phase decomposition. And the bicepstrum representation of coarse 

pulses will largely help suppress the errors coming from LS estimation in LP covariance 

analysis. 

 

Brief Background on Higher-Order Statistics  

The covariance method of LP analysis together with an optimization algorithm 

results in lower residual error level than the autocorrelation method which is based on 

second-order statistics. Also, the autocorrelation function used in the autocorrelation 

method will eliminate all phase information. Fortunately, we can look beyond second-

order statistics with help of higher-order cumulants given by [75] 

  
( )

 
      ( )

   
     

where   ( )         is the moment generating function of random variable  .  

If the order of statistical analysis is increased enough to look beyond the domain 

of correlation and its frequency counterpart, we are able to find the magnitude and phase 

information without the assumption about models, the number of model parameters, and 

linearities of the system. The third-order cumulants, bispectrum and bicepstrum have 
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been widely applied in signal reconstruction and detection because of their less 

computation costs compared with fourth and higher order statistics approaches. The third-

order cumulant for a stationary process    is denoted by 

  
( )(     )    

( )(     )    
( )

[  
( )(  )    

( )(  )    
( )(     )]   (  

( )
)
 

 

(6.1) 

where 

  
( )(     )     ( ) (    ) (    )  

and 

  
( )(  )     ( ) (    )  

and 

  
( )

    ( )   

Thus,   
( )

,   
( )( ) and   

( )(   ) are respectively first, second and third order statistical 

average operators.   
( )(     ) can be obtained by averaging observed data [76] - [84]. 

Now we are concentrating on the bicepstrum to conduct phase separation as we 

did for the complex cepstrum. We will evaluate the potential improvement compared 

with existing methods. 

The bicepstrum is given by 

  ̂ 
( )(     )     {    [  

( )(     )]} (6.2) 

The estimated bispectrum of the sum of two sinusoidal signals is shown in Figure 6.1. 
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Figure 6.1 Illustration of bispectrum of     
 

 
     

 

 
  

 

 

Odd-Order Linear Prediction 

 Consider a speech signal   , for which the  -transform is denoted by  

  ( )   ( ) ( )   (6.3) 

 Equation (6.3) represents the response of GFPs and the lip radiation modeled by the first-

order difference equation, and  ( ) is the response of vocal tract that is a minimum-

phase system [25], which might contain zeros.  ( ) can be represented by 
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 ( )     ( )   ( )  

    ( )        ( )        ( ) 

where    ( )  denotes all-zero part and    ( )  denotes all-pole part of vocal-tract 

response. The estimate of  ( ) and  ( ) leads to the source-tract separation.   

Covariance methods of LP analysis, usually with even order, have become a 

major tool for the parametric analysis of voiced speech utterances [17], [18] since they 

can represent resonance frequencies characterizing the speaker’s vocal tract. On the other 

hand, an odd-order all-pole model expressed by 

 ̂  ( )  
 

  ∑          
   

 

guarantees that at least one real pole represents the low-pass tilting effect of the glottal 

source. Then we can separate  ̂  ( )  into two systems  ̂       ( )  contributed by 

complex pole pairs and   ̂       ( ) contributed by real poles. 

  ( )   ̂  ( ) ( ) (6.4) 

holds after inverse filtering with  ̂  ( ) obtained from LP analysis applied to  ( ). Here 

  

          
↔    ( ) and    denotes the vector of LP residual errors. 

Let    [  
( )

     
( )

]
 

    be a windowed discrete-time speech frame and 

 ̂   ̃    be the optimum estimate of     in LS sense, then the all-pole model 

coefficients vector    [  
( )

        
( )

]
 

 is found to minimize the    norm error 

between the observed signal    and its estimation  ̂ . In general, 

      
  

 ‖    ̃   ‖ 
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where  ̃     (    )  is a data matrix shown in (5.3) and  ̂  can be determined by 

recursive LS algorithms.  

Given a predictor coefficient vector  ̂  with an odd number of elements, there 

exists at least one real root     , such that 

 (     
  )    ∑  ̂    

    

   

 

as the result of LS estimation. Then the remaining complex poles from   excluding    

are reserved for the representation of the coarse vocal-tract response, here   is the set of 

all roots of the above polynomial. 

