390 research outputs found

    Understanding motor control in humans to improve rehabilitation robots

    Get PDF
    Recent reviews highlighted the limited results of robotic rehabilitation and the low quality of evidences in this field. Despite the worldwide presence of several robotic infrastructures, there is still a lack of knowledge about the capabilities of robotic training effect on the neural control of movement. To fill this gap, a step back to motor neuroscience is needed: the understanding how the brain works in the generation of movements, how it adapts to changes and how it acquires new motor skills is fundamental. This is the rationale behind my PhD project and the contents of this thesis: all the studies included in fact examined changes in motor control due to different destabilizing conditions, ranging from external perturbations, to self-generated disturbances, to pathological conditions. Data on healthy and impaired adults have been collected and quantitative and objective information about kinematics, dynamics, performance and learning were obtained for the investigation of motor control and skill learning. Results on subjects with cervical dystonia show how important assessment is: possibly adequate treatments are missing because the physiological and pathological mechanisms underlying sensorimotor control are not routinely addressed in clinical practice. These results showed how sensory function is crucial for motor control. The relevance of proprioception in motor control and learning is evident also in a second study. This study, performed on healthy subjects, showed that stiffness control is associated with worse robustness to external perturbations and worse learning, which can be attributed to the lower sensitiveness while moving or co-activating. On the other hand, we found that the combination of higher reliance on proprioception with \u201cdisturbance training\u201d is able to lead to a better learning and better robustness. This is in line with recent findings showing that variability may facilitate learning and thus can be exploited for sensorimotor recovery. Based on these results, in a third study, we asked participants to use the more robust and efficient strategy in order to investigate the control policies used to reject disturbances. We found that control is non-linear and we associated this non-linearity with intermittent control. As the name says, intermittent control is characterized by open loop intervals, in which movements are not actively controlled. We exploited the intermittent control paradigm for other two modeling studies. In these studies we have shown how robust is this model, evaluating it in two complex situations, the coordination of two joints for postural balance and the coordination of two different balancing tasks. It is an intriguing issue, to be addressed in future studies, to consider how learning affects intermittency and how this can be exploited to enhance learning or recovery. The approach, that can exploit the results of this thesis, is the computational neurorehabilitation, which mathematically models the mechanisms underlying the rehabilitation process, with the aim of optimizing the individual treatment of patients. Integrating models of sensorimotor control during robotic neurorehabilitation, might lead to robots that are fully adaptable to the level of impairment of the patient and able to change their behavior accordingly to the patient\u2019s intention. This is one of the goals for the development of rehabilitation robotics and in particular of Wristbot, our robot for wrist rehabilitation: combining proper assessment and training protocols, based on motor control paradigms, will maximize robotic rehabilitation effects

    Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance

    Get PDF
    Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold (kinematic-UCM). A control strategy related to this hypothesis (CoM-control-strategy) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors (intermittent control-strategy) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM, when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway

    Intermittent control with ankle, hip, and mixed strategies during quiet standing: A theoretical proposal based on a double inverted pendulum model

    Get PDF
    Abstract Human upright posture, as a mechanical system, is characterized by an instability of saddle type, involving both stable and unstable dynamic modes. The brain stabilizes such system by generating active joint torques, according to a time-delayed neural feedback control. What is still unsolved is a clear understanding of the control strategies and the control mechanisms that are used by the central nervous system in order to stabilize the unstable posture in a robust way while maintaining flexibility. Most studies in this direction have been limited to the single inverted pendulum model, which is useful for formalizing fundamental mechanical aspects but insufficient for addressing more general issues concerning neural control strategies. Here we consider a double inverted pendulum model in the sagittal plane with small passive viscoelasticity at the ankle and hip joints. Despite difficulties in stabilizing the double pendulum model in the presence of the large feedback delay, we show that robust and flexible stabilization of the upright posture can be established by an intermittent control mechanism that achieves the goal of stabilizing the body posture according to a "divide and conquer strategy", which switches among different controllers in different parts of the state space of the double inverted pendulum. Remarkably, it is shown that a global, robust stability is achieved even if the individual controllers are unstable and the information exploited for switching from one controller to another is severely delayed, as it happens in biological reality. Moreover, the intermittent controller can automatically resolve coordination among multiple active torques associated with the muscle synergy, leading to the emergence of distinct temporally coordinated active torque patterns, referred to as the intermittent ankle, hip, and mixed strategies during quiet standing, depending on the passive elasticity at the hip joint

