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ABSTRACT 

The purpose of the current research was to examine how a novel balance task 

is learnt by individuals with a mature neurological system, and to investigate the 

responses of experienced hand balancers to mechanical and sensory 

perturbations. Balance in each posture was assessed by various techniques, 

including: traditional measures of centre of pressure, nonlinear time series 

analysis of centre of pressure, estimates of feedback time delay from cross 

correlations and delayed regression models, and calculation of small, medium, 

and large movement corrections. Data from this study suggests that the best 

balance metric for distinguishing between each of the balance conditions was 

the traditional balance measure of sway velocity. However, sway velocity 

cannot provide any further information on the underlying process of balance. 

Nonlinear measures of balance offer insight into the underlying deterministic 

processes that control balance, offering measures of system determinism, 

complexity, and predictability. Assessments of feedback time delay and 

movement corrections provide both an insight into the control of posture and 

help distinguish one condition from another. Both feedback time delay and 

movement corrections and magnitudes may be used simultaneously to delve 

further into the control of posture. Delayed regression models seem to be an 

appropriate and useful tool for estimating feedback time delays during balance. 

Findings support the use of the third term in the adapted regression model as a 

means of estimating the effect of passive stiffness on feedback time delay. 

Generally, with increased duration in handstand subjects displayed reduced 

sway as measured by traditional measures of balance. A more marked change 

in nonlinear measures of balance can be seen, with quicker reductions in 

variance for some nonlinear measures of balance than in the traditional 

measures. It may be that more pronounced changes in nonlinear measures 

represent changes in the subjects’ underlying process of postural control, 

whereas less pronounced changes in traditional measures relate more to their 

general ability or performance in the balance task. 
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CHAPTER 1 

INTRODUCTION 

In this chapter, an introduction to balance and postural control is provided, a 

brief overview of previous literature is presented, and the rationale for the 

research is offered. Research questions pertaining to the purpose are posed 

and described with reference to the literature, before an outline of the thesis is 

presented with a brief description of each chapter. 

1.1. Area of Study 

Balance and postural control is essential to the efficient execution of a vast 

array of skills, and poor balance has been linked to an increased risk of injuries 

in sport. Balance in a relatively static position, such as quiet stance, can be 

viewed as a dynamic process, with the execution of multiple postural 

adjustments to maintain a vertical orientation. There may be no separate 

mechanisms for posture and movement, where movement in its most 

elementary form can be seen as a modification of posture (Hayes, 1982). Thus, 

postural control is dependent to a large degree on the goal of any voluntary 

movement and on the contextual setting or environment in which it takes place 

(Wade and Jones, 1997). Historically, research literature has focused primarily 

on factors relating to balance during relatively static related activities, such as 

static standing (Lin et al., 2008; Wilson et al., 2008) with very little consideration 

to the nature of balance and postural control during other postural orientations. 

The term posturography refers to the description of posture, and is commonly 

related to a relatively static position of different body parts with respect to each 

other and the body as a whole (Visser et al., 2008). The numerous investigative 

techniques that are grouped under this term actually have a much wider 

perspective, as many of these techniques aim to describe not only posture, but 

also the active and passive regulation of balance (Bloem et al., 2003). 

Furthermore, several of these techniques move beyond a simple descriptive 
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capacity and actively manipulate the subject’s posture and balance to delve 

further into the control mechanisms of balance, such as during sensory or 

mechanical perturbations (Bloem et al., 2003; Visser et al., 2008). Static 

posturography involves the assessment of spontaneous sway during quiet 

stance on a fixed support surface with no external perturbations; whereas 

dynamic posturography exposes subjects to experimentally controlled 

perturbations during quiet stance (Bloem et al., 2003; Visser et al., 2008). Many 

studies in this area employ a combination of both static and dynamic 

posturography to address a particular aspect of postural control, such as the 

importance of different sensory systems (Nashner et al., 1982; Peterka and 

Benolken, 1995; McCollum et al., 1996; Peterka, 2002; Mergner et al., 2005; 

Maurer et al., 2006; Parietti-Winkler et al., 2006). 

Posturography employs a variety of biomechanical techniques to assess the 

changes to the underlying physiological control of posture and the subsequent 

mechanical manifestations of these changes. The most appropriate techniques 

to be selected will depend on the testing protocol chosen. Using 

electromyography (EMG) may be an appropriate measure for assessing the 

neuromuscular delays in response to an external perturbation, but may not offer 

a significant insight into the absence of vision on unperturbed stance. 

During the first decade of life the human body undergoes the most significant 

transitions in motor development, making this an excellent time to study the 

emergence and development of postural control (Roncesvalles et al., 2001). 

There appears to be a relationship between the development of postural control 

and increased motor competence in activities such as walking, jumping, and 

hopping (Woollacott and Sveistrup, 1992; Roncesvalles et al., 2001; 

Sundermier et al., 2001). It may be that the association between postural 

control and general motor development can be viewed as a cycle or positive 

spiral, whereby development of one leads to the opportunity for further 

development in the other, and that the development of both postural control 

and general motor skills should be examined together to further our 

understanding in either one. However, we must also consider the possible 
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effects of physical development and maturation of key physiological systems, 

such as myelination of neurological pathways, enhanced muscular strength, 

and development of visual and vestibular acuity. Future studies into the 

development of balance and postural control may wish to examine how 

individuals with a mature neurological system learn to balance. This would 

require assessing neurologically sound adults in a balance task that is 

unfamiliar to them, and therefore could not be assessed in normal upright 

stance. One possible approach for this would be to assess how individuals 

learn to balance in inverted stance. 

Past literature on balance in inverted stance suggests that a wrist strategy is 

the preferred strategy to correct for small perturbations, but as balance 

becomes more precarious the performer may begin to rely on more distal 

corrections from the shoulder and hip (Kerwin and Trewartha, 2001; Yeadon 

and Trewartha, 2003); similar to the role of the ankle and hip strategies used in 

normal stance (Horak and Nashner, 1986). Since previous research 

investigated expert handstanders, further study into the corrective responses to 

internal and external perturbations may be required to discover the full array of 

corrective strategies employed by individuals in inverted stance. Future 

research into this area may find worth in the procedures employed in previous 

studies into postural responses during normal stance, such as using a 

combination of EMG and dynamic posturography to measure muscle latencies 

and muscle activity patterns in response to controlled perturbations. 

1.2. Statement of Purpose 

The focus of the current research was to examine how a novel balance task is 

learnt by individuals with a mature neurological system, and what factors 

differentiate an expert performer from a novice in this task. As any adult with a 

sound neurological system will have many years of practice with performing a 

variety of balance tasks in standing, the primary focus was to assess how 

individuals learnt to balance in inverted stance over a period of eight months. In 

addition, the ability of expert hand balancers to maintain inverted stance whilst 

experiencing a variety of sensory and mechanical perturbations was assessed, 
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following similar procedures to those used by Nashner et al. (1982) on upright 

stance. 

1.3. Research Questions 

Q1. How are balance metrics expressed differently when balancing 

in different postures; including handstand, single leg stance and 

normal standing? 

Some balance variables would be expected to be sensitive to the nature of the 

balance task. However, such changes in a balance metric may not truly 

represent an increase or decrease in balance performance, but instead might 

be related to the mechanical limitations of the task. It is important to understand 

the underlying principles and assumptions of each variable used to measure 

balance, and to be clear about how the mechanics and control of posture is 

thought to be expressed by these variables. A comprehensive review of each 

balance metric will be presented prior to application of each metric to 

experimental data in the various balance tasks. 

Q2. Which balance metrics best characterise improvements in balance 

performance when a novice first learns to balance in handstand? 

A number of variables have been proposed to assess the balance of an 

individual. Several of these variables have been used to distinguish between 

clinical and healthy populations with little insight into the sensitivity of such 

measures for assessing improvements in balance over time. If balance is 

considered as a continuous task, then we may assume that as an individual 

first learns this task they will only be able to maintain balance for a short period 

of time. Therefore, the amount of time subjects can maintain balance in 

handstand will be used as the main determinant for assessing improvements in 

balance performance, and all other measures will be compared with reference 

to this. 
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Q3. How are the responses to mechanical perturbations different when 

balancing in handstand and normal stance postures? 

Alterations in balance strategies may be difficult to find in static balance 

conditions where experienced balancers may exhibit small amounts of sway. 

Employing perturbations to delve further into the mechanisms of postural 

control is common in normal stance. This method may provide further insight 

into strategies experienced balancers use to maintain balance during 

demanding conditions. Furthermore, perturbations may highlight important 

differences in the demands of balance in handstand, compared to normal 

standing. 

Q4. In what way is balance affected by altered sensory inputs, and does 

this result in a change to the corrective strategies used to maintain 

balance? 

To further understand the roles of the three main sensory systems available 

during balance tasks, somatosensory proprioception and vision can be 

restricted during balance. Past literature has focused on either examining 

simple measures of balance, such as range of sway (Nashner, 1972; Peterka, 

2002), or only examining the effect of vision (Riley et al., 1999). The current 

research will expand these principles to include the examination of the 

nonlinear dynamics of COP trajectories, feedback time delay, and the number 

and size of joint movement corrections during balance with and without visual 

inputs and with normal and altered somatosensory feedback. 

1.4. Thesis Organisation 

The outline of the remainder of the thesis is as follows: 

Chapter 2 provides a critical review of the literature pertaining to postural 

control and balance. The review is divided into several sections addressing 

issues related to both inverted and normal stance, including: mechanical 

considerations, neurological control, developmental factors, and external 

factors that can influence balance. 



6 
 

Chapter 3 describes the methods used for the collection and treatment of data 

to assess balance. A detailed description of the experimental protocol used 

within the current research is given, and the procedure for the collection and 

processing of experimental data is provided. 

Chapter 4 follows on from the previous chapter, and examines the 

assumptions used by various methods to assess balance, with specific 

reference to the calculation and implementation of different balance metrics 

used within the literature. This chapter relates specifically to question one, and 

aims to determine which balance metrics best express the underlying postural 

control strategies for each posture. 

Chapter 5 addresses experimental question two and examines which balance 

metrics best characterise improvements in balance performance when a novice 

learns to balance in handstand. 

Chapter 6 examines responses to external mechanical perturbations when 

balancing in normal and inverted stance. The chapter assesses previous 

methods for estimating feedback time delays and examines how these may 

differ in normal and inverted stance. Balance strategies during perturbations, 

and how they may differ in normal and inverted stance are presented and 

applied to answer question three. 

Chapter 7 assesses how balance in handstand may be affected by altered 

sensory feedback. Question four is addressed, and the importance of sensory 

information is assessed via the various balance metrics described in Chapter 4. 

Chapter 8 provides a summary of the thesis, discussing the findings in relation 

to each experimental question and considerations for future research. 
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CHAPTER 2 

REVIEW OF LITERATURE 

This chapter gives a critical appraisal of past literature concerning balance and 

postural control. Firstly, issues relating to the description of balance and 

postural control are revised, followed by specific reference to the neurological 

and mechanical considerations for the control of static balance. The 

implications for the assessment of balance are reviewed, and research 

examining the development of postural control is examined. Finally, research 

literature pertaining to postural control in handstand is discussed. 

2.1. Description of Balance and Postural Control 

The word posture comes from the Latin verb ponere, which means to put or 

place, and in general posture can refer to the carriage of the body as a whole, 

the attitude of the body, or the position of the limbs. Alternatively, Winter (1995) 

describes posture as ‘the orientation of any body segment relative to the 

gravitational vector, and is an angular measure from the vertical’. Both 

descriptions relate to the position or orientation of the body, however, Winter’s 

description places increased emphasis on this orientation relative to gravity as 

it is described with relevance to standing upright, which may not always be 

applicable. Measuring posture as a simple angular measure to the vertical is 

sometimes referred to as postural sway, based on the motion of an individual’s 

centre of mass (COM). However, this is a somewhat simple measure, 

simplifying the body into a single segment or point, making it difficult to gain 

understanding of the many small postural adjustments that may be made in 

order to gain or maintain balance. Consequently, postural control may be 

defined as the act of maintaining, achieving or restoring a state of balance 

during any posture or activity (Pollock et al., 2000). Postural control will 

therefore relate to the mechanical and neurological control of the orientation of 

individual body parts and the body as a whole. In this sense, posture can be 
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considered as task specific, where the orientation of the body parts is 

determined by the constraints of the balance task. 

Balance, from a mechanical perspective, is equivalent to equilibrium, which is 

the state of an object when the resultant force acting upon it is zero (Pollock et 

al., 2000). Over time, and with a static base of support, this assumes a static 

position, which may be stable or unstable, and is related to some of the 

inherent characteristics of the object; such as the distance of the COM from the 

edge of the base of support, the weight of the object, and the height of the 

centre of gravity above the base. These inherent characteristics determine the 

stability of the object, which relates to the ability of the object to remain in, or 

return to, a state of balance after experiencing a perturbation. However, this 

may not be the best description of human balance, where a static equilibrium 

cannot be maintained as a result of passive insufficiencies due to these 

characteristics, and balance can only be achieved through numerous postural 

adjustments. 

In general, human balance may be described as ‘the state of postural 

equilibrium, whereby the vertical projection of the COM is maintained over the 

body’s base of support’ (Alderton, 2003; Hryomallis, 2007). However, the 

requirement for the COM to remain within the base of support comes from the 

generic definition of static equilibrium, and may not apply to human balance. 

This has led some authors to suggest that it may be possible to maintain 

balance even if the COM moves outside of the base of support (Yeadon and 

Trewartha, 2003). In fact, the opposite can also be true, whereby the COM may 

remain within the base of support but the ‘system’ can find itself in a state 

where balance cannot be maintained unless the base of support is moved, 

such as due to limited strength or poor control (Popovic et al., 2000). The 

definition of human balance can be confused further when considering the 

wider implications of balance in more dynamic conditions, such as locomotion 

or sporting activities. It is not surprising therefore, that, when considering the 

wider implications for balance and posture, some researchers feel that there 

are no universal definitions for postural control or balance (Massion and 



9 
 

Woolacott, 2004; Shumway-Cook and Woolacott, 2007). In fact, one could 

argue that, from a static stability perspective, bipedal locomotion is invariably 

unstable, and falling is only prevented by the ability of the neuromuscular 

system to constantly change the base of support and therefore control the COM 

(Patla, 2004). However, some researchers believe that the problem lies with 

applying a single definition to all balance tasks, and the process of postural 

control should be considered to be on a continuum between static stance and 

more dynamic movements (Wade and Jones, 1997; Moe-Nilssen and 

Helbostad, 2002).  

According to Wade and Jones (1997) postural stability is modulated by postural 

control, which is exhibited in the form of postural adjustments, and may be 

measured by the small postural oscillations known as postural sway. These 

adjustments can occur prior to or during voluntary movements and are thought 

to minimise the displacement of the COM caused by voluntary movements and 

also to affect these movements directly. Similarly, Hayes (1982) believes that 

there are no separate mechanisms for posture and movement, postural 

reactions are fundamental in neural organisation, and movement in its most 

elementary form can be seen as a modification of posture. Thus, postural 

control is dependent, to a large degree, on the goal of the voluntary movement 

and on the contextual setting or environment in which it takes place (Wade and 

Jones, 1997). Balance and postural control is therefore an inseparable part of 

almost any movement, and adequate balance and postural control during the 

execution of one task in a specific environment may not be readily generalised 

to other tasks and situations (Moe-Nilssen and Helbostad, 2002). These views 

are shared by Winter (1995), who explains that the term dynamic balance 

should be more appropriately related to activities such as gait initiation, gait 

termination or walking and running, where the swing limb has a trajectory that 

will achieve balance conditions during the next stance phase. In fact, Winter 

(1995) goes on to explain that the demands on balance and postural control 

differ significantly from one activity to another, and that the simple task of 

walking from point A to point B along a linear path would involve dramatic 

changes to the system as you move from quiet stance, to gait initiation, to 
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steady state walking, to gait termination and finally back to quiet stance. 

Therefore any assessment of balance may lead to a different conclusion 

depending on the task being demonstrated and the chosen setting in which 

they are performed, and performances on one balance task may or may not 

relate to performances on another balance task (Winter, 1995; Wade and 

Jones, 1997; Moe-Nilssen and Helbostad, 2002; Hrysomallis et al., 2006). 

In view of these factors, this review will consider human balance as the task of 

attempting to remain upright, or in some other predefined posture, without 

falling. Specifically, static balance will refer to any balance task in which the 

individual attempts to maintain a static base of support with minimal 

displacement of their COM, which may also be viewed as quiet stance. 

Correspondingly, postural control will refer to the numerous postural 

adjustments made throughout the body in an attempt to maintain balance, and 

human stability will refer to the inherent ability of a person to maintain, achieve 

or restore a specific state of balance and not fall. This ability refers specifically 

to the physical properties of the person and the numerous sensory and motor 

processes through which the mechanisms of postural control are executed. 

2.2. Control of Balance and Posture 

The postural control of human upright balance is commonly viewed as a 

complex continuous process of the stabilisation of a multi-segment inverted 

pendulum (Winter, 1995; Gage et al, 2004; Blaszczyk, 2008). In this model, the 

main controlled parameter is the COM position; where postural sway is the 

consequence or side effect of the motor control process (Bottaro et al, 2005; 

Blaszczyk, 2008). During quiet stance, stabilising torques generated at different 

levels of the body’s kinetic chain are transmitted down to the base of support 

(BOS) in response to the neurological feedback from multiple sensorimotor 

processes (Horak, 2006). Therefore, when assessing the implications of 

balance and postural control it is essential that researchers consider the 

importance of both the mechanical and the neurological aspects of postural 

control. 
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2.2.1. Neurological Control of Balance and Posture 

The control of posture involves a continuous feedback system of processing 

visual, vestibular and somatosensory inputs and executing neuromuscular 

actions to maintain equilibrium (Winter, 1995; Wade and Jones, 1997; Horak, 

2006; Casslebrant, 2007; Hryromallis, 2007; Cappa et al, 2008; Visser et al, 

2008). According to Winter (1995), the visual system is involved in planning our 

locomotion and avoiding obstacles, the vestibular system acts as our ‘gyro’, 

which senses linear and angular accelerations, and the somatosensory system 

is a multitude of sensors that sense the position and velocity of all body 

segments, their contacts with external objects and the orientation of gravity. 

However, Wade and Jones (1997) believe that it is the nature of the integration 

between of these three systems, labelled as the ‘triad of posture and 

locomotion’, that holds the key to how the postural system works. Furthermore, 

some believe that it is the ability to readjust how these systems integrate during 

different tasks and environmental conditions that is crucial to all-round balance 

and independent mobilisation (Peterka, 2002; Horak, 2006). 

Neurological control of posture tends to rely heavily on the somatosensory 

system during normal stance conditions, however, as environmental conditions 

or the balance task change, the system will re-weight its relative dependence 

on each of the three senses depending on the reliability of the information 

received (Peterka, 2002). For example, when in a well-lit environment with a 

firm base of support the neurological system will rely on the somatosensory 

system for approximately 70% of its information, and on the visual and 

vestibular systems for 10% and 20% respectively (Horak, 2006). However, 

when standing on an unstable surface, the neurological system will increase 

sensory weighting to the vestibular and visual systems as it decreases its 

dependence on the less accurate surface somatosensory inputs (Peterka, 2002; 

Horak, 2006). However, it is unclear whether this represents a simple 

percentage change due to reduced inputs in one area, or whether the central 

nervous system (CNS) actually attenuates some aspects of postural control. 

Nevertheless, this may explain why virtually all neuromusculoskeletal disorders 

result in some degeneration in the postural control system (Winter, 1995); 
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which may be due to an impairment to one of the sub-systems employed, or 

due to an inability of the central nervous system (CNS) to effectively re-weight 

the sensorimotor system (Peterka, 2002; Horak, 2006). 

Balance and postural control requires a great deal of cognitive resources, which 

can be observed by the increased reaction times in persons when standing 

compared to those when sitting (Teasdale and Simoneau, 2001; Tucker et al, 

2008). In addition, an individual’s postural control will become impaired if 

required to simultaneously perform a cognitive task; with a further decline in 

postural control with an increased complexity of the cognitive task (Camicioli et 

al, 1997). Therefore, neurologically impaired patients with cognitive dysfunction, 

such as those with Alzheimer’s disease or dementia, are at an increased risk of 

falling, especially if simultaneously performing a cognitively demanding task 

(Prince et al, 1997; Horak, 2006; Marchetti and Whitney, 2006). This may be 

due to a difficulty interpreting a complex and sometimes conflicting array of 

sensory signals or may be due to an inability to rapidly change focus to the 

appropriate sensory inputs for that given environment (Horak, 2006; Marchetti 

and Whitney, 2006). However, we must not neglect the possibility that some 

balance issues in the elderly and neurologically impaired populations are due to 

other factors, as some neurological conditions, such as stroke or unilateral 

vestibular loss, may result in a misinterpretation of what is gravitationally 

vertical, causing the individual to be unstable during certain conditions. 

Spatial orientation is vital to postural control and healthy nervous systems will 

automatically alter how the body is orientated depending on the context and the 

task (Wade and Jones, 1997; Horak, 2006). Research has shown that healthy 

individuals are able to identify the gravitational vertical without visual input to 

within 0.5º; as during dark conditions a person will orientate themselves 

perpendicular to the support surface until the support surface tilts, at which they 

will orientate their posture to gravity (Karnath et al, 2000; Horak, 2006). In 

addition, the perception of what is gravitationally vertical, either via visual or 

vestibular inputs, is independent of the perception of postural verticality and the 

ability to align the body in space (Bisdorff et al, 1996; Karnath et al, 1998). 
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Therefore, an inaccurate internal representation of gravitational vertical will 

result in an automatic postural alignment that is not aligned with gravity, 

resulting in an unstable posture (Horak, 2006). However, the importance of 

visual cues for spatial orientation should not be underplayed, as small changes 

to our visual inputs can result in some striking changes to postural control 

(Wade et al., 1995; Wade and Jones, 1997). 

Firstly, there is a wealth of evidence within the research that has shown a 

decreased performance on a variety of balance tasks when removing all visual 

inputs, such as by closing the eyes. These include an increased postural sway 

during eyes closed conditions for sitting balance (McInnes et al, 2000) and 

standing balance (Blaszczyk, 2008; Cappa, 2008). Past research has shown 

there is a decrease in postural control during human movement for participants 

with decreased visual input, such as; walking into a darkened room (Moe-

Nilssen et al, 2006), blurred vision during sit to stand (Buckley et al, 2005) and 

changes in gait following cataract surgery (Helbostad et al, 2005). Furthermore, 

postural control may be influenced by the nature of the visual inputs received, 

even in relation to changes in the peripheral vision (Wade and Jones, 1997), 

such as an increase in postural sway with lamellar flow verses radial flow, with 

a larger effect in older adults compared to younger adults (Wade et al., 1995). 

During human movement an optical field is generated that contains a variable 

geometric structure, with an optic flow field that radiates outwards from a point 

that corresponds with the direction of motion and is projected to the centre of 

the retina (Stoffregen, 1985; Wade and Jones, 1997). The flow structure at the 

peripheral edges of this field of view is nearly parallel to the line of motion, 

which is called ‘lamellar flow’, and contains important geometric information 

required for postural control (Wade and Jones, 1997). Research has shown 

that the visual system, and consequently postural control, is sensitive to 

changes in this flow, with a decrease in postural stability when: walking from a 

wide to a narrow walkway (Schrager et al, 2008; Shkuratova and Taylor, 2008), 

experiencing optic flow oscillations in the anterioposterior (AP) direction during 

standing (Casselbrant et al, 2007), and experiencing optic flow oscillations in 
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the AP and mediolateral (ML) direction during standing and walking (O’Connor 

and Kuo, 2009). Furthermore, O’Connor and Kuo (2009) found that AP optical 

perturbations resulted in a greater decrease in postural stability during normal 

quiet stance, but ML optical perturbations resulted in a greater decrease in 

postural stability during walking and tandem standing. O’Connor and Kuo (2009) 

concluded that there may be an interaction between an individual’s base of 

support and how the CNS processes optic flow information for maintaining 

balance. Alternatively, this may relate to an inability to interpret the reduced 

somatosensory information from a change in the base of support, leading to an 

increased reliance on visual information. Nevertheless, this does bring to mind 

the importance of considering not only the neurological processes involved with 

postural control, but also the mechanical constraints to a standing posture. 

2.2.2. Mechanical Control of Balance and Posture 

During quiet stance, postural control has been modelled as an inverted 

pendulum, which predicts that the difference between the centre of pressure 

(COP) and the COM is proportional to the horizontal acceleration of the COM 

(Winter, 1995; Gage et al, 2004; Winter et al, 2003). In the inverted pendulum 

model, changes in COP represent the stabilising torques generated at different 

levels of the body’s kinetic chain, which control the motion of the COM and are 

transmitted down to the BOS (Blaszczyk, 2008). Although the human body is a 

multi-segmental structure, capable of moving all joints involved, modelling 

postural control as a single segment inverted pendulum generally assumes a 

simple rigid structure above the ankles (Winter, 1995; Winter et al., 2003; Gage 

et al., 2004). Here the human body is modelled as a simple rigid segment with 

mass ݉  and a mass centre at a distance ݄   from the fixed supporting 

ankle/wrist joint J (Figure 2.1). 
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Figure  2.1: The inverted pendulum model of postural control in normal stance 
and inverted stance (adapted from Bottaro et al., 2005). 

The horizontal position of the COM ݕ, (relative to J) is related to the joint torque 

ܶ, the moment of inertia ܫ and the angular acceleration ߠሷ  to give: 

	 ܶ െ ݕ݃݉ ൌ ሷߠܫ ሺ2.1ሻ

 

Replacing ܶ ൌ ܨܴܩݒ ∙  :gives ݑ

	 ܨܴܩݒ ∙ ݑ െ ݕ݃݉ ൌ ሷߠܫ ሺ2.2ሻ

 

Where ܨܴܩݒ  is the vertical ground reaction force of the body, and ݑ  is the 

position of the COP relative to J. 
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If ߠ is close to 2/ߨ then	ܨܴܩݒ ൎ ݉݃ and ݕሷ ൎ െ݄ߠሷ , to give: 

	 ݉݃ሺݑ െ ሻݕ ൌ െ
ሷݕܫ
݄

ሺ2.3ሻ

	
ݑ െ ݕ ൌ െ

ܫ
݄݉݃

ሷݕ
ሺ2.4ሻ

During quiet stance with small oscillations about the ankle joint,	 ூ

௠௚௛
 can be 

considered as a biomechanical constant, to give: 

	 ݑ െ ݕ ∝ ሷݕ ሺ2.5ሻ

This simplified view is useful for describing the importance of the ankle or wrist 

joints for controlling anteroposterior motion during quiet stance or inverted 

stance (Winter, 1995; Bottaro et al., 2005). However, viewing the system in this 

simplified way may not be appropriate for assessing more global postural 

control mechanisms and a double or triple segment inverted pendulum model 

may be required, with control at the ankles and the hips for normal stance 

(Winter, 1995; Horak, 2006; Colobert et al., 2006) and at the wrists, shoulders 

and hips for inverted stance (Kerwin and Trewartha, 2001; Yeadon and 

Trewartha, 2003). In addition, it should be noted that the relationship between 

COP and COM may change as more joints are involved in the control of 

posture, especially if these strategies include large changes to the vertical 

position of the COM, leading to vertical forces which are no longer 

approximately equal to body weight, and the quantity 
ூ

௠௚௛
 to change 

significantly. 

According to Winter (1995), the difference between the COP and the COM can 

be considered as the error signal that the postural control system is sensing, 

and the magnitude and frequency of this error signal is of importance in the 

interpretation of the postural control system. The ‘gain’ of the feedback control 

system would alter both the magnitude and the frequency of the error signal, 
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and classical feedback control theory would describe the inverted pendulum 

model as being an underdamped system; thus an increased gain would not 

only increase the amplitude of the error signal but also the frequency of the 

oscillations. However, it is important to note, that this description relates to a 

large extent to the control of posture through a passive stiffness control 

mechanism, which as yet has not been validated. This reveals the importance 

of examining postural control from neither a single mechanical or neurological 

perspective; but rather researchers should join the two strands together to 

further our understanding of postural control strategies. 

2.2.3. Unified Control of Balance and Posture 

The process through which balance is maintained has been considered from 

several view points, including a passive stiffness control mechanism (Winter et 

al,. 1998; Winter et al., 2003), a reactive mechanism (Yeadon and Trewartha, 

2003; Masani et al., 2006) or as an anticipatory mechanism (Gatev et al., 1999; 

Morasso and Sanguineti, 2002; Jacono et al., 2004). Each hypothesis attempts 

to assess different aspects of the postural control system, such as using 

regressions or cross-correlations to detect any delays between EMG, joint 

torques, COP and COM. However, authors often come to different conclusions 

when describing the same characteristics, leaving the results of such studies to 

open interpretation by the reader. 

It has been argued that the active control of posture should result in a delay of 

approximately 100-150 ms between the COM and COP trajectories, caused by 

neurological latencies in the control system, however, research has shown that 

this delay is approximately zero (Winter et al., 1998; Winter et al., 2003). 

Subsequently, Winter et al. (1998) concluded that balance was maintained by a 

passive process by means of intrinsic stiffness in the ankle joint, which may be 

tuned by muscular activity over time, accounting for any drift in COM position. 

However, this approach only considers the relationship between COM and 

COP, and does not account for the detection of motion from other sources, 

such as velocities and accelerations. Furthermore, the authors fail to realise 
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that such a delay between COM and COP trajectories would result in amplified 

motion that was inherently unstable. 

The single segment inverted pendulum model of postural control explains that 

the position of the COM is controlled by the ankle joint torque, expressed in the 

COP trajectory. Therefore, joint torques must be larger than gravitational torque 

for the COM motion to be reversed. If the peak torque was not reached until 

100-150 ms after peak COM displacement, then the large difference between 

joint torque and gravitational torque would result in large angular accelerations. 

This would lead to harmonic motion that is amplified over time, and stable 

control would not be possible. Nevertheless, the concept of passive stiffness 

control has been advocated by direct assessments of ankle stiffness during 

standing. 

Winter et al. (2001) reasoned that by plotting ankle joint torques against sway 

angles, a simple inverted pendulum would predict the passive ankle torque 

required to maintain stable balance. In addition, the gravitational torque (݉݃ݕ) 

could also be plotted against sway angle to discover the critical torque required 

by such a passive torque, and by comparing the two, determine if control by 

passive stiffness was occurring. This showed that for all subjects the slope for 

the gravitational torque was less than that from the regression of joint torque 

against sway angle, with the authors concluding that control was achieved by 

passive stiffness. However, this method calculated the total torque about the 

joint via inverse dynamics, which represents all active and passive components. 

In addition, the authors failed to comprehend that the slope for the gravitational 

torque represents the minimum torque needed to maintain balance, and if the 

slope from the regression of joint torque against sway angle was less than this 

line then, on average, too little torque is produced and stable control would not 

be possible. However, the estimation of ankle joint stiffness is still of importance, 

as this stiffness may still play a role in postural control. 

Intrinsic stiffness of the ankle has been estimated as approximately 91% of that 

necessary to provide minimal stabilisation in standing, suggesting that intrinsic 
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stiffness plays little part in postural stabilisation (Loram and Lakie, 2002a; Lakie 

et al., 2003). Similarly, Casadio et al. (2005) showed that intrinsic ankle 

stiffness accounted for approximately 64% of the critical stiffness required for 

stabilisation during disturbances of 1º. Furthermore, it has been suggested that 

the minimisation of sway size is caused by improvements in the anticipatory 

torque impulses, and that balance is achieved by the constant repetition of 

ballistic biphasic throw and catch patterns of torque and not by an elastic 

mechanism (Loram and Lakie, 2002). This view is supported Gatev et al. (1999) 

who used cross-correlation to show there was a zero time lag between COP 

and COM trajectories, but a 250 – 300 ms time lag between EMG activity of the 

lateral gastrocnemius muscle and COM or COP trajectories. Once again, such 

approaches only consider the relationship between the displacement and the 

variable under investigation, and does not account for the detection of motion 

from other sources, such as velocities and accelerations. 

A proportional and derivative (PD) control model uses the position and its 

derivative, with position and derivative gains for each, to control another 

variable. It may be the case that such a process is used to control posture, 

where the position and velocity of the COM is used to determine the magnitude 

of the response to maintain balance. Yeadon and Trewartha (2003) used this 

principle to examine postural control in handstand by regressing joint torques 

against COM displacements and velocities with increasing time delays, finding 

feedback latencies of approximately 160-240 ms. Similarly, Masani et al. (2006) 

applied this method to examine the magnitude of EMG responses as an input 

into a PD controlled computer simulation model of postural control. Using this 

approach within a computer simulation model, Masani et al. (2006) found that 

the PD controller is robust and has a large space for the proportional and 

derivative gains for which the system is stable. Although this is only for time 

delays up to 135 ms, the authors argue even longer delays are possible if the 

passive elements are added. In support, it is believed that the intrinsic joint 

stiffness may scale the time axis, allowing larger delays to be used, by reducing 

the effective value of the acceleration caused by gravity, and thus reducing the 

rate of sway (Bottaro et al., 2005). In comparison, it may be that instead of 
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using a continuous PD controller to control posture, the CNS may use an 

intermittent PD control system, explaining the ballistic biphasic throw and catch 

patterns of torque described by Loram and Lakie (2002). In fact, Bottaro et al. 

(2008) have shown that a computer simulation model of postural control that 

employs an intermittent PD control system is able to maintain balance even if 

the delay is increased from 180 ms to 240 ms, which is difficult with continuous 

time PD controllers. Such a control system is likely to use both feedback and 

feedforward to determine the magnitude of the intermittent burst of muscle 

activity. 

2.3. Assessment of Balance and Posture 

The aim of any test of balance in quite stance is to remain standing, either on 

one leg or two, with as little motion as possible from the standardised starting 

position; where small changes in postural sway represents good postural 

control (Winter, 1995).  A common method of assessing this type of postural 

control is to use a force platform, where changes in the COP through the feet 

are used to infer alterations in postural sway, and therefore assess postural 

control. This is very similar to the concept of postural sway, measured via the 

displacement of the COM, and has resulted in a great deal of confusion 

between the two measures when used with static balance tasks (Means et al., 

1998; Lin et al., 2008), however, both the COM and the COP are separate 

measures, linked together via the inverted pendulum model of postural control 

(Winter, 1995; Winter et al., 2003; Gage et al., 2004). Although some 

researchers question the validity of only using COP measurements to assess 

postural control (Winter, 1995; Winter et al, 2003), there is little doubt that a 

force platform can be used to infer the ability to retain static balance (Bottaro et 

al., 2005; Colobert et al., 2006; Blaszczyk, 2008); though caution should be 

taken when trying to make elaborate mechanical interpretations into the nature 

of postural control based on this data alone (Alderton et al., 2003; Gage et al., 

2004). These concepts have led to two branches of postural control research, 

one that aims to achieve greater understanding through more complex 

analyses of the COP signal, and the other which aims to understand balance by 

examining multiple aspects of the postural control process. Consequently, other 
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methods to the collection of COP in static stance have been introduced to try to 

examine the complex interactions involved in the underlying neurological 

process of postural control; these can be described collectively under the 

umbrella term of ‘posturography’. 

2.3.1. Posturography 

The term posturography refers to the description of posture, and is commonly 

related to a relatively static position of different body parts with respect to each 

other and the body as a whole (Visser et al., 2008). However, the numerous 

techniques that are grouped under this term actually have a much wider 

perspective, as many of these techniques aim to describe not only posture but 

also the active and passive regulation of postural control (Bloem et al., 2003). 

Furthermore, several of these techniques move beyond a simple descriptive 

capacity, and may actively manipulate the subject’s posture to delve further into 

the control mechanisms, such as during sensory or mechanical perturbations 

(Bloem et al., 2003; Visser et al., 2008). The techniques within posturography 

can be divided into two main groups of ‘static’ or ‘dynamic posturography’. 

2.3.1.1. Static Posturography 

Static posturography involves the assessment of spontaneous sway during 

quiet stance on a fixed support surface and with no external perturbations. 

Whilst in dynamic posturography subjects are exposed to experimentally 

controlled perturbations during quiet stance, either via carefully controlled 

platform movements or perturbations applied directly to the subject via pushes 

or pulls to selected body areas (Bloem et al., 2003; Visser et al., 2008). 

However, there is some confusion as to the most appropriate term to use 

during balance tasks that do not fit directly into these descriptions, such as 

during voluntary sway (Ruder et al., 1989; Caron et al., 1997; Lafond et al., 

2004; Slobounov et al, 2005a), internal perturbations caused by the swinging of 

the arms (Yamada, 1995; Horak, 2006) or reaching (Row and Cavanagh, 2007), 

and standing on inclined static surfaces (Sasagawa et al., 2009). Furthermore, 

this confusion is enhanced when combined with the uncertainty previously 

mentioned with regards static and dynamic balance, leaving researchers 
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unsure as how to best classify the study of postural control during activities 

such as gait with the presence or absence of external perturbations. Therefore 

this review will follow the advice of Bloem et al. (2003) and consider static and 

dynamic posturography from the view point of static stance only, in which case 

the previous descriptions will be sufficient. 

The absence of external perturbations in static posturography results in a 

relatively low demand on the underlying postural control process, allowing for 

large trial lengths ranging from 30 seconds to 30 minutes (Duarte and 

Zatsiorsky, 1999; Bloem et al., 2003; Visser et al., 2008); with trial lengths of 

20-30 seconds being reported as having the best test-retest reliability (LeClaire 

and Riach, 1996). Common approaches within static posturography includes 

asking subjects to stand quietly with eyes closed or eyes open whilst looking 

straight ahead, or focusing on a wall several meters away. Within this area 

research has assessed the role of feet position on ML and AP sway (Kirby et al., 

1987). In addition, several studies have examined the importance of sensory 

inputs by assessing the effects from altered sensory feedback, such as: 

fingertip contact on the leg (Nagano et al., 2006) or an adjacent support surface 

(Jeka and Lackner, 1994; Jeka and Lackner, 1995; Jeka et al., 1998); via an 

anchoring system connected to the hands (Mauerberg-deCastro, 2004); 

reduced gravity related load due to part-immersion in water; decreased 

peripheral sensation in supporting limbs due to cryotherapy (Magnusson et al., 

1990a; Magnusson et al., 1990b) or ischemic hypoxia of nerve fibres via 

ligatures (Horak et al., 1990); vibrations applied to supporting muscles or 

tendon to confuse postural reflexes (Nakagawa et al., 1993); and from standing 

on compliant surfaces (Blackburn et al., 2003). Although localised vibrations or 

standing on compliant surfaces may be considered as a form of dynamic 

posturography; in these examples the intention was to assess the effect of 

altering sensory accuracy and not to assess the effect of specific perturbations 

to the postural control process. 
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2.3.1.2. Dynamic Posturography 

The most common method used in dynamic posturography is the moving 

support surface, where participants are asked to attempt to remain standing in 

as static a position as possible during controlled platform translations and/or 

rotations. Such studies may assess the participant’s responses to a variety of 

support surfaces movements, including: slow vs. fast translations (Diener et al., 

1988); small vs. large amplitude perturbations (Diener et al., 1988; Horak et al., 

1989); pseudorandom vs. predictable or sinusoidal movements; or 

unidirectional vs. multidirectional perturbations (Nashner et al., 1979; Moore et 

al., 1988; Allum and Honegger, 1998). Additionally, mechanical perturbations 

may also be applied directly to the individual via an external push or a pull 

applied to the hip, trunk, or shoulder, such as a subject with weight connected 

to the waist via a pulley, which is released at an unpredictable time or via direct 

contact of a weight on a swinging pendulum (Rietdyk et al., 1999; Hasson et al., 

2009). In addition, both support surface motions and external forces may be 

used together to exhibit specific responses, such as lateral pelvic tilt in standing 

without lateral translation of the pelvis (Goodworth and Peterka, 2009).  