 These estimated complex conjugate poles form a linear filter to deconvolve the 

observed speech signal to obtain the coarse representation of the glottal source 

corresponding to the current windowed speech frame. This leads to the estimated glottal 

excitation     
          
↔    ( ) expressed by 

  ( )  
 ( )

 ̂       ( )
  ̂       ( ) ( ) (6.5) 

where  ̂       ( ), the estimation of         ( ), might contain some components from 

the resonances         ( ) of the speaker’s vocal tract. 

 In next step, we need to refine the glottal source estimates by removing those 

remaining components of the vocal-tract response after the LP analysis and inverse 

filtering. Meanwhile, how to suppress LS residual errors  ( ) and the additive noise is 

another concern in our approach. 
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High-Order Homomorphic Filtering 

Rough results from the odd-order LP analysis and inverse filtering form a good 

beginning for synchronized processing since the glottal closure instants becomes obvious. 

From the phase characteristics of glottal source and vocal-tract responses, the phase 

decomposition could be effective [31], [32] for dealing with the results from inverse 

filtering, in which complex conjugate poles play an important role to cancel formants in 

speech. HOS methods can be invoked to suppress the residual errors which are akin to 

white noise. Based on the bicepstrum from the third-order cumulants of the current 

speech sequence frame, we are able to achieve the refinement of individual glottal flow 

pulses. 

Consider a finite-length segment    spanning slightly larger than one pitch period 

within the estimated glottal source in Figure 6.1, and let   
( )(     ) denote the third-

cumulant in Figure 6.2 from an indirect estimator [85]. Notice the tilting effect due to the 

bias [21]. 

 

Figure 6.2 Analysis region after LP analysis 
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Figure 6.3 The 3rd-order cumulant of the finite-length sequence    

 

From (6.5), a linear convolution relation holds 

        ̂  (6.6) 

where  ̂  denotes the  impulse response of the estimated glottal source corresponding to 

the real pole or poles of  ̂       ( )  in (6.5), and    denotes estimated excitation. 

Applying the two-dimensional  -transfrom to   
( )(     ), we obtain 

  
( )(     )    {  

( )(     )} 

to suppress additive noise where   
( )(     ) is the bispectrum of   . If the residual error 

response    is assumed to have white noise-like properties between two successive 

impulses, then from Appendix A, we have the bicepstrum   
( )(     ) corresponding to 

the random output of linear system  ( ) shown below 
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 (    )   (6.7) 

Furthermore, the bispectrum is 

  
( )(     )     {  

( )(     )} 

         
( )

   (  )   (  ) (  ) 
 (    )  

    (6.8) 

where   
( )

 is the skewness of    and   is the system gain. The system response  (  ) is 

given by 

 (  )     (  
  ) (  )  

    

where   ,  (  
  ) and  (  

  ) respectively denote the system gain, minimum-phase and 

maximum-phase components of  (  ).  Meanwhile, the linear phase term   
   could be 

removed by phase unwrapping. Similarly, we have 

 (  )     (  
  ) (  )  

    

and 

  (    )       (  
    

  ) (    )(    )
       

Thus the bicepstrum   
( )

 of    not considering linear phase terms is given by 

   
( )(     )    

( )
    (  

  ) (  ) (  
  ) (  ) (  

    
  ) (    ) (6.9) 

where            is the gain. The natural logarithm expression of   
( )(     ) is given 

by 
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The bicepstrum  ̂ 
( )(     )  in the two-dimensional plane after taking inverse     

transform of     
( )(     ) is given by [74] 
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 (6.11) 

 

All bicepstrum quantities except those at the origin along the axis      can be 

expressed as 

  ̂ 
( )

(    ) {
        

−  (  )          

      
−  (   )        

 (6.12) 

 

 where  ( )  and  ( )as differential cepstrum [85] terms are mapped to the bicepstrum 

plane to derive the complex cepstrum  ̂ (  ) with the property [74], [87] 
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 ̂ 
( )(    )   ̂ (  )   

Since maximum-phase components  ̂ 
( )(  ) and minimum-phase components  ̂ 

( )(  ) 

lie in the left and right hand of origin of cepstrum plane, we can recover both maximum-

phase    and minimum-phase impulse response    by applying an operator   
−       to 

 ̂ 
( )(  ) and  ̂ 

( )(  ). Here   
−       is the reverse transform of         where        

 ̂ ( ). Then the maximum-phase component    can be reserved as a refined GFP [19]. 