    Towards postural balance control of exoskeletons

    Get PDF
    Lower-limb wearable exoskeletons have been designed to assist people that have a spinal cord injury during standing and walking. However, because these people generally also have impaired balance, it is difficult, if not impossible for them to operate these exoskeletons without additional supporting aids, such as crutches. Ideally the exoskeleton supports its user’s balance, preferably in a human-like way to match the user's natural intention. Therefore, proper balance control of the exoskeleton is required. This work presents the first steps taken towards postural balance control of lower-limb wearable exoskeletons. The focus is specifically on standing balance control strategies for exoskeletons, inspired by human and humanoid standing balance. The first goal of this thesis was to explore balance control strategies for the application in a lower-limb exoskeletons, with a particular focus on human-like motion generation. In Chapter 2 the ability of the momentum-based controller to generate human-like feet-in-place balance recovery strategies was investigated. Besides feet-in-place balance recovery strategies, people also use a reactive stepping strategy to maintain balance. Therefore, in Chapter 3 it was investigated whether the occurrence of reactive stepping could be predicted using a classification-based method, and what features are most relevant for that prediction.The second goal of this thesis was to verify the effectiveness of exoskeleton balance support. Hence, the effects of an ankle exoskeleton and an ankle-knee exoskeleton on the balance of able-bodied users and (three) users with an incomplete spinal cord injury respectively were assessed in Chapters 4 and 5.By modeling human balance for the use in an exoskeleton on the one hand, and by analyzing and implementing existing balance control strategies on the other, the results presented in this thesis provide insight into how to impose standing balance on exoskeletons and their users.<br/

    Identifying Plant and Feedback in Human Posture Control

    Get PDF
    Human upright bipedal stance is a classic example of a control system consisting of a plant (i.e., the physical body and its actuators) and feedback (i.e., neural control) operating continuously in a closed loop. Determining the mechanistic basis of behavior in a closed loop control system is problematic because experimental manipulations or deficits due to trauma/injury influence all parts of the loop. Moreover, experimental techniques to open the loop (e.g., isolate the plant) are not viable because bipedal upright stance is not possible without feedback. The goal of the proposed study is to use a technique called closed loop system identification (CLSI) to investigate properties of the plant and feedback separately. Human upright stance has typically been approximated as a single-joint inverted pendulum, simplifying not only the control of a multi-linked body but also how sensory information is processed relative to body dynamics. However, a recent study showed that a single-joint approximation is inadequate. Trunk and leg segments are in-phase at frequencies below 1 Hz of body sway and simultaneously anti-phase at frequencies above 1 Hz during quiet stance. My dissertation studies have investigated the coordination between the leg and trunk segments and how sensory information is processed relative to that coordination. For example, additional sensory information provided through visual or light touch information led to a change of the in-phase pattern but not the anti-phase pattern, indicating that the anti-phase pattern may not be neurally controlled, but more a function of biomechanical properties of a two-segment body. In a subsequent study, I probed whether an internal model of the body processes visual information relative to a single or double-linked body. The results suggested a simple control strategy that processes sensory information relative to a single-joint internal model providing further evidence that the anti-phase pattern is biomechanically driven. These studies suggest potential mechanisms but cannot rule out alternative hypotheses because the source of behavioral changes can be attributed to properties of the plant and/or feedback. Here I adopt the CLSI approach using perturbations to probe separate processes within the postural control loop. Mechanical perturbations introduce sway as an input to the feedback, which in turn generates muscle activity as an output. Visual perturbations elicit muscle activity (a motor command) as an input to the plant, which then triggers body sway as an output. Mappings of muscle activity to body sway and body sway to muscle activity are used to identify properties of the plant and feedback, respectively. The results suggest that feedback compensates for the low-pass properties of the plant, except at higher frequencies. An optimal control model minimizing the amount of muscle activation suggests that the mechanism underlying this lack of compensation may be due to an uncompensated time delay. These techniques have the potential for more precise identification of the source of deficits in the postural control loop, leading to improved rehabilitation techniques and treatment of balance deficits, which currently contributes to 40% of nursing home admissions and costs the US health care system over $20B per year