It is important to note that researchers must be aware of the mechanical 

implications of the specific perturbations used and the consequent effects this 

may have on the neuromuscular control of posture. For example, Bothner and 

Jensen (2001) showed that the deceleration phase of a platform perturbation 

played an important part in helping to re-stabilise stance during platform 

movements. Similarly, the predictable nature of rhythmical perturbations can be 

used by individuals to help maintain stance and reduce neuromuscular demand. 

In fact, the neuromuscular response to a specific perturbation can change with 

several repetitions of the same perturbation, indicating an adaptation of the 

neurological system to specific environmental demands, and is an integral part 

of the adaptation test (Nashner, 1976). Therefore, researchers wishing to 

understand the nature of neurological responses to unexpected perturbations 

may need to use platform movements with relatively larger amplitudes to 

ensure a response is present before the platform begins to decelerate. 

However, this may result in the individual attempting to regain balance on a 
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platform that is moving. Consequently, researchers must be clear with the 

purpose of any external perturbations that are applied to an individual when 

assessing postural control in this way. Furthermore, a variety of platform 

movement directions and amplitudes that are ordered in a random fashion may 

be needed to reduce the chance that subjects are able to predict the required 

response before the perturbation is applied. 

Traditionally, dynamic posturography involves the application of external or 

internal mechanical perturbations, however, within the field of posturography 

other perturbations can be applied to postural control which does not strictly fit 

into this classification, such as sensory perturbations through disturbances to 

the visual inputs. Furthermore, many studies in this area employ a combination 

of approaches to address a particular aspect of postural control, such as the 

importance of the visual, vestibular, and somatosensory systems during 

perturbed and unperturbed stance (Nashner et al., 1982; Peterka and Benolken, 

1995; McCollum et al., 1996; Peterka, 2002; Mergner et al., 2005; Maurer et al., 

2006; Parietti-Winkler et al., 2006). One of the most recognised assessments of 

postural control is computerised posturography, which involves three separate 

tests of balance to examine the importance of the various underlying 

neurological processes; these are the sensory organisation test, the motor 

control test and the adaptation test, which was first introduced by Nashner et al. 

(1982). 

2.3.1.3. Computerised Posturography  

During computerised posturography the patient stands on a movable dual force 

plate support surface within a moveable surround, which under control of a 

computer, can either translate along the sagittal plane or rotate around the 

mediolateral axis level with the ankle joint. Standardized test protocols expose 

the patient to support surface and visual surround motions, during which the 

patient's postural control and motor reactions are recorded. The sensory 

organization test (SOT) objectively identifies problems with postural control by 

assessing the patient's ability to make effective use of, or suppress 

inappropriate, visual, vestibular, and somatosensory information. The motor 
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control test (MCT) assesses the patient's ability to quickly and automatically 

recover from unexpected external provocations. Finally, the adaptation test (AT) 

assesses the patient's ability to modify motor reactions and minimize sway 

when the support surface moves unpredictably in the toes-up or toes-down 

direction. Measurements include postural sway via COM displacement for the 

sensory organisation test, and muscle onset timing, strength, and lateral 

symmetry of responses for the motor control and adaptation tests. 

All forms of posturography typically employ a variety of biomechanical 

techniques to assess the changes to the underlying neurophysiological control 

of posture and the subsequent mechanical manifestations of these changes. 

However, the most appropriate biomechanical techniques to be selected will 

depend of the chosen testing protocol. Using EMG may be an appropriate 

measure for assessing the neuromuscular delays in response to an external 

perturbation, but may not offer a significant insight into the absence of vision on 

unperturbed stance. Nevertheless, the most common measure of postural 

control in quiet stance is still postural sway, measured via the displacement of 

either the COM or the COP. However, the trajectory of the COP is far from 

simple, with many studies moving away from a simple analysis of this signal, 

such as sway range, and attempting to gain further insight into the postural 

control process through more sophisticated analysis techniques, such as using 

nonlinear time series analysis. 

2.3.2. Advanced Analysis of Balance 

The analysis of postural control in quiet stance often employs techniques that 

assume that the COP signal to be stationary, and will therefore have a constant 

mean and standard deviation throughout the time of the trial. However, several 

studies have shown that this is not true (Carroll and Freedman, 1993; 

Schumann et al., 1995; Newell et al., 1997); leading to a growing number of 

studies that have employed sophisticated non-stationary data analysis 

techniques to examine the nature of postural control. 
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Power spectral analysis has been employed as a useful technique to determine 

the frequency composition of time series data, such as COP or ground reaction 

forces during standing (McClenaghan et al., 1995). Schumann et al. (1995) and 

Newell et al. (1997) expanded on the common use of these stationary spectral 

density techniques by employing a time-frequency analysis to examine the 

changes in the spectral characteristics of the COP signal over time. Newell et al. 

(1997) discovered that 100% of experimental trials were non-stationary in the 

time domain for 3- and 5-year-old children and young and elderly adults during 

quiet stance with and without vision. However, time-frequency analysis of 

postural control has been mainly descriptive in nature, making it difficult to test 

research hypotheses and compare populations via statistical methods 

(Schumann et al., 1995). This highlights the important of any non-stationary 

analysis tool to be able to yield meaningful and sensitive statistical measures 

that can be used in further statistical tests to determine if there are any 

significant differences between experimental groups. That being said, 

researchers should choose the approach that they believe best describes the 

underlying process of postural control. It may be that, due to the complex 

interactions involved within postural control, no single quantity can 

appropriately describe balance in all its nuances, and whichever analyses that 

are used must be interpreted with great care and with reference to multiple 

theoretical concepts. 

The Lyapunov exponent is a measure of the rate at which nearby trajectories 

diverge, and can be an important means for the quantification of unstable 

systems (Collins and DeLuca, 1994; Stergiou et al., 2004; Pascolo et al., 2006). 

Periodic signals will result in Lyapunov exponents that are negative or zero, 

and positive values suggest the presence of chaos within the signal (Yamada, 

1995). Studies using the Lyapunov exponent as a means of determining the 

extent of chaotic motion within postural control have shown that the chaotic 

swaying of the COP during quiet standing plays an important role in the 

adjustment of posture during standing with voluntary swinging arms (Yamada, 

1995). However, although a positive Lyapunov exponent indicates that postural 

control in standing is chaotic, it is not sensitive enough to discriminate between 
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adults with Parkinson’s disease and healthy subjects (Pascolo et al., 2005; 

Pascolo et al., 2006). Furthermore, a positive Lyapunov exponent may indicate 

the presence of chaos within a signal, however, random signals will also result 

in positive Lyapunov exponents, making it difficult to determine whether the 

underlying process of the signal is of a stochastic or deterministic nature, 

unless results are validated against surrogate data sets (Stergiou et al., 2004). 

Surrogation is a technique that can be used to help determine if a signal is 

deterministic or stochastic in nature by comparing actual data against a random 

data set with the same mean, variance and power spectra as the original 

(Stergiou et al., 2004). Collins and DeLuca (1994) found that there was no 

significant difference between the Lyapunov exponents of surrogate data and 

the original COP signal during quiet stance, concluding that postural control 

should not be modelled as a chaotic process and consequently modelled 

postural control as a correlated random walk. 

Collins and DeLuca (1993) examined the COP trajectory during quiet standing 

as one- and two-dimensional random walks. This involved calculating a 

stabilogram-diffusion plot from the mean square displacements of the COP 

over an increasing time interval, and dividing the resulting plot into a short- and 

long-term region based on the intersection of two lines fitted to the trace. 

Collins and DeLuca (1993) attributed the short- and long-term regions to 

different mechanisms of postural control. Over short periods of time an open-

loop mechanism is employed, and over longer time intervals a closed-loop 

mechanism is dominant. Within this analysis, diffusion coefficients are 

calculated for both the short- and the long-term phases, which represent the 

stochastic activity of the COP. In addition Hurst exponents are generated from 

the log-log plot of the stabilogram-diffusion plot, which are the scaling 

exponents and quantify the positive and negative correlations between the step 

increments, termed as persistence and anti-persistence respectively. So far, 

random walk analysis of postural control has shown that when standing with 

eyes open subjects showed decreased diffusion coefficients and Hurst 

exponents during the short term phase, suggesting that vision helps to reduce 

the stochastic activity of the open-loop control of posture (Collins and DeLuca, 
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1995; Riley et al., 1997). However, this research does not offer an explanation 

as to how the absence of vision can affect the stochastic activity of postural 

control during open-loop control, which by definition should be control with the 

absence of feedback. Consequently, Newell et al., (1997) have questioned the 

assumption that the trajectory of the COP is best modelled as a correlated 

random walk with two distinct phases, and have shown that a simple linear 

random walk can account for as much as 92% of the variance of the COP, with 

the Collins and DeLuca (1993) model accounting for 96% of the variance. 

According to Yamada (1995), in chaotic dynamics randomness emerges out of 

deterministic dynamics whereas in random walk dynamics, noise is not directly 

linked to deterministic dynamics. Therefore future analyses of balance may 

need to consider both the stochastic and the deterministic components of the 

COP signal, such as using stochastic differential equations (Bonnet et al., 

2010). However, the underlying difficulty with obtaining an understanding of the 

underlying process of postural control from such methods may be that force 

plate data represents the sum of the corrective forces from all segments of the 

body to remain upright, suggesting that a more thorough analysis of the 

mechanisms of postural control is required. 

2.3.3. Muscle Activity and Joint Torques 

Muscle coordination can be described as the distribution and timing of muscular 

activity or force among individual muscles to produce the overall joint moments, 

and thus can be studied from EMG and force patterns of individual muscles or 

joints (Hug, 2011). To date the majority of studies that have used EMG to 

examine the coordination of muscle activity during balance tasks have focused 

mainly on examining postural control during external perturbations. 

During anterior postural sway caused by an external perturbation a coordinated 

muscular response can be seen in the muscles of the posterior aspect of the 

lower limbs and trunk, namely the ankle, hip and trunk extensors (Horak and 

Nashner, 1986; Diener et al., 1988; Horak et al., 1989). During posterior 

postural sway caused by an external perturbation a coordinated muscular 

response can be seen in the muscles of the anterior aspect of the lower limbs 
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and trunk, the ankle, hip and knee flexors. However, young infants present less 

coordinated muscular responses to imposed postural sway, with more 

organised muscular patterns developing with increased age and experience 

(Woollacott and Sveistrup, 1992; Sveistrup and Woollacott, 1997; Sundermier 

et al., 2001). 

Nashner (1976) examined responses to anteroposterior platform translations 

and/or rotations, designed to elicit a functional stretch reflex of the ankle 

musculature, with EMG electrodes placed on the tibialis anterior and medial 

gastrocnemius muscles. This study revealed that healthy adults displayed a 

long latency stretch reflex of approximately 120 ms, exhibited to reduce 

postural sway as a result of a sudden external perturbation. Furthermore, when 

exposed to successive perturbations of a similar nature, subject’s functional 

stretch reflexes adapted to reduce sway further, with increased EMG activity 

during platform translations and decreased EMG activity during platform 

rotations. On the other hand, Gottlieb and Agarwal (1979) discovered that 

under sudden dorsiflexion and plantar-flexion of the foot a myotatic reflex of 

approximately 45 ms can be seen in the tibialis anterior and gastrocnemius 

muscles respectively. The functional roles for the myotatic reflex in the leg 

extensors may be limited to conditions of postural maintenance or slow precise 

movements. During rapid movements the myotatic reflex will be ineffective and 

load compensating reactions are mediated by longer latency loops of 

approximately 120 ms or more. Furthermore, the gain of the myotatic reflex was 

proportional to the rate of voluntary movements of the ankle, with increased 

muscle activity associated with increased plantar-flexion torque (Gottlieb and 

Agarwal, 1979). These findings may highlight the importance of examining 

muscular activity of postural muscles in quiet stance as well as during external 

perturbations. 

The synchronicity of muscle firing patterns of the lower extremities show an 

increased regularity during stance with random voluntary sway compared to 

stance with regular voluntary sway (Morrison et al., 2007). There was a high 

degree of regularity in the COP trajectory during quiet stance and regular 
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voluntary sway. However, the presence of a significant amount of irregularity 

during random sway suggests a complex relationship between muscle activity 

patterns and COP trajectories. Saffer et al. (2008) examined the EMG activity 

of leg and trunk muscles during quiet stance, and used coherence analysis to 

assess the patterns of coordination between muscles and body segments. 

Although these results indicated that ankle and hip patterns during quiet stance 

involve mainly lower leg muscles, and there was an anti-phase movement of 

the trunk relative to the legs, there was surprisingly little coherence between 

individual muscles. This may be a consequence of assessing muscle activity 

during quiet stance, resulting in decreased muscle activity compared to those of 

perturbation studies, however, this may also be due to the limitations of using 

surface EMG, with a poor signal-to-noise ratio, to assess muscular coordination 

(Hug, 2011). 

Past research has examined the coordination of multiple joint torques when 

experiencing external perturbations in upright stance in adults (Runge et al., 

1999; Seo and Choi, 2005) and children (Roncesvalles et al., 2001). To counter 

a perturbation resulting in anterior postural sway adults generated positive 

extensor torques at the ankles and hips, with a counterbalancing negative 

flexor torque at the knees (Runge et al., 1999; Roncesvalles et al., 2001). 

Similar to previous EMG studies, infants displayed less coordinated joint 

torques, which gradually became more organised with increasing age and 

experience (Roncesvalles et al., 2001). Furthermore, response latencies for 

ankle, knee and hip torques to external perturbations occurred at approximately 

150 ms, with EMG responses occurring up to 60 ms prior to joint torque 

responses (Runge et al., 1999). In addition, the magnitude of hip torques was 

significantly higher during perturbations that also elicited a significant EMG 

response in the rectus abdominis muscle, indicating the importance of the 

activity of neighbouring muscle groups in the generation of appropriate joint 

torque responses (Runge et al., 1999). However, to date the coordination 

between multiple joint torques during static balance activities has only been 

assessed in inverted stance (Kerwin and Trewartha, 2001; Yeadon and 

Trewartha, 2003). 
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Similar to upright quiet stance, both Kerwin and Trewartha (2001) and Yeadon 

and Trewartha (2003) found that, although all joints contributed to the control of 

the COM, the main control strategy comes from the most distal supporting joint, 

which in inverted stance is the wrist joint. Furthermore, the joint torques were 

regressed against the COM position and velocity at progressively earlier times, 

revealing time delays of 160 to 240 ms for this wrist strategy (Yeadon and 

Trewartha, 2001). These torque delays are somewhat longer than those 

observed by Runge et al. (1999) regarding perturbations in upright stance, 

however, an increase in the torque delays induced by platform perturbations 

with small velocities were observed, suggesting a possible relationship between 

response delays and sway velocity. It can be assumed that neuromuscular 

responses to postural sway are related to the sensitivity of the involved sensory 

receptors, which would mean that important sensory thresholds are invariably 

linked to the control of posture and could explain differences in response 

timings to different velocities of sway. 

Fitzpatrick and McCloskey (1994) assessed sensory thresholds on simulated 

standing conditions, and the results suggested that only visual and 

somatosensory proprioception was sensitive enough to detect sway in quiet 

stance. At low sway velocities, ankle proprioceptors were more sensitive than 

vision in detecting a change in sway, but at higher sway velocities there was 

little difference between the two sensory systems. These thresholds were 0.17º 

when sway was at a velocity of 0.06ºs-1, with even smaller movements 

perceived as the mean velocity of sway increased up to 0.17ºs-1. Similarly, 

Clark et al. (1985) also found a relationship between speed and position 

thresholds when examining the ankle joint and metacarpophalangeal (MCP) 

joint of the hand. However, Clark et al. (1985) reported higher position 

thresholds of ± 3.5º for the ankle joint and ± 2.5º for the MCP joint. This 

difference may be explained by the experimental protocol used in each case, 

as Fitzpatrick and McCloskey (1994) assessed subjects in restricted standing 

positions, with the legs weight bearing. Clark et al. (1985) isolated each joint in 

turn and used neural blocks in an attempt to isolate the detection of movement 

and position separately. Furthermore, Clark et al. (1985) showed that the 
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position threshold remained relatively constant throughout movement speeds, 

even with extremely slow movements in the order of ± 0.25º/min. Ultimately, 

both studies show that movement thresholds depend on both the speed and 

amplitude of the movement, and with higher speeds a change in position can 

be detected within a fraction of a degree. 

2.4. Development of Postural Control 

During the first decade of life the human body undergoes the most significant 

transitions in motor development, making this time an excellent time to study 

the emergence and development of postural control (Roncesvalles et al., 2001). 

Furthermore, general postural control can be viewed as the foundation for 

which the development of more advanced movement skills can arise, leading 

some to examine postural control in relation to motor development and motor 

competency in addition to chronological age (Woollacott and Sveistrup, 1992; 

Roncesvalles et al., 2001; Sundermier et al., 2001). Within the field of motor 

control it is generally believed that with more practice at a given task there is 

less reliance on exteroceptive information from visual and auditory receptors 

and more use of interoceptive information from the proprioceptive systems 

(Gurfinkel et al., 1965; Lee and Lishman, 1975; Nashner and McCollum, 1985). 

Although some researchers claim that there is not an overwhelming amount of 

support for this view in postural control studies (Slobounov and Newell, 1994), 

there is some research suggesting developmental changes to the utilisation of 

visual and vestibular information during balance tasks. 

Infants as young as 5 months of age are able to detect and interpret the 

change in visual flow produced by the movement of the room as body sway, 

and the motor system is able to produce the directionally appropriate postural 

responses that serve to correct the perceived loss of stability (Foster et al., 

1996). In addition, new walkers are most influenced by a change in visual flow 

created by the motion of a moving room, which may indicate an enhanced 

reliance on visual perception of children at this developmental stage (Foster et 

al., 1996). Furthermore, anteroposterior optic flow has a significant effect on 

children aged 4 to 8 years above that of adults, with a significant decrease in 
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visual flow induced sway from 5 to 6 years of age (Casselbrant et al., 2007). 

This period seems to coincide with a period of sensory exploration between the 

ages of 4 to 6 years, were children begin a transition from reliance on visual 

and vestibular cues during stance to a better utilisation of somatosensory cues, 

and with the emergence of the integration of these sensory systems during 

balance tasks (Shumway-Cook and Woollacott, 1985; Woollacott et al., 1987). 

Although children at this stage are capable of  re-weighting the integration of 

visual, vestibular and somatosensory cues during times of sensory conflict, they 

are not proficient until all three systems are mature, which may not occur until 

age 10 (Shumway-Cook and Woollacott, 1985; Woollacott et al., 1987), or 

perhaps age 12 (Peterson et al., 2006; Rinaldi et al., 2009). Although the 

integration of sensory cues is essential to the maintenance of upright stance, 

the generation of appropriate motor responses to the perceived orientation of 

the body is also of importance. 

The patterns of muscle activation following a perturbation to the visual system 

are not stereotypical at different ages, and task experience has been 

demonstrated to affect the muscle activation patterns observed in other balance 

tasks (Woollacott et al., 1987). While directionally specific response synergies 

are present in children of a very young age, structured organisation of these 

synergies is not yet fully developed since variability in timing and amplitude 

relationships between proximal and distal muscles is high (Shumway-Cook and 

Woollacott, 1985; Roncesvalles et al., 2001). During the early development 

towards independent stance, such as in the appearance of pull to stand 

behaviour, an infant will display disorganised muscular activity in the supporting 

limbs, including high variability with the magnitude, burst duration, activation 

patterns and onset latencies of muscular responses to external perturbations 

(Woollacott and Sveistrup, 1992; Roncesvalles et al., 2001; Sundermier et al., 

2001). With increased motor competence through experience of more 

advanced motor skills, such as walking, running, jumping, hopping and skipping, 

muscular responses to an external perturbation evolve to exhibit faster recovery 

times and reduced onset latencies, shorter and more direct COP trajectories, 

greater peak torque magnitudes with reduced burst duration, and a coordinated 
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unimodal torque pattern between joints and muscle groups (Woollacott and 

Sveistrup, 1992; Roncesvalles et al., 2001; Sundermier et al., 2001). In addition, 

older children are more likely to exhibit a systematic strategy to accommodate 

the increased demands from a change to a balance task, such as standing on 

one leg; with these children showing an increased number and variety of 

corrective responses to maintain upright (Slobounov and Newell, 1994). 

Therefore, these older or more experienced children were more successful at 

re-introducing additional biomechanical degrees of freedom into the 

coordination of muscular activity patterns to enhance postural stability during 

the increased demands of the task. 

The previously mentioned literature seem to support the view held by 

Woollacott and Sveistrup (1992), who believe that the development of postural 

control during childhood can be compared to the three specific phases in the 

development of behaviour suggested by Bernstein (1967). Woollacott and 

Sveistrup (1992) explain that before the emergence of independent stance a 

child will not show a clear behavioural strategy or a coordinated muscle 

response pattern as they struggle to deal with the excessive ‘degrees of 

freedom’ available to them from control of the hips, knees and ankles. With 

increased experience, the emergence of independent stance will result from the 

infant reducing the degrees of freedom available to them by freezing the motion 

at proximal joints in order to simplify the task and control posture within a small 

boundary of stability via control of the ankle joint. Further experience of 

independent stance will allow mastery of this ankle strategy, eventually allowing 

the infant to experiment with expanding the degrees of freedom by allowing 

motion of the other joints in the legs and body, to explore and develop other 

control strategies and eventually increase the boundaries of stability 

(Woollacott and Sveistrup, 1992). 

 An interesting question that is yet to be answered is ‘does the development of 

postural control abilities allow the expression of behaviours that have been 

designated as developmental milestones, or do the motor experiences during 

the attempts at these behaviours help to develop and refine postural control 
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abilities?’ (Sundermier et al., 2001). It may be that the association between 

postural control and general motor development can be viewed as a cycle or 

positive spiral, whereby development of one leads to the opportunity for further 

development in the other, and that the development of both postural control 

and general motor skills should be examined together to further our 

understanding in either one. However, we must also consider the possible 

effects of physical development and maturation of key physiological systems, 

such as mylination of neurological pathways, enhanced muscular strength and 

development of visual and vestibular acuity. Therefore, future studies into the 

development of postural control may wish to examine how individuals with a 

mature neurological system learn to balance. However, this would require 

assessing neurologically sound adults in a balance task that is unfamiliar to 

them, and therefore could not be assessed in normal upright stance. One 

possible approach for this would be to assess how individuals learn to balance 

in inverted stance. 

2.5. Handstand Balance 

Several studies examining postural control in inverted stance have continued to 

employ COP as the main determinate of balance ability (Clement and Rezette, 

1985; Clement et al., 1988; Slobounov and Newell, 1996; Asseman et al., 2004; 

Asseman et al., 2005; Asseman and Gahery, 2005; Gautier et al., 2007; Sobera 

et al., 2007; Gautier et al., 2009; Croix et al., 2010; Croix et al., 2010a). Such 

studies have examined postural control in inverted stance by calculating mean 

sway velocity, sway area, sway radius, and sway range and standard deviation. 

In addition, some studies have measured the duration of inverted stance trials 

as a measure of balance performance, however, it is unclear how these studies 

have accounted for the differences in trial lengths when calculating particular 

measures of balance, such as sway area and sway length (Asseman and 

Gahery, 2005). Similar to normal stance, these studies have shown that sway 

in the anteroposterior direction is larger than in the mediolateral direction 

(Slobounov and Newell, 1996; Sobera et al., 2007), and balance performance 

in inverted stance decreases during eyes closed conditions (Asseman et al., 

2004; Asseman et al., 2005; Asseman and Gahery, 2005; Gautier et al., 2007; 
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Croix et al., 2010), with restricted central or peripheral vision (Gautier et al., 

2007), during altered visual gaze (Clement et al., 1988) and when balancing on 

a compliant surface (Croix et al., 2010). Furthermore, balance performance can 

be significantly affected by the alignment of the head in different positions, such 

as standard, dorsiflexion, aligned with the trunk, and ventroflexion (Clement 

and Rezette, 1985; Asseman and Gahery, 2005). However, vision only has a 

significant effect on postural control in handstand when the head is in the 

standard position or when in dorsiflexion, suggesting that the effect of the head 

position on postural control in handstand may be due to more than vision alone. 

Research examining the kinematics of inverted stance suggests that an 

individual’s trunk and head will remain relatively static throughout the balance 

task, with increasing magnitudes of motion in the more distal segments, such 

as hips and ankles (Slobounov and Newell, 1996; Kerwin and Trewartha, 2001). 

In addition, Kerwin and Trewartha (2001) discovered that, although the 

combined joint torques from wrist, shoulder and ankle contributed to the COM 

movements, wrist torques played the most dominant role in controlling sway for 

skilled hand balancers. However, less skilled hand balancers employed 

increased hip torques to control the COM and maintain balance. Unfortunately, 

this supposition is based on the relationship between joint torques and COM 

displacement only, and does not take into account any possible neurological 

delays as was highlighted previously in section 2.2.3. Nevertheless, this has 

been considered by Yeadon and Trewartha (2003), who discovered that 

gymnasts in inverted stance used a compensatory wrist torque, with time 

delays ranging from 160 to 240 ms, and accompanied by synergistic shoulder 

and hip torques acting in the same direction to control for COM displacement 

and velocity. These results seem to suggest that the preferred corrective 

strategy employed by hand balancers is a wrist strategy to correct for small 

perturbations, but as balance becomes more precarious the performer will 

begin to rely on more distal corrections from the shoulder and hip. However, 

further study into the corrective responses to internal and external perturbations 

may be required to discover the full array of corrective strategies employed by 

individuals in inverted stance, such as the relevance of an elbow mechanism 
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(Slobounov and Newell, 1996). Future research into this area may find worth in 

the procedures employed in previous studies into postural control during normal 

stance, such as using a combination of EMG and dynamic posturography to 

measure muscle latencies and muscle activity patterns in response to 

controlled perturbations. In addition, previous research has only assessed COP 

trajectories with traditional analysis methods, therefore, further insight into 

inverted stance through more sophisticated analysis techniques is needed. 

2.6. Chapter Summary 

The literature surrounding balance has been reviewed and the description of 

static balance and postural control has been clarified. The relevance of both the 

neurological and the mechanical implications for postural control have been 

highlighted, and a means through which these may be assessed have been 

provided. In addition, the development of postural control as a child ages has 

been discussed, with some reference to the problem of how the degrees of 

freedom in the system may change during this process. Lastly, the above was 

discussed with relevance to balance in the handstand position, which was 

suggested as a possible alternative to assessing how the postural control is 

learnt. 
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CHAPTER 3 

METHODS 

This chapter reviews the literature concerning the collection and treatment of 

data used to assess balance, and justifies the data collection and data 

processing methods used in the current research.  A detailed description of the 

experimental protocol is given, and the procedure for the collection and 

processing of experimental data is provided. 

3.1. Subjects 

All subjects involved in the current research were recruited from the 

Loughborough University gymnastics club or from the Loughborough University 

Sport and Exercise Science undergraduate programme. All subjects gave 

informed consent for the procedures in accordance with protocols approved by 

the Loughborough University Ethical Advisory Committee (Appendix 1 and 2). 

All subjects were required to be free from injury at the time of testing, and have 

no history of upper limb injuries up to six months prior to the commencement of 

testing. 

3.1.1. Subjects: Study One 

Study one recruited 22 subjects who were interested in learning to handstand 

for eight months during the 2011-2012 academic year. To be included in this 

study each subject was required to be available to practice handstands for at 

least three times a week for 10-15 minutes each session and attend a testing 

session every four weeks.  An additional inclusion criterion was that individuals 

must be able to safely get into the handstand position against a wall, but when 

they moved into independent support they would only be able to maintain 

balance for a maximum of five seconds.  Before the end of the eight month 

period of handstand practice and testing, nine subjects dropped out of the 

study for a variety of reasons, resulting in 13 subjects that completed all 

required parts of the study, including five males (age: 20.4 ± 1.14 years; mass: 
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76.6 ± 4.7 Kg; height: 1.81 ± 0.06 m) and eight females (age: 19.4 ± 1.7 years; 

mass: 61.6 ± 3.9 Kg; height: 1.67 ± 0.09 m). 

3.1.2. Subjects: Study Two 

Study two recruited 12 subjects who were experienced at balancing in 

handstand and could maintain independent balance for at least 30 seconds, 

including nine males (age: 23.1 ± 3.6 years; mass: 69.9 ± 2.2 Kg; height: 1.73 ± 

0.05 m) and three females (age: 20.5 ± 0.7 years; mass: 57.9 ± 1.9 Kg; height: 

1.64 ± 0.02 m). These subjects were all experienced artistic or acrobatic 

gymnasts with many years of experience in performing tasks in hand support 

and were comfortable with the challenging nature of the tasks involved during 

platform perturbations and altered sensory inputs. 

3.2. Data Collection 

Data for all balance trials were collected on the Computer Assisted 

Rehabilitation Environment (CAREN) system developed by Motek Medical.  

This system consists of a Stewart platform with six hydraulic rams allowing the 

platform to move with six degrees of freedom, which allows up to ± 0.15 m of 

translation and ± 15º of rotation.  The CAREN system incorporates a Vicon 

motion analysis system to collect kinematic data, and has two Bertec strain 

gauge force plates imbedded into the Stewart platform to allow reaction forces, 

moments, and centres of pressure to be determined.  In addition, a Delsys 

Trigno wireless EMG system was linked to the system so that surface 

electromyographic (EMG) activity could be measured.  All data from the force 

plates and EMG unit were passed through the same analog-to-digital converter 

(ADC) via the Vicon MX Giganet control box to synchronise EMG and kinetic 

data with the kinematic data.  During all data collection sessions, kinematic 

data were sampled at 200 Hz and force plate and EMG data at 2000 Hz, with 

data synchronised to within ± 0.5 ms. 

3.2.1. Platform Movements 

Movements of the Stewart platform allowed for specific perturbations to be 

applied to an individual attempting to balance on the platform surface; motion 
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was controlled by the Motek Medical D-Flow software designed for this purpose. 

Within the D-Flow software an application was created that would allow the 

amplitude and velocity of the platform translations and rotations to be controlled. 

The range of motion allowed within this application was restricted to ± 0.1 m for 

horizontal translations and ± 10º for rotations about the x-axis; and the 

velocities were restricted to a range of ± 0.2 m·s-1 for translations and ± 100º·s-1 

for rotations. Furthermore, rotation of the platform can be combined with 

horizontal and vertical translations so that the axis, or point, of rotation of the 

platform can be moved (Barton et al., 2006). Using the algorithms of Barton et 

al. (2006), an application was created using the script module within the D-Flow 

software to allow the system to track the motion of an individual in standing and 

rotate the platform about the ankle joint so as to track the body sway and 

reduce ankle motion. This employed the principles of the sway referenced 

condition from the sensory organisation test (Nashner, 1972); whereby this 

sway referenced platform motion would reduce the feedback from the 

proprioceptive sensors around the ankle and help assess the role of this 

feedback during standing balance. In addition, the application allowed for the 

sway referenced test to be performed in handstand, where the platform would 

rotate about the subjects’ wrist joint to reduce the associated proprioceptive 

feedback. 

3.2.2. Kinematic Data 

The optoelectronic motion capture system (Vicon, Oxford Metrics Group), 

situated within the CAREN system consisted of nine T20 vicon cameras. The 

cameras have a sensor size of 1600 by 1280 pixels, with maximum resolution 

up to a frame rate of 500 Hz, allowing the sample frequency used in the current 

research to utilize the full resolution of 2 megapixels. The T20 cameras emit 

near inferred light which is reflected back to the cameras from the 

retroreflective markers placed on the individual under investigation. The 2D 

images from each camera are combined to provide the reconstructed 3D 

coordinates for each reflected marker within the capture volume. However, the 

accuracy of the reconstruction is dependent upon the camera positions, 

settings, and the camera parameters determined during the calibration 
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procedure which was completed before each data collection session. The nine 

T20 cameras were positioned around the 2 metre diameter Stewart platform on 

a rigid metal frame measuring 5 m by 5 m across and 4 m in height (Figure 3.1). 

 

Figure  3.1: The CAREN system setup and connecting equipment, including the 
nine T20 vicon cameras (circles numbered 1-9), with the origin (green dot) and 
orientation of the global coordinate system. 

The dynamic calibration involved waving a 5-marker L-frame wand around the 

full capture volume, which was a cube of 3 m by 3 m wide and 3 m in height 

above the surface of the platform, centred on the centre of the Stewart platform. 

The static calibration required the same 5-marker L-frame to be positioned 
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within the capture volume so that the origin and orientation of the global 

coordinate system (GCS) could be set. The origin was set to the front edge of 

the join between the two force plates, with the positive x-axis to the left, positive 

y-axis to the rear, and the positive z-axis vertically up, as seen from an 

individual standing in the centre of the platform facing the projector screen 

(Figure 3.1). The calibration procedure provides the user with an estimate of 

the camera errors, given as the camera residuals measured in pixels, which 

represents the RMS difference between each camera view of a marker and its 

reconstructed 3D coordinate. The locations of the nine cameras relative to the 

centre of the Stewart platform can be seen in Figure 3.1; with the position and 

mean residual error for each camera also shown in Table 3.1.  

Table  3.1: The position of each camera relative to the centre of the platform, 
and the mean and SD of the camera residual errors for all data collection trials. 

Camera 

Position (m) Distance to 
Centre (m) 

Residual Error in 
Pixels (mean ± SD) X Y Z 

1 2.27 -2.58 2.45 4.22 0.166 ± 0.012 

2 2.49 -0.16 3.32 4.15 0.163 ± 0.012 

3 -2.30 -0.37 3.31 4.05 0.201 ± 0.013 

4 -0.74 2.53 1.40 2.99 0.251 ± 0.018 

5 0.95 2.47 2.20 3.44 0.153 ± 0.013 

6 -2.48 -2.19 2.48 4.14 0.189 ± 0.017 

7 -2.30 1.23 3.29 4.20 0.208 ± 0.019 

8 0.26 -2.43 3.31 4.11 0.174 ± 0.011 

9 2.52 1.23 3.35 4.37 0.172 ± 0.016 

Mean residual for all cameras  0.186 ± 0.014 
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3.2.2.1. Marker Placement 

A marker set consisting of 53 spherical markers of 14 mm diameter was used 

to divide the body into 19 segments (Figure 3.2 and Appendix 3). Marker pairs 

positioned at medial and lateral projections of the joint centre were used to 

calculate the metacarpophalangeal, wrist, elbow, metatarsophalangeal, ankle 

and knee joint centres. In normal and single leg stance the shoulder joint centre 

was calculated as ⅓ of the distance from the anterior shoulder (AS) marker to 

the posterior shoulder (PS) marker. In handstand the shoulder joint centre was 

calculated as ½ the distance from the lateral shoulder (LS) marker to the AS 

marker. 

       
Figure  3.2: Position of markers and EMG sensors (full details in Appendix 3) 

The hip joints were predicted using the method of Davis et al. (1991), where the 

three dimensional location of the right and left hip joint centres are estimated 

via: 

	 ܥ ൌ ௟௘௚ܮ0.115 െ 0.0153 ሺ3.1ሻ

A B
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ܺ௛ ൌ ܵ ൤ܥ ݊݅ݏ ߠ െ

݀஺ௌூௌ
2

൨ ሺ3.2ሻ

	 ௛ܻ ൌ ሾെݕௗ௜௦െݎ௠௔௥௞௘௥ሿ ݏ݋ܿ ߚ ൅ ܥ ݏ݋ܿ ߠ ݊݅ݏ ߚ ሺ3.3ሻ

	 ܼ௛ ൌ ሾെݕௗ௜௦െݎ௠௔௥௞௘௥ሿ ݊݅ݏ ߚ െ ܥ ݏ݋ܿ ߠ ݏ݋ܿ ߚ ሺ3.4ሻ

Where ݀஺ௌூௌ is the distance between the right and left ASIS (anterior-superior-

iliac-spine), ݕௗ௜௦ is the anterior/posterior component of the ASIS-to-hip centre 

distance, ܮ௟௘௚ is the mean leg length, ߠ ൌ 28.4° (representing the angle from the 

hip joint centre to the ASIS in the frontal plane), and ߚ ൌ 18° (representing the 

angle of pelvic tilt in the sagittal plane). The exact motion of the Stewart 

platform was determined by placing four extra markers on the platform, aligned 

with the four corners of the forces plates. These markers were used to track the 

translation and rotation of the platform and were required so that the origin of 

the force plates could be reconstructed to make adjustments to the position of 

the centre of pressure (COP) and the orientation of the force vector during 

platform motions. 

3.2.3. Force Data 

The two Bertec FP4060-07 strain gauge force plates are embedded side-by-

side into the centre of the Stewart platform, each measuring 0.4 m in width and 

0.6 m in length, giving a total area of 0.8 m by 0.6 m. Each force plate 

measures horizontal and vertical forces in four locations to calculate the 

resultant force applied to the surface of the plate, with a maximum load of 10 

kN in the vertical direction and 5 kN in the horizontal directions. The three 

orthogonal components of the applied force, and the three components of the 

resultant moment, are calculated within the force plate before being amplified 

and converted to a digital signal using a 16-bit ADC. The three force and three 

moment channels are transmitted from the force plate to an AM6501 digital-to-

analog converter with a gain of unity before being passed via a relay box into 

the Vicon Giganet control box. Each channel has a voltage range of ± 5 V 

resulting in the signal scaling factors shown in Table 3.2 required to convert 

these voltages into the appropriate units. 
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Table  3.2: The maximum loads, signal scaling factors and mean errors for the 
six channels outputted from each force plate. 

 Fx Fy Fz Mx My Mz 

Maximum Load 

(N, Nm) 
5,000 5,000 10,000 3,000 2,000 1,500 

Signal Scaling Factor 

(N/V, Nm/V) 
1,000 1,000 2,000 600 400 300 

Mean Error (± N, ± Nm) 0.136 0.162 0.470 0.126 0.098 0.062 

 

The six channels from each force plate were used to calculate the COP and the 

free moment about the COP via: 
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However, both the moment and force signals have their own errors associated 

with them, resulting in corresponding errors in the COP and free moment, given 

by: 
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Error propagation relates to the effects that the uncertainties in a variable have 

on the uncertainties in a function based on that variable. When summing 

multiple variables which contain uncertainties the variance in the variable is 
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additive, which means the uncertainties add in quadrature; and when 

multiplying or dividing variables that have uncertainties, the fractional 

uncertainties add in quadrature. Therefore the uncertainties for COP and free 

moment can be calculated via: 
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Equations 3.11 – 3.13 show that even when the errors in the measured forces 

and moments remain relatively constant, the errors in both COP and free 

moment can increase significantly if the vertical force is small. It is for this 

reason that researchers often employ a force threshold below which the errors 

are considered too high and COP and free moment are not calculated. The 

estimated errors in a measured variable, such as the forces and moments of a 

force plate, can be obtained by calculating the standard deviation (SD) of the 

signal to give the average uncertainty of the measurement. This requires 

knowledge of the true value being measured, which is not always possible, 

however, if the same value is recorded multiple times, then the mean value 

provides a reasonable estimate of the true value, assuming there are enough 

samples. 