However, we need to consider linear phase terms in (6.10) and corresponding 

effects from those. Note that two-dimensional phase unwrappings to overcome phase 

discontinuities before applying the natural logarithm to the bispectrum will be much 

harder than what we did to calculate the cepstrum in one-dimensional case. We can 

circumvent the two-dimensional phase unwrapping by utilizing the relation [74], [85] 

   
( )

(     )  [    ̂ 
( )

(     )]       
( )

(     ) (6.13) 

where “ ” denotes two-dimensional convolution operator. A set of cepstral equations 

derived from above expression are listed in [85] as 

∑ ( )[  
( )(       )    

( )(         )]

 

   

 ∑ ( )[  
( )(         )    

( )(       )]

 

   

      
( )(     ) 

(6.14) 

where   and   are parameters to restrict the numbers of coefficients  ( ) ,  ( )  and 

     ,      . 
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Simulation Results 

 In order to evaluate the performance of the proposed approach of estimating 

individual GFPs, two sets of experiments were performed. A sampling rate of 8kHz was 

used.  

An estimation of a GFP from a real vowel     from a male speaker is shown in 

Figure 6.4. The pulse which results from the inverse filtering in Figure 6.2 behaves as an 

input to a conventional indirect estimator [84] for the third-order cumulant with      

and     after comparing different combinations of   and   values [86], [87]. 

 

 

Figure 6.4 Normalized GFP estimation from a real vowel /a/  

 

Another single pulse is generated in Figure 6.5(a) by convolution of two 

exponential sequences [39]. 
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Figure 6.5  Illustration of (a) Original GFP used to generate voiced 

Speech sequence (b) Estimated GFP resulting from LP and bicepstrum- 

decomposition 

 

Concatenating the duplications of a single pulse, we created a train of glottal 

excitations to the cascaded second-order resonance systems and first-order difference 

equations modeling of the vocal tract and lips radiation responses, respectively, while 

synthesizing a sustained voiced speech utterance. After applying the HOS GFP 
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estimation approach, we can recover the excitation signal, especially, individual pulses. 

The process can be summarized by Figure 6.6. 

 

 

 

 

Figure 6.6 Workflow to recover exciting synthetic glottal pulse   

 

A comparison can be made through the single pulse estimation shown in Figure 

6.5(b) as the result of 12-pole inverse filtering and HOS homomorphic filtering of one 

segment of observed data. Notice that the estimated GFP shown in Figure 6.5(b) has a 

steeper decreasing attenuation than that of in Figure 6.4(a) in its open-phase portions. 

This distortion is normally introduced by insufficient samples while calculating the 

average [88]. The waveform shown in Fig. 6.5(b) is free of whitening residue errors since 

they were suppressed by the bicepsturm method already described. The bicepstrum 

quantities along the axis      axis are obtained, while the origin is discarded.  

A quantitative comparison was calculated of parameter sets between the synthetic 

pulse and fitted waveform to analyze the performance of the estimation methods based on 

our observations of data excited by cascaded synthetic LF models with those known 

parameters. 

GFP 

Estimation 

Vocal-tract 

Model 
Lips 

Radiation 

Synthetic LF 
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Recovered 
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Figure 6.7 (a) Synthetic LF excitation pulse (b) Estimated pulse (black dash line) 

and fitted pulse (gray solid line) 
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Table 6.1  Comparison of parameters of synthetic and fitted excitation pulses 

  

The peak value of overshoot of the estimated pulse in the open phase in Figure 6.7 

(b) exceeds that of the pulse shown in Figure 6.7(a). Also, the values of the parameter    

   and    for the synthetic pulse differ from those of the fitted pulses. These three 

parameters and β determine the shape of fitted pulse in open phase. See Table 6.1. 

The overall    fitting error implies that it has better performance than the pure phase 

separation method with the LF model used to represent the excitation pulse. Several 

papers [84], [89] mentioned that higher-order statistics are immune to Gaussian noises. 

The distortions shown in Figure 5.6(b) can be suppressed. 