    Identification of Motion Controllers In Human Standing And Walking

    Get PDF
    The method of trajectory optimization with direct collocation has the potential to extract generalized and realistic motion controllers from long duration movement data without requiring extensive measurement equipment. Knowing motion controllers not only can improve clinic assessments on locomotor disabilities, but also can inspire the control of powered exoskeletons and prostheses for better performance. Three aims were included in this dissertation. Aim 1 was to apply and validate the trajectory optimization for identification of the postural controllers in standing balance. The trajectory optimization approach was first validated on the simulated standing balance data and demonstrated that it can extract the correct postural control parameters. Then, six types of postural feedback controllers, from simple linear to complex nonlinear, were identified on six young adults’ motion data that was collected in a standing balance experiment. Results indicated that nonlinear controllers with multiple time delay paths can best explain their balance motions. A stochastic trajectory optimization approach was proposed that can help finding practically stable controllers in the identification process. Aim 2 focused on the foot placement control in walking. Foot placement controllers were successfully identified through the trajectory optimization method on nine young adults’ perturbed walking motions. It was shown that a linear controller with pelvis position and velocity feedback, suggested by the linear inverted pendulum model, was not sufficient to explain their foot placement among multiple walking speeds. Nonlinear controllers or more feedback signals, such as pelvis acceleration, are needed. Foot placement control was applied on a powered leg exoskeleton to control its legs’ swing motion. Two healthy participants were able to achieve stable walking with the controlled exoskeleton. v Results suggested that the foot placement controller helped decelerate the swing motion at late swing. In Aim 3, the trajectory optimization method was used to identify joint impedance properties in walking. Results of the synthetic study showed that relatively close impedance parameters can be identified. Then, a preliminary study was done to identify the ankle joint impedance properties of two participants at two walking speeds. The identified impedance properties were close to previous studies and consistent between different participants and walking speeds

    From standing posture to vertical jump - Experimental and model analysis of human movement

    Get PDF
    Dalla postura eretta al salto verticale - Analisi sperimentale e modellistica del movimento uman

    Postural control: learning to balance and responses to mechanical and sensory perturbations

    Get PDF
    The purpose of the current research was to examine how a novel balance task is learnt by individuals with a mature neurological system, and to investigate the responses of experienced hand balancers to mechanical and sensory perturbations. Balance in each posture was assessed by various techniques, including: traditional measures of centre of pressure, nonlinear time series analysis of centre of pressure, estimates of feedback time delay from cross correlations and delayed regression models, and calculation of small, medium, and large movement corrections. Data from this study suggests that the best balance metric for distinguishing between each of the balance conditions was the traditional balance measure of sway velocity. However, sway velocity cannot provide any further information on the underlying process of balance. Nonlinear measures of balance offer insight into the underlying deterministic processes that control balance, offering measures of system determinism, complexity, and predictability. Assessments of feedback time delay and movement corrections provide both an insight into the control of posture and help distinguish one condition from another. Both feedback time delay and movement corrections and magnitudes may be used simultaneously to delve further into the control of posture. Delayed regression models seem to be an appropriate and useful tool for estimating feedback time delays during balance. Findings support the use of the third term in the adapted regression model as a means of estimating the effect of passive stiffness on feedback time delay. Generally, with increased duration in handstand subjects displayed reduced sway as measured by traditional measures of balance. A more marked change in nonlinear measures of balance can be seen, with quicker reductions in variance for some nonlinear measures of balance than in the traditional measures. It may be that more pronounced changes in nonlinear measures represent changes in the subjects underlying process of postural control, whereas less pronounced changes in traditional measures relate more to their general ability or performance in the balance task
    • …
    corecore