A weight lifting disc with a mass of 10 kg was placed on each force plate and 

the force and moment data were recorded at 200 Hz for a period of 10 seconds, 

so that the mean and SD could be determined, shown in Table 3.2. These 

values were used with equations 3.11 and 3.12 to estimate a force threshold so 

that the uncertainties within the COP measurements would remain below ± 1 

mm. Calculations show that a vertical force threshold of 99 – 136 N and 126 – 

189 N is required to maintain the error within the mediolateral (ML) and 
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anteroposterior (AP) components of the COP below 1 mm, with the upper 

ranges required for COP locations towards the limits of the platforms’ 

dimensions. Consequently, in all cases where the trial was stopped due to the 

subject moving their base of support, a force threshold of 200 N was used to 

determine the end of the trial. 

Additionally, the values in Table 3.2 and equations 3.11 – 3.13 can also be 

used with the actual forces and moments from an experimental trial to give the 

estimated error in COP and free moment during that trial. For a subject with a 

mass of 72.5 kg, the error in COP during single leg stance will be < 0.2 mm, 

and for normal standing or handstand, with the mass distributed across both 

force plates, it will be < 0.5 mm (Figure 3.3). Nevertheless, it should be 

stressed that this is just an estimate of the actual error in the COP 

measurements, as equations 3.11 – 3.12 assume that the errors within the 

variables are independently random, with either normal or uniform distribution. 

These assumptions are not strictly true, as force plates may also have errors 

relating to hysteresis and possibly some vibrations, however, these errors will 

be minimised during static balance. 

 

Figure  3.3: Example of the AP COP and the estimated error of the COP for a 
standing trial of a subject with a mass of 72.5 kg 
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3.2.4. EMG Data 

The Delsys TrignoTM wireless EMG system (Delsys Inc.) incorporates 16 

wireless EMG sensors, each with four separate 5 mm by 1 mm silver 

electrodes positioned in parallel pairs with an interelectrode distance of 10 mm. 

The four separate electrodes record the electrical potential that is generated by 

the underlying muscles and propagates to the surface of the skin; where two 

EMG signals are measured as the difference between each electrode in a 

lengthwise pair. The sensors use the two EMG inputs with proprietary 

stabilizing references to calculate the EMG activity of the area under the sensor 

without the need for a reference contact to remove, or reduce, the electrical 

signal from electrostatic, garment, and motion artefacts (Delsys, 2009). Each 

sensor has a signal range of ± 5 mV with a signal resolution of 153 nV/bit when 

sampled through a 16 bit ADC. 

All trials required the full array of 16 EMG sensors to be positioned on the 

subject to obtain the activity of eight muscle groups on both the right and left 

side of the body. All sensors were fixed following the advice from the Delsys 

Trigno manual for the preparation of the skin and the use of the specially 

designed adhesive interfaces intended to simplify sensor attachment and 

reduce the electrical resistance of the site (Delsys, 2009).  

The skin was shaved with a dry razor and cleaned with an alcohol wipe before 

EMG sensors were placed on the skin, aligned with the expected line of muscle 

fibres, and over the muscle bellies of the wrist flexors (WF), wrist extensors 

(WE), medial deltoid (MD), latissimus dorsi (LD), rectus abdominus (RA), 

erector spinae (ES), rectus femoris (RF) and biceps femoris (BF) muscles 

(Figure 3.2 and Appendix 4). In each data collection session, three maximum 

voluntary contraction (MVC) trials were collected to be used as a reference for 

the maximum activity possible for each muscle in that particular session, to be 

later used to scale all EMG measures to a percentage of maximum muscle 

activity. The MVC’s included resisted isometric wrist flexion and extension (WF 

and WE muscles), resisted shoulder flexion and extension with arms fully 
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elevated in a seated position (MD, LD and RA muscles), and a resisted deadlift 

(ES, RF and BF muscles). 

During standing trials with platform translations it was necessary to obtain EMG 

data for the tibialis anterior (TA) and medial gastrocnemius (MG) muscles as 

these are the muscle which control body sway about the ankle joint in standing. 

Therefore, for these trials, the four EMG sensors from the forearm muscles 

were repositioned to the lower leg and two MVC trials were recorded 

specifically for these muscles. The MVC trials included a resisted isometric 

deadlift with the feet in a heel raised position (MG), and a resisted isometric toe 

raise in a seated position (TA). All EMG placements are in accordance with the 

SENIAM guidelines or from Konrad (2005). 

3.2.5. Anthropometric Data 

Forty-five anthropometric measurements were taken for each subject as input 

into the geometric inertia model of Yeadon (1990), utilising the segmental 

density values from Chandler et al. (1975). This model sections the body into 

40 solids by planes perpendicular to the longitudinal axes of the body segments; 

these are typically joined together via the parallel axis theorem to reconstruct 

the required number of segments for the model employed. In addition, the 

model uses the subject’s known body mass, and compares it to the one 

estimated by the model, to subsequently correct the estimated segmental 

densities before recalculating all values. For each segment the mass, location 

of mass centre, principle moments of inertia about the mass centre, and 

distance between joint centres are calculated.  

The pelvis, trunk and chest may be combined to model the torso as a single 

rigid segment from the hip joint centre to the shoulder joint centre, which may 

be a reasonable simplification for activities with minimal torso motion. In 

activities where there is more motion of the torso these segments are usually 

modelled separately, however, the boundaries between each segment are 

based on the anthropometric measurements in the geometric model and may 

not adequately correspond to the points used to construct the kinematic model 



50 
 

used to track the motion. Therefore, the solids and sub-segments within the 

geometric model were adjusted so that boundaries between the segments that 

make up the torso aligned with the retro-reflective markers used to track torso 

motion. This was achieved by calculating the heights of PSIS, L1, T10, and C7 

markers above the hip joint centres during a static trial, and adjusting the 

measurements input to the geometric model accordingly. 

The inertia model of Yeadon (1990) uses the sub-segment lengths, perimeters 

and widths from the anthropometric measurements of the torso to calculate the 

volume of stadium solids, each bounded by two parallel stadia. Where markers 

lay within one of the stadium solids that make up the torso segment, the solid 

was divided by finding intermediate lengths, perimeters and widths based on 

the height of the marker above the base of the solid as a percentage of the total 

height of the solid. The stadium solids were recalculated and, where required, 

adjacent solids were combined via the parallel axis theorem, resulting in a total 

of 18 segments to represent the body (Table 3.3 and Figure 3.4). In addition to 

the above adjustments, separate subject body masses were measured for each 

session and used to reconstruct a separate set of subject segmental inertial 

data for each session from the single set of anthropometric measurements. 

 

Figure  3.4: The 40 segments from the Yeadon geometric inertia model, 
showing the segmentation of the body into 40 solids (taken from Yeadon, 1990). 



51 
 

Table  3.3: The 40 solids from the geometric inertia model of Yeadon (1990), 
with the original 11 segments, and the new arrangement of 18 segments used 
in the current research. 

Original Segment Solids New Segment 

Chest-head 

s6, s7, s8 Head & Neck 

s5R Right Shoulder Girdle 

s5L Left Shoulder Girdle 

s4 
Thorax 

Thorax 
s3B 

s3A 
Abdomen 

Pelvis 
s1B, s2 

s1A Pelvis 

Left upper arm a1, a2 Left upper arm 

Left forearm-hand 
a3, a4 Left forearm 

a5, a6, a7 Left hand 

Right upper arm b1, b2 Right upper arm 

Right forearm-hand 
b3, b4 Right forearm 

b5, b6, b7 Right hand 

Left thigh j1, j2, j3 Left thigh 

Left shank-foot 
j4, j5 Left shank 

j6, j7, j8, j9 Left foot 

Right thigh k1, k2, k3 Right thigh 

Right shank-foot 
k4, k5 Right shank 

k6, k7, k8, k9 Right foot 

(Note: segments s1A, s1B, s3A, s3B, s5R, and s5L are new solids that have been recalculated 
from the original arrangement) 
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3.2.5.1. Anthropometrics: Study One 

The novice balancers from study one were tested over an eight month period, 

which might result in some changes to the anthropometric measurements 

collected. To ensure any changes would not adversely affect the integrity of the 

inertial data the subjects’ body mass was monitored at each data collection 

session so that the anthropometric data could be re-measured if the body mass 

varied by more than 5%. 

Table  3.4: The estimated masses, densities and volumes of a single subject 
with all measurements adjusted by ± 1 mm, ± 5 mm, and ± 10 mm. 

Measurements Mass Density Volume Mass Difference 

+ 10 mm error 65.83 0.956 68.15 5.28% 

+ 5 mm error 64.17 0.955 67.19 2.62% 

+ 1 mm error 62.86 0.954 65.86 0.53% 

Original 62.53 0.954 65.54 0.00% 

- 1 mm error 62.15 0.954 65.15 -0.61% 

- 5 mm error 60.91 0.953 63.89 -2.59% 

- 10 mm error 59.30 0.952 62.26 -5.17% 

 

All anthropometric measurements will contain a certain amount of 

measurement error, which will be related to the expertise of the investigator 

taking the measurements. Yeadon (1990) showed that the estimated body 

mass of the current model may have an error of up to 2.3% when compared to 

the measured body mass. Although the 5% limit used in the current research 

may appear to be somewhat large compared to the previously reported error, 

the correction of body mass used within the inertia program allows for some 

leniency. In addition, when measuring segmental lengths, widths and 

perimeters, the estimated measurement error expected from an experienced 

investigator is approximately 5 – 10 mm (Yeadon, personal communication), 

which corresponds to an error in the estimated body mass of 2.6 – 5.2% (Table 

3.4), justifying the 5% threshold used here. The largest change in body mass 
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for any subject, from that measured during the anthropometric measurements, 

was 4.1%; therefore no subject was required to have their anthropometric 

measurements retaken. 

3.3. Procedure 

During all experimental sessions subjects were allowed several minutes warm 

up, including several practice handstands, before the details of that session 

were reiterated to them. With the subject in a prone position, two markers were 

first placed on the spinous processes of the T10 and L1 vertebra; this was to 

allow accurate placement of these markers and aid in the placement of the 

EMG sensors on the erector spinal muscle group. The EMG sensors were 

placed on the subject using the procedure mentioned previously in section 

3.2.4 before the three MVC trials were collected. Following the MVC trials the 

remaining 51 markers were placed on the subject before the subject was 

instructed to stand in the middle of the calibrated volume on the force plates so 

that two static trials could be recorded and body mass could be determined. 

The first static trial required the subject to stand in the anatomical position 

facing the projection screen, with arms by their sides and the palms of their 

hands facing forward, similar to Figure 3.2a. The second trial required the 

subject to stand facing the projection screen with their arms fully extended 

above the head, similar to Figure 3.2b. These provided trials where all markers 

were easily viewed to be used as a standardised position to help create and run 

the marker file for automatic labelling, help replace markers that may become 

occluded during the experimental trial, and give a standard alignment for body 

segments to refer to. The subject was allowed a final practice to ensure they 

could perform the tasks with all markers and EMG sensors in place before they 

completed the required tasks for that session. 

Past research has often placed stringent restrictions on starting positions, 

orientation, and movements allowed by the subjects involved. These included: 

dictating the position and angle of the feet, the height and angles of the free leg 

or arms, and even on insisting that no free limb motion is allowed to assist 
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postural control. The purpose of the current research was to assess the 

strategies used by novice and experienced balancers, and to assess how these 

strategies may change over time or during perturbations. Therefore, all subjects 

were instructed to maintain balance by whichever strategy they preferred, and 

no restriction was placed on the movements of the supporting limbs or free 

limbs during the balance trials. During all trials subjects were instructed to 

maintain a static base of support, where a change to the base of support would 

be considered as a failure to maintain balance, such as a step, a shuffle, or a 

free limb contacting the ground or support. 

It is possible that a lenient approach to the positioning and control of the 

supporting and free limbs such as used here may result in a less controlled 

environment, which might result in greater variability within or between the 

subjects’ performance. However, it was felt that this approach was necessary to 

firstly allow novice balancers to experiment and adjust whilst learning to 

balance, and secondly to gain a fuller understanding of the various ways in 

which an individual attempts to maintain balance in various challenging 

scenarios. 

3.3.1. Static Trials 

During all static trials, subjects were instructed to maintain a static base of 

support, and attempt to remain in, or return to the standard starting position for 

each condition. The standard positions were: fully extended arms, trunk, and 

legs with feet together for handstand; standing on the preferred leg, with free 

leg off the ground and not touching the support leg, and the arms in a 

comfortable position by the side for single leg stance; and feet at a comfortable 

distance apart and the arms in a comfortable position by the side for normal 

stance (Figure 3.5). 
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Figure  3.5: The standard starting position for the three conditions of handstand, 
single leg stance, and normal standing respectively. 

3.3.1.1. Novice Handstanders 

Study one involved the assessment of novice handstanders every month over 

an eight month period. During the first four assessment sessions, subjects were 

asked to perform five trials in handstand with eyes open for maximal duration, 

with a minimum one minute rest between trials. From the fifth assessment 

session onwards, once subjects became accustomed to performing handstands, 

they were asked to perform two blocks of five handstand trials, one block with 

eyes open and one with eyes closed. In addition, subjects were asked to 

perform trials in standing between the blocks of five trials in handstand; this 

was to increase the time between handstand blocks and reduce the chance 

that fatigue may occur. A random number generator was used to assign each 

subject to one of two groups to perform the trials in one of the orders shown in 

Table 3.5. 

The experimental order was alternated for each subsequent session so that a 

subject assigned to order one in session five would follow order two the 

following session. The standing trials used between the blocks of handstand 

trials included blocks of five trials in normal standing for sessions five and six, 

and blocks of five trials in single leg stance during the subsequent sessions. 

Standing trials were completed for a maximum of 30 seconds duration for both 
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single leg stance and double leg stance, and all single leg stance trials were 

performed on the individuals’ preferred leg. 

Table  3.5: Two orders of blocks of trials used for assessing static stance. 

Order One Order Two 

Handstand – Eyes Open Handstand – Eyes Closed 

Standing – Eyes Open Standing – Eyes Closed 

Standing – Eyes Closed Standing – Eyes Open 

Handstand – Eyes Closed Handstand – Eyes Open 

 

3.3.1.2. Experienced Handstanders 

All experienced handstanders completed static trials in handstand, normal 

stance, and single leg stance; with eyes open and eyes closed conditions. Each 

condition was completed in a block of five trials with a minimum one minute rest 

between trials. Each trial lasted for a maximum of 30 seconds for all conditions, 

and subjects were allowed to retry any trial that lasted less than five seconds, 

with a maximum of 5 retries for each block of trials. To increase the time 

between blocks of trials in handstand, and reduce the chance that fatigue may 

occur, a random number generator was used to assign each subject to a group 

to perform the trials in one of the orders shown in Table 3.6. 

Table  3.6: Two orders of blocks of trials used for assessing static stance 

Order One Order Two 

Handstand – Eyes Open Handstand – Eyes Closed 

Single Leg Stance – Eyes Open Single Leg Stance – Eyes Closed 

Normal Stance – Eyes Open Normal Stance – Eyes Closed 

Normal Stance – Eyes Closed Normal Stance – Eyes Open 

Single Leg Stance – Eyes Closed Single Leg Stance – Eyes Open 

Handstand – Eyes Closed Handstand – Eyes Open 
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3.3.2. Platform Perturbations 

Experienced handstanders were asked to perform handstand and standing 

trials while receiving a discrete platform perturbation controlled by the 

application previously described in section 3.2.1. A total of 12 discrete platform 

translations were administered to the experienced handstanders in each 

posture, with three trials for each perturbation, consisting of a forwards or 

backwards translation, with a large or small perturbation. The large 

perturbations had an amplitude of 0.1 m and a velocity of ± 0.2 ms-1, and the 

small perturbations had an amplitude of 0.05 m and a velocity of ± 0.1 ms-1. 

The order of the 12 perturbations was randomly assigned to each subject via a 

random number generator using a simple Matlab script. This was firstly to 

reduce the chance that a subject would be able to anticipate the direction and 

size of each perturbation, and secondly to ensure that each subject received a 

different order of perturbations to reduce any order effects, such as fatigue or 

practice. 

All experience handstanders completed the above procedure firstly while in the 

handstand position, followed by the same procedure while in the standing 

position. This was to allow the replacement of EMG sensors 1 – 4 from the 

wrist muscles to the lower leg muscles as described in section 3.2.4. In addition, 

it was felt that there was unlikely to be any crossover practice effect from 

experiencing the perturbations while in the handstand position to the 

perturbations while in the standing position. 

All trials in handstand and standing lasted for approximately 4 – 6 seconds; with 

a perturbation administered at a random time within the first 1 – 3 seconds of 

balancing. The trial was stopped when either the subject failed to maintain 

balance with a static base of support or when the experimenter believed the 

subject had returned to a stable balanced position. 

3.3.3. Sensory Organisation Test 

Experienced handstanders were asked to perform trials with eyes open and 

eyes closed in both handstand and standing postures while experiencing the 
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sway referenced platform condition previously described in section 3.2.1. A 

total of 12 trials were administered in each posture; with 3 trials in each of the 

four conditions of eyes open or eyes closed, with a static or sway referenced 

platform. The handstand posture was completed in four blocks of three trials 

interspaced with three blocks of four trials in the standing posture (Table 3.7); 

where the order of trials were once again determined via a random number 

generator. 

Table  3.7: An example of the order of trials for the sensory organisation test 

Posture Vision Platform Motion 
Handstand Eyes Closed Static Platform 
Handstand Eyes Open Sway Referenced Platform 
Handstand Eyes Closed Sway Referenced Platform 
Standing Eyes Open Sway Referenced Platform 
Standing Eyes Closed Sway Referenced Platform 
Standing Eyes Open Static Platform 
Standing Eyes Open Sway Referenced Platform 
Handstand Eyes Closed Sway Referenced Platform 
Handstand Eyes Open Static Platform 
Handstand Eyes Open Sway Referenced Platform 
Standing Eyes Open Static Platform 
Standing Eyes Open Static Platform 
Standing Eyes Closed Static Platform 
Standing Eyes Closed Sway Referenced Platform 
Handstand Eyes Closed Sway Referenced Platform 
Handstand Eyes Closed Static Platform 
Handstand Eyes Open Static Platform 
Standing Eyes Open Sway Referenced Platform 
Standing Eyes Closed Sway Referenced Platform 
Standing Eyes Closed Static Platform 
Standing Eyes Closed Static Platform 
Handstand Eyes Open Sway Referenced Platform 
Handstand Eyes Closed Static Platform 
Handstand Eyes Open Static Platform 

 

All trials lasted for a maximum of 30 seconds, until the subject lost balance by 

moving the base of support, or until the application stopped the trial due to an 

exceeded safety limit. Two safety limits were used, including a limit for the 

maximum amount of platform sway allowed, which was set to ± 5º to the 
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vertical, and one based on the minimum amount of vertical force, set to 100 N, 

to indicate that a foot or hand is about to lift off the surface of the force plate. 

3.4. Data Processing 

Throughout the current research every attempt was made to remove systematic 

errors, and reduce the random errors within the measurements, however, 

measurements will still contain some error, even if this is simply the added 

errors from the electrical noise within the equipment. Because of this, various 

steps may need to be taken in an attempt to reduce errors further. It should be 

noted that such measures cannot completely remove these errors from the data. 

Furthermore, several of the data analysis methods that have been used within 

the current research required that the signals are not excessively processed, 

and researchers often advise that these processing methods are not 

undertaken at all. These circumstances will be discussed further in Chapter 4, 

but unless it is stated otherwise it should be assumed that the following 

processing methods have been implemented. 

3.4.1. Signal Filtering 

A normally distributed random signal, such as can be seen in the error added to 

a signal due to electrical noise, will contain frequencies that are constant across 

the power spectrum, and is usually referred to as white noise. The higher 

frequency components of this signal may be removed, or attenuated, by using a 

low pass filter, however, the lower frequency components will remain. A low 

pass filter is often used to reduce the high frequency components of noise, and 

consequently reduce the errors within a signal, however, the low pass filter will 

also attenuate any frequencies of the true signal under investigation that are 

higher than the cutoff frequency (Winter, 2009). Therefore the choice of cutoff 

frequency can be crucial to ensure the maximum amount of noise is removed 

whilst also minimising the distortion to the true underlying signal (Derrick, 2004). 

The optimum cutoff frequency may be found by either examining the power 

spectrum of the signal or performing a residual analysis. Although there are 

some authors with preferences for one method over the other, if used 

appropriately these two methods should provide a similar cutoff frequency. 
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3.4.1.1. Residual Analysis 

Residual analysis attempts to discover the optimum cutoff frequency by filtering 

the data at several different frequencies and calculating the residual between 

the raw and filtered signals (Winter, 2009); given by: 

	 ܴሺ ௖݂ሻ ൌ ඩ
1
ܰ
෍ሺݔ௜ െ ො௜ሻଶݔ
ே

௜ୀଵ ሺ3.14ሻ

Where ௖݂ is the cutoff frequency, ݔ௜ is the raw signal, and ݔො௜ is the filtered signal. 

The residuals of the raw and filter signals represent the change in the signal 

due to the filtering process. This assumes that the residuals of any noise would 

fluctuate about zero and would increase gradually as the cutoff frequency is 

reduced, leading to a relatively linear line when plotted. Winter (2009) describes 

how this principle can be used to choose the appropriate cutoff frequency, by 

selecting the point at which the slope begins to deviate from the expected linear 

line of a random signal. However, this should be approached with caution, as 

this method may result in an underestimation of the cutoff frequency if a signal 

contains large amounts of noise, leading to attenuation of the true signal. 

3.4.1.2. Power Spectrum 

The power spectrum describes how the power of a signal is distributed over the 

different frequencies within the signal; and the cutoff frequency can be 

determined as the point below which 95% or 99% of the total power occurs. If 

the high frequency noise within a lower frequency signal represents only a 

small component of the whole signal, then the power spectrum can be used as 

an appropriate method to determine the cutoff frequency. If the noise within a 

signal is excessive, this method will overestimate the cutoff frequency, leading 

to a filtered signal that still contains significant amounts of noise, making it 

difficult to calculate accurate velocities and accelerations. 

Force, COP displacements, and marker displacements resulted in low pass 

cutoff frequency estimates of 4 to 9 Hz based on residual analysis and 6 to 10 

Hz based on power spectral analysis. To provide consistency across trials, and 
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to reduce the possibility of attenuating the true signal by over filtering data, all 

data were filtered using a fourth order, zero lag, low-pass Butterworth filter with 

a cut-off frequency of 10 Hz. 

Raw EMG data were filtered with a fourth order, zero lag, band-pass 

Butterworth filter with cut-off frequencies of 20 Hz and 450 Hz (De Luca et al., 

2010), before being rectified. Subsequently, EMG data were analysed unfiltered 

for perturbation trials and filtered using a fourth order, zero lag, low-pass 

Butterworth filter with a cut-off frequency of 10 Hz for static balance trials. 

3.4.2. Data Resampling 

Force plate data were collected at a high sample frequency due to both the 

force and EMG data being passed through the same ADC. In order to use the 

force data with the kinematic data it was necessary to resample the force data 

at the lower sample frequency of 200 Hz. This was achieved using the Matlab 

decimate function, where the signal was first filtered with a low pass anti-

aliasing filter before being resampled at the lower rate. 

3.4.3. Centre of Mass Calculation 

The motion of the centre of mass (COM) is of great importance in postural 

control research, however, the COM is an imaginary quantity and is not easily 

measured during human movement. The COM is the unique point at the centre 

of a distribution of mass in space; essentially, it is the point at which the 

weighted positions of all masses within the body sum to zero. Furthermore, if all 

forces applied to a body of known mass can be determined, then the motion of 

the COM can be calculated from Newton’s second law of motion. These two 

principles lead to the two main methods by which COM is calculated during 

postural control studies. 

The position of the COM of a person can be determined as the weighted 

average of the positions of the COM of each body segment. The COM of each 

segment may be calculated from anthropometric data such as is described in 

section 3.2.5. This method relies on the accurate tracking of segment and joint 
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centre locations, along with accurate estimates of segment masses. This 

method will result in a reasonable estimate of the displacement of the COM, 

however, errors in kinematic data will result in increased errors in any time 

derivatives calculated from this displacement. Alternatively, COM motion 

calculated as the double integral of force divided by mass will not have this 

limitation. 

In standing the motion of the COM can be determined by the ground reaction 

force (GRF) measured from a force plate and the known mass of the person, 

via: 
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Equations 3.15 to 3.17 are sensitive to the initial velocity and displacement of 

the COM, which may be estimated from zero crossings of horizontal force (King 

and Zatsiorsky, 1997; Zatsiorsky and King, 1998). However, errors with 

estimating these values will result in systematic errors in the COM 

displacement. Errors within the measured force or subject mass can result in 

further systematic errors; leading some authors to combine both force data and 

kinematic data to calculate COM motion (Yeadon and Trewartha, 2003). 

Yeadon and Trewartha (2003) estimated the initial velocity and displacement of 

the COM, along with an estimated error in acceleration due to errors in force or 

measured body mass, based on regressions of the COM calculated from the 

two previous methods. The COM displacement and velocity was then 

recalculated via: 
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The above method results in reasonable estimates of COM displacement when 

compared to those obtained from force plate data alone, and in smooth COM 

velocities when compared to those obtained from unfiltered kinematic data. The 

above method will result in a mean COM position which is equivalent to that 

obtained from the kinematic method. Unfortunately, estimates of COM 

displacements from kinematic data often have a systematic offset due to poor 

estimates of segment COM locations. 

3.4.3.1. Systematic Offset of Centre of Mass 

A significant source of error in the determination of body COM position is the 

estimation of the masses and COM of each body segment, with the 

determination of trunk COM especially prone to error (Kingma et al., 1995). 

Yeadon and Trewatha (2003) addressed this issue by making a systematic 

correction via minimising the RMS difference between the COM and the COP 

positions, so that mean values would be identical. This is a fair assumption in 

static stance trials of sufficient duration, were the mean position of the COM 

and COP must be approximately equal for stable balance to be maintained. 

However, this correction only results in a change to the position of the whole 

body COM, and not the segmental COM positions which determine its location, 

resulting in increased errors when using these positions in inverse dynamics 

calculations. An alternative is to follow a similar method to that used by Kingma 

et al. (1995), which repositions the COM locations of the segments that make 

up the trunk by a proportional amount so as to achieve the required change in 

whole body COM position. In the current research COM positions were 

adjusted by calculating the difference between the mean positions of the COM 

and COP in the horizontal directions, and based on the percentage of the torso 

mass to whole body mass, adjusting the COM locations of the pelvis, abdomen, 

thorax, and head segments. 



64 
 

3.5. Inverse Dynamics 

The kinematic data collected was used to calculate segment positions and 

orientations, and combined with the kinetic data from the force plates and the 

segmental inertial data to calculate joint forces and moments. There are a 

number of factors which must be considered for the various ways through 

which this may be accomplished; therefore a brief review of these methods is 

warranted. 

3.5.1. Euler angles and Rotation Matrices 

The attitude of an object describes its orientation in space, and requires the 

construction of the object’s local coordinate system (LCS) expressed relative to 

the global coordinate system (GCS).  The most common way to represent the 

attitude of a rigid body is via a set of three Euler angles (Diebel, 2006); where 

‘any two independent orthonormal coordinate frames can be related 

by a sequence of rotations (not more than three) about the 

coordinate axes, where no two successive rotations may be about 

the same axis’ 

(Leonhard Euler, 1707-1783; in Kuipers, 1999). 

There are a total of 12 possible sequences of coordinate rotations which satisfy 

the above theorem, where the sequence can be represented either by the axis 

sequence, such as ‘ZXZ’, or by the number of the rotation, such as ‘313’.  Both 

of these examples describe the first rotation about the z-axis, followed by the 

second rotation about the new orientation of the x-axis and the final rotation 

about the new orientation of the z-axis.  The sequence used is dependent upon 

the nature of the task, and the sequence mentioned above is considered to be 

the original sequence used by Leonard Euler; however, the ‘XYZ’ sequence is 

possibly the most often used in biomechanics, and is sometimes referred to as 

a Cardan rotation sequence (Winter, 2009). 

The ‘XYZ’ rotation sequence can be represented by the first rotation about the 

x-axis by the angle ߰  resulting in new orientations of the y- and z-axes, 

described by: 
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ଵݔ ൌ  ଴ݔ

ଵݕ ൌ టݏ݋଴ܿݕ ൅  ట݊݅ݏ଴ݖ

ଵݖ ൌ െݕ଴݊݅ݏట ൅ టݏ݋଴ܿݖ ሺ3.20ሻ

This can be represented in matrix form by the rotation matrix ܴట
௫ : 

	 ൦

ଵݔ

ଵݕ

ଵݖ

൪ ൌ ൦

1 0 0

0 టݏ݋ܿ ట݊݅ݏ

0 െ݊݅ݏట టݏ݋ܿ

൪ ൦

଴ݔ

଴ݕ

଴ݖ

൪ ൌ ൣܴట
௫ ൧ ൦

଴ݔ

଴ݕ

଴ݖ

൪

ሺ3.21ሻ

The second rotation about the y-axis by the angle ߠ  results in the new 

orientations of the x- and y-axes is described by: 

	 ൦

ଶݔ

ଶݕ

ଶݖ

൪ ൌ ൦

ఏݏ݋ܿ 0 െ݊݅ݏఏ

0 1 0

ఏ݊݅ݏ 0 ఏݏ݋ܿ

൪ ൦

ଵݔ

ଵݕ

ଵݖ

൪ ൌ ൣܴఏ
௬൧ ൦

ଵݔ

ଵݕ

ଵݖ

൪

ሺ3.22ሻ

The third rotation about the z-axis by the angle ߶ results in the new orientations 

of the x- and y-axes is described by: 

	 ൦

ଷݔ

ଷݕ

ଷݖ

൪ ൌ ൦

థݏ݋ܿ థ݊݅ݏ 0

െ݊݅ݏథ థݏ݋ܿ 0

0 0 1

൪ ൦

ଶݔ

ଶݕ

ଶݖ

൪ ൌ ൣܴథ
௭ ൧ ൦

ଶݔ

ଶݕ

ଶݖ

൪

ሺ3.23ሻ

The product of these rotation matrices is itself a rotation matrix, which 

represents the combination of each of these rotations in sequence: 

	 ൦

ଷݔ

ଷݕ

ଷݖ

൪ ൌ ൣܴథ
௭ ൧ൣܴఏ

௬൧ൣܴట
௫ ൧ ൦

଴ݔ

଴ݕ

଴ݖ

൪

൦

ଷݔ

ଷݕ

ଷݖ

൪ ൌ ൦

థݏ݋ఏܿݏ݋ܿ టݏ݋థܿ݊݅ݏ ൅ థݏ݋ఏܿ݊݅ݏట݊݅ݏ థ݊݅ݏట݊݅ݏ െ థݏ݋ఏܿ݊݅ݏటݏ݋ܿ

െܿݏ݋ఏ݊݅ݏథ టݏ݋థܿݏ݋ܿ െ థ݊݅ݏఏ݊݅ݏట݊݅ݏ థݏ݋టܿ݊݅ݏ ൅ థ݊݅ݏఏ݊݅ݏటݏ݋ܿ

ఏ݊݅ݏ െ݊݅ݏటܿݏ݋ఏ ఏݏ݋టܿݏ݋ܿ

൪ ൦

଴ݔ

଴ݕ

଴ݖ

൪
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	 ൦

ଷݔ

ଷݕ

ଷݖ

൪ ൌ ൣܴ௫௬௭൧ ൦

଴ݔ

଴ݕ

଴ݖ

൪

ሺ3.24ሻ

Finally, the inverse mapping of this function, which gives the Euler angles as a 

function of the rotation matrix to describe the rotations about the x-, y- and z-

axes is: 

	 ൦

߰௫௬௭ሺܴሻ

௫௬௭ሺܴሻߠ

߶௫௬௭ሺܴሻ

൪ ൌ ൦

,ଷଶݎ2ሺെ݊ܽݐܽ ଷଷሻݎ

ଷଵሻݎሺ݊݅ݏܽ

,ଶଵݎ2ሺെ݊ܽݐܽ ଵଵሻݎ

൪

ሺ3.25ሻ

The three successive coordinate rotations described above results in the 3 ൈ 3 

rotation matrix ܴ, which describes the rotations required to align one coordinate 

system with another.  In addition, this rotation matrix can be multiplied by a 

vector to rotate that vector from one coordinate system into another whilst also 

preserving its length.  The rotation matrix may also be thought of as the matrix 

of basis vectors that define the two coordinate systems (Diebel, 2006).  The 

rows of the rotation matrix are the basis vectors of the LCS expressed in the 

GCS and the columns are the basis vectors of the GCS expressed in the LCS.  

At least three points are required to define the axes of each body segment, 

which define the three linearly independent vectors required to form an 

orthonormal basis for the construction of the LCS of that segment.  In the 

current research all segments were defined with their LCS aligned 

approximately with the GCS when the subject was in the anatomical standing 

position, using the following convention:  

ଙ̂ ൌ ݏ݅ݔܽ	ݔ ൌ 	ݏ݅ݔܽ	݈ܽݎ݁ݐ݈ܽ݋݅݀݁݉

ଚ̂ ൌ ݏ݅ݔܽ	ݕ ൌ 	ݏ݅ݔܽ	ݎ݋݅ݎ݁ݐݏ݋݌݋ݎ݁ݐ݊ܽ

෡࢑ ൌ ݏ݅ݔܽ	ݖ ൌ 	ݏ݅ݔܽ	݈ܽܿ݅ݐݎ݁ݒ/݈ܽ݊݅݀ݑݐ݅݃݊݋݈

Each segment is defined by the normalised vectors created by pairs of points 

and the cross product between these vectors to ensure an orthonormal 

coordinate system. Therefore, a limb segment can be defined by the 

normalised vector ࢑෡ from the distal to proximal joint centres, representing the z-
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axis of the segment, and the normalised vector ଙ̂ from the distal joint centre to 

lateral aspect of the distal joint representing the x-axis, designated as points ଵܲ 

to ଷܲ: 

	 ଙ̂ ൌ ݔ ݏ݅ݔܽ ൌ ଵܲ ଷܲሬሬሬሬሬሬሬሬԦ

ฮ ଵܲ ଷܲሬሬሬሬሬሬሬሬԦฮ
ൌ ଷܲ െ ଵܲ

‖ ଷܲ െ ଵܲ‖ ሺ3.26ሻ

	 ෡࢑ ൌ ݖ ݏ݅ݔܽ ൌ ଵܲ ଶܲሬሬሬሬሬሬሬሬԦ

ฮ ଵܲ ଶܲሬሬሬሬሬሬሬሬԦฮ
ൌ ଶܲ െ ଵܲ

‖ ଶܲ െ ଵܲ‖ ሺ3.27ሻ

The y-axis is defined as the vector ଚ̂, which is perpendicular to the plane formed 

between the x- and z-axes, via their cross product: 

	 ଚ̂ ൌ ݕ ݏ݅ݔܽ ൌ
ݖ ݏ݅ݔܽ ൈ ݏ݅ݔܽݔ
ݖ‖ ݏ݅ݔܽ ൈ ‖ݏ݅ݔܽݔ ሺ3.28ሻ

Additionally, as the x- and z-axes may not be strictly orthogonal to one another, 

the cross product of the z- and y-axes is calculated as the new x-axis to ensure 

three orthogonal vectors of unit length: 

	 ଙ̂ ൌ ݔ ݏ݅ݔܽ ൌ ݕ ݏ݅ݔܽ ൈ ݖ ݏ݅ݔܽ ሺ3.29ሻ

Collectively these three vectors describe the attitude of the segment and can be 

combined in matrix form to represent the GCS to LCS rotation matrix: 

	 ܴீ→௅ ൌ ൦

௫ݏ݅ݔܽ	ݔ ݔ ௬ݏ݅ݔܽ ݔ ௭ݏ݅ݔܽ

௫ݏ݅ݔܽ	ݕ ݕ ௬ݏ݅ݔܽ ݕ ௭ݏ݅ݔܽ

௫ݏ݅ݔܽ	ݖ ݖ ௬ݏ݅ݔܽ ݖ ௭ݏ݅ݔܽ

൪ ൌ ൦

݅௫ ݅௬ ݅௭

݆௫ ݆௬ ௭݆

݇௫ ݇௬ ݇௭

൪	

ሺ3.30ሻ

 

The GCS to LCS rotation matrix is required to transform global vectors into the 

local coordinate system, such as transferring the global force vector into the 

local force vector so that local joint moments may be calculated: 
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ሾࢌ௅஼ௌሿ ൌ ሾܴீ→௅ሿሾீࡲ஼ௌሿ

൦

௫݂

௬݂

௭݂

൪ ൌ ൦

݅௫ ݅௬ ݅௭

݆௫ ݆௬ ௭݆

݇௫ ݇௬ ݇௭

൪ ൦

௫ܨ

௬ܨ

௭ܨ

൪	
ሺ3.31ሻ

In addition, the transpose of the GCS to LCS rotation matrix is the equivalent to 

the LCS to GCS rotation matrix, required to transform local vectors back into 

the global coordinate system: 

	

ܴ௅→ீ ൌ ܴீ→௅
் ൌ ൦

௫ݏ݅ݔܽ	ݔ ݕ ௫ݏ݅ݔܽ ݖ ௫ݏ݅ݔܽ

௬ݏ݅ݔܽ	ݔ ݕ ௬ݏ݅ݔܽ ݖ ௬ݏ݅ݔܽ

௭ݏ݅ݔܽ	ݔ ௭ݏ݅ݔܽ	ݕ ௭ݏ݅ݔܽ	ݖ

൪ ൌ ൦

݅௫ ݆௫ ݇௫

݅௬ ݆௬ ݇௬

݅௭ ௭݆ ݇௭

൪	

ሾீࡲ஼ௌሿ ൌ ሾܴ௅→ீሿሾࢌ௅஼ௌሿ	

൦

௫ܨ

௬ܨ

௭ܨ

൪ ൌ ൦

݅௫ ݆௫ ݇௫

݅௬ ݆௬ ݇௬

݅௭ ௭݆ ݇௭

൪ ൦

௫݂

௬݂

௭݂

൪	

ሺ3.32ሻ

An advantage to the use of Euler angles to describe the orientation of a body 

segment is that it is widely used within biomechanics and provides a well 

understood anatomical representation of motion (Hamill and Selbie, 2004). 

However, Euler angles suffer from discontinuities and singularities caused by 

gimbal lock, especially when computing angular velocities and accelerations 

(Dumas et al., 2004; Dumas and Cheze, 2007). Quaternions offer an alternative 

to using Euler angles to describe the attitude of a rigid body and have been 

employed in biomechanics (Dumas et al., 2004; Dumas et al., 2007) and 

aerospace engineering (Altmann, 2005; Kuipers, 1999). 