 

Summary 

 In this chapter, we presented a technique combining LP and HOS processing to 

estimate and model the GFP waveform for voiced speech sounds. The return-phase 

information can be estimated and the residue errors from LP analysis due to the inverse 

filtering after LP covariance analysis can be suppressed. A large computation cost of 

accurate GCI detections [9] can be avoided if the inverse filtering is applied to find 

 
        β 

   error/ Energy 

(Percent) 

Synthetic Pulse 1 32 0.095 0.69 N/A 

Fitting Pulse 16.6 16.8 0.0177 0.144 35.54% 
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coarse estimation of GFPs with the reciprocal of complex conjugate poles from an all-

pole LP model. However, the lack of prior information while setting  parameter   and   

might bring distortions to estimated pulses. 
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CHAPTER SEVEN 

 

A SMALL SCALE SPEAKER IDENTIFIER WITH LIMITED 

EXCITING INFORMATION 

 

As glottal pulses had been intuitively to consider containing excitation 

information from a specific speaker, the estimated glottal pulse in chapter 5 gives us a 

direct representation of the continuous information as pulses in waveform. Extracting 

parameter values from the continuous information to form speaker’s features, we can try 

to apply these new feature values to training models for speaker recognition. Followed by 

a maximum and minimum phase separation operation, the glottal pulses are estimated 

using linear prediction followed by its inverse filtering by estimated LP all-pole 

coefficients. These estimated waveforms can be fitted by a new LF glottal flow derivative 

model whose shape can be adjusted through its parameters to minimize the least-square 

errors between target waveform and fitting model as previously described in chapter 5.  

Estimating these LF model parameters obtained from the inverse filtering of 

linear prediction applying to the original speech, and complex cepstrum coefficients, we 

set up a training set for each speaker who was used as a test subject later on in the 

realization of a speaker identification system. Then a classification system based on 

minimum distance rule is applied to testing data for each subject to decide which centroid 

is nearest to the current testing subject among all centroids in the sense of least 

Minkowski-distance or by other metrics.  Then labels corresponding to centroids can be 

assigned to all observed testing features in this way. The identifiability of speech features 

in terms of estimated glottal flow pulses of all subjects is thus determined as a result of 

the experiment.  
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Overall Scheme of the Speaker Identifier 

What makes a speaker identification based on specific phonemes different from 

other speech or speaker recognition systems is the limited number of training and testing 

features. We had only a small amount of observed data to build models to find their 

statistical properties. The minimum-distance classifier, based on vector quantization, to 

choose nearest neighbor is employed as shown in Figure 7.1 shows in [90] - [99].   

Let   {          }  be the set of all observed feature vectors and   

{          } be the set of centroids between training data where      is a testing 

feature space and      is a training feature space. Let   {       }  be a 

corresponding label associated with each   ,      , in the set  . For a general 

identification problem, the task is to find a mapping       knowing observation 

space   and parameter space  . According to the metric of the distance between two 

points     and     , we can furthermore find the optimum    by 

         
         

 (        ) 

with measure operator  ( )  based on the Minkowski distance ‖   ‖  where   is 

alterable depending on characteristics of these points. Different metrics are applied to the 

speaker identification system with different p values.  
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Figure 7.1 Speaker identification system to choose models 

   

   

 

Figure 7.2 Decision boundaries for centroids based on Minimum Euclidean Distance 
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A two-dimensional decision region distribution based on minimum Minkowski 

distance with     is illustrated in Figure 7.2. Our target in this chapter is not to find a 

high-performance classifier, but rather to use a simple classifier to show that the feature 

vectors of glottal flow pulses do convey speaker identity information that differs from 

speaker to speaker. 

 

Selection of Distinct Feature Patterns for Identifier 

After glottal flow pulses have been estimated using the jointly parametric and 

nonparametric approach discussed in chapter 5, then speakers’ parameterization results 

achieved by nonlinear least-square fitting of their estimated pulses based on minimization 

of    error can be considered feature vectors for a small scale text dependent 

identification system. Fixing the location -    of the maximum negative value    of the 

glottal pulses shown in Figure 7.3(a) and (c), we can align LF-fitted pulses from voiced 

utterances for all subjects to the same   . Then all fitted pulses are normalized by their 

values of    to scale all fitted pulses into the same measurable system. Then four scalars 

  ,   ,   and   are measured for both training data and testing data for each subject after 

LF-fitting using nonlinear least-square optimization. These scalars as results of 

parameterizations for those estimated pulses are fused into one feature vector which is 

fed into the identifier in Figure 7.1.  
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Figure 7.3 Illustrations of a single estimated glottal flow derivatives and their  

fitting pulses. (a) Estimated pulse for Speaker A (b) LF-fitting pulse with estimate 

parameters:         ,        ,         ,         (c) Estimated pulse 

for Speaker B (d) LF-fitting pulse with estimate parameters:        ,        , 

        ,         

 

 



88 

 

The difference vector      
between a testing feature pattern   and each training 

centroid    can be easily obtained by      
 |    |  where an element      

( )  

| ( )    
( )

|. A deviation ratio vector    between the current testing vector   and all 

centroids   will be scaled by applying the Kronecker product of between      
 and  ̅  

which is vector of reciprocals of the elements of centroid   . Furthermore, the class label 

  will be decided based on the minimum   norm on         
  ̅  between the current 

testing pattern   and the  th centroid   . 

The parameters shown in Figure 7.3 come from the optimum coefficients of 

Trust-Region fitting with the LF model (3.3) based on estimated pulses for a real speech 

voiced phoneme for the limited speaker population involved in the experiment. These LF 

model parameters   ,   ,   and   or other ones used for the geometrical representation of 

a class of waveforms will increasingly reduce the distance among distinct patterns  if the 

body of subjects is expanded. Meanwhile, the fitting task, which is in fact an 

approximation to the observed function or sequence, will automatically remove some 

valuable information that probably contained in the estimation of glottal flow pulses or 

derivatives. Therefore, these two weaknesses closely associated with fitting parameters as 

feature patterns of speakers will increase the challenge of performing discrimination 

when more subjects are included in the tests. 

Some existing mature identification systems [100] – [106] employing cepstrum 

coefficients or a variety of frequency coefficients as speaker features have demonstrated 

good performance. If any method of estimating information about glottal pulses is 
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effective, it should be possible to use this information to improve the overall 

identification performance.  

A brief summary of a speaker-identification system based on complex cepstrum 

performance is now given. A group of complex cepstrum quantities  ̂ ( ) for each pulse 

within one-pitch interval, generated by the windowed all-pole LP analysis and 

corresponding inverse filtering with those estimated coefficients for the LP model, are 

used to investigate whether excitation information of a speaker is contained in the 

estimated representation of complex cepstrum. Because  ̂ ( )   ̂   ( )   ̂   ( ) 

where  ̂   ( ) and  ̂   ( ) denote cepstrum quantities in terms of maximum-phase and 

minimum-phase components [23], we can apply linear liftering to split  ̂   ( )  and 

 ̂   ( ) as what we did in chapter 5.  

 Complex cepstrum quantities corresponding to maximum-phase components of 

the estimated pulse after LP analysis and inverse filtering are therefore collected as 

feature vectors for the current speaker. As cepstrum quantities related to maximum-phase 

components mainly comes from LF model excitation source [13], [19], the 

representations of these components, with negative index in cepstrum frequency domain, 

can be used to formulate features for all subjects involved in the identifier.  To check 

whether the glottal flow pulses carry information which can be used to help identify 

distinct subjects, training and testing features coming from estimated pulses for each 

subject are applied to the identifier in Figure 7.1.  
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Additionally, the complex cepstrum coefficients for a single glottal flow pulse for 

each term of two distinct speakers and the extracted portion to form feature vectors for 

these two speakers are shown in Figure 7.4. 

 

 

 

 

Figure 7.4 Illustrations of complex cepstrum coefficients of a single estimated 

glottal flow pulse and extraction of low cepstrum-frequency quantities. (a) complex 

cepstrum coefficients for Speaker A (b) quantities used for feature pattern 

about speaker A (c) complex cepstrum coefficients for Speaker B (d) quantities 

used for feature pattern about Speaker B 
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With glottal flow pulses estimated with the jointly parametric and nonparametric 

approach, 13 complex-cepstrum coefficient vectors  ̂    corresponding to maximum-

phase components for all speakers’ were collected to form both training space   and 

testing space   as what we did when using LF fitting parameters. Difference vector 

     
between a testing feature pattern   and each training centroid    can be obtained by 

     
 |    |  as for LF model feature vectors. Furthermore, the class parameter   

will be decided based on the minimum Euclidean distance, ‖     
‖

 
, between the current 

testing pattern   and the  th centroid   . With 8 kHz sampled testing and training 

utterances of vowel     from 12 distinct subjects, the identification performance for 

features from the LF-model and complex cepstrum coefficients corresponding to 

maximum-phase are summarized in Table 7.1.  