3.5.2. Quaternion Algebra 

A quaternion may be represented in several ways, such as a 4-tuple of real 

numbers: 

	 ݍ ൌ ሺݍ଴, ,ଵݍ ,ଶݍ  ଷሻݍ
ሺ3.33ሻ

 



69 
 

A hyper-complex number: 

	
ݍ ൌ ଴ݍ ൅ ଵݍ࢏ ൅ ଶݍ࢐ ൅ ଷݍ࢑

૛࢏ ൌ ૛࢐ ൌ ૛࢑ ൌ ࢑࢐࢏ ൌ െ1 ሺ3.34ሻ

Or as the sum of a scalar and a vector: 

	
ݍ ൌ ሺݍ଴, ,ଵݍ ,ଶݍ ଷሻݍ ൌ ଴ݍ ൅ ࢗ ൌ ቈ

଴ݍ

ࢗ
቉

ࢗ ൌ ଙ̂ݍଵ ൅ ଚ̂ݍଶ ൅ ଷݍ෡࢑ ሺ3.35ሻ

 (where ଙ̂, ଚ ̂and ࢑෡ are the standard orthonormal basis vectors) 

Defined as the sum of a scalar and a vector a quaternion is a mathematically 

strange object that is not well defined in ordinary linear algebra (Kuipers, 1999), 

requiring specific mention of quaternion operations. Firstly, two quaternions are 

equal if they have exactly the same components, so that if: 

݌ ൌ 	ݍ

then: 

	

଴݌ ൌ ଴ݍ

ଵ݌ ൌ 	ଵݍ

ଶ݌ ൌ 	ଶݍ

ଷ݌ ൌ ଷݍ
ሺ3.36ሻ

The sum of the two quaternions ݌ and ݍ is defined by adding the corresponding 

components, so that: 

	 ݌ ൅ ݍ ൌ ሺ݌଴ ൅ ଴ሻݍ ൅ ଵ݌ሺ࢏ ൅ ଵሻݍ ൅ ଶ݌ሺ࢐ ൅ ଶሻݍ ൅ ଷ݌ሺ࢑ ൅ 	ଷሻݍ ሺ3.37ሻ
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The quaternion product, the product of two or more quaternions, becomes a 

little more complicated as it must satisfy the fundamental special products of a 

hyper-complex number, so that: 

	

૛࢏ ൌ ૛࢐ ൌ ૛࢑ ൌ ࢑࢐࢏ ൌ െ1

࢐࢏ ൌ ࢑ ൌ െ࢏࢐	

࢑࢐ ൌ ࢏ ൌ െ࢐࢑	

࢏࢑ ൌ ࢐ ൌ െ࢑࢏ ሺ3.38ሻ

Therefore the product of the two quaternions ݌ and ݍ is defined by: 

	

ݎ ൌ ݍ݌ ൌ ሺ݌଴ ൅ ଵ݌࢏ ൅ ଶ݌࢐ ൅ ଴ݍଷሻሺ݌࢑ ൅ ଵݍ࢏ ൅ ଶݍ࢐ ൅ 	ଷሻݍ࢑

																			ൌ ଴ݍ଴݌ െ ሺ݌ଵݍଵ ൅ ଶݍଶ݌ ൅ ଷሻݍଷ݌ ൅ ଵݍ࢏଴ሺ݌ ൅ ଶݍ࢐ ൅ ଷሻݍ࢑
൅ ଵ݌࢏଴ሺݍ ൅ ଶ݌࢐ ൅ ଷሻ݌࢑ ൅ ଷݍଶ݌ሺ࢏ െ ଶሻݍଷ݌
൅ ଵݍଷ݌ሺ࢐ െ ଷሻݍଵ݌ ൅ ଶݍଵ݌ሺ࢑ െ ଵሻݍଶ݌ ሺ3.39ሻ

In matrix form this becomes: 

	

ۏ
ێ
ێ
ێ
ۍ
଴ݎ

ଵݎ

ଶݎ

ےଷݎ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
଴݌ െ݌ଵ െ݌ଶ െ݌ଷ

ଵ݌ ଴݌ െ݌ଷ ଶ݌

ଶ݌ ଷ݌ ଴݌ െ݌ଵ

ଷ݌ െ݌ଶ ଵ݌ ଴݌ ے
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ۍ
଴ݍ

ଵݍ

ଶݍ

ےଷݍ
ۑ
ۑ
ۑ
ې

	

ሺ3.40ሻ

When the quaternion is represented as a scalar and a vector, the product of 

two quaternions may be written in the more concise form: 

	
ݎ ൌ ݍ݌ ൌ ሺ݌଴ ൅ ଴ݍሻሺ࢖ ൅ ሻࢗ

		 																									 ൌ ଴ݍ଴݌ െ ࢖ ⋅ ࢗ ൅ ࢗ଴݌ ൅ ࢖଴ݍ ൅ ࢖ ൈ 	ࢗ ሺ3.41ሻ

 

The complex conjugate of a quaternion is denoted by: 

	 ∗ݍ ൌ ଴ݍ െ ࢗ ൌ ଴ݍ െ ଵݍ࢏ െ ଶݍ࢐ െ ଷݍ࢑ ሺ3.42ሻ
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The norm of a quaternion is denoted by: 

	 ܰሺݍሻ ൌ ඥݍ∗ݍ ൌ ටݍ଴
ଶ ൅ ଵݍ

ଶ ൅ ଶݍ
ଶ ൅ ଷݍ

ଶ ൌ ‖ݍ‖ ሺ3.43ሻ

The inverse of a quaternion is denoted by: 

	 ଵିݍ ൌ
∗ݍ

ܰଶሺݍሻ
ൌ

∗ݍ

ଶ‖ݍ‖ ሺ3.44ሻ

Therefore, if the quaternion ݍ is a normalised quaternion of unit length, denoted 

by ݍࢁ, the inverse of ݍ is simply the complex conjugate: 

	 ݍࢁ ൌ
ݍ
‖ݍ‖ ሺ3.45ሻ

	 ଵିݍࢁ ൌ
∗ݍ

ଶ‖ݍ‖
ൌ
∗ݍ

1
ൌ ∗ݍ

ሺ3.46ሻ

A quaternion with a vector component equal to zero is known as a real 

quaternion as it multiplies like a real number and can also be identified as a real 

number, so that: 

	 ݍ݌ ൌ ൤
଴݌

૙
൨ ൤
଴ݍ

૙
൨ ൌ ൤

଴ݍ଴݌

૙
൨

ሺ3.47ሻ

	 ൤
ݔ

૙
൨ ≡ ݔ

ሺ3.48ሻ

 

A quaternion with a scalar component equal to zero is known as an imaginary 

or pure quaternion, and the product of the two pure quaternions ݌ and ݍ  is 

equal to the quaternion product of the two vectors ࢖ and ࢗ: 

	 ݍ݌ ൌ ቈ
0

࢖
቉ ቈ
0

ࢗ
቉ ൌ ቈ

࢖ ⋅ ࢗ

࢖ ൈ ࢗ
቉

ሺ3.49ሻ
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Therefore, the vector ࢜  in ܴଷ  space can be treated as though it were a 

quaternion in ܴସ  space by creating a pure quaternion, with a zero scalar 

component and a vector component equal to ࢜.  In this way, quaternions can 

transform a vector expressed in one coordinate system into another coordinate 

system via a triple quaternion product of an attitude quaternion and the vector 

expressed as a pure quaternion, such as: 

	 ൤
0

௅஼ௌࢌ
൨ ൌ ∗ݍ ൤

0
஼ௌீࡲ

൨ ݍ ሺ3.50ሻ

	 ൤
0

஼ௌீࡲ
൨ ൌ ݍ ൤

0
௅஼ௌࢌ

൨ ∗ݍ ሺ3.51ሻ

 

3.5.3. Attitude Quaternions 

Similar to Euler angles and a rotation matrix, a unit quaternion can be used to 

represent the attitude of a rigid body.  Euler angles align one coordinate system 

with another through a sequence of three axis rotations, related to Euler’s 

rotation theorem, however, a second part to this theorem states that 

‘any two independent orthonormal coordinate frames can be related by a 

single rotation about some axis 

(Leonhard Euler, 1707-1783; in Kuipers, 1999). 

Therefore, the attitude of a body may also be described by the rotation angle ߚ 

and the axis of rotation, represented by the unit vector ࢛, required to align one 

coordinate system with another. Using the rotation matrix ܴ  this may be 

calculated via: 

	
࢛ ൌ ቎

ሺݎଷଷ െ 1ሻݎଵଶ െ ଷଶݎଵଷݎ
ଵଷݎଷଵݎ െ ሺݎଷଷ െ 1ሻሺݎଵଵ െ 1ሻ

ሺݎଵଵ െ 1ሻݎଷଶ െ ଷଵݎଵଶݎ

቏

࢛ ൌ ଙ̂ሺݎଶଷ െ ଷଶሻݎ ൅ ଚ̂ሺݎଷଵ െ ଵଷሻݎ ൅ ଵଶݎ෡ሺ࢑ െ ଶଵሻݎ ሺ3.52ሻ
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ሺܴሻݎܶ ൌ ଵଵݎ ൅ ଶଶݎ ൅ ଷଷݎ ൌ 1 ൅ 	ߚݏ݋2ܿ

ߚ ൌ ݏ݋ܿܽ
ሺܴሻݎܶ െ 1

2
ൌ ݏ݋ܿܽ

ଵଵݎ ൅ ଶଶݎ ൅ ଷଷݎ െ 1
2

	 ሺ3.53ሻ

Likewise the quaternion that arises from the rotation ߚ about the axis ࢛ can be 

calculated by the axis-angle quaternion function: 

	 ݍ ൌ ቂ
଴ݍ
ࢗ ቃ ൌ ൦

ݏ݋ܿ ൬
ߚ
2
൰

࢛ ݊݅ݏ ൬
ߚ
2
൰
൪

ሺ3.54ሻ

And the inverse function, from a unit quaternion to the corresponding axis and 

angle of rotation is: 

	 ߚ ൌ ଴ሻݍሺݏ݋2ܽܿ ሺ3.55ሻ

	 ࢛ ൌ
ࢗ
‖ࢗ‖

ൌ
ࢗ

ඥ1 െ ଴ݍ
ଶ ሺ3.56ሻ

Similarly, the conversion of a quaternion into a rotation matrix can be described 

as: 

ܴ ൌ ൦

ଵଵݎ ଵଶݎ ଵଷݎ

ଶଵݎ ଶଶݎ ଶଷݎ

ଷଵݎ ଷଶݎ ଷଷݎ

൪ 

ܴ ൌ ൦

଴ݍ
ଶ ൅ ଵݍ

ଶ െ ଶݍ
ଶ െ ଷݍ

ଶ ଶݍଵݍ2 ൅ ଷݍ଴ݍ2 ଷݍଵݍ2 െ ଶݍ଴ݍ2

ଶݍଵݍ2 െ ଷݍ଴ݍ2 ଴ݍ
ଶ െ ଵݍ

ଶ ൅ ଶݍ
ଶ െ ଷݍ

ଶ ଷݍଶݍ2 ൅ ଵݍ଴ݍ2

ଷݍଵݍ2 ൅ ଶݍ଴ݍ2 ଷݍଶݍ2 െ ଵݍ଴ݍ2 ଴ݍ
ଶ െ ଵݍ

ଶ െ ଶݍ
ଶ ൅ ଷݍ

ଶ

൪	

ሺ3.57ሻ
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Therefore, the reverse mapping from a rotation matrix can be calculated by first 

forming the following relationships based on the above function: 

	

଴ݍ4
ଶ ൌ 1 ൅ ଵଵݎ ൅ ଶଶݎ ൅ ଷଷݎ

ଵݍ4
ଶ ൌ 1 ൅ ଵଵݎ െ ଶଶݎ െ 	ଷଷݎ

ଶݍ4
ଶ ൌ 1 െ ଵଵݎ ൅ ଶଶݎ െ 	ଷଷݎ

ଷݍ4
ଶ ൌ 1 െ ଵଵݎ െ ଶଶݎ ൅ ଷଷݎ ሺ3.58ሻ

	 	

	

ଵݍ଴ݍ4 ൌ ଶଷݎ െ ଷଶݎ

ଶݍ଴ݍ4 ൌ ଷଵݎ െ 	ଵଷݎ

ଷݍ଴ݍ4 ൌ ଵଶݎ െ 	ଶଵݎ

ଶݍଵݍ4 ൌ ଵଶݎ ൅ 	ଶଵݎ

ଷݍଵݍ4 ൌ ଷଵݎ ൅ 	ଵଷݎ

ଷݍଶݍ4 ൌ ଶଷݎ ൅ ଷଶݎ ሺ3.59ሻ

Finally, the attitude quaternion of a rigid body which can be calculated either 

from the rotation matrix ܴ, or directly from the orthonormal basis vectors ଙ̂, ଚ̂ 

and ࢑෡ via: 

	

଴ݍ ൌ
ඥݎଵଵ ൅ ଶଶݎ ൅ ଷଷݎ ൅ 1

2
ൌ
ඥ݅௫ ൅ ݆௬ ൅ ݇௭ ൅ 1

2

ଵݍ ൌ
ଶଷݎ െ ଷଶݎ
଴ݍ4

ൌ ௭݆ െ ݇௬
଴ݍ4

	

ଶݍ ൌ
ଷଵݎ െ ଵଷݎ
଴ݍ4

ൌ
݇௫ െ ݅௭
଴ݍ4

	

ଷݍ ൌ
ଵଶݎ െ ଶଵݎ
଴ݍ4

ൌ
݅௬ െ ݆௫
଴ݍ4

	
ሺ3.60ሻ



75 
 

Depending on the values in the rotation matrix ܴ, equation 3.60 can produce 

singularities or complex numbers, however, equations 3.58 and 3.59 permit the 

calculation of the attitude quaternion by three further means. Each permutation 

of the attitude quaternion may result in a slightly different quaternion, however, 

it will still represent the same rotation in ܴଷ space, as the rotation ߚ about the 

axis ࢛ described in equations 3.52 and 3.53 may also be described in four 

ways, such as: 

	 ቂߚ
	࢛
ቃ ൌ ቂߚ െ ߨ2

࢛
ቃ ൌ ቂെߚ

െ࢛
ቃ ൌ ቂ2ߨ െ ߚ

െ࢛
ቃ 

ሺ3.61ሻ

The quaternion described by equation 3.60 will result in a scalar component in 

the range of 0 to 1; consequently, the angle ߚ resulting from this will be in the 

range of 0 to ߨ. However, this quaternion will still be able to define any rotation 

in ܴଷ  space due to a change in the axis vector ࢛, described by the vector 

component. Essentially, this allows the quaternion calculated via equation 3.60 

to describe rotations in a range of – ߨ  to ߨ , causing discontinuities when 

crossing േߨ. Using the other permutations of the attitude quaternion will result 

in a scalar component in the range of െ1 to 1, but will constrict one of the 

vector components to a range of 0 to 1, such as: 

	

଴ݍ ൌ
ଶଷݎ െ ଷଶݎ
ଵݍ4

ൌ ௭݆ െ ݇௬
ଵݍ4

ଵݍ ൌ
ඥݎଵଵ െ ଶଶݎ െ ଷଷݎ ൅ 1

2
ൌ
ඥ݅௫ െ ݆௬ െ ݇௭ ൅ 1

2
	

ଶݍ ൌ
ଵଶݎ ൅ ଶଵݎ
ଵݍ4

ൌ
݅௬ ൅ ݆௫
ଵݍ4

	

ଶݍ ൌ
ଷଵݎ ൅ ଵଷݎ
ଵݍ4

ൌ
݇௫ ൅ ݅௭
ଵݍ4

	
ሺ3.62ሻ
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Figure  3.6: The angular velocity about the global x-axis resulting from 
continuous rotations about the x-axis at an angular velocity of 2ߨ	ିݏଵ , 
calculated by the quaternions from equation 3.60 (blue) and 3.62 (red); with the 
combination of these quaternions in black. 

 

Figure  3.7: The angular velocity about the global x-axis of the right hand during 
various shoulder and elbow movements, calculated by the quaternions from 
equation 3.60 (blue) and 3.62 (red); with the combination of these quaternions 
in black. 
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Essentially, this allows the quaternion calculated via equation 3.62 to describe 

rotations in a range of 0 to 2ߨ, causing discontinuities when crossing 0 or 2ߨ. 

Together, these quaternions can be used to overcome these discontinuities and 

allow angular velocities to be calculated through any angular range without 

singularities (Figures 3.6 and 3.7) 

3.5.4. Kinematics Using Quaternion Algebra 

The kinematic formulation used in the current research is based on the paper 

by Dumas et al. (2004) using quaternion algebra and was implemented in 

Matlab (Appendix 5). The segment position is given by the generalised 

coordinates: 

	 ቂ
௜݌
௜ݍ
ቃ ሺ3.63ሻ

Where the 3 ൈ 1  vector ݌௜	  is the position of the segment proximal end ௜ܲ	 

expressed in the GCS, and the 4 ൈ 1 quaternion ݍ௜	 represents the attitude of 

the LCS with respect to the GCS. The quaternion ݍ௜	 is constructed based on 

the formulae explained previously in sections 3.5.2 and 3.5.3, therefore, the 

lever arm ࢉ௜	, representing the distance from the proximal joint centre to the 

segment COM, can be transformed from the LCS to the GCS via: 

	 ൤
0
௜ࢉ
൨ ൌ ௜ݍ ൤

0
௜ࢉ
௅஼ௌ൨ ௜ݍ

∗
ሺ3.64ሻ

Similarly, the position vector ࢘௜	 of the segment COM expressed in the GCS is: 

	 ൤
0
௜࢘
൨ ൌ ൤

0
௜࢖
൨ ൅ ௜ݍ ൤

0
௜ࢉ
௅஼ௌ൨ ௜ݍ

∗
ሺ3.65ሻ

The linear velocity ࢜௜ and linear acceleration ࢇ௜ of the COM can be expressed 

in the GCS by direct differentiation: 
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	 ൤
0
௜࢜
൨ ൌ ൤

0
ሶ࢖ ௜
൨ ൅ ሶ௜ݍ ൤

0
௜ࢉ
௅஼ௌ൨ ௜ݍ

∗ ൅ ௜ݍ ൤
0
௜ࢉ
௅஼ௌ൨ ሶ௜ݍ

∗
ሺ3.66ሻ

	
൤
0
௜ࢇ
൨ ൌ ൤

0
ሷ࢖ ௜
൨ ൅ ሷ௜ݍ ൤

0
௜ࢉ
௅஼ௌ൨ ௜ݍ

∗ ൅ 2 ൬ݍሶ௜ ൤
0
௜ࢉ
௅஼ௌ൨ ሶ௜ݍ

∗൰ ൅ ௜ݍ ൤
0
௜ࢉ
௅஼ௌ൨ ሷ௜ݍ

∗	 ሺ3.67ሻ

Additionally, the angular velocity ࣓௜  and angular acceleration ࢻ௜  can be 

expressed in the GCS by: 

	 ൤
0
࣓௜
൨ ൌ ௜ݍሶ௜ݍ2

∗
ሺ3.68ሻ

	 ൤
0
௜ࢻ
൨ ൌ 2ሺݍሷ௜ݍ௜

∗ ൅ ሶ௜ݍሶ௜ݍ
∗ሻ ሺ3.69ሻ

3.5.5. Conventional 3D Inverse Dynamics 

Conventional 3D inverse dynamics is an expansion of 2D inverse dynamics, 

where net joint forces and moments are computed separately based on the 

following Newton-Euler equations of motion: 

	

௫ܨߑ ൌ ݉ܽ௫

௬ܨߑ ൌ ݉ܽ௬

௭ܨߑ ൌ ݉ܽ௭

ࡲߑൢ ൌ ࢇ݉

ሺ3.70ሻ

	 ௫ܯߑ ൌ ௫ߙ௫ܫ ൅ ሺܫ௭ െ ௬ሻ߱௬߱௭ܫ

௬ܯߑ ൌ ௬ߙ௬ܫ ൅ ሺܫ௫ െ ௭ሻ߱௭߱௫ܫ

௭ܯߑ ൌ ௭ߙ௭ܫ ൅ ሺܫ௬ െ ௫ሻ߱௫߱௬ܫ

ࡹߑൢ ൌ ࡵ ⋅ ࢻ ൅ ࣓ ൈ ሺࡵ ⋅ ࣓ሻ	

ሺ3.71ሻ

Where ࢇ  is the linear acceleration of the segment COM, ࣓  is the angular 

velocity of the segment and ࢻ is the angular acceleration of the segment. With 

known forces and moments to the distal joint, firstly the proximal joint forces are 

calculated in the GCS via: 

	 ௜௣ࡲ
ீ஼ௌ ൌ ݉௜ࢇ௜

ீ஼ௌ െ ݉௜ீࢍ஼ௌ െ ௜ௗࡲ
ீ஼ௌ ሺ3.72ሻ
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Where ࡲ௜௣
ீ஼ௌ is the proximal joint force; ࡲ௜ௗ

ீ஼ௌ is the distal joint force; ݉௜ࢇ௜
ீ஼ௌ  is 

the mass and acceleration of the segment COM; and ீࢍ஼ௌ is the gravitational 

vector. The proximal joint moments are calculated in the LCS, therefore the 

distal and proximal joint forces need to be transferred from the GCS to the LCS, 

and the distal joint moments need to be transferred from the LCS of the 

preceding segment to the LCS for that particular segment, to give: 

	 ௜௣ࡹ
௅஼ௌ ൌ ሶࡴ ௜

௅஼ௌ െࡹ௜ௗ
௅஼ௌ െ ൫࢖௜

௅஼ௌ ൈ ௜௣ࢌ
௅஼ௌ൯ െ ൫ࢊ௜

௅஼ௌ ൈ ௜ௗࢌ
௅஼ௌ൯	 ሺ3.73ሻ

Where: 

	 ሶࡴ ௅஼ௌ ൌ ൦

௫ߙ௫ܫ ൅ ሺܫ௭ െ ௬ሻ߱௬߱௭ܫ

௬ߙ௬ܫ ൅ ሺܫ௫ െ ௭ሻ߱௭߱௫ܫ

௭ߙ௭ܫ ൅ ሺܫ௬ െ ௫ሻ߱௫߱௬ܫ

൪

ሺ3.74ሻ

	
௜࢖
௅஼ௌ ൌ ݉ݎܽ	ݎ݁ݒ݈݁ ݉݋ݎ݂ ݏݏܽ݉ ݁ݎݐ݊݁ܿ ݋ݐ ݈ܽ݉݅ݔ݋ݎ݌ 	ݐ݊݅݋݆

௜ࢊ
௅஼ௌ ൌ ݎ݁ݒ݈݁ ݉ݎܽ ݉݋ݎ݂ ݏݏܽ݉ ݁ݎݐ݊݁ܿ ݋ݐ ݈ܽݐݏ݅݀ 	ݐ݊݅݋݆

These numerous rotational transformations of force and moment vectors 

increase the likelihood of calculation errors (Dumas et al., 2004), leading some 

authors to turn to other methods for applying the Newton-Euler equations of 

motion, such as using wrenches (Dumas et al., 2004; Dumas and Cheze, 2007). 

3.5.6. Inverse Dynamics with Wrench Notation 

The inverse dynamics formulation used in the current research is based on the 

paper by Dumas et al. (2004) using wrench notation and was implemented in 

Matlab (Appendix 6). The wrench is a mechanical notation that represents both 

force and moment vectors, and is expressed at a defined point location and in a 

defined coordinate system. The following examples are all expressed in the 

GCS, with the points: 

௜ܲ ൌ  ݅	ݐ݊݁݉݃݁ݏ	݂݋	݀݊݁	݈ܽ݉݅ݔ݋ݎ݌

௜ܥ ൌ  ݅	ݐ݊݁݉݃݁ݏ	݂݋	ݏݏܽ݉	݂݋	݁ݎݐ݊݁ܿ
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௜ܦ ൌ 	݅	ݐ݊݁݉݃݁ݏ	݂݋	݀݊݁	݈ܽݐݏ݅݀

A wrench at a particular point can be derived directly from the force and 

moment from a previous segment or from the mass/motion of that particular 

segment, as follows: 

	 ௜ࢃ
௣௥௢௫௜௠௔௟ሺ ௜ܲሻ ൌ ൜

௜ࡲ
௜ࡹ ሺ3.75ሻ

	 ௜ࢃ
ௗ௜௦௧௔௟ሺܦ௜ሻ ൌ െࢃ௜ିଵ

௣௥௢௫௜௠௔௟ሺ ௜ܲିଵሻ ൌ ൜
െࡲ௜ିଵ
െࡹ௜ିଵ

ሺ3.76ሻ

	 ௜ࢃ
௪௘௜௚௛௧ሺܥ௜ሻ ൌ ቄ

݉௜ࢍ
૙ଷൈଵ

ሺ3.77ሻ

	 ௜ࢃ
ௗ௬௡௔௠௜௖ሺܥ௜ሻ ൌ ൜

݉௜ࢇ௜
ሶࡴ ௜

ሺ3.78ሻ

	 ௜ࢃ
௣௥௢௫௜௠௔௟ሺ ௜ܲሻ ൌ ௜ࢃ

ௗ௬௡௔௠௜௖ሺ ௜ܲሻ െࢃ௜
ௗ௜௦௧௔௟ሺ ௜ܲሻ െࢃ௜

௪௘௜௚௛௧ሺ ௜ܲሻ	 ሺ3.79ሻ

Where the moment of inertia tensor in the GCS is calculated from the principle 

moments of inertia via: 

௜ࡵ  ൌ ሾܴீ→௅ሿࡵ௜
௅஼ௌሾܴீ→௅ሿିଵ ሺ3.80ሻ

And the time derivative of angular momentum is calculated via: 

ሶࡴ  ௜ ൌ ௜ࢻ௜ࡵ ൅ ࣓௜ ൈ ௜࣓௜ࡵ ሺ3.81ሻ

To transform a wrench from one point to another requires the cross product of 

the lever arm and force to be added to the moment part of the wrench, resulting 

in: 

	 ௜ࢃ
௪௘௜௚௛௧ሺ ௜ܲሻ ൌ ቄ

݉௜ࢍ
૙ଷൈଵ ൅ ௜ࢉ ൈ ݉௜ࢍ

 
ሺ3.82ሻ

	 ௜ࢃ
ௗ௬௡௔௠௜௖ሺ ௜ܲሻ ൌ ቄ

݉௜ࢇ௜
௜ࢻ௜ࡵ ൅ ࣓௜ ൈ ௜࣓௜ࡵ ൅ ௜ࢉ ൈ ݉௜ࢇ௜

 ሺ3.83ሻ
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	 ௜ࢃ
ௗ௜௦௧௔௟ሺ ௜ܲሻ ൌ െࢃ௜ିଵ

௣௥௢௫௜௠௔௟ሺ ௜ܲሻ ൌ ൜
െࡲ௜ିଵ

െࡹ௜ିଵ െ ௜ࢊ ൈ ௜ିଵࡲ
 ሺ3.84ሻ

Where ࢉ௜ ൌ ሺ పܲܥపሬሬሬሬሬሬԦሻ is the lever arm vector from the proximal end to the COM, 

and ࢊ௜ ൌ ൫ పܲܦపሬሬሬሬሬሬሬԦ൯ ൌ ൫ పܲ ഢܲషభ
ሬሬሬሬሬሬሬሬሬሬԦ൯ is the lever arm vector from the proximal end to the 

distal end, both expressed in the GCS. Leading to: 

൜
௜ࡲ
௜ࡹ

ൌ ቄ
݉௜ࢇ௜

௜ࢻ௜ࡵ ൅ ࣓௜ ൈ ௜࣓௜ࡵ ൅ ௜ࢉ ൈ ݉௜ࢇ௜
െ ቄ

݉௜ࢍ
૙ଷൈଵ ൅ ௜ࢉ ൈ ݉௜ࢍ

െ ൜
െࡲ௜ିଵ

െࡹ௜ିଵ െ ௜ࢊ ൈ ௜ିଵࡲ
	 ሺ3.85ሻ

Representing the proximal and distal wrenches as 6D vectors, the above 

equation can be written in matrix form as follows: 

൤
௜ࡲ
௜ࡹ
൨ ൌ ൤

݉௜ࡱଷൈଷ	 ૙ଷൈଷ	
݉௜ࢉ෤௜ ௜ࡵ

൨ ቂ
௜ࢇ െ ࢍ
௜ࢻ

ቃ ൅ ൤
૙ଷൈଵ

࣓௜ ൈ ௜࣓௜ࡵ
൨ ൅ ൤

ଷൈଷࡱ ૙ଷൈଷ
෩௜ࢊ ଷൈଷࡱ

൨ ൤
௜ିଵࡲ
௜ିଵࡹ

൨	
ሺ3.86ሻ

Where ࡱଷൈଷ	is the identity matrix, ૙ଷൈଷ	and ૙ଷൈଵ	are a matrix and vector of zeros, 

and ࢉ෤௜ and ࢊ෩௜ are the skew symmetric matrix of lever arms ࢉ௜ and ࢊ௜, such as: 

 
෤ࢉ ൌ ൥

0 െܿଷ ܿଶ
ܿଷ 0 െܿଵ
െܿଶ ܿଵ 0

൩ 

ሺ3.87ሻ

Three dimensional joint moments from right and left joints were combined to 

obtain two dimensional joint moments about the global x-axis for the ankles, 

hips, shoulders, and wrist joints. 

3.5.7. Adjustments for a Moving Platform 

During platform movements the orientation and the position of each force plate 

relative to the GCS will move, therefore the force vector and COP coordinates 

calculated from each force plate will differ from their true values due to this 

movement, requiring a correction before joint moments can be calculated. One 

option would be to consider the GCS as a moving reference system aligned 

with the moving force plate coordinate system. However, this would result in a 

moving non-inertial reference frame, requiring the computation of fictional 

forces, such as centrifugal and Coriolis forces, adding increased complexity to 
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the calculations (Chaffin et al., 1999). The alternative method would be to 

recalculate the force and moment vectors, and the COP position in the static 

GCS. 

The actual COP in the GCS will be related to the position calculated from the 

force plates, the displacement of the force plate origin relative to the GCS origin, 

and the angle of the force plate relative to the GCS (equation 3.88). In addition, 

the acceleration of the force plates will result in extra forces that are applied to 

the four tri-axial force sensors, resulting in a systematic error between the 

actual force and that calculated from the force plate. The ground reaction force 

vector, which is at the point of force application and is applied to the subject at 

this point, will be related to the reaction force calculated from the force plate, 

the product of the acceleration of the force plate and the mass of the force 

plate’s top plate, and the angle of the force plate relative to the GCS (equation 

3.89).  

 ൤
0
௔࢖
൨ ൌ ቂ0

ࢊ
ቃ ൅ ݍ ൤

0
௖࢖
൨  ∗ݍ

ሺ3.88ሻ

 ൤
0

௔ࡲࡾࡳ
൨ ൌ ݍ ൤

0
௖ࡲࡾࡳ െ ൨ࢇ݉ ݍ

∗ 

ሺ3.89ሻ

Where ࢖௖  and ࡲࡾࡳ௖  are the position and vector of the COP and ground 

reaction force calculated from the force plate; ࢖௔  and ࡲࡾࡳ௔  are the actual 

position and vector of the COP and ground reaction force; ࢊ  is the 

displacement of the force plate origin relative to the GCS origin; ݉ is the mass 

of the top plate; ࢇ is the acceleration of the force plate centre; and ݍ is the 

attitude quaternion for the orientation of the platform. The mass of the top plate 

was determined by administering several discrete and continuous translations, 

in each of the three directions, with varying speeds and amplitudes. These 

translations showed that the mass of each force plate’s top plate was 

approximately 29 kg. These corrections resulted in typical force errors of 0.6 N 

for small perturbations and 1.1 N for larger platform perturbations. Although 

these errors are slightly larger than those reported in Table 3.2 for a static 
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platform, this is still acceptable. Figure 3.8 shows an example of the corrected 

force obtained by this method during a large platform translation of 0.1 m at 

target velocity of 0.2 ms-1. 

 

Figure  3.8: Force plate response to a platform translation of 0.1 m at a target 
velocity of 0.2 ms-1, with the horizontal force recorded by the force plates (blue) 
and the corrected force from equation 3.89 (red) 
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CHAPTER 4 

DATA ANALYSIS AND ASSESSMENT OF BALANCE 

This chapter examines the assumptions used by various data analysis methods 

to assess balance, with specific reference to the calculation and implementation 

of different balance metrics used within the literature. The chapter relates 

specifically to question one, and aims to determine which balance metrics best 

express the underlying control of posture, for balance with and without vision 

whilst in each of three postures. 

4.1. Assessment of Balance 

Twelve experienced handstanders completed the first part of study two. 

Subjects were required to perform five trials for a maximum of 30 seconds in 

each of the six conditions, including: standing, single leg stance, and 

handstand, each with eyes open and eyes closed. The data collection protocol 

and experimental procedures were as described previously in Chapter 3. 

4.1.1. Traditional Balance Measures 

Traditionally balance has been assessed by the relatively simple analysis of the 

trajectory of the COP to calculate quantities such as: range, standard deviation 

(SD), sway area, sway length, and mean frequency (Jiang et al., 2013; Kim et 

al., 2009; Wollseifen, 2011). Although sway area and sway length are 

commonly used to assess balance, these measures are calculated in two-

dimensions. In the current research only one-dimensional signals will be 

analysed to allow for the comparison between traditional and nonlinear balance 

metrics. The traditional measures of balance that have been used within the 

current research include: range, SD, and mean sway velocity.  

Traditional linear methods interpret all regular structure in a data set, such as a 

dominant frequency, this means that the presumed intrinsic dynamics of the 

system are governed by the linear paradigm that small causes lead to small 
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effects (Kantz and Schreiber, 2004). Since linear equations can only lead to 

solutions that oscillate periodically, either damped or undamped, or have 

exponential growth or decay, all irregular behaviour in the system has to be 

attributed to some random external input. Consequently, a growing number of 

studies have examined the data obtained from research into balance using 

other paradigms from dynamical systems theory, such as nonlinear, 

nonstationary, or stochastic dynamics. 

4.1.2. Nonlinear and Nonstationary Measures of Balance 

A dynamical system is one that evolves in time, that can be stochastic, and 

evolve according to some random process such as the toss of a coin, or they 

can be deterministic, in which case the future is uniquely determined by the 

past according to some rule or mathematical formula (Sprott, 2003). These 

formulae represent linear dynamic systems or nonlinear dynamic systems, 

where simple equations can lead to complicated behaviours, commonly known 

as deterministic chaos. Simple examples of dynamical systems include regular 

motions such as mass on a spring, pendulums, which in more complex forms 

can become nonlinear, leading into more complex dynamics such as the 

Rössler attractor, the Lorenz attractor, neural networks and eventually 

correlated noise and random noise. However, physical systems often exhibit a 

combination of behaviours, and experimental data commonly includes the 

addition of measurement error, making it extremely difficult to determine the 

underlying dynamics of the system based on a single sequence of 

measurements, the time series. 

4.1.2.1. Time Series Analysis 

A time series is a collection of observations indexed by the date or time of each 

observation. We often imagine that we could have obtained earlier or later 

observations had the process been observed for more time; in this way the 

observed sample could be viewed as a finite segment of a doubly infinite 

sequence (Hamilton, 1994). A time series is usually not a very compact 

representation of a time evolving phenomenon, therefore it is necessary to 

condense the information and find a parameterisation that contains the features 
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that are most relevant to the underlying system (Schreiber, 1999). Most ways to 

quantitatively describe a time series are derived from the methods to describe 

an assumed underlying process (Schreiber, 1999). The measures of dynamics 

in a time series are usually derived from measures of the assumed dynamics in 

the system, whether this is based on a stochastic, linear, or nonlinear 

dynamical system. The rationale is that a certain class of processes are 

assumed to have generated the time series and then the measure quantifying 

the process is estimated from the data. Since the underlying process is only 

observed through some measurement procedure, it is most useful to attempt to 

estimate quantities that are invariant under reasonable changes in the 

measurement procedure. The finite resolution and duration of time series 

recordings damage the invariance properties of quantities which are formally 

invariant for infinite data. Furthermore, if the value of an observable depends on 

the observation procedure it loses its value as an absolute characteristic 

(Schreiber, 1999). While in some cases we can still make approximate 

statements, the interpretation of results has to be undertaken with great care. 

Time series analysis requires that the data should provide enough information 

to determine the quantity of interest unambiguously; this results in there being 

minimal requirements for how long and how precise the time series must be, 

and how frequently the measurements are observed. The time series should 

cover a stretch of time which is much longer than the longest characteristic time 

scale that is relevant for the evolution of the system. Most conventional time 

series analysis methods implicitly assume the data to have come from the 

stationary process of a linear dynamical system, perhaps with many degrees of 

freedom and some added noise (Sprott, 2003). Since time series analysis 

methods ultimately give rise to algorithms which just compress time series data 

into a set of a few numbers, they can be applied to any sequence of data, 

including stochastic, linear, and nonlinear data. The results however cannot be 

assumed to characterise the underlying system if these assumptions are not 

met (Kantz and Schreiber, 2004). Many nonlinear analysis methods assume 

data to be from a deterministic nonstationary process and to be described in 
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their state space. The state space is an N-dimensional vector space where the 

dynamical system can be defined at any point (Stergiou et al., 2004). 

4.1.2.2. State Space Reconstruction 

Mathematical models of dynamical systems are described in their state space, 

whose integer dimension is given by the number of the dependent variables of 

the model (Parlitz, 1998). The vast majority of time series measurements are 

single valued, and even if multiple simultaneous measurements are available, 

they will not typically cover all the degrees of freedom of the system (Schreiber, 

1999). Fortunately, two methods for reconstructing the state space from scalar 

time series are available (Parlitz, 1998). 

Derivative coordinates reconstruction involves using higher order derivatives of 

the measured time series, however such derivatives are susceptible to noise 

and are usually not appropriate for experimental data. Delay coordinates 

reconstruction is based on Takens’ theorem (Takens, 1981 in Marwan et al., 

2007), and is generated by constructing a delayed coordinates map that maps 

the state ݔ from the original state space ܯ to a point ݕ in a reconstructed state 

space ࡾௗ . The reconstruction from delay coordinates is based on two 

parameters: the embedding dimension (݉) and the delay time (߬), both of which 

are crucial for any successful analysis. These parameters may be estimated by 

several methods, such as using false nearest neighbours for estimating the 

embedding dimension, or using linear autocorrelation functions for determining 

the delay time (Figure 4.1). 

Although a naive interpretation of Takens’ theorem might suggest that any 

coordinate system that forms an embedding is equivalent to any other, in 

practice the choice of parameters used to reconstruct the coordinates 

dramatically affects the ability to make predications (Hasson et al., 2008). It is 

always important to remember that a poor reconstruction amplifies noise and 

increases estimation error (Casdagli, 1991), and no parameter determination 

methods are considered to be the right one for all systems. For real data, which 

is contaminated by noise, the optimal delay is typically around one-tenth to one-
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half the mean orbital period around the attractor (Strogatz, 1994), however this 

can be difficult to determine when reconstructing the higher dimensional 

attractor from a one dimensional signal. 

  

Figure  4.1: The Lorenz (left) and Rossler (right) systems expressed in one (top) 

and two (middle) dimensions, and reconstructed via delay coordinates (bottom), 

with ߬ determined by mutual information. 