Features Correctness - % 

LF-model parameters 83.3 

CC parameters 75.0 

 

Table 7.1 Speaker identification results for two different features  

  

Inconsistent modes of phonation in terms of each subject: normal, pressed or 

breathy, could result in variations of estimated excitation waveforms even for the same 

speaker. This introduces variations and sensitivities to feature patterns used in the 

identifier. Thus, an identifier which employs only excitation information might be very 

inadequate without other speech information, especially with a large number of subjects. 
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However, combining features from the LF model with other speech features such as pitch 

or vocal-tract response will be expected to enhance speaker recognition system based on 

only one of these two feature sets.  
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CHAPTER EIGHT 

 

CONCLUSIONS 

 

This dissertation has investigated human speech production, source-tract 

interaction mechanisms and a variety of proposed glottal models that are central to the 

problem of estimating the periodic glottal excitation for voiced sounds or vowels. 

Although there exist some estimation schemes and some progress in the area of 

recovering the excitation information, they were restricted by some negative factors like 

strict assumptions and high computational complexities. Based on concerns about these 

limitations, we proposed two jointly parametric and nonparametric excitation estimation 

approaches, which employ phase decomposition without any assumed model type and 

just one step of LP analysis and inverse filtering for each flexible sliding window, to 

improve estimation results by using LP inverse filtering and homomorphic processing. 

Estimated glottal pulse parameters were evaluated for their effectiveness for a speaker 

identification using LF fitting model parameters and complex cepstrum coefficients as 

features. These features are used to estimate a speaker’s glottal characteristics as voiced 

phonemes are pronounced. 

 

Jointly Parametric and Nonparametric Excitation Estimation  

For Real and Synthetic Speech 

Recovering the excitation signal of a voiced speech utterance is in fact an inverse 

problem where the source cannot be observed directly. This fact adds complexities to the 

evaluation of estimation results.  The speech signal results from interactions of glottal 
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excitation, vocal-tract response and lips radiation. Linear system theory provides a 

theoretical basis for estimating the glottal excitations as is proposed in this dissertation. 

Different aspects of glottal excitation and vocal tract together with their combinational 

effects have been employed, including least-squares inverse filtering, IAIF, ZZT and CC. 

Each approach has its own advantages and restrictions. Our ultimate research goal was to 

discover new strategies to employ their advantages and minimize their weaknesses in a 

way to extract the glottal source information from speech utterances for voiced phonemes 

and to suppress the response of vocal tract in the process of recovering glottal source 

waveforms. Linear prediction and phase separation as two mature tools in speech analysis 

were combined to produce an enhancement to generate a  smooth glottal pulse curve as 

shown in chapter 5. With the efficient use of frame-by-frame, odd-order LP analysis and 

its corresponding inverse filtering, the response of excitations from a speaker can be 

recovered. Multiple inverse filtering sections in IAIF [4] are no longer necessary in the 

process of recovering excitation information. Also, the accurate detection of glottal 

closure instants to fix two ending points of the analysis region for the following phase 

separation section to split maximum-phase components from minimum-phase 

components is also no longer necessary. Additionally, our method of frame-by-frame LP 

analysis and inverse filtering saves computation costs  without precise detection of  

glottal closure instants and largely increases the robustness of the detection of these 

points in phase-separation.  

Another approach employing third-order cummulants and the bicepstrum to refine 

the glottal waveform estimated from the previous LP analysis and inverse filtering was 
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thoroughly described in chapter 6. The third-order cumulants and the bicepstrum can 

largely reject the distortions because of mismatch in the process of cancelling vocal-tract 

effects due to inverse filtering. The estimated pulses were smooth and free of noises after 

the LP inverse filtering. 