In the current research, the one dimensional signals of anteroposterior COP 

trajectories were reconstructed into the higher dimensional state space via 

߬ ൌ 0.170 ߬ ݏ ൌ 1.25  ݏ
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delay coordinates reconstruction. ߬  was determined using the principle of 

mutual information described by Fraser and Swinney (1986). Mutual 

information describes the general dependence between two variables, 

providing a better estimate of ߬ than autocorrelation which only measures linear 

dependence (Fraser and Swinney, 1986). Mutual information was calculated for 

a range of time steps, with the time corresponding to the first local minima 

providing the appropriate ߬ . Once ߬  was determined ݉  was ascertained by 

employing the false nearest neighbour principle. The original signal was 

reconstructed into higher dimensional states in one dimensional increments 

and the number of nearest neighbours in the newly constructed higher 

dimensional signal was calculated. The number of nearest neighbours will 

initially be high due to the attractor overlapping onto itself when it is expressed 

in a low dimensional state space, therefore some of these nearest neighbours 

can be considered as ‘false’. As the dimensions of the state space increase, the 

number of these false nearest neighbours will decrease until at the appropriate 

dimension there are none left. The total number of nearest neighbours will 

remain relatively unchanged when the reconstructed dimension is at or above 

the appropriate value for ݉. 

Reconstruction parameters ߬  and ݉ were determined for a random selection of 

trials from different subjects and experimental conditions. ߬ ranged from 0.2 to 

0.45 seconds, and ݉ ranged from 4 to 5. Hasson et al. (2008) applied a similar 

principle to the reconstruction of multiple balance trials, with and without added 

noise, and found average parameters of ߬ ൌ 0.3 and ݉ ൌ 5 provided the most 

stable outcome. Following their advice, and the close match to their parameters 

and those from a sample of data collected in this study, the same parameters of 

߬ ൌ 0.3 and ݉ ൌ 5 were used for all subsequent reconstructions. 

4.1.2.3. Nonlinear Dynamical Systems 

The hall mark of deterministic chaos is the sensitive dependence of future 

states on the initial conditions, where an initial infinitesimal perturbation will 

typically grow exponentially (Eckmann et al., 1986). The growth rate can be 

determined by the Lyapunov exponent (LyE), where a positive value describes 
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an exponential divergence of nearby trajectories and defines chaos (Wolf et al., 

1985). Lyapunov spectra can be defined that take into account the different 

growth rates in different local directions of state space, however only the 

maximum LyE is usually used, as the non-leading exponents are notoriously 

difficult to estimate from time series data (Schreiber, 1999). While the average 

stretching, folding, and volume contraction rate is quantified by the LyE, the 

loss of information due to the folding is reflected by the entropy of the process 

(Schreiber, 1999). 

Entropy is a measure of the unpredictability of information content, and relates 

to Shannon’s information theory. Approximate Entropy (ApEn) is an estimate of 

the entropy in a signal, and has been used within time series analysis to give 

an estimate of the complexity, or regularity, within physiological data (Pincus, 

1991; Pincus et al., 1991; Pincus and Goldberger, 1994; Pincus, 1995). This 

has been used in a variety of postural control studies, and has shown that as 

infants develop towards an independent sitting posture the complexity in the 

signal first decreases as the infant hones in on a successful strategy, then 

increases slightly as they begin to explore the stability region (Harbourne and 

Stergiou, 2003). Although ApEn has been recommended as an appropriate tool 

for assessing balance, it has nevertheless come under criticism for being 

heavily dependent on the length of the signal, giving lower values for short data 

sets; a problem that is overcome somewhat by Sample Entropy (Richman and 

Moorman, 2000). 

ApEn inherently includes a bias towards regularity, caused by the inclusion of 

self-matches of vectors within the data set, leading to lower ApEn values for 

shorter data sets (Yentes et al., 2013). Sample Entropy (SampEn) provides an 

improved evaluation of time series regularity for short data sets by removing 

this bias (Richman and Moorman, 2000). SampEn has been suggested as a 

useful tool for analysing physiological signals with lengths as low as 200 

samples (Yentes, et al., 2013). Due to the challenging nature of the balance 

tasks employed here, and the assessment of novice handstanders as they 

learn to balance, SampEn was preferred over ApEn as an assessment of signal 
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complexity, and LyE was used to assess the divergence of trajectories in the 

embedded dimension. SampEn and LyE will result in larger values for chaotic 

signals compared to periodic signals, however both will also present larger 

values for stochastic data, making it difficult to determine the true characteristic 

of the signal without further inquiry. It is important to evaluate results against a 

surrogate data set to determine if a signal comes from a deterministic or 

stochastic process (Theiler et al., 1992). 

Surrogation is a technique that compares the original time series against a 

random data set with the same mean, standard deviation, and power spectra to 

determine if the source of the signal is deterministic or stochastic (Stergiou et 

al., 2004). In the current research surrogate data sets were constructed in 

Matlab using the method described by Theiler et al. (1992). A fast Fourier 

transform (FFT) was computed for each COP time series and a normally 

distributed random data set of equal length. The inverse FFT was then 

computed on the magnitudes from the original data set and the phase angles of 

the random data set to produce a shuffled version of the original time series 

(Figure 4.2). 

 

Figure  4.2: Three different surrogate data sets (coloured) computed from an 
original COP time series (black). 
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4.1.2.4. Stationarity 

A signal is called stationary if all joint probabilities of finding the system at some 

time in one state and at some time in another state are independent of time 

within the observation period when calculated from the data (Hamilton, 1994).  

An evident consequence of this is that, if there exists a mathematical model of 

the process, it has to be autonomous, therefore there is no explicit time 

dependence in the equations and that in a physical realisation all system 

parameters, including the influences from the environment, must be strictly 

fixed (Kantz and Schreiber, 2004). Non-stationarity is a property of the 

underlying process, not the data, and arises when mechanisms producing the 

data change over time, however, a time-series that is too short to capture the 

slowest variations of the measured quantity produces the same effect (Sprott, 

2003). A time series whose first two moments (mean and variance) are 

constant is said to exhibit weak stationarity. This is sufficient for linear time 

series analysis, but insufficient for analysing a chaotic system (Sprott, 2003; 

Kantz and Schreiber, 2004). 

The most evident form of stationarity requires that all parameters that are 

relevant for a system’s dynamics have to be fixed and constant during the 

measuring period.  Unfortunately, in most cases we do not have direct access 

to the system which produces a signal and we cannot establish evidence that 

its parameters are indeed constant. Furthermore, there are many processes 

which are formally stationary when the limit of infinitely long observations can 

be taken, but which behave effectively like non-stationary processes when 

studied over finite times; human balance is an example of this. COP trajectories 

show what is called bounded nonstationarity, bounded within the base of 

support, suggesting from a purely biomechanical perspective that postural 

control is under-constrained (Riley et al., 1999). This provides a particular 

problem when comparing balance trials of different durations, as will 

undoubtedly occur when assessing novices learning to balance, or when 

balance is stressed to the limits of the postural control system. 
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Many statistical analysis methods typically require stationarity, and even slight 

non-stationarity can sometimes lead to severe misinterpretations (Kantz and 

Schreiber, 2004). Variables such as mean, standard deviation, variance, 

average deviation, skewness, and kurtosis should be similar for the first and 

second half of the time series for a nonlinear analysis to be used. Small 

differences in these variables are normal, but a significant difference between 

different portions of the signal can be determined via the standard error; if the 

difference is more than a few standard errors then the data is non-stationary. 

If a signal is found to be non-stationary, then any further analysis of the time 

series using linear or nonlinear processing tools which assume stationarity are 

invalid. A nonstationary signal may be de-trended by removing the deterministic 

trend if it is a trend stationary process, or by differencing the signal once if it is a 

unit root process. In this study the augmented Dickey-Fuller test of stationarity 

was used to first test for nonstationarity within the data. If a balance metric 

required data to be stationary, any nonstationarity data sets were subsequently 

de-trended using a Butterworth high pass filter at the dominant frequency. 

The nonstationarities within the COP time series may be a fundamental 

characteristic of postural control, and may reflect motions about a moving, 

rather than static, set-point (Riley et al., 1999; Zatsiorsky and Duarte, 1999). 

The dynamics of a moving reference point, usually exhibited as a slow drift in 

the mean COP displacement, may be described as stochastic, where the 

motion is a consequence of an inadequate deterministic stabilisation about the 

set point via closed loop control (Riley et al., 1999). The nonstationarity of this 

moving reference may provide insight into the underlying process of postural 

control. Indiscriminately removing the nonstationarity from COP signals may 

result in spurious results, and alternative methods of assessing balance without 

removing any nonstationarities are required. One alternative is to assess the 

COP time series from the paradigm of stochastic dynamics, such as a 

modelling COP as a random walk process (Collins and DeLuca, 1993). 
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4.1.2.5. Stochastic Dynamical Systems 

A stochastic process can be defined as a family of random variables used to 

represent the evolution of some random value over time; this can be a discrete 

time process or a continuous time process (Astrom, 2006). The simplest case 

of a discrete time stochastic process is known as a Markov chain, where the 

system undergoes transitions from one state to another and the evolution of the 

system is based only on the current state and not any preceding states. A 

continuous time stochastic process is described by the Wiener process, a 

stochastic process with stationary independent increments, and occurs 

frequently in pure and applied mathematics, economics, and physics. A simple 

one dimensional random walk may be considered as a discrete time stochastic 

process, with either a uniform or Gaussian step size. As the step size 

decreases, and approaches zero, you get an approximation of a Wiener 

process, and less accurately Brownian motion. A Wiener process is the scaling 

limit of a random walk in one dimension. 

Postural control has been modelled as one and two dimensional random walks 

with two distinct phases (Collins and DeLuca, 1993), and as a simple linear 

random walk (Newell et al., 1997). In nonlinear dynamics, randomness 

emerges out of deterministic dynamics, whereas in random walk dynamics, 

noise is not directly linked to deterministic dynamics (Yamada, 1995). It can be 

argued that in order to analyse COP signals, which consists of irregular and 

unpredictable components, the presence of nonlinear dynamics can be 

assumed. Even if a fluctuating signal apparently seems to be stochastic, it 

frequently includes a determinist aspect (Sasaki et al., 2001). Nonstationarities 

and apparent stochastic elements within deterministic COP dynamics become 

apparent when one considers that the postural fluctuations are primarily 

produced by the postural system, and yet must also be resolved and possibly 

countered by the postural system (Riley et al., 1999). Nonstationarities are a 

fundamental part of the COP signal, however simplifying this into a stochastic 

process seems unwise when the signal is produced from the deterministic 

process that is postural control. 
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4.1.2.6. Recurrence Plots and Recurrence Quantification Analysis 

Recurrence is a fundamental property of dynamical systems, which can be 

exploited to characterise the system’s behaviour in state space (Marwan et al., 

2007).  The formal concept of recurrences was introduced by Henri Poincaré 

(1890) when addressing the restricted three body problem where, although 

unable to calculate the exact dynamics of the system, he described how the 

system would recur many times to a similar state (in Marwan et al., 2007).  

Recurrences can be identified by calculating the distances between the 

trajectory of the system at one time to the trajectory of the system at every 

other point in time, thus creating a matrix of distances. The distance matrix can 

be converted into a recurrence matrix by allocating the number 1 to any 

distances that fall within a particular distance, described by: 

	
௜,௝ࡾ ൌ ቊ

1: Ԧ௜ݔ ൎ Ԧ௝ݔ
0: Ԧ௜ݔ ≉ Ԧ௝ݔ

݅, ݆ ൌ 1,… , ܰ,
ሺ4.1ሻ

	 ሻߝ௜,௝ሺࡾ ൌ ߝ൫߆ െ ฮݔԦ௜ െ ,Ԧ௝ฮ൯ݔ ݅, ݆ ൌ 1,… , ܰ, ሺ4.2ሻ

Where ߝ is the distance threshold, ݔԦ௜  and ݔԦ௝  represent the time series with ܰ 

data points, and Θሺ⋅ሻ represents the Heaviside function (i.e. Θሺݔሻ ൌ 0, if ݔ ൏ 0, 

and Θሺݔሻ ൌ 1 otherwise). 

Eckmann et al. (1987) introduced the method of recurrence plots to visualise 

the recurrences of dynamical systems in ܰ  dimensional space; created by 

plotting the recurrence matrix, with each 1 as a black square and each 0 as a 

white square. Additionally, the distance matrix may be plotted as a colour plot 

or a surface plot to visualise the dynamics of the system outside of the 

recurrence threshold (Figure 4.3). Originally these plots were used 

diagnostically as a qualitative assessment of system dynamics, but didn’t offer 

any quantitative measures until Zbilut and Webber (1992), and later Marwan et 

al. (2002), developed what is now known as Recurrence Quantification Analysis 

(RQA).   
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Figure  4.3: Recurrence plots (left) and distance plots (right) of two non-linear 
systems; from the Rossler equations (top) and the Lorenz equations (bottom). 

 

Zbilut and Webber (1992) used the patterns in recurrence plots to quantify 

different characteristics of the underlying dynamics, such as measuring the 

lengths of all diagonal lines parallel to the main diagonal. The main diagonal 

line in the recurrence plot is called the line of identity, which represents each 

point in time compared to itself. Each diagonal line parallel to the line of identity 

represents continuous points in time that recur, thus the trajectory evolves in a 

similar way to the trajectory of the main diagonal. Further quantitative measures 

of recurrence plots include recurrence rate, determinism, laminarity, divergence, 

entropy, and trend (Webber and Zbilut, 2005; Marwan et al., 2007).The 
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Recurrence Rate (RR) is the percentage of recurrence points that fall within the 

specified radius, this is related to the correlation sum, and is calculated via: 

	
ܴܴ ൌ

1
ܰଶ ෍ ܴ௜,௝

ே

௜,௝ୀଵ ሺ4.3ሻ

Determinism (DET) represents the percentage of recurrence points which form 

diagonal line structures, and describes trajectories that evolve in a similar way 

to past trajectories: 

	
ܶܧܦ ൌ

∑ ݈ܲሺ݈ሻே
௟ୀ௟೘೔೙

∑ ܴ௜,௝ே
௜,௝

 

ሺ4.4ሻ

Where ݈ܲሺ݈ሻ is the histogram of the lengths of diagonal lines that are larger than 

the line threshold, which is usually set to two points. Laminarity (LAM) is the 

percentage of recurrence points which form vertical lines, and represents times 

when the system is evolving slowly or changing to a new state: 

	
ܯܣܮ ൌ

∑ ሻேݒሺܲݒ
௩ୀ௩೘೔೙

∑ ሻேݒሺܲݒ
௩ୀଵ

 
ሺ4.5ሻ

The longest diagonal line (ܮ௠௔௫), excluding those close to the line of identity, 

represents the longest time when two trajectories evolve in a similar manner: 

	 ௠௔௫ܮ ൌ maxሺሼ݈௜; ݅ ൌ 1… ௟ܰሽሻ ሺ4.6ሻ

 ௠௔௫ is an important recurrence variable because it will scale inversely with theܮ

largest Lyapunov exponent and is related to the rate at which nearby 

trajectories diverge (DIV): 

	
ܸܫܦ ൌ

1
௠௔௫ܮ

 
ሺ4.7ሻ
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Entropy is an estimate of Shannon information entropy, calculated from the 

inverse of the probability distribution of the diagonal line lengths: 

	

ܻܱܴܲܶܰܧ ൌ െ ෍ ሺ݈ሻ݌ ݊ܫ ሺ݈ሻ݌

ே

௟ୀ௟೘೔೙

 

ሺ4.8ሻ

Trend (TND) is a measure of the stationarity within the system, where a 

nonstationarity will be exhibited as a paling of the recurrence plot towards the 

edges due to a drift in the signal. TND is calculated as the slope of the 

percentage of local recurrences against the displacements from the main 

diagonal, expressed in units of percentage recurrence per 1000 data points. If 

recurrence points are homogenously distributed across the recurrence plot then 

TND will be close to zero, indicating stationarity. 

Since all nonlinear tools are calculated within the embedded space, it is logical 

that stationarity should be examined at this level (Stergiou et al., 2004). A major 

advantage of RQA is that it assesses all aspects of the system embedded in its 

state space, including estimates of divergence, entropy and stationarity. RQA is 

suitable for short non-stationary signals, quantifies dynamical structure and 

non-stationarity, making it a promising tool for assessing the short 

nonstationary signals that are expected to be found in the COP trajectories of 

novices learning to balance. RQA has been employed to assess the effect of 

visual information on standing balance (Riley et al., 1999), the dynamics of 

sitting balance (Hermann, 2005), and the noise within the COP signal whilst 

standing (Hasson et al., 2008). Nevertheless, it is important to note that no one 

measure of overall system complexity has emerged as sufficient (Riley et al., 

1999). 

4.1.3. Estimates of Feedback Time Delay 

Cross correlations have shown there to be zero delay between COM and COP 

trajectories, with some authors suggesting this is evidence of a passive control 

system (Winter et al., 1998; Winter et al., 2001; Winter et al., 2003), while 

others suggest it is evidence of an active anticipatory feedforward control 
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process (Gatev et al., 1999). These assumptions neglect the possibility of a 

reactive control strategy that relies on proportional and derivative gains from 

COM motion. Assuming a reactive control strategy is employed (Figures 4.4 

and 4.5) such a control process may be described as: 

 ଴ – An imbalance in force leads to a small acceleration with a small amount ofݐ
motion that goes undetected by the sensory system. 

 ଵ – A sensory threshold is reached and a neurological signal is sent from theݐ
sensors to the CNS whilst sway continues. 

 .ଶ – Signals are received at the muscle to produce an intended responseݐ

 ,ଷ – After a short electromechanical delay the muscle begins to produce forceݐ
but the resulting joint torque is initially too low. 

 ;ସ – The joint torque rises to be larger than the torque due to COM positionݐ
sway velocity is at its peak and begins to fall, but sway continues and joint 
torque will continue to rise. 

 ହ – Sway velocity reaches zero and sway angle is at its maximum before it isݐ
reversed; joint torque may continue to rise, or it could have begun to reduce 
before this point. 

 

 

Figure  4.4: An example of the relationship between COM displacement, COM 
velocity, and joint torque from a simple inverted pendulum with PD control and 
a delay of 150 ms. 
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Figure  4.5: An example of how the estimated feedback time delay can be 
affected by adjusting the proportional and derivative gains in a simple inverted 
pendulum with PD control. 

Research examining the latency between an external perturbation and the 

onset of muscle EMG, such as Nashner (1976), will determine the time 

between ݐ଴  and ݐଶ , with the time from ݐ଴  to ݐଵ  minimised during larger 

perturbations. Research employing cross correlations to examine delays 

between COP and COM, such as Gatev et al. (1999), will determine the time 

between peak COP (ankle torque) and peak COM. A simple inverted pendulum 

model of balance that is controlled with a PD controller based on COM motion 

from earlier times, due to a feedback delay, can produce stable postural control. 

If the proportional and derivative gains are adjusted and the delay in the system 

kept constant, cross correlation between the controlling joint torque and COM 

displacement can produce large underestimates of the actual delay (Figures 

4.2 and 4.3). Stable control in a simple model as this is usually achieved with a 

combination of proportional and derivative inputs, indicating the importance of 

both COM displacement and velocity in the control of posture. 

Yeadon and Trewartha (2003) examined the feedback time delay during static 

balance via examination of the relationship between joint torques and COM 

motion whilst in handstand. Wrist joint torques were regressed against COM 

displacement and velocity at earlier times, with peak R2 values occurring at 160 
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to 240 ms. It is important to note that this method will only provide a rough 

estimate of the average delay over the full duration of the trial, incorporating 

several delays within it, such as: electromechanical delay (EMD), joint torque 

rise times, and the time for any sensory thresholds to be reached. Based on 

literature values, Yeadon and Trewartha subtracted an estimated value of 40 

ms from all trials to account for these delays, resulting in estimated delays of 

120 to 200 ms. No passive elements are included in this model, which have 

been estimated to account for 64% to 90% of critical torque (Casadio et al., 

2005; and Loram and Lakie, 2002a respectively). 

Joint torques may be modelled as a composite of active torque, passive 

stiffness, and a bias torque representing the tonic activity within the muscles 

(Jacono et al., 2004). Jacono et al. (2004) used literature values in the range of 

70% to 90% as estimates of passive stiffness, and calculated the remaining 

active torque required to maintain balance during standing. In the current 

research this principle was combined with the method used by Yeadon and 

Trewartha (2003) to estimate the percentage of torque from passive stiffness 

and that from delayed COM motion. A third parameter was added to the original 

regression model used by Yeadon and Trewartha (equation 4.9) representing a 

passive stiffness element based on the COM displacement with zero delay 

(equation 4.10): 

	 ሺܶ௧ሻ ൌ ሺ௧ି௧బሻݔ݌ ൅ ሶሺ௧ି௧బሻ ሺ4.9ሻݔ݀

	 ሺܶ௧ሻ ൌ ሺ௧ሻݔଵ݌ ൅ ሺ௧ି௧బሻݔଶ݌ ൅ ሶሺ௧ି௧బሻ ሺ4.10ሻݔ݀

Both regression models were employed to examine the delay between ankle 

joint torque and COM motion in normal standing and single leg stance, and 

between wrist joint torque and COM motion in handstand. The coefficients from 

each model were combined with their respective COM variable to calculate the 

relative contributions to overall joint torque. 
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4.1.4. Movement Corrections 

Roncesvalles et al. (2001) examined the number and magnitude of joint torque 

corrections during perturbed standing in children ranging from 9 months to 10 

years of age. Movement units were defined as one cycle of positive and 

negative acceleration of the respective segment, for example the foot 

accelerations were used to determine movement units relating to ankle torque. 

Mean joint torque was calculated for each movement unit and the total number 

of movement units were counted from the start of the perturbation until balance 

had been recovered. An increased number of movement units were evident in 

younger children, with larger mean joint torques occurring with a decreased 

number of movement units. 

During static stance it would be impractical to count movement units for the 

ankle based on accelerations of the foot, and one could argue the same for all 

balance in standing. Therefore, the method of determining the start and end of 

each movement unit was altered and determined based on a change in joint 

torque; this will be referred to as movement corrections. Joint torque signals 

were differentiated and zero crossings detected to determine when minima and 

maxima turning points occurred. Thresholds of 1, 2, and 3 SD were used to 

classify the change in joint torques from one minimum to the subsequent 

maximum as either small, medium, or large corrections respectively. The time 

from one minimum to the subsequent minimum was used to determine the 

duration of the correction, and mean joint torque and torque impulse were 

calculated for this period. Filtered EMG data were assessed in the same 

manner, with root mean square (RMS) values calculated during the duration of 

the movement correction. 

4.1.5. Statistical Analysis 

Determinism and SampEn values of the surrogate data were compared to 

those obtained from the original data using a repeated measures t-test with a 

significance level of 0.05 in accordance with the suggestions of Harbourne and 

Stergiou (2003) and Stergiou et al. (2004). 
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A two-way repeated measures ANOVA (posture vs. vision) was used to 

compare mean values for all dependent variables (Table 4.1), and significant 

differences were examined further using multiple t-tests with a Bonferroni 

correction. Further comparisons were only made within each independent 

factor, either based on posture or vision. Prior to statistical testing, all data were 

assessed for normality and sphericity by the one-sample Kolmogorov-Smirnov 

test and Mauchly’s test of sphericity respectively. A Greenhouse-Geisser 

correction was used to adapt the degrees of freedom of statistical tests for any 

data that was found to violate the assumption of sphericity. 

Table  4.1: All variables used to assess balance 

Group Variables Number 

Traditional 
duration, standard deviation (SD), range, mean sway 
velocity (SV) 

4 

Nonlinear sample entropy (SampEn), lyapunov exponent (LyE) 2 

Recurrence 
Quantification 
Analysis 

recurrence rate (RR), determinism (DET), entropy 
(ENT), divergence (DIV), trend (TND) 

5 

Estimated 
Delays 

delay, R2, proportional and derivative coefficients, 
torque percentages, cross correlations 

17 

Movement 
Corrections 
(Torque) 

corrections per second, mean torque, torque impulse, 
burst duration [small, medium, large (S,M,L)] 

12 

Movement 
Corrections 
(EMG) 

corrections per second, root mean square (RMS), 
burst duration [small, medium, large (S,M,L)] 

9 

Note: Movement corrections for EMG were only used in handstand as no sensors were placed 
on the lower leg; estimated delays were calculated by two different methods and will be 
prefixed with M1 or M2 (M1 = Yeadon and Trewartha method) 

4.2. Findings and Discussion 

The results of this study were examined from several perspectives, including: 

linear, nonlinear, recurrence, feedback time delays, and movement corrections. 

Interpretation of the analysis from each perspective follows, with comparison of 

these results to past literature where appropriate. 



104 
 

 

Figure  4.6: An example trial from each posture showing the COM (blue) and 
COP (red) trajectories in standing (top), single leg stance (middle) and 
handstand (bottom). 
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Significant differences were found between the original data sets and the 

surrogate data sets for both SampEn (t = -10.9; p = 0.00) and DET (t = 15.4; p 

= 0.00), indicating the fluctuations observed were distinguishable from linearly 

correlated Gaussian noise. The original data most likely have a deterministic 

nature and the use of nonlinear techniques are supported. All data were found 

to be normally distributed by the one-sample Kolmogorov-Smirnov test. Most 

data was found to violate the assumption of sphericity, therefore the 

Greenhouse-Geisser correction was employed. Examples of each posture are 

shown in Figure 4.6 with COM and COP trajectories plotted.  

4.2.1. Traditional Measures of Balance 

A statistically significant interaction between the effects of posture and vision 

was found for all traditional variables. Further comparisons and group means 

are given in table 4.2. Significant differences were found for most traditional 

balance measures, with all traditional measures, except for trial duration, 

presenting with larger values as the complexity of the task increased. The 

duration of trials in handstand with eyes closed was significantly shorter 

compared to all other trials, in agreement with the findings of Asseman and 

Gahery (2005) and highlighting the high difficulty level of this task. 

Table  4.2: Mean values for traditional measures of balance 

 Normal Standing Single Leg Stance Handstand 

Variable EO(a) EC(b) EO(c) EC(d) EO(e) EC(f) 

Trial Duration (s) 30.0 30.0 30.0 27.9 27.7 18.6b,d,e 

SD (cm) 0.5c,e 0.5d,f 0.7a,d,e 1.2b,c,f 1.3a,c,f 1.6b,d,e 

Range (cm) 2.1c,e 2.2d,f 3.7a,d,e 7.0b,c 5.9a,c 6.6b 

SV (cm s-1) 0.7b,c,e 0.9a,d,f 2.5a,d,e 5.2b,c,f 6.8a,c 7.7b,d 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0056 

Significant differences between eyes open and eyes closed conditions in 

standing balance were observed for mean sway velocity, however, no 

significant difference was found for standard deviation or range, confirming 



106 
 

numerous past findings (Le Clair and Riach, 1996; Blaszczyk, 2008; Salavati et 

al., 2009). Similar to past literature, significant differences were found for 

standard deviation between eyes open and eyes closed conditions for 

handstand (Gautier et al., 2007) and single leg stance (Asseman et al., 2005), 

but not in the normal standing. All traditional balance metrics successfully 

distinguished between each posture, with noticeably large changes in sway 

velocity between each posture in the eyes open condition, similar to the 

findings of Asseman et al. (2005). 

4.2.2. Nonlinear Measures of Balance 

There was a statistically significant interaction between the effects of posture 

and vision for TND and DET, and statistically significant differences for effects 

of posture on SampEn, RR, ENT, and DIV. Statistically significant differences 

from the effects of vision were also found for ENT. Further comparisons and 

group means are given in table 4.3, and example recurrence and distance plots 

for each posture are shown in figure 4.7. 

Table  4.3: Mean values for nonlinear and recurrence measures of balance. 

 Normal Standing Single Leg Stance Handstand 

Variable EO(a) EC(b) EO(c) EC(d) EO(e) EC(f) 

SampEn 0.07c,e 0.09d,f 0.10 a 0.11b,f 0.14 a 0.15b,d 

LyE 1.14 0.95 0.88 0.98f 0.66 0.60d 

RR (%) 9.32c,e 6.94d,f 3.25a,e 2.21b 1.04a,c 1.66b 

DET (%) 99.95e 99.94d,f 99.72a 99.65b 99.31a,c 99.51b 

ENT (bits) 4.83c,e 4.56d,f 3.65a,d,e 3.37b,c,f 2.88a,c 2.81b,d 

DIV 0.13c,e 0.26d,f 1.26a,e 2.24b,c 3.67a,c 6.53d 

TND -3.28c,e -2.28 -1.06a -0.81 -0.64a -4.18 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0056 
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Figure  4.7: Recurrence plots (left) and distance plots (right) from example trials 
in: standing (top), single leg stance (middle), and handstand (bottom); input 
parameters: embedding dimension = 5, time lag = 0.3 s, and radius = 10% of 
maximum distance. 
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All recurrence plots contained isolated single recurrent points, indicating noise, 

and upwards diagonal line segments, indicating deterministic structure. 

Downward line segments along with vertical and horizontal line segments are 

also evident, suggesting the presence of short-term transient behaviour similar 

to past use of RQA in COP analysis (Riley et al., 1999). Plots show larger 

recurrences close to the line of identity for standing balance, with a more 

diffuse recurrence in the more challenging postures of single leg stance and 

handstand. This is supported by the general change in TND from the standing 

posture to single leg stance and handstand, with more negative values in 

standing indicating nonstationarity. 

RQA values show a decrease in recurrences (RR) as the task difficulty 

increases from normal standing to single leg stance to handstand. RR is related 

to time correlation, quantifying the percentage of points which over time return 

to the same local neighbourhood in the reconstructed state space. Higher 

values of RR for standing trials would seem to suggest higher time correlation, 

however, examining typical plots will show that most of the recurrences occur 

close to the line of identity. This is likely caused by a decreased sway velocity 

in standing trials resulting in points remaining within the distance threshold for 

longer. This is a particular problem of slowly evolving systems and has been 

discussed at length in the dynamical systems literature (Marwan et al., 2007). 

One possible option would be to use a perpendicular recurrence plot, where 

recurrences are only recorded for points that fall into the local neighbourhood of 

the ሺ݀ െ 1ሻ  dimensional subspace that is perpendicular to the state space 

trajectory (Choi et al., 1999). This method has not been employed much within 

dynamical systems and will require further study before it can be employed 

within COP analysis. 

As task difficulty increases the number of recurrences that form diagonal line 

structures decreases, indicating a slight decrease in system determinism (DET). 

Although the differences between several conditions are significant, all values 

remain above 99%, suggesting that the system can still be considered 

deterministic. Small reductions in DET percentages are likely related to 
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changes in short term transient behaviour, slightly increasing the number of 

single points within the recurrence plot (Marwan et al., 2007). This is further 

supported by the increase in sample entropy from standing to handstand 

postures, indicating an increase in system complexity. Similarly, divergence 

increases with task complexity, representing shorter diagonal line segments, 

and an increase or change in system dynamics. Similar to several traditional 

measures of balance, all nonlinear measures fail to discriminate between visual 

changes within a specific posture. 

4.2.3. Estimated Feedback time Delay 

There was a statistically significant interaction between the effects of posture 

and vision for the delay between joint torques and COM displacement as 

estimated by cross correlations, and for the calculated R2 value and the 

estimated feedback time delay from the method employed by Yeadon and 

Trewartha (2003). There was a statistically significant interaction between the 

effects of posture and vision for the calculated R2 value from the adapted 

method, but not for the estimated delay time. There was however significant 

main effects from posture and vision for the estimated delay from the adapted 

method. Further comparisons and group means are given in tables 4.4 to 4.6 

Cross correlations between joint torques and COM show almost zero delay, in 

agreement with previous research (Jacono et al., 2004; Winter et al., 1998; 

Winter et al., 2001; Winter et al., 2003). Some cross correlations display 

negative delays, indicating joint torques are peaking before COM displacement, 

as was predicted in the example PD controller shown in Figures 4.4 and 4.5 

previously. Cross correlations between EMG of wrist flexor/extensor muscles 

and COM displacement show delays of approximately 94 ms, with similar delay 

between EMG and wrist flexor torques. Combined, these results would seem to 

suggest the delay between EMG and COM displacement is due to an 

electromechanical delay (EMD) from the EMG signal to the rise in joint torque. 

An EMD of 94 ms is somewhat higher than the 13.5 ms to 55 ms reported in 

previous studies (Cavanagh and Komi, 1979; Muraoka et al., 2004; Tillin et al., 

2010; Zhou et al., 1995). A higher estimated EMD found here is most likely due 
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to use of cross correlations with EMG signals, where slower components can 

dominate and hinder the detection of faster components (Nikolic et al., 2012). 

This issue will be addressed further in Chapter 6. 

Table  4.4: Cross correlations between Torque and COM displacement in 
standing, single leg stance and handstand. 

 Normal Standing Single Leg Stance Handstand 

Variable EO(a) EC(b) EO(c) EC(d) EO(e) EC(f) 

Delay (ms) 1c -1d -4a -17b,f -3 9 

R2 0.94b,c,e 0.91a,d,f 0.85a,d,e 0.75b,c,f 0.64a,c,f 0.56b,d,e 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0056 

Table  4.5: Cross correlations between EMG and COM, and between EMG and 
torque in handstand. 

Variable EO(e) EC(f) 

EMG – COM: Delay (ms) 95 93 

EMG – COM: R2 0.59 0.65 

EMG – Torque: Delay (ms) 94 92 

EMG – Torque: R2 0.59 0.64 

 

Cross correlations between joint torques and COM show almost zero delay, in 

agreement with previous research (Jacono et al., 2004; Winter et al., 1998; 

Winter et al., 2001; Winter et al., 2003). Some cross correlations display 

negative delays, indicating joint torques are peaking before COM displacement, 

as was predicted in the example PD controller shown in Figures 4.4 and 4.5 

previously. Cross correlations between EMG of wrist flexor/extensor muscles 

and COM displacement show delays of approximately 94 ms, with similar delay 

between EMG and wrist flexor torques. Combined, these results would seem to 

suggest the delay between EMG and COM displacement is due to an 

electromechanical delay (EMD) from the EMG signal to the rise in joint torque. 

An EMD of 94 ms is somewhat higher than the 13.5 ms to 55 ms reported in 
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previous studies (Cavanagh and Komi, 1979; Muraoka et al., 2004; Tillin et al., 

2010; Zhou et al., 1995). A higher estimated EMD found here is most likely due 

to use of cross correlations with EMG signals, where slower components can 

dominate and hinder the detection of faster components (Nikolic et al., 2012). 

This issue will be addressed further in Chapter 6. 

Table  4.6: Mean values for estimated feedback time delay in each posture, 
from the Yeadon and Trewartha regression model (M1) and the adapted 
method (M2). 

 Normal Standing Single Leg Stance Handstand 

Variable EO(a) EC(b) EO(c) EC(d) EO(e) EC(f) 

M1 Delay (ms) 234c,e 244d,f 191a 174b 176a,f 200b,e 

M1 R2 0.96b,c,e 0.94a,d,f 0.89a,d,e 0.82b,c 0.79a,c 0.80b 

M1 ࢖ coefficient 657 683d 689d 776b,c,f 596 603d 

M1 ࢊ coefficient 236 252 246 191 237 237 

M1 ࢖ torque (%) -15.9 742.8 124.0 116.7 402.3 960.1 

M1 ࢊ torque (%) 115.9 -642.8 -24.0 -16.7 -302.3 -860.1 

M2 Delay (ms) 262c,e 278d,f 221a 235b,f 212a,f 244e 

M2 R2
  0.96b,c,e 0.94a,d,f 0.89a,d,e 0.82b,c 0.78a,c 0.79b 

M2 ࢖૚ coefficient 25 23 37 267 51 67 

M2 ࢖૛ coefficient 628e 650f 644e 491 529a,c 511b 

M2 ࢊ coefficient 247b 267a 256 193 243 240 

M2 ࢖૚ torque (%) 2.21 2.61 7.28 27.75 7.29 10.83 

M2 ࢖૛ torque (%) 70.25 69.13 66.33 52.50 63.53 60.30 

M2 ࢊ torque (%) 27.54 28.26 26.39 19.75 29.18 28.87 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0056 

Both methods of calculating feedback time delay via regression models display 

high R2 values, with individual mean values ranging from 0.72 to 0.99 for all trial 
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types. Standing trials typically displayed the highest R2 values, with the lowest 

values found in either handstand with eyes closed or single leg stance with 

eyes closed. Estimated delays were generally higher for the adapted method 

compared to the Yeadon and Trewartha method, with individual mean times 

ranging from 173 to 340 ms and 72 to 317 ms respectively. Highest estimated 

delay times were typically found in standing trials with eyes closed, with trials in 

handstand with eyes open and in single leg stance with eyes closed exhibiting 

the lowest delay estimates. 

Results for estimated delays and R2 values in handstand trials are in 

accordance with those obtained from Yeadon and Trewartha (2003), who found 

R2 values from 0.74 to 0.86 and delays ranging from 160 ms to 240 ms. 

Yeadon and Trewartha (2003) filtered joint torques and COM displacements 

and velocities above 2 Hz to remove high frequency vibrations due to muscle 

stiffness. When unfiltered data were used the authors obtained R2 values of 

0.50 to 0.73 with delays of 160 ms to 180 ms; explaining the 40 ms reduction in 

estimated delays to the inclusion of the muscle stiffness response which has a 

delay close to zero. The present study did not filter calculated joint torques and 

COM motion in the same way, however, the adapted method did provide 

estimated delays that were on average 38 ms higher than the Yeadon and 

Trewartha method, with larger differences found when estimates of passive 

stiffness were higher. The inclusion of the third term into the adapted method is 

to account for the effects of any passive stiffness in the control of COM motion. 

These results seem to support this assertion, and may provide an alternative to 

filtering calculated joint toques and COM motion to allow the full signal to be 

analysed in its entirety. 

All proportional and derivative coefficients were positive and within a similar 

range to those reported for handstand trials by Yeadon and Trewartha (2003). 

In the present study, the Yeadon and Trewartha method often produced 

percentage torque estimates from derivative coefficients that were negative. In 

contrast, the adapted method always produced reasonable estimates of joint 

torque percentages, with the sum of the absolute values equal to 100% in all 



113 
 

cases. Individual mean estimates of passive torques from this method range 

from 1% to 87%, showing large individual variation. Smaller values are typically 

found for standing trials (<10%), with larger values usually found in single leg 

stance with eyes closed. Estimates of passive stiffness contributions to whole 

joint torque during normal stance are several times smaller than the 64% and 

90% of critical torque reported by Casadio et al. (2005) and Loram and Lakie 

(2002a) respectively. Both past studies calculated passive stiffness as a 

percentage of the torque needed to maintain static stance, and not the actual 

torque that was produced by the individual. In addition, both assessed passive 

stiffness during small continuous oscillations at the ankle joint and not during 

static stance as was done here. It is unclear if these differences can account for 

the large discrepancies in estimated stiffness. Further study is required in this 

area to examine both the role and contribution of passive stiffness to static 

balance. 

Extremely high R2 values for standing trials are consistent with modelling 

human standing balance as a simple inverted pendulum about the ankle joint. 

Lower R2 values in handstand are still promising, but may suggest that other 

factors need to be considered. Yeadon and Trewartha (2003) suggested that 

one cause for the lower R2 values could be due to noise within the sensory 

system resulting in errors in the subsequent responses. This view may be 

supported by the high R2 values found in standing trials, where sensory noise 

may be expected to be less. 

Longer estimated delay times found in handstand compared to standing trials 

might suggest different sensory systems are at work (Nashner, 1976). It is 

important to remember that these delays are still estimates that will also include 

several other delays, such as: electromechanical delay, joint torque rise times, 

and the time for any sensory thresholds to be reached. Sensory thresholds 

have been shown to be dependent on both position and velocity, with an 

increased positional sense with faster movements (Clark et al., 1985; 

Fitzpatrick and McCloskey, 1994). General decreases in delay times with 

increases with mean sway velocity (Figure 4.8) would suggest that velocity 
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dependent sensory thresholds may need to be considered for further 

improvements in estimating feedback time delay. Further study in this area is 

required before a comprehensive mathematical relationship may be proposed. 

 

Figure  4.8: Relationship between estimated feedback time delay and mean 
sway velocity for standing (ST) and single leg stance (SL ST) trials. 

4.2.4. Movement Corrections 

There were statistically significant interactions between the effects of posture 

and vision for the number of small, medium, and large corrections per second 

based on joint torques from the wrist and ankle. There were statistically 

significant differences for the effects of posture on mean torque, torque impulse 

and burst duration from small, medium, and large movement corrections. 

Further comparisons and group means are given in table 4.5. 

Data typically show that balance in standing exhibits bursts of torque activity 

that are longer and with a higher torque impulse compared to balance in 

handstand. Balance in single leg stance typically have a higher mean joint 

torque with moderate burst durations, leading to the highest joint torque 

impulses from the three postures. A lower number of movement corrections per 

second are evident in standing trials, with the largest number of corrections 

occurring in handstand with eyes open and single leg stance with eyes open. 
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The number of corrections per second in handstand with eyes closed was 

significantly lower than handstand with eyes open for all movement correction 

magnitudes. Reduced mean torque and torque impulse during all movement 

corrections in handstand are indicative of the reduced muscular strength of the 

muscles found in the forearm compared to the lower leg. It would appear this 

leads to the requirement for a larger number of corrections per second, but with 

reduced burst duration. It is unclear how these factors may be affected by trial 

duration and muscle fatigue in the handstand position. 

Table  4.7: Movement corrections based on joint torques, with large, medium, 
and small (L, M, S) corrections based on torque above 1, 2, and 3 SD 
respectively. 

 Normal Standing Single Leg Stance Handstand 

Variable EO(a) EC(b) EO(c) EC(d) EO(e) EC(f) 

L - Corrections/s 0.09 c 0.11 0.17a 0.13 0.19f 0.08e 

M - Corrections/s 0.19c 0.22 0.41a 0.27 0.41f 0.18e 

S - Corrections/s 0.41c 0.44 0.85a 0.53 0.75f 0.32e 

L - Mean Torque 0.57c,e 0.59d,f 0.83a,d,e 0.92b,c,f 0.46a,c 0.54b,d 

M - Mean Torque 0.56c,e 0.58d,f 0.84a,d,e 0.91b,c,f 0.46a,c 0.54b,d 

S - Mean Torque 0.57c,e 0.59d,f 0.84a,d,e 0.91b,c,f 0.46a,c 0.54b,d 

L – Impulse 127 124 186e 210 50c 76 

M – Impulse 85e 84 97e 116f 25a,c 38d 

S – Impulse 45e 43 46e 55f 14a,c 21d 

L – Duration (s) 6.36e 6.50 4.64 4.43 3.40a 3.67 

M – Duration (s) 4.49c,e 4.15d,f 2.37a,e 2.48b 1.60a,c 1.77b 

S – Duration (s) 2.42c,e 2.18d,f 1.11a,e 1.20b 0.85a,c 0.92b 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0056; mean torque and impulse are normalised to ݄݉ଶ (݉ ൌmass and 
݄ ൌheight of COM) 
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Group mean values for movement correction analysis biased on forearm EMG 

are presented in table 4.8. No significant differences were found for movement 

correction analyses based on EMG activity between handstand with eyes open 

and handstand with eyes closed, whereas there were significant differences 

between these conditions based on torque data. This may be due to poor signal 

to noise ratios within the EMG data during balance trials, or it may be due to 

increased individual variations. More study is required to clarify this matter. 

Table  4.8: Movement corrections based on wrist flexor/extensor EMG, with 
large, medium, and small (L, M, S) corrections based on EMG above 1, 2, and 
3 SD respectively. 

Variable EO(e) EC(f) 

L - Corrections/s 0.75 0.88 

M - Corrections/s 1.75 1.67 

S - Corrections/s 2.20 2.41 

L - RMS 0.56 0.61 

M - RMS 0.53 0.59 

S – RMS 0.51 0.55 

L – Duration (s) 1.31 1.24 

M – Duration (s) 0.55 0.52 

S – Duration (s) 0.28 0.28 

 

4.3. Summary 

Analysis shows that COP signals contain a degree of deterministic structure, 

reinforcing the view that postural sway is not purely a random process. 

Variability is inherent within all biological systems and can be characterised as 

the normal changes that occur in motor performance across multiple repetitions 

of a task (Stergiou et al., 2004). Some COP signals may be considered to 

contain subtle structure in the form of time correlation information which may be 

extracted through advanced techniques (Riley et al., 1999). Nevertheless the 

relevance of such analyses within human balance remains questionable. Riley 
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et al. (1999) describe human balance as an under-constrained task, and 

suggest the use of advanced nonlinear analysis tools to unravel the mysteries 

within this complex system. It is unclear if these techniques are suitable for 

investigating balance tasks that, instead of being under-constrained, are in fact 

extremely challenging, such as handstand and single leg stance with eyes 

closed. A summary of each of the groups of balance measures used within the 

current research is presented in tables 4.9 to 4.12. 

Data from this study suggests that the best balance metrics for distinguishing 

between each of the six conditions was the traditional balance measure of sway 

velocity. Sway velocity was able to distinguish between each posture, and 

between eyes open and eyes closed conditions in each posture. However, this 

measure cannoot provide any further information on the underlying process of 

balance. 

Nonlinear measures of balance appear to offer insight into the underlying 

deterministic processes that control balance, offering measures of system 

determinism, complexity, and predictability. Unfortunately, using multiple 

measures can sometimes produce conflicting results, leaving much to the 

interpretation of the reader. Assessments of feedback time delay and 

movement corrections appear to provide both an insight into the control of 

posture and help distinguish one condition from another. In addition, both 

feedback time delay and movement corrections and magnitudes may be used 

simultaneously to delve further into the control of posture. Yeadon and 

Trewartha (2003) examined two-dimensional wrist, shoulder, and hip joint 

torques using the estimated delay method, and it should be an unproblematic 

process to transfer this to other joints or to three-dimensional analysis. 

Roncesvalles et al. (2001) examined movement units (corrections) across 

multiple joints during perturbed stance, and it would be a simple procedure to 

convert the method used here to examine unperturbed stance across multiple 

joints. 



118 
 

A disadvantage of both the assessment of feedback time delays and movement 

corrections is the increased complexity of data collection and data processing 

required in comparison to simple force plate measures. Nevertheless, several 

methods exist to calculate COM and ankle joint torque estimates from a single 

force plate recording (Benda et al., 1994; Kingma et al., 1995; Shimba, 1984). 

Such methods could be employed, with caution, to calculate both feedback time 

delay and movement units during single or double leg stance from a single 

force plate assessment. 

The aim of this chapter was to examine how different balance metrics are 

expressed in different postures with and without vision, and to provide some 

insight into which balance metric is best for assessing balance within or 

between the different postures. The answer to this is not straightforward and 

will depend to some extent on the scope of the research. If the aim of a study is 

to assess balance performance, with no interest in the underlying postural 

control process, such as in an intervention study, then the traditional measure 

of sway velocity appears to be sufficient. If a researcher aims to delve further 

into the processes of postural control, more advanced analyses will be required. 

Although there is a growing number of studies within this area that are 

employing sophisticated nonlinear analysis methods, researchers must be clear 

in how these techniques inform on the underlying postural control process. 

Assessment of feedback time delay and movement corrections may offer more 

insight into this process. Further study may wish to combine these two tools 

and aim to provide insight into the nature of individual corrections, both with 

respect to incorporating estimates of feedback time delay and in attempting to 

classify these corrections into general or specific strategies used to maintain or 

regain balance. 
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CHAPTER 5 

LEARNING TO BALANCE 

The emergence of postural control has often been examined from the 

perspective of an infant learning to balance in standing (Roncesvalles et al., 

2001). It is generally agreed that the development of postural control during the 

first decade of life is associated with the development of other motor 

competencies (Woollacott and Sveistrup, 1992; Roncesvalles et al., 2001; 

Sundermier et al., 2001). Young children learning to balance will be 

experiencing multiple developmental changes, such as: enhanced muscular 

strength, sensory calibration and exploration, and myelination of neurological 

pathways. It is unclear how these developmental changes may influence the 

emergence of postural control. Examining how individuals with a mature 

neurological system learn to balance in a novel task might provide some insight. 

This would require assessing neurologically sound adults in a balance task that 

is unfamiliar to them, and therefore could not be assessed in normal upright 

stance. One possible approach would be to assess how individuals learn to 

balance in inverted stance. The purpose of this chapter is to examine which 

balance metrics best characterise improvements in balance performance when 

a novice learns to balance in handstand. 

5.1. Assessment of Balance 

Thirteen subjects completed all parts of study one, where they were required to 

practice handstands three times a week for 10-15 minutes each session over a 

period of eight months. Subjects were tested once a month to examine 

performance in handstand along with various kinematic and kinetic variables. 

The inclusion criteria and data collection procedures were as described 

previously in Chapter 3. 

If balance is viewed as a continuous skill, the amount of time an individual can 

maintain balance may be the best method for assessing balance in a novel task, 
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however, this will become less sensitive as balance improves. The previous 

chapter introduced a variety of balance metrics that have been employed by 

researchers to examine the postural control system in a variety of areas. The 

balance metrics described can be effective at differentiating between clinical 

and healthy populations, but it is unknown how sensitive these measures are to 

the subtle changes that occur while learning to balance. 

The main criterion for assessing handstand performance was the duration that 

participants could maintain independent balance in the handstand position. All 

participants were unable to maintain independent balance in handstand for 

more than five seconds when attending the first assessment session. Short 

trials can result in spurious results from the various balance metrics previously 

described (Table 5.1), therefore only those trials that lasted longer than three 

seconds were used in the subsequent analysis. Movement corrections based 

on joint torques resulted in zero large, medium, and small corrections for more 

than half of the trials recorded above the three second threshold. Consequently, 

mean and maximum joint torques were calculated in its place for all subjects. 

Table  5.1: All variables used to assess balance 

Group Variables Number 

Traditional 
duration, standard deviation (SD), range, mean sway 
velocity (SV) 

4 

Nonlinear sample entropy (SampEn), lyapunov exponent (LyE) 2 

Recurrence 
Quantification 
Analysis 

recurrence rate (RR), determinism (DET), entropy 
(ENT), divergence (DIV), trend (TND) 

5 

Estimated 
Delays 

delay, R2, proportional and derivative coefficients, 
torque percentages 

12 

Joint Torques Mean and maximum joint torques [wrist, shoulder, hip] 6 

Movement 
Corrections 
(EMG) 

corrections per second, root mean square (RMS), 
burst duration [small, medium, large (S,M,L)] 

9 

Note: Estimated delays were calculated by two different methods and will be prefixed with M1 
or M2 (M1 = Yeadon and Trewartha method) 
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5.1.1. Statistical Analysis 

The relationship between each balance metric and the duration of the 

handstand trial was examined via linear and quadratic regressions, with a 

significance level of 0.05. All regressions were performed with each balance 

metric scaled to a range of ± 1, based on the maximum value from each metric, 

to assist in comparison of regression coefficients. 

5.2. Findings and Discussion 

Improvements in handstand performance were variable across the group, with 

some subjects making very little improvement over the eight month period 

(Table 5.2).  

Table  5.2: Maximum duration in handstand for each assessment session. 

 Maximum Duration of Handstand Trial (seconds) 

Subject 
Test 

0 
Test 

1 
Test 

2 
Test 

3 
Test 

4 
Test 

5 
Test 

6 
Test 

7 
Test 

8 

1 1.2 1.7 1.5 3.4 5.8 8.9 5.1 7.6 9.7 

2 2.3 8.6 5.6 12.0 11.8 13.1 5.7 7.5 10.3 

3 1.0 2.1 2.2 3.0 3.8 3.6 4.8 2.1 3.2 

4 2.6 N/A 11.5 N/A 10.0 6.0 N/A 12.4 11.3 

5 1.4 1.8 8.2 9.1 3.3 5.4 11.2 11.2 7.7 

6 1.1 9.3 30.7 13.4 10.9 21.1 23.7 13.8 15.2 

7 2.1 2.2 3.3 3.4 3.4 4.7 4.6 5.0 4.2 

8  1.6 3.1 3.5 3.9 5.9 9.3 N/A 13.2 None 

9 2.7 8.1 12.1 16.7 23.4 25.6 27.5 28.5 36.0 

10 4.4 4.4 5.9 11.9 20.2 34.7 28.7 44.5 28.2 

11  None 1.0 1.1 1.8 1.7 N/A 2.3 N/A 3.2 

12  None 2.6 7.3 10.9 9.9 13.1 11.5 14.5 9.7 

13  None 1.2 1.5 2.7 2.7 2.5 3.2 1.9 2.2 
Note: N/A = subject not available for the testing session on that occasion, but still continued to 
practice; None = subject started testing late, or left early, due to limited time. 

Novice handstanders showed a large variation in balance performance based 

on all balance metrics, with practice and a longer duration in handstand this 

variability reduces. Large amounts of variation for handstand trials of short 
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duration make it extremely difficult to compare residual plots to determine if a 

linear or quadratic regression is more appropriate. In addition, these large 

variations result in poor R2 values, indicating all variables will be poor predictors 

of handstand performance. Nevertheless, regressions were used to discover 

general trends within the data, not predictions, and they may be interpreted with 

caution for this purpose. Subjects 11 and 13 were only able to perform one 

handstand trial that lasted longer than the three second threshold, resulting in 

11 subjects that were used for further analysis. Only subjects six, nine, and ten 

managed to maintain balance in handstand for more than 30 seconds. All 

subsequent scatter plots displaying the relationship between handstand 

duration and each balance metric will highlight subjects six, nine, and ten to 

help determine if these subjects have skewed the relationships presented. 

5.2.1. Traditional Measures of Balance 

Linear and quadratic regressions between the duration of handstand trials and 

each traditional balance measure show significant p values for sway range 

(Tables 5.3 to 5.5). Comparing p values and R2 values from linear and 

quadratic regressions indicates that a quadratic regression model may be an 

appropriate fit for sway range. 

Table  5.3: Linear and quadratic regressions for the relationships between 
handstand duration and each traditional measure of balance (scaled to ± 1). 

 Linear Regression Quadratic Regression 

Variable Adjusted R2 p value Adjusted R2 p value 

SD 0.0000 0.7582 0.0314 0.0034 

Range 0.0429 0.0002 0.0969 0.0000 

SV 0.0018 0.2165 0.0068 0.1363 
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Table  5.4: Linear regression coefficients for the relationships between 
handstand duration and each traditional measure of balance (scaled to ± 1). 

Variable C1 C2 Adjusted R2 p value 

SD 0.5517 0.0004 0.0000 0.7582 

Range 0.5510 0.0044 0.0429 0.0002 

SV 0.5624 0.0016 0.0018 0.2165 

Note: C1 = intercept coefficient; C2 = slope coefficient 

Table  5.5: Quadratic regression coefficients for the relationships between 
handstand duration and each traditional measure of balance (scaled to ± 1). 

Variable C1 C2 C3 Adjusted R2 p value 

SD 0.4907 0.0125 -0.0004 0.0314 0.0034 

Range 0.4825 0.0180 -0.0004 0.0969 0.0000 

SV 0.5334 0.0074 -0.0002 0.0068 0.1363 

Note: C1 = intercept coefficient; C2 = slope coefficient; C3 = squared coefficient 

Quadratic regression coefficients show negative squared terms and positive 

linear terms for sway range, suggesting an initial increase for trials of short 

duration before reducing again for trials of longer durations (Figure 5.1). 

All scatter plots show large variation in the values from each traditional balance 

measure for handstand trials of short duration. It seems likely that all 

regressions are effected by subjects six, nine, and ten, however, these subjects 

have a similar range of variance to other subjects for trials of short duration. 
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Figure  5.1: Scatter plot of handstand duration to sway range, with a quadratic 
regression fit (bold line) ± 1 SD for each five second time bin (dotted lines); the 
three best subjects are indicated by the red, green, and cyan coloured markers. 

When first learning to balance in handstand it appears as though subjects 

display large variations in handstand performance based on either trial duration 

or traditional measures of balance. With increased competence in handstand 

balance, as described by longer trial durations, sway range decrease after an 

initial increase. However, changes in sway range are subtle and generally 

remain within the variance from multiple trials. These large variations make it 

difficult to use any of the traditional measures of balance to characterise 

improvements in balance performance in handstand. 

5.2.2. Nonlinear Measures of Balance 

Linear and quadratic regressions between the duration of handstand trials and 

each nonlinear measure of balance show significant p values for: sample 

entropy (SampEn), recurrence rate (RR), determinism (DET), entropy (ENT), 

divergence (DIV), and trend (TND) (Tables 5.6 to 5.8). Comparing p values and 

R2 values from linear and quadratic regressions indicates that a linear 

regression model is an appropriate fit for SampEn, but a quadratic regression 

model may be a more appropriate fit for RR, DET, ENT, DIV and TND. 
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Table  5.6: Linear and Quadratic regressions for the relationships between 
handstand duration and each nonlinear measure of balance (scaled to ± 1). 

 Linear Regression Quadratic Regression 

Variable Adjusted R2 p value Adjusted R2 p value 

SampEn 0.0533 0.0000 0.0505 0.0002 

LyE 0.0000 0.6409 0.0000 0.8654 

RR 0.2648 0.0000 0.3467 0.0000 

DET 0.0620 0.0000 0.0939 0.0000 

ENT 0.1021 0.0000 0.2195 0.0000 

DIV 0.1493 0.0000 0.2251 0.0000 

TND 0.2986 0.0000 0.5259 0.0000 

 

 

Table  5.7: Linear regressions coefficients for the relationships between 
handstand duration and each nonlinear measure of balance (scaled to ± 1). 

Variable C1 C2 Adjusted R2 p value 

SampEn 0.2440 0.0050 0.0533 0.0000 

LyE 0.0420 0.0005 0.0000 0.6409 

RR 0.2895 -0.0109 0.2648 0.0000 

DET 0.9978 -0.0001 0.0620 0.0000 

ENT 0.3595 0.0114 0.1021 0.0000 

DIV 0.3376 -0.0133 0.1493 0.0000 

TND -0.3307 0.0176 0.2986 0.0000 

Note: C1 = intercept coefficient; C2 = slope coefficient 
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Table  5.8: Quadratic regressions coefficients for the relationships between 
handstand duration and each nonlinear measure of balance (scaled to ± 1). 

Variable C1 C2 C3 Adjusted R2 p value 

SampEn 0.2380 0.0061 0.0000 0.0505 0.0002 

LyE 0.0383 0.0012 0.0000 0.0000 0.8654 

RR 0.3749 -0.0277 0.0005 0.3467 0.0000 

DET 0.9969 0.0001 0.0000 0.0939 0.0000 

ENT 0.1910 0.0448 -0.0010 0.2195 0.0000 

DIV 0.4812 -0.0402 0.0008 0.2251 0.0000 

TND -0.5458 0.0599 -0.0013 0.5259 0.0000 

Note: C1 = intercept coefficient; C2 = slope coefficient; C3 = squared coefficient 

Similar to the findings from the traditional measures of balance, there is a large 

amount of variation in the values from each nonlinear measure of balance for 

handstand trials of short duration. In addition, subjects six, nine, and ten have a 

similar range of variance to other subjects for trials of short duration. 

Linear regression coefficients show SampEn generally increases as time in 

handstand increases (Figure 5.2). Quadratic regression coefficients show 

negative squared terms and positive linear terms for ENT and TND, but positive 

squared terms and negative linear terms for RR and DIV. Further inspection of 

scatter plots (Figures 5.3 and 5.5) show that the cause for a possible quadratic 

relationship is likely due to a ceiling effect with TND and a floor effect with DIV. 

A quadratic model is unlikely to be an appropriate fit for TND and DIV, so data 

were re-analysed using an exponential fit, giving an adjusted R2 of 0.77 for 

TND (Figure 5.4) and an adjusted R2 of 0.26 for DIV (Figure 5.6). 
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Figure  5.2: Scatter plot of handstand duration to sample entropy, with a linear 
regression fit (bold line) ± 1 SD for each five second time bin (dotted lines); the 
three best subjects are indicated by the red, green, and cyan coloured markers. 

 

 

Figure  5.3: Scatter plot of handstand duration to trend, with a quadratic 
regression fit (bold line) ± 1 SD for each five second time bin (dotted lines); the 
three best subjects are indicated by the red, green, and cyan coloured markers. 
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Figure  5.4: Scatter plot of handstand duration to trend, with an exponential 
curve fit (bold line) ± 1 SD for each five second time bin (dotted lines); the three 
best subjects are indicated by the red, green, and cyan coloured markers. 

 

 

Figure  5.5: Scatter plot of handstand duration to divergence, with a quadratic 
regression fit (bold line) ± 1 SD for each five second time bin (dotted lines); the 
three best subjects are indicated by the red, green, and cyan coloured markers. 
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Figure  5.6: Scatter plot of handstand duration to divergence, with an 
exponential curve fit (bold line) ± 1 SD for each five second time bin (dotted 
lines); the three best subjects are indicated by the red, green, and cyan 
coloured markers. 

Generally lower values for TND in handstand trials of short duration suggest 

large amounts of nonstationarity in postural control, which reduces to levels 

comparable to experienced handstanders with trial durations of more than 15 

seconds (Figures 5.3 and 5.4). Likewise, larger values for DIV in handstand 

trials of short duration suggest large amounts of local divergence in COP 

trajectories (Figures 5.5 and 5.6). DIV appears to remain above experienced 

handstanders values until trials of more than 20 to 30 seconds duration. When 

learning to balance in handstand nonlinear measures of balance display large 

amounts of variation, similar to those seen in traditional measures of balance. 

With increased competence in handstand balance, as described by longer trial 

durations, this variance appears to reduce quicker in some nonlinear measures 

of balance than in the traditional measures. It may be that more pronounced 

changes in nonlinear measures represent changes in the subjects’ underlying 

process of postural control, whereas less pronounced changes in traditional 

measures relate more to their general ability or performance in the balance task. 
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5.2.3. Estimated Feedback time Delay 

Linear and quadratic regressions between the duration of handstand trials and 

estimates of feedback time delay show significant p values for: estimates of 

feedback time delay, R2 value, and the proportional coefficient from the Yeadon 

and Trewartha method; and the passive stiffness coefficient, the derivative 

coefficient, and the percentage of joint torque estimated by each of the three 

coefficients from the adapted model (Tables 5.9 to 5.11). 

Table  5.9: Linear and Quadratic regressions for the relationships between 
handstand duration and estimates of feedback time delay (scaled to ± 1), from 
the Yeadon and Trewartha method (M1) and the adapted method (M2). 

 Linear Regression Quadratic Regression 

Variable Adjusted R2 p value Adjusted R2 p value 

M1 Delay (ms) 0.0210 0.0087 0.0407 0.0012 

M1 R2 0.0067 0.0900 0.0162 0.0387 

M1 ࢖ coefficient 0.0530 0.0001 0.0862 0.0000 

M1 ࢊ coefficient 0.0000 0.7453 0.0000 0.9479 

M1 ࢖ torque (%) 0.0000 0.3186 0.0139 0.0531 

M1 ࢊ torque (%) 0.0000 0.3186 0.0139 0.0531 

M2 Delay (ms) 0.0044 0.1377 0.0059 0.1647 

M2 R2
  0.0000 0.9828 0.0000 0.8944 

M2 ࢖૚ coefficient 0.0936 0.0000 0.1346 0.0000 

M2 ࢖૛ coefficient 0.0000 0.9115 0.0000 0.7208 

M2 ࢊ coefficient 0.0126 0.0344 0.0169 0.0354 

M2 ࢖૚ torque (%) 0.0648 0.0000 0.0966 0.0000 

M2 ࢖૛ torque (%) 0.0626 0.0000 0.0935 0.0000 

M2 ࢊ torque (%) 0.0177 0.0152 0.0234 0.0145 
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Table  5.10: Linear regression coefficients for the relationships between 
handstand duration and estimates of feedback time delay (scaled to ± 1), from 
the Yeadon and Trewartha method (M1) and the adapted method (M2). 

Variable C1 C2 Adjusted R2 p value 

M1 Delay (ms) 0.3892 0.0035 0.0210 0.0087 

M1 R2 0.7917 0.0016 0.0067 0.0900 

M1 ࢖ coefficient 0.4193 -0.0063 0.0530 0.0001 

M1 ࢊ coefficient 0.3861 -0.0004 0.0000 0.7453 

M1 ࢖ torque (%) 0.0330 -0.0013 0.0000 0.3186 

M1 ࢊ torque (%) 0.0021 0.0012 0.0000 0.3186 

M2 Delay (ms) 0.2836 -0.0019 0.0044 0.1377 

M2 R2
  0.7995 0.0000 0.0000 0.9828 

M2 ࢖૚ coefficient 0.1814 -0.0080 0.0936 0.0000 

M2 ࢖૛ coefficient 0.2856 -0.0002 0.0000 0.9115 

M2 ࢊ coefficient 0.4081 0.0035 0.0126 0.0344 

M2 ࢖૚ torque (%) 0.1527 -0.0069 0.0648 0.0000 

M2 ࢖૛ torque (%) 0.2134 0.0087 0.0626 0.0000 

M2 ࢊ torque (%) 0.1818 0.0028 0.0177 0.0152 
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Table  5.11: Quadratic regression coefficients for the relationships between 
handstand duration and estimates of feedback time delay (scaled to ± 1), from 
the Yeadon and Trewartha method (M1) and the adapted method (M2). 

Variable C1 C2 C3 Adjusted R2 p value 

M1 Delay (ms) 0.3406 0.0132 -0.0003 0.0407 0.0012 

M1 R2 0.7665 0.0066 -0.0002 0.0162 0.0387 

M1 ࢖ coefficient 0.4903 -0.0205 0.0004 0.0862 0.0000 

M1 ࢊ coefficient 0.3853 -0.0003 0.0000 0.0000 0.9479 

M1 ࢖ torque (%) 0.0729 -0.0092 0.0002 0.0139 0.0531 

M1 ࢊ torque (%) -0.0364 0.0089 -0.0002 0.0139 0.0531 

M2 Delay (ms) 0.3053 -0.0062 0.0001 0.0059 0.1647 

M2 R2
  0.7939 0.0011 0.0000 0.0000 0.8944 

M2 ࢖૚ coefficient 0.2587 -0.0232 0.0005 0.1346 0.0000 

M2 ࢖૛ coefficient 0.3060 -0.0042 0.0001 0.0000 0.7208 

M2 ࢊ coefficient 0.3728 0.0105 -0.0002 0.0169 0.0354 

M2 ࢖૚ torque (%) 0.2227 -0.0208 0.0004 0.0966 0.0000 

M2 ࢖૛ torque (%) 0.1246 0.0263 -0.0005 0.0935 0.0000 

M2 ࢊ torque (%) 0.1559 0.0079 -0.0002 0.0234 0.0145 

 

A comparison of p values and R2 values from linear and quadratic regressions 

indicate that a quadratic regression model may be the most appropriate fit for 

all significant variables. 

Quadratic regression coefficients show negative squared terms and positive 

linear terms for estimates of feedback time delay and the R2 values from the 

Yeadon and Trewartha method. Similarly, quadratic regression coefficients 

show negative squared terms and positive linear terms for estimates of joint 

torques based on proportional and derivative coefficients of delayed COM 

motion from the adapted method (Figures 5.9 and 5.11). Quadratic regression 

coefficients show positive squared terms and negative linear terms for 
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estimates of joint torques based on a passive stiffness component from the 

adapted method, estimated from COM motion with zero delay (Figure 5.7). 

Further inspection of scatter plots of the percentage of torque from a passive 

stiffness component (Figure 5.7) and the percentage of torque from delayed 

COM displacement (Figure 5.9) show data begins to plateau for handstands of 

more than 15 seconds duration. A quadratic model is unlikely to be an 

appropriate fit, so data were re-analysed using an exponential fit, giving an 

adjusted R2 of 0.12 for the percentage of torque from a passive stiffness 

component (Figure 5.8) and an adjusted R2 of 0.13 for the percentage of torque 

from delayed COM displacement (Figure 5.10). 

 

 

 

Figure  5.7: Scatter plot of handstand duration to the torque estimated from 
passive stiffness ሺ࢖૚ሻ from the adapted method, with a quadratic regression fit 
(bold line) ± 1 SD for each five second time bin (dotted lines); the three best 
subjects are indicated by the red, green, and cyan coloured markers. 
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Figure  5.8: Scatter plot of handstand duration to the torque estimated from 
passive stiffness ሺ࢖૚ሻ from the adapted method, with an exponential curve fit 
(bold line) ± 1 SD for each five second time bin (dotted lines); the three best 
subjects are indicated by the red, green, and cyan coloured markers. 

 

Figure  5.9: Scatter plot of handstand duration to the torque estimated from 
delayed COM displacement ሺ࢖૛ሻ from the adapted method, with a quadratic 
regression fit (bold line) ± 1 SD for each five second time bin (dotted lines); the 
three best subjects are indicated by the red, green, and cyan coloured markers. 
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Figure  5.10: Scatter plot of handstand duration to the torque estimated from 
delayed COM displacement ሺ࢖૛ሻ from the adapted method, with an exponential 
curve fit (bold line) ± 1 SD for each five second time bin (dotted lines); the three 
best subjects are indicated by the red, green, and cyan coloured markers. 

 

Figure  5.11: Scatter plot of handstand duration to the torque estimated from 
delayed COM velocity ሺࢊሻ  from the adapted method, with a quadratic 
regression fit (bold line) ± 1 SD for each five second time bin (dotted lines); the 
three best subjects are indicated by the red, green, and cyan coloured markers. 
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Once again, data shows there is a large amount of variation in the estimates of 

feedback time delay for handstand trials of short duration. In addition, subjects 

six, nine, and ten have a similar range of variance to other subjects for trials of 

short duration. Data suggests that the regression models of balance may be a 

poor estimate of the postural control strategies employed when novices first 

learn to balance. With increased competence in handstand balance, as 

described by longer trial durations, regression models appear to become more 

applicable, suggesting subjects begin to adapt a strategy that is close to the 

one suggested by the regression model. With increased competence in 

handstand the amount of torque estimated from a passive stiffness mechanism 

generally decreases (Figures  5.7 and 5.8), whereas the amount of torque from 

delayed COM displacements and velocities generally increase (Figures 5.9 to 

5.11). Estimates of torque contributions begin to plateau and resemble 

experienced handstanders for handstand trials above 15 to 20 seconds 

duration. Changes in torque contribution estimates may suggest that subjects 

are beginning to rely more on sensory feedback for postural control. 

5.2.4. Movement Corrections 

Linear and quadratic regressions between the duration of handstand trials and 

mean and maximum joint torques show significant p values for: mean wrist 

torque, mean hip torque, and maximum wrist torque (Tables 5.12 to 5.14). A 

comparison of p values and R2 values from linear and quadratic regressions 

indicate that a linear regression model may be an appropriate fit for maximum 

wrist torque, but a quadratic regression model may be the most appropriate fit 

for mean wrist torque and mean hip torque. Linear regression coefficients show 

maximum wrist torques generally increase as time in handstand increases 

(Figure 5.13). Quadratic regression coefficients show positive squared terms 

and negative linear terms for mean wrist torque (Figure 5.12), but negative 

squared terms and positive linear terms for mean hip torque. 
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Table  5.12: Linear and Quadratic regressions for the relationships between 
handstand duration and mean/maximum joint torques (scaled to ± 1). 

 Linear Regression Quadratic Regression 

Variable R2 p value Adjusted R2 p value 

Mean Wrist 0.0088 0.0632 0.0176 0.0314 

Mean Shoulder 0.0034 0.1640 0.0143 0.0502 

Mean Hip 0.0003 0.2978 0.0243 0.0121 

Max Wrist 0.0436 0.0003 0.0436 0.0007 

Max Shoulder 0.0000 0.8975 0.0009 0.3238 

Max Hip 0.0000 0.9216 0.0000 0.7076 

 

 

 

Table  5.13: Linear regression coefficients for the relationships between 
handstand duration and mean/maximum joint torques (scaled to ± 1). 

Variable C1 C2 Adjusted R2 p value 

Mean Wrist 0.4632 0.0028 0.0088 0.0632 

Mean Shoulder 0.2315 0.0043 0.0034 0.1640 

Mean Hip -0.3784 0.0026 0.0003 0.2978 

Max Wrist 0.6176 0.0049 0.0436 0.0003 

Max Shoulder 0.0767 0.0002 0.0000 0.8975 

Max Hip 0.0990 -0.0001 0.0000 0.9216 
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Table  5.14: Quadratic regression coefficients for the relationships between 
handstand duration and mean/maximum joint torques (scaled to ± 1). 

Variable C1 C2 C3 Adjusted R2 p value 

Mean Wrist 0.5029 -0.0051 0.0002 0.0176 0.0314 

Mean Shoulder 0.1446 0.0217 -0.0005 0.0143 0.0502 

Mean Hip -0.4743 0.0217 -0.0006 0.0243 0.0121 

Max Wrist 0.5987 0.0087 -0.0001 0.0436 0.0007 

Max Shoulder 0.0504 0.0054 -0.0002 0.0009 0.3238 

Max Hip 0.0847 0.0027 -0.0001 0.0000 0.7076 

 

 

 

 

Figure  5.12: Scatter plot of handstand duration to mean wrist torque, with a 
quadratic regression fit (bold line) ± 1 SD for each five second time bin (dotted 
lines); the three best subjects are indicated by the red, green, and cyan 
coloured markers. 
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Figure  5.13: Scatter plot of handstand duration to maximum wrist torque, with a 
linear regression fit (bold line) ± 1 SD for each five second time bin (dotted 
lines); the three best subjects are indicated by the red, green, and cyan 
coloured markers. 

Regression coefficients suggest subjects generally increase the wrist torque, 

and therefore the position of the COP relative to the wrist joint, as time in 

handstand increases. This may indicate that with increased handstand 

performance subjects gradually become more reliant on a wrist mechanism for 

postural control, with reducing hip torques suggesting less reliance on a hip 

mechanism. However, scatter plots show that subject ten has generally larger 

mean and maximum wrist torques than other subjects. Additional regressions 

with subject ten removed show both mean and maximum wrist torques are no 

longer significant at the 0.05 level (Figures 5.14 and 5.15). 
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Figure  5.14: Scatter plot of handstand duration to mean wrist torque, with a 
quadratic regression fit (bold line) ± 1 SD for each five second time bin (dotted 
lines); the subjects six and nine are indicated by the red and green coloured 
markers, subject ten has been removed. 

 

Figure  5.15: Scatter plot of handstand duration to maximum wrist torque, with a 
linear regression fit (bold line) ± 1 SD for each five second time bin (dotted 
lines); the subjects six and nine are indicated by the red and green coloured 
markers, subject ten has been removed. 
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Linear and quadratic regressions between the duration of handstand trials and 

movement correction values based on wrist EMG show significant p values for: 

the number of corrections per second and the duration of EMG bursts for large, 

medium, and small movement corrections (Tables 5.15 to 5.17). A comparison 

of p values and R2 values from linear and quadratic regressions indicate that a 

quadratic regression model may be the most appropriate fit for all significant 

variables. Quadratic regression coefficients show positive squared terms and 

negative linear terms for the number of corrections per second (Figures 5.16 

and 5.17), but negative squared terms and positive linear terms for the duration 

of EMG bursts (Figure 5.18). Regression coefficients suggest subjects 

generally decrease the number of corrections per second as time in handstand 

increases, while also increasing the duration of each EMG burst of activity. The 

number of corrections per second generally approaches that of experienced 

handstanders with handstand durations above 15 to 20 seconds. 

Table  5.15: Linear and Quadratic regressions for the relationships between 
handstand duration and wrist EMG based movement correction values (scaled 
to ± 1), for large, medium, and small (L, M, S) corrections based on EMG above 
1, 2, and 3 SD respectively. 

 Linear Regression Quadratic Regression 

Variable Adjusted R2 p value Adjusted R2 p value 

L - Corrections/s 0.2531 0.0000 0.3636 0.0000 

M - Corrections/s 0.1974 0.0000 0.3111 0.0000 

S - Corrections/s 0.1416 0.0000 0.2503 0.0000 

L - RMS 0.0000 0.8827 0.0000 0.9567 

M - RMS 0.0001 0.3140 0.0000 0.4330 

S – RMS 0.0000 0.6095 0.0000 0.5465 

L – Duration (s) 0.4848 0.0000 0.5270 0.0000 

M – Duration (s) 0.3211 0.0000 0.4592 0.0000 

S – Duration (s) 0.1906 0.0000 0.3071 0.0000 
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Table  5.16: Linear regression coefficients for the relationships between 
handstand duration and wrist EMG based movement correction values (scaled 
to ± 1), for large, medium, and small (L, M, S) corrections based on EMG above 
1, 2, and 3 SD respectively. 

Variable C1 C2 Adjusted R2 p value 

L - Corrections/s 0.4905 -0.0187 0.2531 0.0000 

M - Corrections/s 0.5078 -0.0117 0.1974 0.0000 

S - Corrections/s 0.6280 -0.0100 0.1416 0.0000 

L - RMS 0.4422 0.0002 0.0000 0.8827 

M - RMS 0.4665 -0.0014 0.0001 0.3140 

S – RMS 0.4102 0.0009 0.0000 0.6095 

L – Duration (s) 0.0754 0.0182 0.4848 0.0000 

M – Duration (s) 0.2259 0.0128 0.3211 0.0000 

S – Duration (s) 0.4411 0.0098 0.1906 0.0000 

 

 

Table  5.17: Quadratic regression coefficients for the relationships between 
handstand duration and wrist EMG based movement correction values (scaled 
to ± 1), for large, medium, and small (L, M, S) corrections based on EMG above 
1, 2, and 3 SD respectively. 

Variable C1 C2 C3 Adjusted R2 p value 

L - Corrections/s 0.6752 -0.0559 0.0012 0.3636 0.0000 

M - Corrections/s 0.6398 -0.0375 0.0008 0.3111 0.0000 

S - Corrections/s 0.7474 -0.0333 0.0007 0.2503 0.0000 

L - RMS 0.4358 0.0015 0.0000 0.0000 0.9567 

M - RMS 0.4839 -0.0048 0.0001 0.0000 0.4330 

S – RMS 0.3862 0.0056 -0.0001 0.0000 0.5465 

L – Duration (s) -0.0057 0.0345 -0.0005 0.5270 0.0000 

M – Duration (s) 0.1011 0.0372 -0.0007 0.4592 0.0000 

S – Duration (s) 0.3369 0.0301 -0.0006 0.3071 0.0000 
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Figure  5.16: Scatter plot of handstand duration to the number of large 
corrections per second based on wrist EMG activity, with a quadratic regression 
fit (bold line) ± 1 SD for each five second time bin (dotted lines); the three best 
subjects are indicated by the red, green, and cyan coloured markers. 