 Two different evaluation schemes were used to evaluate the validity of the 

estimated pulses. Firstly, these two jointly parametric and nonparametric approaches 

were applied to a real vowel utterance from human speech and the results of estimating 

the glottal pulse were presented. Secondly, two synthetic pulses produced by different 

generation methods (1) convolution of two exponential sequences [39] and (2) using the 

LF model, are used to synthesize pulse trains to excite an artificial vocal-tract model 

represented by complex pole pairs, to generate a synthetic voiced speech utterance. The 

glottal pulse estimation method was applied to the synthetic utterance generated by the 

first  method was directly compared with the synthetic pulse. And the estimation based 

on the utterance generated by the second method was be nonlinearly fitted by an LF 

model whose shape can be adjusted by several parameters [9]. These fitted parameters 

were further compared with those parameters used to synthesize LF-modeling pulses 

originally. Then the performance of the jointly parametric and nonparametric approaches 

was evaluated in terms of distinct types of synthetic excitation pulses as described above.  

  

Features from Estimated Glottal Pulses for Speaker Identifier 

 The LF-fitted parameterization of estimated pulses for a speaker provides a 

feature vector as excitation information for him. The complex cepstrum quantities 
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corresponding to maximum-phase components were also clustered as feature vectors for 

different speakers. For either type of feature vectors, a small scale text-dependent speaker 

identification system was implemented. This system was based on the minimum-distance 

decision between the observed feature and centroids for all speakers. Although the 

population involved was small, the speaker identification experiments showed that glottal 

excitation parameters estimated by the proposed method performed better than complex 

cepstrum parameters obtained from the same data.   

  

Suggested Directions of Research 

The field of extraction of glottal source information is young and full of 

challenges. All speech processing domains that potentially employ bioinformatics could 

benefit from the addition of this type of information. 

The problem of separating glottal source from vocal-tract information still 

presents challenges. The solution to this inverse problem will largely depend on new 

experimental and theoretical discoveries about interaction between source and vocal-tract 

components. With the help of these physical and theoretical explorations, better 

understanding of the roles played by both glottal pulses and vocal tract in the generation 

of voiced utterances will help researchers apply this knowledge to a variety of speech 

processing applications. Features which are byproducts of pulse estimation, along with 

maximum-phase cepstrum coefficients and other features from speakers, may be applied 

to speaker indentification with larger populations.  The development of a robust speaker 
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identification system that can perform well in a degraded environment, like in telephone 

speech, should also benefit from the methods proposed in this dissertation. 
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Appendix A 

Third-Order Cumulant and Bicepstrum of Output from a Linear System 

Excited by White Processes 

Let  ( ) be a 3rd order stationary process as the output of a linear system  ( ) excited 

by white noise  ( ), such that  ( )  (   )( )  ∑  (   ) ( ) . Then 

1.   
( )(     )    

( ) ∑  ( ) (    ) (    )  

2.   
( )(     )    

( )
 (  ) (  ) 

 (     ) 

Proof: 

      
( )(     ) 

    ( ) (    ) (    )  

 ∑   
( )(                    ) (  ) (  ) (  )

        

 

 ∑   
( )(                    ) (  ) (  ) (  )
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∑  (        ) 

        

(        
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Let        , then 
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Here, the proof of the 1
st
 part is completed.Now we express the bispectrum   

( )(     ) 

in terms of   
( )(     ) . Let   

( )(                    )    
( )(     

          ) by setting       and        . Then 

  
( )(     )    

( )(   )  ∑   
( )(               ) (  ) (  ) (  )

        

 

So 

  
( )(     )  ∑ ∑   

( )(   )   (       )

           

 

after arrangements, 

  
( )(     )  ∑  (  ) (  ) (  ) (∑  

( )(        

           

       ) 
  (       )) 

Substitute 

∑  
( )(               ) 

  (       )

   

   (     ) 
   (     )    (     ) 

into   
( )(     ), we get 

  (     )  ∑  (  ) (  ) (  )  (     )

        

    (     )    (     ) 

Since   (     )    
( )

 for statistical independent process, the above expression 

becomes 

∑  (  ) (  ) (  )

        

               (     )   
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Thus   
( )(     )    

( )
 (  ) (  ) 

 (     ). The proof is completed.   
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