 

Figure  5.17: Scatter plot of handstand duration to the number of large 
corrections per second based on wrist EMG activity, with an exponential curve 
fit (bold line) ± 1 SD for each five second time bin (dotted lines); the three best 
subjects are indicated by the red, green, and cyan coloured markers. 
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Figure  5.18: Scatter plot of handstand duration to the duration of large 
corrections based on wrist EMG activity, with a quadratic regression fit (bold 
line) ± 1 SD for each five second time bin (dotted lines); the three best subjects 
are indicated by the red, green, and cyan coloured markers. 

Further inspection of the scatter plot of the number of large corrections per 

second (Figure 5.16) show data begins to plateau for handstands of more than 

20 seconds duration. A quadratic model is unlikely to be an appropriate fit for 

the number of corrections per second, so data were re-analysed using an 

exponential fit, giving an adjusted R2 of 0.37 (Figure 5.17). 

Scatter plots show large variation in the number of corrections per second for 

trials of short duration, but relatively less variation in the duration of EMG burst. 

This is likley due to the limited time within a handstand trial of short duration 

and the expected inverse relationship between the number of corrections per 

second and the mean duration of those corrections. With increasing 

competence in handstand, and increasing handstand duration, subjects 

typically produce fewer corrections per second, however, the variation of the 

mean duration of those corrections typically increase. Changes in the variation 

of EMG burst duration are likely due to the subjects having more time to elicit a 

correction and may be related to exploration of different response strategies. 
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The duration of EMG bursts during handstand trials of longer durations are 

typically higher than those of experinced handstanders, suggesting novice 

handstanders that can maintain handstands for more than 20 seconds may still 

be adapting their postural control strategies. 

5.3. Summary 

Novice handstanders showed a large variation in handstand balance 

performance based on all balance metrics, with practice and a longer duration 

in handstand this variability generally reduces. Large amounts of variation for 

handstand trials of short duration make it extremely difficult to compare data to 

determine if a linear or quadratic relationship is present. At the end of eight 

months of practising handstands most subjects could not perform handstands 

for longer than 15 seconds duration, with only three subjects able to perform 

handstands for more than 20 seconds. Generally, with increased duration in 

handstand subjects displayed reduced sway as measured by traditional 

measures of balance. A more marked change in nonlinear measures of balance 

can be seen, with quicker reductions in variance for some nonlinear measures 

of balance than in the traditional measures. It may be that more pronounced 

changes in nonlinear measures represent changes in the subjects’ underlying 

process of postural control, whereas less pronounced changes in traditional 

measures relate more to their general ability or performance in the balance task. 

Data suggests that the regression models of balance used to estimate 

feedback time delay may be a poor estimate of the postural control strategies 

employed when novices first learn to balance. With increased competence in 

handstand balance, as described by longer trial durations, regression models 

appear to become more applicable, suggesting subjects begin to adapt a 

strategy that is close to the one suggested by the regression model. Estimates 

of torque contributions from these regression models begin to plateau and 

resemble experienced handstanders for handstand trials above 15 seconds 

duration. Changes in torque contribution estimates may suggest that subjects 

are beginning to rely more on sensory feedback for postural control. 
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Le Clair and Riach (1996) suggest the best test-retest reliability in standing 

balance is achieved by trials of 20 to 30 seconds. Although this relates to 

assessing standing trials were the subjects would have been capable of 

performing trials of longer durations if required, a time of 20 to 30 seconds 

appears to be a suitable criterion for handstand balance. In general, most 

measures of handstand balance began to plateau or approach that of 

experienced handstanders for handstand trials above 20 seconds duration. 

Handstand trials below 20 seconds duration appear to display large amounts of 

variation for all balance measures, making it difficult to examine the 

relationships between each balance metric and handstand performance. 

However, it must be stated that only three subjects managed to perform 

handstand trials for more than 20 seconds duration, and reductions in variability 

for trials longer than 20 seconds may be as a consequence of this. 

The purpose of this chapter was to examine which balance metrics best 

characterise improvements in balance performance when a novice learns to 

balance in handstand. No balance metric can be considered to be appropriate 

for assessing handstand performance when a novice first learns to balance in 

handstand, as all measures show large amounts of variation for trials of short 

duration. Some nonlinear measures of balance, such as divergence and trend, 

appear to be sensitive to improvements in handstand performance based on 

handstand durations of more than ten seconds. As handstand balance 

improves and independent balance can be maintained for longer than 20 

seconds, regression models, and their estimates of feedback time delay and 

the percentage torque from passive stiffness and delayed COM motion, appear 

to become appropriate approximations of the underlying postural control 

strategies employed by the subjects. Postural control strategies appear to 

resemble those of experienced handstanders when the novice was able to 

maintain independent handstand balance for more than 20 seconds duration. 

Future research may wish to examine this further by assessing novice, 

intermediate, and experienced handstanders to see if similar relationships are 

evident. 
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5.3.1. Conceptual Model of Learning to Balance 

In the current research the relationships between an improvement in balance 

performance and changes in different balance metrics were examined. Some 

metrics, such as trend and divergence, appear to change quickly in the early 

stages of learning, with only small changes as performance improves further. 

Conversely, other metrics, such as sample entropy and sway range, appear to 

change relatively slowly throughout the learning process, with either linear or 

quadratic relationships with improvements in performance. When learning to 

balance, numerous control strategies are likely to be attempted by an individual 

in a trial and error approach to discovering how balance may be achieved and 

maintained. The success or failure of these attempts will depend on the 

suitability of the strategy chosen and any limitations in sensory acuity and 

muscular strength and control which may impair the execution of the strategy.  

During the early stages of learning to balance it is expected that individuals will 

experiment with a relatively large number of control strategies, but with more 

experience these will be focused toward those few strategies that are most 

effective. It is possible that the exponential relationship between balance 

performance and trend and divergence are a representation of this search for a 

suitable control strategy. In this view large changes in, and variance in, trend 

and divergence during the early stages of learning could be explained by 

attempts to balance via different control strategies that may cause local 

trajectories in COM and COP to diverge quickly resulting in large drift and 

ultimately a failure to maintain balance. Further refinement of those few 

successful strategies would be achieved by improvements in sensory acuity, 

muscular strength and endurance, and neuromuscular control and coordination. 

This refinement would be expected to result in a more gradual change in 

balance performance, steadily improving the finer control of posture and the 

execution of the strategy. In this view, the slowly changing linear and quadratic 

relationships of sway range and sample entropy may represent the gradual 

improvement in the execution of the balance strategy. Together, this describes 

a process of learning that has two stages operating in parallel and which helps 

to explain the different relationships between balance performance and each 
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balance metric. This process of searching for a suitable strategy and gradually 

improving the execution of that strategy would also explain the large amounts 

of variation in all balance metrics during trials of short duration, and why some 

individuals struggled to balance at all. An illustration of the two aspects of this 

process can be seen in Figure 5.19. 

 

Figure  5.19: A conceptual model of learning to balance showing the two stages 
of strategy search and execution refinement operating in parallel. 

This two stage process is analogous to the constraints led approach proposed 

by Newell (1986), where motor learning is defined as an ongoing dynamic 

process involving a search for and stabilisation of specific functional movement 

patterns across the perceptual motor landscape (Davids et al., 2008). Practice 

in the task results in a continual exploration of the perceptual-motor landscape, 

eventually leading to the emergence of an approximate solution to the task 

(Thelen, 1995). Further practice results in increased awareness of perceptual 

information and enhanced proficiency of motor outputs, strengthening 

connections within the coordinative structure to gain a tighter fit to the solution 

(Newell, 1991). Over time this process can expand to allow the individual to 

achieve a skilled optimisation of control for the task, exploiting environmental 

and task information to enhance the efficiency and control of the coordinative 

structure. Although the current research does not continue as far into the task 

of learning to balance in handstand, the final stage of Newell’s constraints 
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theory would suggest enhanced postural control and further changes in the 

balance metrics examined here are expected. It is likely that with enhanced 

perceptual-motor coupling, postural control in handstand would become more 

akin to standing balance, with a stable and functional movement solution. This 

level on control is likely to result in a further increase in sample entropy, with a 

possible increase in trend and divergence, as postural sway becomes more 

nonlinear and possibly more nonstationary once again. 
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CHAPTER 6 

RESPONSES TO MECHANICAL PERTURBATIONS 

Research examining feedback time delays between sensory input and motor 

output has primarily focused on assessing EMG latencies from responses to 

discrete perturbations in standing (Nashner, 1976; Nashner et al., 1979; Horak 

et al., 1989). Delays between the initiation of platform translations and a 

noticeable rise in EMG activity are approximately 65 to 130 ms, with 

corresponding joint torques occurring approximately 30 ms later (Nashner et al., 

1979; Horak et al., 1989). However, these feedback time delays to a platform 

perturbation have been shown to be affected by the velocity and amplitude of 

the perturbation, making it difficult to compare the results from multiple studies. 

In general feedback time delays to platform perturbations are believed to be as 

a result of medium and long latency reflexes in the ankle muscles. Longer 

delays of approximately 200 to 300 ms have been found during perturbations 

with reduced ankle motion, and are believed to be due to responses associated 

with visual or vestibular inputs (Nashner, 1976). Although these dynamic 

posturography techniques have received a great deal of attention in the 

literature, it is important to note that static and dynamic posturography 

techniques address different aspects of the postural control system (Baratto et 

al., 2002). Baratto et al. (2002) explain how during dynamic posturography 

testing all sensory channels employed to provide information regarding postural 

control are activated above threshold levels and feed into strong reflex actions. 

In comparison, when balancing in quiet stance most of the sensory channels 

are activated near or below their physiological threshold. It is unclear whether 

feedback time delays calculated during dynamic posturography tests should be 

assumed to apply to quiet stance. It seems reasonable to assume that these 

values represent a lower limit, and that during quiet stance higher values may 

be expected. An assessment of feedback time delay in quiet standing is 

required. 
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Estimates of feedback time delay in quiet stance have been provided by cross 

correlations between COM and COP trajectories, with some authors suggesting 

the apparent zero delay between these two signals is evidence of a passive 

control system (Winter et al., 1998; Winter et al., 2001; Winter et al., 2003), 

while others suggest it is evidence of an active anticipatory feedforward control 

process (Gatev et al., 1999). Baratto et al. (2002) conclude that the main 

source of disturbance during static posturography testing is internal and 

predictable, and therefore the control system can rely on some kind of internal 

anticipatory model. These assumptions disregard the possibility of a reactive 

control strategy that relies on proportional and derivative gains from COM 

motion. 

Yeadon and Trewartha (2003) examined the feedback time delay during static 

balance via examination of the relationship between joint torques and COM 

motion whilst in handstand. Wrist joint torques were regressed against COM 

displacement and velocity at earlier times, with peak R2 values occurring at 160 

to 240 ms. It is important to note that this method will only provide a rough 

estimate of the average delay over the full duration of the trial, incorporating 

several delays within it, such as: electromechanical delay (EMD), joint torque 

rise times, and the time for any sensory thresholds to be reached. Based on 

literature values, Yeadon and Trewartha subtracted an estimated value of 40 

ms from all trials to account for these delays, resulting in estimated delays of 

120 to 200 ms. 

Horak and Nashner (1986) explain how an ankle strategy will result in activation 

of ankle extensors, knee flexors and hip extensors, and a hip strategy will result 

in activation of the knee extensors and hip flexors. Consequently, cross 

correlations between ankle and hip torques will result in a positive correlation 

coefficient if an ankle strategy is employed and a negative correlation 

coefficient if a hip strategy is employed. Yeadon and Trewartha (2003) followed 

this principle for handstand balance, where positive coefficients between wrist 

and shoulder/hip torques would suggest a wrist strategy and negative 

coefficients would suggest a shoulder or hip strategy. This principle can be 
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combined with an assessment of feedback time delay in either perturbed 

balance or quiet stance, providing information for the strategies used to 

maintain balance and the respective delays between joints in a coordinated 

response.  

At present, feedback time delay has been examined either via EMG latencies to 

discrete perturbations or via estimates from cross correlations or delayed 

regression models in static balance. The aim of this chapter is to combine these 

methods during discrete perturbations in standing and handstand balance and 

evaluate the estimates of feedback time delay provided by cross correlations 

and delayed regression models. Further analysis of response strategies will be 

provided by cross correlations between ankle and hip joint torques in standing 

and wrist, shoulder, and hip joint torques in handstand. 

6.1. Assessment of Feedback time Delay 

Eleven experienced handstanders completed the second part of study two. The 

data collection protocol and experimental procedures were as described 

previously in Chapter 3. Subjects experienced a total of twelve platform 

perturbations in each posture, with three trials of each of the four platform 

perturbations, including: forwards and backwards translations of 0.1 m at 0.2 

m·s-1, and forwards and backwards translations of 0.05 m at 0.1 m·s-1. 

EMG latencies in standing trials were calculated from the start of the platform 

translation to the time of the first major EMG burst via visual inspection (Tillin et 

al., 2010). Large amounts of EMG activity were present throughout the duration 

of handstand trials, making it extremely difficult to determine the onset of a 

single muscular response to the platform movements. Consequently, only those 

trials where a clear response to the platform perturbation was evident were 

used for analysis, resulting in a mean of 9.1 ± 1.9 trials remaining for analysis, 

with no fewer than seven trials for any subject. 

Feedback time delay estimates from cross correlations were calculated 

between: COM and ankle/wrist joint torque, COM and ankle/wrist EMG, and 
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ankle/wrist joint torques and ankle/wrist EMG signals. Further cross correlations 

were calculated between ankle and hip, and between wrist, shoulder, and hip 

joint torques to calculate the delay between the major segments involved and to 

provide insight into the balance strategies to discrete perturbations in each 

posture. 

Estimates of feedback time delay via delayed regression models were provided 

by the Yeadon and Trewartha method (equation 6.1) and the adapted method 

(equation 6.2) previously described in Chapter 4. 

	 ሺܶ௧ሻ ൌ ሺ௧ି௧బሻݔ݌ ൅ ሶሺ௧ି௧బሻ ሺ6.1ሻݔ݀

	 ሺܶ௧ሻ ൌ ሺ௧ሻݔଵ݌ ൅ ሺ௧ି௧బሻݔଶ݌ ൅ ሶሺ௧ି௧బሻ ሺ6.2ሻݔ݀

6.2. Findings and Discussion 

Discrete platform perturbations during standing trials typically resulted in a 

characteristic rise in both ankle EMG and ankle joint torque (Figure 6.1). 

 

Figure  6.1: Example of the ankle EMG and torque response to a discrete 
perturbation in standing 
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Due to the demanding nature of the handstand posture discrete platform 

perturbations may have occurred during a corrective action, or may have 

resulted in a loss of balance before any noticeable correction was evident. 

Consequently, only those trials where an appropriate response was evident 

were used for further analysis (Figure 6.2). 

 

Figure  6.2: Example of the wrist EMG and torque response to a discrete 
perturbation in handstand. 

6.2.1. Standing: Feedback time Delay 

Individual mean EMG latencies during platform translations in standing were 

approximately 96 to 126 ms (Table 6.1), in agreement with previous research 

employing similar magnitude perturbations (Horak et al., 1989; Nashner et al., 

1979). All responses began before 150 ms, suggesting they were most likely 

due to long latency reflexes from ankle plantar flexors and dorsi flexors 

(Nashner, 1976). Estimates of feedback time delay from delayed regression 

models were always longer than those calculated from EMG latencies, ranging 

from 2 to 39 ms longer for the Yeadon and Trewartha method and 11 to 60 ms 

longer for the adapted method (Table 6.1). Estimates of feedback time delays 

in perturbed stance were approximately 100 ms lower than those from static 

stance reported previously in Chapter 4. 
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Table  6.1: Subject mean values for feedback time delay during standing, 
calculated from the start of platform perturbation to first major EMG response 
and the two regression models. 

 Yeadon & Trewartha Method Adapted Method 

Subject EMG(a) Delay(b) R2 Diff (a-b) Delay(c) R2 Diff (a-c) 

1 125.5 127.5 0.90 -2.0 162.8 0.90 -37.3 

2 122.9 140.8 0.96 -17.9 178.8 0.96 -55.8 

3 102.7 141.3 0.96 -38.5 162.9 0.96 -60.2 

4 109.6 115.5 0.92 -5.9 121.0 0.92 -11.4 

5 96.4 118.6 0.89 -22.2 129.3 0.89 -32.9 

6 114.1 143.3 0.94 -29.2 158.8 0.94 -44.7 

7 93.8 127.8 0.92 -34.0 151.3 0.92 -57.5 

8 121.5 149.2 0.91 -27.7 174.2 0.92 -52.7 

9 104.5 138.8 0.94 -34.3 160.5 0.94 -56.0 

10 113.9 128.6 0.84 -14.7 158.8 0.86 -44.9 

11 117.2 152.9 0.97 -35.7 172.9 0.97 -55.7 

Mean 111.1 134.9 0.92 -23.8 157.4 0.93 -46.3 

SD 10.7 12.2 0.04 12.4 17.9 0.03 14.5 

 

Research examining the electromechanical delay (EMD) from the onset of 

EMG to the onset of force production has shown force production can lag 

behind the EMG signal by approximately 13 to 55 ms (Cavanagh and Komi, 

1979; Muraoka et al., 2004; Tillin et al., 2010; Zhou et al., 1995). The difference 

between feedback time delays from EMG latencies and those estimated from 

both delayed regression models fall mostly within this range, suggesting EMD 

may account for a large part of this difference. Previous research has shown 

EMD values can vary within or between individuals, and that the slack length 

and tension in the tendon may be important factors in this variation (Muraoka et 

al., 2004). It is possible that the large variation in the differences between EMG 

latencies and estimated feedback time delays from regression models may also 
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be explained by variations in the slack length and tension in the Achilles tendon. 

The purpose of the current research was not to examine EMD, but further 

inquiry into EMD during standing balance would be informative. 

Table  6.2: Subject mean values for cross correlations in standing trials 
between EMG and COM, ankle torque and COM, and EMG and ankle torque. 

 EMG - COM Torque - COM EMG - Torque  

Subject Delay(a) R2 Delay(b) R2 Delay R2 Diff (a-b) 

1 185.8 0.21 60.0 0.83 101.3 0.29 125.8 

2 276.7 0.30 42.5 0.86 186.7 0.45 234.2 

3 217.9 0.22 60.4 0.79 187.1 0.44 157.5 

4 193.8 0.13 89.2 0.64 151.3 0.29 104.6 

5 212.5 0.36 35.8 0.77 156.3 0.58 176.7 

6 234.2 0.19 63.3 0.76 145.4 0.35 170.8 

7 180.8 0.44 22.9 0.85 157.1 0.61 157.9 

8 208.8 0.35 53.8 0.71 156.3 0.53 155.0 

9 218.3 0.26 61.3 0.72 152.5 0.45 157.1 

10 145.4 0.22 12.5 0.71 126.7 0.35 132.9 

11 207.5 0.28 42.1 0.85 129.2 0.41 165.4 

Mean 207.4 0.27 49.4 0.77 150.0 0.43 158.0 

SD 33.1 0.09 21.3 0.07 25.0 0.11 33.0 

 

Cross correlations show a delay between ankle EMG and COM displacement, 

with the anteroposterior motion of the COM lagging behind ankle EMG by 

approximately 145 to 277 ms (Table 6.2). These results are similar to previous 

research in quiet stance, which has shown ankle EMG can precede COM 

displacement by approximately 260 – 350 ms (Gatev et al., 1999). Gatev et al. 

(1999) concluded that these large delays between ankle EMG and COM motion 

provide evidence for a feedforward anticipatory mechanism for postural control. 

Similar values reported in the current research for perturbed stance, where 
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anticipatory control should not be possible, would indicate that further analysis 

of cross correlations between EMG and COM motion is required. 

Gatev et al (1999) found the COP trajectory lagged behind ankle EMG by 240 

to 270 ms. In static stance the COP signal may be considered as proportional 

to ankle joint torque (Baratto et al., 2002). In the current research cross 

correlations show ankle joint torques can lag behind ankle EMG by 

approximately 105 to 235 ms. Delays between ankle EMG and ankle joint 

torques, or COP in static stance, will represent the EMD between ankle EMG 

and the production of muscular force, however, an EMD of 105 to 235 ms is not 

representative of literature values. A higher estimated EMD found here is most 

likely due to the use of cross correlations with EMG signals, where slower 

components can dominate and hinder the detection of faster components 

(Nikolic et al., 2012). 

Cross correlations show COM displacements lag behind ankle joint torques by 

approximately 12 to 90 ms, all of which are below the values calculated from 

EMG latencies. Comparing the delays from cross correlations of ankle EMG 

and COM displacements to the delays form cross correlations of ankle joint 

torques and COM displacements suggests approximately 158 ms remains 

unaccounted for. This value is close to the group average delay for cross 

correlations between ankle EMG and ankle joint torques, which would be 

expected to explain the remainder. However, large variations within the group 

suggest this is not always the case. Low R2 values may suggest that poor 

correlations between EMG and COM displacement, or between EMG and joint 

torques, are resulting in poor estimates of signal delays. Alternatively, these 

differences may highlight the problems with using cross correlations to assess 

signals with vastly different frequency contents (Nikolic et al., 2012). 

6.2.2. Handstand: Feedback time Delay 

Individual mean EMG latencies during platform translations in handstand were 

approximately 102 to 192 ms (Table 6.3), which is on average 47 ms higher 

than that obtained from standing trials. Most responses began before 200 ms, 
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suggesting they are unlikely to be from visual or vestibular processes (Nashner, 

1976). EMG latencies below 150 ms may be from long latency reflexes from 

wrist flexor muscles, however, longer latencies my represent other control 

systems are involved. Estimates of feedback time delay from delayed 

regression models were not always longer than those calculated from EMG 

latencies, ranging from 39 ms shorter than to 72 ms longer than EMG latencies 

for the Yeadon and Trewartha method and 1.5 ms shorter than to 101 ms 

longer than EMG latencies for the adapted method (Table 6.3). 

Table  6.3: Subject mean values for feedback time delay during handstand, 
calculated from the start of platform perturbation to first major EMG response 
and the two regression models. 

 Yeadon & Trewartha Method Adapted Method 

Subject EMG(a) Delay(b) R2 Diff (a-b) Delay(c) R2 Diff (a-c) 

1 137.1 161.8 0.74 -24.7 182.2 0.74 -45.1 

2 101.7 173.8 0.71 -72.1 202.5 0.71 -100.8 

3 152.3 154.6 0.83 -2.3 177.5 0.82 -25.2 

4 151.8 155.0 0.72 -3.2 161.9 0.72 -10.1 

5 161.1 161.4 0.65 -0.3 193.9 0.68 -32.8 

6 165.0 163.5 0.78 1.5 206.9 0.85 -41.9 

7 161.5 163.2 0.78 -1.7 197.2 0.80 -35.7 

8 173.6 167.7 0.80 5.8 190.0 0.80 -16.4 

9 171.7 169.6 0.74 2.1 207.3 0.74 -35.6 

10 191.7 152.7 0.67 38.9 196.3 0.75 -4.6 

11 171.0 147.5 0.80 23.5 169.5 0.80 1.5 

Mean 158.0 161.0 0.75 -2.9 189.6 0.76 -31.5 

SD 23.4 7.9 0.06 28.0 15.1 0.05 27.7 

 

A purely reactive control strategy should result in EMG latencies that are 

always lower than feedback time delays based on joint torques. Trials that 
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show the opposite likely reflect experimental error or a non-reactive strategy 

has been employed. In standing trials, EMG latencies showed similar variance 

to estimates of feedback time delays from both regression models. EMG 

latencies during handstand trials displayed a standard deviation of 

approximately 2 to 3 times that of the regression models. It seems likely that 

the increased variation in EMG latencies during handstands is related to the 

difficulties in determining EMG onset during these trials. Although changes in 

passive stiffness may still account for earlier torque relationships, individual 

estimates of the contribution of passive stiffness to the total torque show no 

clear relationship, with stiffness usually higher in standing trials (Table 6.4). 

Table  6.4: Subject mean values for the difference between EMG latencies and 
feedback time delay estimated by the adapted method, and the percentage of 
joint torques from the three coefficients for standing and handstand trials. 

 Standing Trials Handstand Trials 

Subject Diff (a-c) ࢖૚ (%) ࢖૛ (%) ࢊ (%) Diff (a-c) ࢖૚ (%) ࢖૛ (%) ࢊ (%) 

1 -37.3 64.0 19.6 16.4 -45.1 33.5 44.9 21.6 

2 -55.8 53.0 27.3 19.8 -100.8 29.5 42.7 27.8 

3 -60.2 45.7 29.9 24.4 -25.2 19.3 59.4 21.3 

4 -11.4 29.3 39.7 31.0 -10.1 40.9 34.2 24.9 

5 -32.9 47.8 35.7 16.4 -32.8 39.0 40.0 21.0 

6 -44.7 39.1 29.7 31.1 -41.9 37.1 49.8 13.1 

7 -57.5 35.4 46.9 17.7 -35.7 22.6 57.4 20.0 

8 -52.7 45.2 28.0 26.7 -16.4 34.0 45.6 20.3 

9 -56.0 42.8 31.8 25.4 -35.6 17.7 62.4 19.9 

10 -44.9 59.2 23.6 17.2 -4.6 50.1 29.2 20.8 

11 -55.7 42.7 32.8 24.5 1.5 36.0 40.0 24.0 

Mean -46.3 45.8 31.4 22.8 -31.5 32.7 46.0 21.3 

SD 14.5 10.0 7.5 5.6 27.7 9.8 10.5 3.7 

Note: ݌ଵ represents the percentage of torque estimated by a passive stiffness mechanism  
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Similar to standing trials, estimates of feedback time delays in perturbed 

handstands were on average lower than those from the static handstand trials 

reported previously in Chapter 4. However, the difference between static and 

perturbed handstand trials was much lower than that of standing, with a mean 

difference of 15 ms for the Yeadon and Trewartha method and 23 ms for the 

adapted method. It would be reasonable to suggest that balancing in 

handstand is a challenging task, with the postural control system operating 

close to the limits of its capability even during static balance conditions. If EMG 

latencies during perturbed balance tasks provide a lower limit for the response 

time of the postural control system, then these smaller differences between 

static and perturbed trials further highlights the challenging nature of this task. 

Table  6.5: Subject mean values for cross correlations in handstand trials 
between EMG and COM, wrist torque and COM, and EMG and wrist torque. 

 EMG - COM Torque - COM EMG - Torque  

Subject Delay(a) R2 Delay(b) R2 Delay R2 Diff (a-b) 

1 302.1 0.26 147.9 0.40 94.2 0.56 154.2 

2 194.6 0.33 39.2 0.54 99.6 0.66 155.4 

3 165.4 0.32 57.9 0.59 100.0 0.62 107.5 

4 132.1 0.31 75.8 0.52 76.7 0.70 56.2 

5 93.8 0.38 70.0 0.49 77.5 0.57 23.8 

6 272.9 0.12 57.1 0.32 77.1 0.46 215.8 

7 93.8 0.47 10.4 0.62 97.5 0.80 83.3 

8 105.0 0.36 2.9 0.68 93.8 0.60 102.1 

9 84.2 0.45 -13.8 0.66 100.0 0.70 97.9 

10 200.4 0.21 78.3 0.44 80.0 0.59 122.1 

11 276.3 0.26 55.0 0.70 88.3 0.54 221.3 

Mean 174.6 0.32 52.8 0.54 89.5 0.62 121.8 

SD 80.8 0.10 44.1 0.12 9.9 0.09 61.2 
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Cross correlations show a delay between wrist EMG and COM displacement, 

with the anteroposterior motion of the COM lagging behind wrist EMG by 

approximately 84 to 302 ms (Table 6.5). These results are somewhat larger 

than the 95 ms delay reported during static handstand trials in Chapter 4, but 

are comparable to the 145 to 277 ms delay between ankle EMG and COM 

displacements found in perturbed standing. Cross correlations between wrist 

joint torques and wrist EMG show torques lag behind EMG by approximately 77 

to 100 ms, similar to the mean of 94 ms for the static handstand trials reported 

in Chapter 4. These values are a little lower than the 105 to 235 ms delay 

between ankle EMG and ankle joint torque reported for standing trials. Smaller 

delays between EMG and joint torque for handstand trials may be due to an 

increased tension in the tendons of the wrist flexor muscles during handstand 

compared to that of the Achilles tendon during standing. This would suggest a 

shorter EMD between wrist EMG and wrist joint torque than between ankle 

EMG and ankle joint torques, and is further supported by the smaller difference 

between EMG latencies and estimates of feedback time delay in handstand 

trials. Alternatively, these smaller values may be due to higher R2 values from 

the cross correlations, showing a value of 0.62 for handstand trials compared to 

a value of 0.43 for standing trials. Higher R2 values in handstand trials are likely 

due to an increased activity in wrist flexor and extensor muscles compared to 

that of ankle plantar flexors and dorsi flexors in standing trials. 

Cross correlations show delays between COM displacements and wrist joint 

torques range from -14 to +148 ms, with negative values indicating wrist joint 

torques lag behind COM displacements. Similar to standing trials, large 

variations in delays from these cross correlations may highlight that cross 

correlations are an unsuitable tool for assessing signal delays. Alternatively, 

poor R2 values in handstand trials may indicate that subjects were not 

employing a wrist strategy, suggesting further analysis is required. 

6.2.3. Control Strategies 

Similar delays were found between ankle and hip joint torques in standing and 

between wrist and shoulder joint torques and wrist and hip joint torques in 
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handstand (Table 6.6). No significant differences were found for the delays 

between ankle and hip joint torques compared to wrist and shoulder joint 

torques (t = 1.29; p > 0.05) or for the delays between ankle and hip joint 

torques compared to wrist and hip joint torques (t = 1.84; p > 0.05). Large 

variations were found for the delays calculated between segments in both 

handstand and standing trials. 

Table  6.6: Cross correlations between ankle and hip joint torques in standing, 
and between wrist and hip joint torques, and wrist and shoulder joint torques in 
handstand. 

 Ankle - Hip Wrist - Shoulder Wrist - Hip 

Subject Delay R2 Delay R2 Delay R2 

1 295.8 0.48 292.5 0.36 317.9 0.36 

2 37.5 0.41 253.3 0.51 250.4 0.48 

3 57.1 0.40 101.7 0.41 120.4 0.37 

4 59.2 0.29 274.6 0.36 162.5 0.35 

5 145.0 0.44 438.8 0.33 440.0 0.34 

6 -11.3 0.31 245.4 0.28 215.4 0.23 

7 143.8 0.35 234.2 0.47 244.6 0.50 

8 195.0 0.32 174.6 0.45 203.3 0.42 

9 342.5 0.32 85.8 0.51 167.1 0.50 

10 166.7 0.59 175.0 0.43 170.4 0.45 

11 50.0 0.30 -67.5 0.48 9.6 0.49 

Mean 134.7 0.38 200.8 0.42 209.2 0.41 

SD 111.2 0.09 131.4 0.08 110.1 0.08 

 

Most associated correlation coefficients were positive for handstand trials, with 

97% of trials providing a positive correlation coefficient for delays between wrist 

and shoulder joint torques and between wrist and hip joint torques. Slightly 

fewer trials in standing displayed correlation coefficients that were positive, with 
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85% of trials providing a positive correlation coefficient for delays between 

ankle and hip joint torques. Cross correlations between shoulder and hip joint 

torques in handstand trials show all trials have positive correlation coefficients 

with approximately zero delay. In response to a discrete platform perturbation 

subjects frequently attempted to use a wrist strategy to prevent falling in 

handstand and an ankle strategy to prevent falling in standing. The wrist 

strategy was accompanied by synergistic shoulder and hip joint torques to 

maintain the inverted posture, and the ankle strategy was accompanied by 

synergistic hip joint torques to maintain a vertical posture. 

Yeadon and Trewartha reported estimates of wrist and shoulder joint torques 

with approximately zero delay and wrist and hip joint torques with 

approximately 50 ms delay in static handstands. In the current research delays 

between wrist and shoulder joint torques, and between wrist and hip joint 

torques, were on average 200 ms for handstands during platform perturbations. 

Delays from wrist joint torques to shoulder and hip joint torques of 

approximately 200 ms were similar to the delay of 161 to 190 ms for wrist joint 

torques to COM displacement and velocity predicted by the two regression 

models. Similarly, delays from ankle to hip joint torques of approximately 135 

ms are similar to the delay of 135 to 158 ms for ankle joint torques to COM 

displacement and velocity predicted by the two regression models. These 

results may indicate that, during perturbations, the torque produced at distal 

joints, such as the ankle or wrist, is not well coordinated with that from proximal 

joints, such as the hip or shoulder respectively. An extra 200 ms delay between 

distal and proximal joints would suggest proximal joints are responding to the 

perturbation imposed on them from the torque produced at the distal joints. 

Previous research has found intersegmental delays of 4 to 100 ms between the 

EMG onset of ankle muscles and that of hip or trunk muscles to a discreet 

platform perturbation (Diener et al., 1988; Horak and Nashner, 1986; Woolacott 

and Sveistrup, 1992). Although the intersegmental delays of 135 ms in standing 

and 200 ms in handstand reported here are somewhat large compared to past 

literature, there was also a large amount of subject variability in these values, 

possibly related to the use of cross correlations. 



164 
 

6.3. Summary 

The purpose of this chapter was to evaluate the estimates of feedback time 

delay provided by cross correlations and delayed regression models by 

comparison to the values provided by EMG latencies to a discrete perturbation. 

Estimates of feedback time delays provided by cross correlations of ankle joint 

torque and COM displacement produced values that were on average 62 ms 

lower than that of EMG latencies in standing. Similarly, estimates of feedback 

time delays provided by cross correlations of wrist joint torque and COM 

displacement produced values that were on average 105 ms lower than that of 

EMG latencies in handstand. Results suggest that cross correlations between 

joint torques and COM displacements can severely underestimate feedback 

time delay to a discrete perturbation. Using cross correlations to estimate 

feedback time delays during balance are not recommended. 

Ankle EMG latencies to a discrete perturbation in standing were 96 to 126 ms, 

with estimates of feedback time delays provided by delayed regression models 

that were on average 24 ms longer for the Yeadon and Trewartha method and 

46 ms longer for the adapted method. Similarly, wrist EMG latencies to a 

discrete perturbation in handstand were 102 to 192 ms, with estimates of 

feedback time delays provided by delayed regression models that were on 

average 3 ms longer for the Yeadon and Trewartha method and 32 ms longer 

for the adapted method. These differences are most likely due to an 

electromechanical delay between the start of the EMG response to the start of 

a change in ankle and wrist joint torques. Shorter delays for the Yeadon and 

Trewartha method were expected, as passive stiffness within the 

musculotendinous unit is likely to produce extra torque when forced into an 

eccentric action. The extra torque produced by this passive stiffness will have 

approximately zero delay and will cause the estimated feedback time delay 

based on delayed regressions between joint torque and COM motion to be 

slightly underestimated. The adapted method addressed this issue by including 

a third term into the regression model based on COM displacement with zero 

delay. These results appear to support the use of this third term as a means of 

estimating the effect of passive stiffness on feedback time delay. Delayed 
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regression models seem to be an appropriate and useful tool for estimating 

feedback time delays during balance. There were differences in feedback time 

delay between static balance and perturbed balance of approximately 100 ms 

for standing and up to 25 ms for handstand. These differences are likely to be 

due to the extra time required to reach sensory thresholds in static balance 

conditions, with the lower difference in handstand trials indicating the difficult 

nature of balance in handstand. Future studies may want to examine this 

further with different magnitudes of perturbations or with other estimates of 

passive stiffness. 

Most trials in standing appear to use an ankle strategy with synergistic torques 

at the hip to maintain balance in response to a discrete perturbation. Similarly, 

most trials in handstand appear to use a wrist strategy with synergistic torques 

at the shoulder and hip to maintain balance in response to a discrete 

perturbation. Intersegmental delays of 135 ms for standing and 200 ms for 

handstand are somewhat large compared to previous research. Although there 

was a large amount of variability in these intersegmental delays between 

subjects, both the high variability and the elevated intersegmental delay times 

are likely due to the use of cross correlations. Cross correlations appear to 

result in poor estimates of time lags between signals that have different 

frequency components, such as comparing EMG to joint torque or comparing 

wrist joint torque to hip joint torque. Further study is required to provide an 

estimate of the overestimation or underestimation of signal delay caused by the 

differences in frequency components within two signals. 
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CHAPTER 7 

SENSORY PERTURBATIONS AND RESTRICTIONS 

The sensory organisation test (SOT) was developed by Nashner (1972) and is 

a computerised system that consists of a movable dual force plate support 

surface within a moveable surround. The SOT is an integral part of 

computerised dynamic posturography, and is commercially available in the 

NeuroCom BalanceMaster and EquiTest systems used for clinical testing in a 

variety of conditions that can affect balance. One of the components of the SOT 

is that the support surface can rotate about an axis level with a patient’s ankle 

and track their forwards and backwards sway during quiet stance. This is 

termed as a sway referenced platform and is intended to reduce the amount of 

ankle motion in an attempt to reduce sensory feedback from the surrounding 

somatosensory proprioceptors. The SOT has been used to examine recovery in 

patients with uni- and bi-lateral vestibular deficits (Nashner et al., 1982; 

Nashner et al., 1983; Perietti-Winkler et al., 2006), and the role of visual cues in 

vestibular loss patients (Mergner et al., 2005). It has also been used to estimate 

the contributions of visual, vestibular, and somatosensory cues to the 

maintenance of balance in normal stance, suggesting an approximate 

weighting of 10%, 20%, and 70% respectively (Horak, 2006, Peterka, 2002; 

Peterka and Benolken, 1995). Lastly, McCollum et al. (1996) have suggested 

that performance in the different tests within the SOT may be affected by the 

order of the testing, suggesting a link to how the CNS re-weighs different 

sensory cues due to environmental changes and recent events. 

Vision has been found to affect balance in handstand as well as standing 

(Asseman et al., 2005; Gautier et al., 2007). Similar to standing, foam supports 

have been used to assess the role of somatosensory information whilst 

balancing in handstand (Croix et al., 2010a). Although control of handstand is 

adversely affected by balancing on a foam support, it is unclear if this is purely 

due to altered sensory feedback or a mechanical by-product of trying to 
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generate joint torques on a compliant surface. The purpose of this chapter is to 

examine how balance in standing and handstand may be affected by altered 

sensory feedback and to provide insight into the importance of ankle and wrist 

somatosensory feedback during balance. 

7.1. Assessment of Balance 

Ten experienced handstanders completed the final stage of study two. The 

data collection protocol and experimental procedures were as described 

previously in Chapter 3. Using the algorithms of Barton et al. (2006) the Stewart 

platform within the CAREN system was controlled so that horizontal and 

vertical translations of the platform were combined with rotations about the 

mediolateral axis so the platform could rotate about a virtual point. The virtual 

point was determined by markers placed on the subject’s ankle or wrist joints 

while in standing or handstand respectively. Body sway was tracked by 

markers at the next proximal joint, the knee for standing and the elbow for 

handstand, so that the rotation of the platform would track sway about the ankle 

or wrist. This procedure simulated the sway referenced platform motion of the 

SOT in both a standing and a handstand posture in an attempt to reduce ankle 

and wrist joint movement whilst allowing unrestricted body sway. 

Subjects completed three trials in each of the eight conditions, including: 

standing on a static and sway referenced platform with eyes open and eyes 

closed, and handstand on a static and sway referenced platform with eyes 

open and eyes closed. All balance measures described in Chapter 4 were 

calculated and analysed for each posture. 

7.1.1. Statistical Analysis 

Determinism and SampEn values of the surrogate data were compared to the 

SampEn values of the original data using a repeated measures t-test with a 

significance level of 0.05 in accordance with the suggestions of Harbourne and 

Stergiou (2003) and Stergiou et al. (2004). 
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Table  7.1: All variables used to assess balance. 

Group Variables Number 

Traditional 
duration, standard deviation (SD), range, mean sway 
velocity (SV) 

4 

Nonlinear sample entropy (SampEn), lyapunov exponent (LyE) 2 

Recurrence 
Quantification 
Analysis 

recurrence rate (RR), determinism (DET), entropy 
(ENT), divergence (DIV), trend (TND) 

5 

Estimated 
Delays 

delay, R2, proportional and derivative coefficients, 
torque percentages, cross correlations 

17 

Movement 
Corrections 
(Torque) 

corrections per second, mean torque, torque impulse, 
burst duration [small, medium, large (S,M,L)] 

12 

Movement 
Corrections 
(EMG) 

corrections per second, root mean square (RMS), 
burst duration [small, medium, large (S,M,L)] 

9 

Note: Movement corrections for EMG were only used in handstand as no sensors were placed 
on the lower leg; Estimated delays were calculated by two different methods and will be 
prefixed with M1 or M2 (M1 = Yeadon and Trewartha method) 

Two separate two-way repeated measures ANOVAs (platform vs. vision) were 

used to compare mean values for all dependent variables (Table 7.1) in the 

standing position and the handstand position. Significant differences were 

examined further using multiple t-tests with a Bonferroni correction. Further 

comparisons were also made between trials of the same type from the data in 

the static session, presented previously in Chapter 4. Prior to statistical testing, 

all data were assessed for normality and sphericity by the one-sample 

Kolmogorov-Smirnov test and Mauchly’s test of sphericity respectively. A 

Greenhouse-Geisser correction was used to adapt the degrees of freedom of 

statistical tests for any data that was found to violate the assumption of 

sphericity. 

7.2. Findings and Discussion 

Significant differences were found between the original data sets and the 

surrogate data sets for both SampEn (t = - 4.6; p < 0.001) and DET (t = 3.8; p < 
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0.001), indicating the fluctuations observed were distinguishable from linearly 

correlated Gaussian noise. The original data most likely have a deterministic 

nature and the use of nonlinear techniques are supported. All data were found 

to be normally distributed by the one-sample Kolmogorov-Smirnov test. Most 

data were found to violate the assumption of sphericity, therefore the 

Greenhouse-Geisser correction was employed. 

7.2.1. Traditional Measures of Balance 

A statistically significant interaction between the effects of platform motion and 

vision, and statistically significant main effects for platform motion and vision 

were found for SD, range, and mean SV variables. Further comparisons and 

group means are given in table 7.2. All measures except trial duration 

presented with significantly larger values of sway in eyes closed and sway 

referenced conditions. Similar to previous research, results suggest that a sway 

reference platform increases AP sway in standing, with an increased effect 

during trials when no visual cues are available (Peterka and Benolken, 1995). 

Table  7.2: Mean values for traditional measures of balance in standing trials. 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

Trial Duration (s) 30.0 30.0 29.2 27.6 

SD (cm) 0.5c,d 0.6d 1.0a,d 1.9a,b,c 

Range (cm) 2.2c,d 2.8c,d 5.5a,b,d 10.2a,b,c 

SV (cm s-1) 0.9b,c,d 1.3a,d 1.8a,d 4.2a,b,c 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0083 

A statistically significant interaction between the effects of platform motion and 

vision, and statistically significant main effects for platform motion and vision 

was found for the duration in handstand. No other significant interactions were 

found for the traditional measures in the handstand trials, however, statistically 

significant main effects were found in vision for SD and in platform motion for 
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mean SV. Further comparisons and group means are given in table 7.3. 

Duration in handstand was specifically affected by the sway referenced 

platform, resulting in no subject being able to hold a handstand with eyes open 

for longer than eight seconds. Handstand on a sway referenced platform 

appears to be extremely difficult, individuals who had previously managed to 

perform five handstand trials for the full duration of 30 seconds, both with eyes 

open and eyes closed, regressed to a novice stage where balance could only 

be maintained for a few seconds. Surprisingly, few significant differences were 

found between experimental conditions, most likely due to the short trial 

durations and the presence of large individual variation between trials, similar to 

the novice subjects in Chapter 5. 

Table  7.3: Mean values for traditional measures of balance in handstand trials. 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

Trial Duration (s) 24.9b,c,d 12.8a,c,d 4.6a,b 3.6a,b 

SD (cm) 1.2c,d 1.6 1.5a 1.6a 

Range (cm) 5.4 6.0 6.4 6.6 

SV (cm s-1) 6.7 7.2 8.0 8.2 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0083 

Comparisons between static trials in standing from the first testing session 

(Chapter 4) and the static platform in the SOT show a significant increase in SD, 

range, and mean SV during stance with eyes closed (Table 7.4). This is in 

agreement with previous research that has suggested a link between how 

visual and somatosensory information is processed (Peterka and Benolken, 

1995), and specifically that recent environmental changes may alter how the 

CNS weighs the relative information from each system (McCollum et al., 1996). 

A significant reduction in the duration of handstand trials with eyes closed was 

observed when comparing the static trials from the first testing session to those 

in the static platform condition in the SOT (Table 7.4). It would appear that the 

relationship between somatosensory and visual cue utilisation, and how this is 
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affected by recent environment experiences, is similar in both standing and 

handstand postures. Unfortunately, no other balance measures presented with 

a significant difference between the two sessions for the handstand posture, 

making it difficult to draw further conclusions regarding this matter. 

Table  7.4: Mean values for traditional measures of balance for comparison to 
the static session (reported in Chapter 4). 

 Standing Handstand 

 Static SOT Static SOT 

Variable EO(a) EC(b) EO(c) EC(d) EO(e) EC(f) EO(g) EC(h) 

Trial Duration (s) 30.0 30.0 30.0 30.0 27.7 18.6h 24.9 12.8f 

SD (cm) 0.5 0.5d 0.5 0.6b 1.3 1.6 1.2 1.6 

Range (cm) 2.1 2.2d 2.2 2.8b 5.9 6.6 5.4 6.0 

SV (cm s-1) 0.7c 0.9d 0.9a 1.3b 6.8 7.7 6.7 7.2 

Note: superscripts indicate significant differences between conditions at the significance level of 
0.05 

7.2.2. Nonlinear Measures of Balance 

There were no statistically significant interactions between the effects of 

platform motion and vision for any of the nonlinear measures of balance during 

standing trials. There were statistically significant main effects for both platform 

motion and vision for LyE. Further comparisons revealed that these differences 

were between standing on a static platform with eyes open and on a sway 

reference platform with eyes closed or eyes open; group means are given in 

table 7.5. Reduced LyE values for sway referenced platform conditions suggest 

that COP trajectories become more organised with lower localised divergence. 
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Table  7.5: Mean values for nonlinear and recurrence measures for balance in 
standing. 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

SampEn 0.05 0.06 0.04 0.05 

LyE 0.94c,d 0.78 0.57a,d 0.33a,c 

RR (%) 6.01 3.81 7.44 4.42 

DET (%) 99.91 99.91 99.95 99.95 

ENT (bits) 4.44 4.29 4.78 4.55 

DIV 0.38 0.55 0.25 0.34 

TND -1.32 -1.33 -2.51 -1.88 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0083 

There were no statistically significant interactions between the effects of 

platform motion and vision for any of the nonlinear measures of balance during 

handstand trials. There were statistically significant main effects in both 

platform motion and vision for ENT, in vision for DET, and in platform motion for 

DIV and LyE. Further comparisons and group means are given in table 7.6. 

Significant differences were found between handstands on a static platform 

with eyes open and on sway referenced platform with eyes closed for RR, ENT, 

DIV, and TND. Although there was a significant increase in RR between 

handstands on a static platform with eyes open compared to on a sway 

referenced platform with eyes closed, this is most likely due to a large decrease 

in the trial duration reported previously. Increases in DIV and TND with a 

decrease in ENT indicate a drift in COP throughout the trial when performing a 

handstand in the sway referenced condition. Collectively, these results suggest 

that when performing a handstand on a sway referenced platform, subjects 

tended to drift, or fall, with few corrections, leading to nonstationary signals with 

large divergence in local trajectories. 
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Table  7.6: Mean values for nonlinear and recurrence measures for balance in 
handstand. 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

SampEn 0.14 0.09 0.09 0.09 

LyE 0.76 0.61 1.05 0.96 

RR (%) 1.13d 3.01 4.98 5.09a 

DET (%) 99.27 99.58 99.44 99.66 

ENT (bits) 2.60d 2.22d 1.56 1.07a,b 

DIV 4.84c,d 10.14 20.23a 19.92a 

TND -4.20d -31.10 -37.93 -41.02a 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0083 

Further comparisons between static trials in standing from the first testing 

session (Chapter 4) and the static platform in the SOT show a significant 

increase in SampEn, DIV, and TND during stance with eyes open and stance 

with eyes closed (Table 7.7). Results suggest that the possible re-weighing of 

sensory inputs during sway referenced platform motion results in a residual 

effect that increases stationarity, but also increases localised divergence. Such 

a manifestation would likely be caused by fewer small adjustments and larger 

amplitudes of sway, possibly indicating a change in sensory thresholds. 

The only significant difference between static handstand from the first session 

and those during the SOT was for ENT, with a decreased value for trials during 

the SOT for both eyes open and eyes closed conditions. Lower ENT values 

would represent a decrease in Shannon entropy, meaning the spread of 

recurrence lines has reduced, increasing the probability of any line length. 

These results may be interpreted as providing further evidence of the sway 

referenced platform altering how sensory information is weighed during 

subsequent static balance in handstand. 
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Table  7.7: Mean values for nonlinear and recurrence measures of balance for 
comparison to the static session (reported in Chapter 4). 

 Standing Handstand 

 Static SOT Static SOT 

Variable EO(a) EC(b) EO(c) EC(d) EO(e) EC(f) EO(g) EC(h) 

SampEn 0.03c 0.04d 0.05a 0.06b 0.11 0.11 0.14 0.09 

LyE 1.14 0.95 0.94 0.78 0.66 0.60 0.76 0.61 

RR (%) 9.32 6.94 6.01 3.81 1.04 1.66 1.13 3.01 

DET (%) 99.95 99.94 99.91 99.91 99.31 99.51 99.27 99.58 

ENT (bits) 4.83 4.56 4.44 4.29 2.88g 2.8h 2.60e 2.22f 

DIV 0.13c 0.26d 0.38a 0.55b 3.67 6.53 4.84 10.14 

TND -3.28c -2.28d -1.32a -1.33b -0.64 -4.18 -4.20 -31.10 

Note: superscripts indicate significant differences between conditions at the significance level of 
0.05 

7.2.3. Estimated Feedback time Delay 

There were no statistically significant interactions or main effects for the cross 

correlations between ankle torque and COM displacements in standing trials; 

mean values are given in Table 7.8. 

Table  7.8: Cross correlations between ankle torque and COM displacement in 
standing. 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

Delay (ms) -4 -6 3 -6 

R2 0.77 0.75 0.69 0.75 

Note: A negative delay indicates the COM peak occurs after the ankle torque peak 

There were no statistically significant interactions between the effects of 

platform motion and vision for cross correlations between wrist torque and 

COM displacements, wrist flexor/extensor EMG and COM displacements, or 



175 
 

wrist flexor/extensor EMG and wrist torques in handstand trials. There were 

significant main effects in platform motion for the delay from cross correlations 

between EMG and COM displacements, and between wrist torque and COM 

displacements, but not for cross correlations between wrist flexor/extensor 

EMG and wrist torques in handstand trials. There was also a significant main 

effect in platform motion for the R2 value calculated from cross correlations 

between wrist torque and COM displacements in handstand trials. Significant 

differences and group mean values are given in Table 7.9. 

A large increase in the delay from cross correlations between wrist joint torque 

and COM displacement from the static platform to the sway referenced platform 

conditions may suggest a change in the corrective strategy used to maintain 

balance in handstand. On the other hand, decreases in the R2 value calculated 

from these cross correlations make it apparent that a simple linear relationship 

between wrist joint torque and COM displacement is inappropriate in this case. 

Table  7.9: Cross correlations between wrist torque and COM, EMG and COM, 
and between EMG and wrist torque in handstand. 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

Torque – COM: Delay (ms) 5c,d 25 164a 128a 

Torque – COM: R2 0.54d 0.55d 0.36 0.26a,b 

EMG – COM: Delay (ms) 117c 125 240c 194 

EMG – COM: R2 0.20 0.29 0.29 0.17 

EMG – Torque: Delay (ms) 89 63 40 53 

EMG – Torque: R2 0.49 0.62 0.55 0.45 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0083 
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Table  7.10: Mean values for estimated feedback time delay for balance in 
standing, from the Yeadon and Trewartha regression model (M1) and the 
adapted method (M2). 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

M1 Delay (ms) 243 249 234 228 

M1 R2 0.83 0.83 0.85 0.89 

M1 ࢖ coefficient 666c 676c 548a,b 584 

M1 ࢊ coefficient 260 274 308 284 

M1 ࢖ torque (%) 90.1 105.4 11.6 87.8 

M1 ࢊ torque (%) 9.9 -5.4 88.4 12.2 

M2 Delay (ms) 283 288 276 269 

M2 R2
  0.82 0.83 0.84 0.88 

M2 ࢖૚ coefficient 55 63 75 56 

M2 ࢖૛ coefficient 601c 597c 466a,b 515 

M2 ࢊ coefficient 267 279 303 291 

M2 ࢖૚ torque (%) 5.8 7.5 11.2 7.9 

M2 ࢖૛ torque (%) 65.4a 61.9 54.7a 59.3 

M2 ࢊ torque (%) 28.8 30.6 34.1 32.8 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0083 

There were no statistically significant interactions between the effects of 

platform motion and vision for the estimated delay, R2 values, or percentage of 

joint torques calculated from either the Yeadon and Trewartha method or the 

adapted method in standing trials. There were statistically significant main 

effects for platform motion for the coefficients based on delayed displacement 

from both methods. Further analysis via multiple t-tests show these differences 

are between static platform trials with eyes open or eyes closed and sway 
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referenced platform trials with eyes open; group mean values and comparisons 

are given in table 7.10. 

Table  7.11: Mean values for estimated feedback time delay for balance in 
handstand, from the Yeadon and Trewartha regression model (M1) and the 
adapted method (M2). 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

M1 Delay (ms) 177b 210a 202 205 

M1 R2 0.76 0.78 0.75 0.75 

M1 ࢖ coefficient 689 683 581 824 

M1 ࢊ coefficient 243 233 270 265 

M1 ࢖ torque (%) 51.0 92.6 71.5 67.0 

M1 ࢊ torque (%) 49.0 7.4 28.5 33.0 

M2 Delay (ms) 219b 291a 263 301 

M2 R2
  0.75 0.78 0.73 0.75 

M2 ࢖૚ coefficient 37d 162 179 290a 

M2 ࢖૛ coefficient 615c 489 351a 521 

M2 ࢊ coefficient 262 224 266 241 

M2 ࢖૚ torque (%) 4.0d 19.0 21.6 27.4a 

M2 ࢖૛ torque (%) 66.9c,d 54.6 41.2a 45.3a 

M2 ࢊ torque (%) 29.0 26.4 37.2 27.3 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0083 

There were no statistically significant interactions between the effects of 

platform motion and vision for the estimated delay, R2 values, or percentage of 

joint torques calculated from either the Yeadon and Trewartha method or the 

adapted method in handstand trials. There was a statistically significant main 

effect for vision for the estimated delay calculated from the adapted method, 
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and a statistically significant main effect for platform motion for the percentage 

of joint torque based on delayed displacement from the adapted method. 

Further analysis via multiple t-tests (Table 7.11) show there was a significant 

increase in the estimated delay calculated from both methods between static 

handstand trials with eyes open and eyes closed conditions. A significant 

decrease in the percentage torque from delayed displacement, with a 

corresponding increase in the percentage torque estimated from a passive 

stiffness mechanism, were found when comparing static handstand trials with 

eyes open to sway referenced handstand trials with eyes open or eyes closed.  

Increased feedback time delay between handstands with eyes open and 

handstands with eyes closed replicates the finding from the static session 

previously reported in Chapter 4. It would be expected that a sway referenced 

platform that successfully reduced somatosensory feedback during handstands 

would also result in an increased feedback time delay. Although there was a 

small increase in feedback time delay during the sway referenced platform 

condition, this difference is not statistically significant. A reason for this may be 

the apparent increase in passive stiffness of the wrist. In standing trials on a 

sway referenced platform with amplified platform rotation, previous research 

has shown an increase in ankle stiffness by as much as 60%, with further 

increased stiffness in vestibular loss patients (Peterka, 2002). Peterka (2002) 

suggested that the increased stiffness may help to provide additional sensory 

feedback during times of sensory insufficiency. 

Table  7.12: Cross correlations between ankle torque and COM displacement in 
standing trials from the static session (reported in Chapter 4) and the static 
platform condition of the SOT. 

 Static SOT 

Variable EO(a) EC(b) EO(c) EC(d) 

Delay (ms) 1 -1 -4 -6 

R2 0.94c 0.91d 0.77a 0.75b 

Note: superscripts indicate significant differences between conditions at the significance level of 
0.05; a negative delay indicates the COM peak occurs after the ankle torque peak 
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Further comparisons between static trials in standing from the first testing 

session (Chapter 4) and the static platform in the SOT show there was not a 

significant difference in delay from cross correlations between ankle torque and 

COM displacement, but there was a significant decrease in the calculated R2 

value from these cross correlations (Table 7.12). Similar comparisons in 

handstand trials show there were no significant differences in the calculated 

delay or R2 values from cross correlations between: wrist joint torque and COM 

displacements, wrist flexor/extensor EMG and COM displacements, or 

flexor/extensor EMG and wrist joint torque (Table 7.13). 

Table  7.13: Cross correlations between wrist torque and COM, EMG and COM, 
and between EMG and wrist torque in handstand trials from the static session 
(reported in Chapter 4) and the static platform condition of the SOT. 

 Static SOT 

Variable EO(a) EC(b) EO(c) EC(d) 

Torque – COM: Delay (ms) -3 9 5 25 

Torque – COM: R2 0.64 0.56 0.54 0.55 

EMG – COM: Delay (ms) 107 118 117 125 

EMG – COM: R2 0.27 0.30 0.20 0.29 

EMG – Torque: Delay (ms) 95 93 89 63 

EMG – Torque: R2 0.59 0.65 0.49 0.62 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0083; a negative delay indicates the COM peak occurs after the wrist 
torque peak 

Comparisons between static trials in standing or handstand from the first testing 

session and those from the static platform condition in the SOT show there 

were no significant differences in the estimated feedback time delay from either 

the Yeadon and Trewartha method or the adapted method (Table 7.14). There 

was a significant reduction in R2 values from both methods for standing trials, 

suggesting a slight change in the balance strategies used by the subjects that 

is not represented by the regression models employed here. 
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Table  7.14: Mean values for estimated feedback time delay for balance in 
comparison to the static session (reported in Chapter 4), from the Yeadon and 
Trewartha regression model (M1) and the adapted method (M2). 

 Standing Handstand 

 Static SOT Static SOT 

Variable EO(a) EC(b) EO(c) EC(d) EO(e) EC(f) EO(g) EC(h) 

M1 Delay (ms) 234 244 243 249 176 200 177 210 

M1 R2 0.96c 0.94d 0.83a 0.83b 0.79 0.80 0.76 0.78 

M1 ࢖ coefficient 657 683 666 676 596 603 689 683 

M1 ࢊ coefficient 236 252 260 274 237 237 243 233 

M1 ࢖ torque (%) -15.9 742.8 90.1 105.4 402.3 960.1 51.0 92.6 

M1 ࢊ torque (%) 115.9 -642.8 9.9 -5.4 -302.3 -860.1 49.0 7.4 

M2 Delay (ms) 262 278 283 288 212 244 219 291 

M2 R2  0.96c 0.94d 0.82a 0.83b 0.78g 0.79 0.75e 0.78 

M2 ࢖૚ coefficient 25 23 55 63 51 67 37 162 

M2 ࢖૛ coefficient 628 650 601 597 529 511 615 489 

M2 ࢊ coefficient 247 267 267 279 243 240 262 224 

M2 ࢖૚ torque (%) 2.8 2.4 5.8 7.5 6.4 9.3 4.0 19.0 

M2 ࢖૛ torque (%) 69.8 69.2 65.4 61.9 64.1 60.7 66.9 54.6 

M2 ࢊ torque (%) 27.4 28.3 28.8 30.6 29.5 30.0 29.0 26.4 

Note: superscripts indicate significant differences between conditions at the significance level of 
0.05 

7.2.4. Movement Corrections 

There were statistically significant interactions between the effects of platform 

motion and vision in standing trials for the mean ankle torques during small and 

large movement corrections. Statistically significant main effects for platform 

motion were found for mean ankle torques and the duration of torque activity for 

small, medium, and large movement corrections, and for the number of medium 

and small corrections per second. Further comparisons and group means for 

standing trials are given in table 7.15. 
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Table  7.15: Movement corrections based on joint torques for balance in 
standing, with large, medium, and small (L, M, S) corrections based on torque 
above 1, 2, and 3 SD respectively. 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

L - Corrections/s 0.08 0.11 0.06 0.08 

M - Corrections/s 0.20c,d 0.23c,d 0.10a,b 0.09a,b 

S - Corrections/s 0.45c,d 0.44c,d 0.19a,b 0.20a,b 

L - Mean Torque 0.65c,d 0.76c,d 1.18a,b 1.10a,b 

M - Mean Torque 0.66c,d 0.76c,d 1.19a,b 1.10a,b 

S - Mean Torque 0.65c,d 0.75c,d 1.20a,b 1.15a,b 

L – Impulse 161 171 186 147 

M – Impulse 97c 112 137a 121 

S – Impulse 54b,c 63a 79a 73 

L – Duration (s) 6.41c,d 5.48d 3.65a 3.19a,b 

M – Duration (s) 3.92c,d 3.56d 2.79a 2.35a,b 

S – Duration (s) 2.09c,d 1.98d 1.58a 1.52a,b 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0083; mean torque and impulse are normalised to ݄݉ଶ (݉ ൌmass and 
݄ ൌheight of COM) 

Data typically show that balance in standing on a sway referenced platform has 

a lower number of corrections per second, with decreased burst duration and 

an increase in mean ankle torque. These results may provide evidence that the 

sway referenced platform successfully reduces somatosensory feedback, 

resulting in fewer corrections per second when controlling balance. Larger 

mean joint torques during stance on a sway referenced platform likely 

represents an increase in postural lean with the COM positioned further 

forwards. The reasons for this are unclear, but one possibility is that this may 

be to increase tension in the ankle plantar flexors in an attempt to either gain 

more sensory information from force sensitive proprioceptors or to rely more on 
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a passive stiffness control mechanism. Both hypotheses have been suggested 

by Peterka (2002), who found an increase in ankle stiffness by as much as 60% 

with increased support surface amplitudes, with further increased stiffness in 

vestibular loss patients. 

It was not possible to calculate any movement corrections for handstand trials 

on a sway referenced platform (Table 7.16). Similar to the novice data from 

Chapter 5, this is likely due to short trial durations and a lack of any coordinated 

mechanism to maintain balance in this challenging task. 

Table  7.16: Movement corrections based on joint torques for balance in 
handstand, with large, medium, and small (L, M, S) corrections based on torque 
above 1, 2, and 3 SD respectively. 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

L - Corrections/s 0.12c,d 0.03 0a 0a 

M - Corrections/s 0.32c,d 0.10 0a 0a 

S - Corrections/s 0.58c,d 0.21 0a 0a 

L - Mean Torque 0.38 0.38 N/A N/A 

M - Mean Torque 0.38 0.38 N/A N/A 

S - Mean Torque 0.37 0.37 N/A N/A 

L – Impulse 51 54 N/A N/A 

M – Impulse 23 20 N/A N/A 

S – Impulse 11 11 N/A N/A 

L – Duration (s) 3.60 5.52 N/A N/A 

M – Duration (s) 1.76 1.74 N/A N/A 

S – Duration (s) 0.91 0.86 N/A N/A 

Note: superscripts indicate significant differences between conditions at the significance level of 
0.05; mean torque and impulse are normalised to ݄݉ଶ (݉ ൌmass and ݄ ൌheight of COM) 
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There were statistically significant interactions between the effects of platform 

motion and vision in handstand trials for the RMS EMG activity of wrist 

flexor/extensor muscles for all movement correction magnitudes. Statistically 

significant main effects for platform motion were found for EMG burst duration 

in large and medium movement corrections, and the number of large and small 

movement corrections per second. Further comparisons and group means are 

given in table 7.17. Data typically show an increase in the number of 

corrections per second, with a reduced EMG burst duration, for handstands on 

a sway referenced platform. These results may indicate the attempt by subjects 

to correct a possible detection of falling, but it is unclear if this data supports a 

coordinated or uncoordinated response to this threat. 

Table  7.17: Movement corrections based on wrist flexor/extensor EMG for 
balance in handstand, with large, medium, and small (L, M, S) corrections 
based on EMG above 1, 2, and 3 SD respectively. 

 Static Platform Sway Referenced Platform 

Variable EO(a) EC(b) EO(c) EC(d) 

L - Corrections/s 0.89c,d 1.26 1.62a 2.04a 

M - Corrections/s 1.74c 2.06 2.42a 2.37 

S - Corrections/s 2.23c 3.13 3.68a 3.39 

L – RMS 0.45c 0.54 0.58a 0.51 

M – RMS 0.43c 0.51 0.57a 0.52 

S – RMS 0.41 0.50 0.55 0.50 

L – Duration (s) 1.24c,d 0.97 0.58a 0.46a 

M – Duration (s) 0.53c,d 0.45d 0.34a 0.29a,b 

S – Duration (s) 0.28b,c,d 0.25a 0.23a,d 0.19a,c 

Note: superscripts indicate significant differences between conditions at the Bonferroni adjusted 
significance level of 0.0083 

Comparisons between static trials in standing from the first testing session 

(Chapter 4) and the static platform in the SOT show a significant increase in 

mean ankle torque during the SOT, and an increase in torque impulse during 
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the SOT with eyes closed (Table 7.18). Larger mean joint torques during stance 

on a static platform in the SOT would suggest that recent experiences of the 

sway referenced platform encourages subjects to position their COM further 

forward for subsequent trials. This further supports the assertion that the sway 

referenced platform has residual effects on an individual’s balance strategy. 

This may also suggest that, instead of altering of the way the CNS weighs 

different sensory inputs, changes in balance performance after experiencing 

the sway referenced platform may be due to increased postural lean to 

increase tension in the ankle plantar flexors. Further study in this regard is 

required to understand the full implications of the sway referenced platform and 

the influence it has on an individual’s balance strategies. 

Table  7.18: Mean values for movement corrections based on joint torques for 
balance in the static session (reported in Chapter 4) and the static platform 
condition of the SOT. 

 Standing Handstand 

 Static SOT Static SOT 

Variable EO(a) EC(b) EO(c) EC(d) EO(e) EC(f) EO(g) EC(h) 

L - Corrections/s 0.09 0.11 0.08 0.11 0.19g 0.08 0.12e 0.03 

M - Corrections/s 0.19 0.22 0.20 0.23 0.41g 0.18 0.32e 0.10 

S - Corrections/s 0.41 0.44 0.45 0.44 0.75 0.32 0.58 0.21 

L - Mean Torque 0.57 0.59d 0.65 0.76b 0.46 0.54h 0.38 0.38f 

M - Mean Torque 0.56c 0.58d 0.66a 0.76b 0.46 0.54h 0.38 0.38f 

S - Mean Torque 0.57 0.59d 0.65 0.75b 0.46 0.54h 0.37 0.37f 

L – Impulse 127 124d 161 171b 50 75 51 54 

M – Impulse 85 84 97 112 25 38 23 20 

S – Impulse 45 43d 54 63b 14 21h 11 11f 

L – Duration (s) 6.36 6.50 6.41 5.48 3.40 3.67 3.60 5.52 

M – Duration (s) 4.49 4.15 3.92 3.56 1.60 1.77 1.76 1.74 

S – Duration (s) 2.42 2.18 2.09 1.98 0.85 0.92 0.91 0.86 

Note: superscripts indicate significant differences between conditions at the significance level of 
0.05; mean torque and impulse are normalised to ݄݉ଶ (݉ ൌmass and ݄ ൌheight of COM) 
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Comparisons between static trials in handstand from the first testing session 

and the static platform in the SOT show a significant decrease in the number of 

large and medium corrections per second in trials with eyes open (Table 7.18). 

In contrast to standing trials, handstand with eyes closed showed a significant 

decrease in mean wrist torque for all correction magnitudes, and a decrease in 

torque impulse for small corrections. Collectively these results may suggest that 

recent experience of balancing in handstand on a sway referenced platform 

reduces the effectiveness of the balance strategy usually employed. This may 

represent a change to how the CNS weighs the different sensory inputs during 

balance, as was previously suggested. 

Table  7.19: Movement corrections based on wrist flexor/extensor EMG for 
balance in handstand in the static session (reported in Chapter 4) and the static 
platform condition of the SOT. 

 Static SOT 

Variable EO(a) EC(b) EO(c) EC(d) 

L - Corrections/s 0.75 0.88 0.89 1.26 

M - Corrections/s 1.75 1.67 1.74 2.06 

S - Corrections/s 2.20 2.41 2.23 3.13 

L – RMS 0.56 0.61 0.45 0.54 

M – RMS 0.53 0.59 0.43 0.51 

S – RMS 0.51 0.55 0.41 0.50 

L – Duration (s) 1.31 1.24 1.24 0.97 

M – Duration (s) 0.55 0.52 0.53 0.45 

S – Duration (s) 0.28 0.28 0.28d 0.25c 

Note: superscripts indicate significant differences between conditions at a significance level of 
0.05 

Few significant differences were found regarding the analysis of movement 

corrections based on wrist flexor/extensor EMG between static trials in 

handstand from the first testing session and the static platform in the SOT 

(Table 7.19).  
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7.3. Summary 

The sway referenced platform resulted in increased sway in standing as 

measured by the traditional balance metrics. While past literature using the 

SOT has been mainly concerned with clinical populations with vestibular loss or 

feedback time deficits, these results are in agreement with this literature, which 

has shown a degradation of postural stability caused by the decreased 

accuracy of somatosensory cues during sway referenced conditions (Nashner 

et al., 1982; Nashner et al., 1983; Peterka, 2002; Peterka and Benolken, 1995). 

Further increases in postural sway were observed for subjects balancing on a 

sway referenced platform with eyes closed. This may support the suggestion of 

a link between how visual and somatosensory information are processed 

(Peterka and Benolken, 1995), or may simply be a result of increased sway due 

to a further decrease in sensory information. A residual effect from the sway 

referenced platform appears to result in increased sway during static stance 

compared to a previous session, supporting the view that recent environmental 

changes may alter how the CNS weighs the relative information from each 

sensory system (McCollum et al., 1996). 

Although inaccurate somatosensory information is harder to supress than 

inaccurate visual or vestibular information (Nashner et al., 1982), adults will 

typically respond to the sensory conflicts imposed by a sway referenced 

platform by ignoring irrelevant sensory cues and focusing on those pertinent to 

a vertical orientation (Nashner et al., 1983). Children of 6 to 9 years of age will 

respond to sensory cues that are perceptually correct, and possibly 

orientationally incorrect, usually resulting in a loss of balance (Nashner et al., 

1983). In the current research experienced handstanders balancing on a sway 

referenced platform in the handstand position found it particularly difficult to 

balance with reduced sensory information from wrist somatosensory 

proprioceptors, usually resulting in a loss of balance within five seconds. Similar 

to standing, a reduced performance during handstand balance on static 

platform within the SOT was observed when compared to a previous session 

involving only static balance. This would appear to indicate the relationship 

between somatosensory and visual cue utilisation, and how this is affected by 
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recent environment experiences, is similar in both standing and handstand 

postures. 

Further analysis of COP trajectories during balance in handstand and standing 

in each of the SOT conditions revealed little insight into the causes for 

increased sway during sway referenced conditions. Similarly, little change to 

the estimated feedback time delays during static platform and sway referenced 

platform conditions were evident. It would be expected that a sway referenced 

platform that successfully reduced somatosensory feedback during balance 

would also result in an increased feedback time delay. Although there was a 

small increase in feedback time delay during the sway referenced platform 

condition, this difference is not statistically significant. A reason for this may be 

the apparent increase in passive stiffness at the controlling joint. 

Peterka (2002) found that sway referenced platform motion with amplified 

rotation could increase active and passive muscle stiffness by as much as 60%, 

and suggested that the increased stiffness may help to provide additional 

sensory feedback during times of sensory insufficiency. This view may be 

supported further by the results of the current research, which found a 

significant increase in mean joint torques for all movement correction 

magnitudes during standing trials on a sway referenced platform. One 

possibility is that increased joint torques, and increased tension in the ankle 

plantar flexors, will increase sensory information from force sensitive 

proprioceptors in the musculotendinous complex. Alternatively, this may simply 

be an attempt to rely on a passive stiffness mechanism to either control 

balance or to reduce sway velocity to allow more time for an appropriate 

response to be initiated. The latter interpretation seems to be the most likely, as 

subjects typically displayed fewer corrections per second when controlling 

balance on the sway referenced platform. In addition, standing trials during the 

static platform condition of the SOT compared to the static session displayed a 

significant reduction in R2 values calculated from both cross correlations and 

regression models, suggesting a slight change in the balance strategies used 

by subjects that is not represented by the analyses employed here. 
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The aim of this chapter was to examine how balance in standing and 

handstand may be affected by altered sensory feedback and to provide insight 

into the importance of ankle and wrist somatosensory feedback in human 

balance. Peterka (2002) concluded that the simple act of standing quietly relies 

on a remarkably complex sensorimotor control system. It seems likely that 

during handstand balance the process is essentially the same. With reduced 

muscular strength in the wrist compared to the ankle, and an increased 

moment of inertia about the supporting joint in handstand, the demands on the 

CNS system increases. One consequence may be the requirement for more 

finely tuned somatosensory feedback to affect an appropriate response in a 

timely fashion. In the current research experienced handstanders experiencing 

the sway referenced platform appear to have found the subsequent reduction in 

somatosensory feedback impossible to manage. Results suggest that adequate 

wrist and hand somatosensory feedback is essential for successful balance in 

the handstand position. 
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CHAPTER 8 

SUMMARY AND CONCLUSION 

The purpose of the current research was to examine how a novel balance task 

is learnt by individuals with a mature neurological system, and to investigate the 

responses of experienced hand balancers to mechanical and sensory 

perturbations. Within this chapter the extent to which this aim has been 

achieved is considered. The methods used within the study are summarised 

and limitations and potential improvements are identified. The research 

questions posed are addressed and future applications are discussed. 

8.1. Thesis Summary 

Chapter 2 reviewed the literature surrounding balance and postural control. The 

relevance of both the neurological and the mechanical implications for postural 

control were highlighted, and a means through which these may be assessed 

were provided. The development of postural control as a child ages was 

discussed, and balance in the handstand position was suggested as a possible 

alternative to assessing how postural control is learnt. 

8.1.1. Data Collection and Processing 

Chapter 3 detailed the collection of the experimental data in the current 

research, and described the experimental protocol that was used for both 

studies. The methods used to process the data were explained, highlighting 

areas where specific care was taken to minimise and reduce any systematic 

and random errors within the data. 

Kinematic, kinetic, EMG, and anthropometric data were collected on novice and 

experienced handstanders during balance in three postures, including: double 

leg stance, single leg stance, and handstand. 
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8.1.1.1. Kinematic Data 

Kinematic data were collected via a Vicon system with nine T20 cameras using 

a sample frequency of 200 Hz, employing a set of 53 markers to divide the 

body into 18 segments. Marker displacements were filtered with a fourth order, 

zero lag, low-pass Butterworth filter with a cut-off frequency of 10 Hz. Segment 

local coordinate systems were constructed and quaternion algebra was used to 

calculate: segment COM linear displacements, velocities, and accelerations; 

and segment angular velocities and accelerations relative to the global 

coordinate system. 

8.1.1.2. Kinetic Data 

Kinetic data were collected via two Bertec strain gauge force plates with a 

sample frequency of 2000 Hz, before being resampled to 200 Hz. Data were 

resampled using the Matlab decimate function, where the signal was first 

filtered with a low-pass anti-aliasing filter before being resampled at the lower 

rate. Raw COP data were saved for further analysis using nonlinear analysis 

tools that require data to be unfiltered. Force, COP, and moment data were 

filtered using a fourth order, zero lag, low-pass Butterworth filter with a cut-off 

frequency of 10 Hz. 

8.1.1.3. Anthropometric Data 

Subject segmental inertia parameters were determined via the geometric inertia 

model of Yeadon (1990). Adjustments were made to alter the geometric 

segmental definitions of the trunk to match those defined from the kinematic 

data. 

8.1.1.4. Inverse Dynamics 

Kinetic, kinematic, and anthropometric data were used to calculate three 

dimensional joint moments and forces via wrench notation, based on the work 

of Dumas et al. (2004). Great care was taken to correct for systematic errors 

during trials with a moving platform by adjusting both the COP location and the 

force vector calculated from the force plate software. Three dimensional joint 

moments from right and left joints were combined to obtain two dimensional 
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joint moments about the global x-axis for the ankles, hips, shoulders, and wrist 

joints. 

8.1.1.5. EMG Data 

Muscle activity data were collected on 16 locations via the Delsys Trigno 

wireless EMG system, using a sample frequency of 2000 Hz. Raw EMG data 

were filtered with a fourth order, zero lag, band-pass Butterworth filter with cut-

off frequencies of 20 Hz and 450 Hz. EMG data were analysed unfiltered for 

perturbation trials and filtered using a fourth order, zero lag, low-pass 

Butterworth filter with a cut-off frequency of 10 Hz for static balance trials. 

8.1.1.6. Centre of Mass Calculations 

The horizontal displacement and velocity of the COM was determined via a 

combination of the segmental method from kinematic and anthropometric data, 

and the double integration of ground reaction force divided by body mass, 

following the equations from Yeadon and Trewartha (2003). Additional 

modifications were made to the COM displacement provided by the segmental 

method, by adjusting the COM positions of the segments that form the torso, 

similar to procedure of Kingma et al. (1995). 

8.1.2. Assessing Balance 

Chapter 4 examined the assumptions used by various data analysis methods to 

assess balance, with specific reference to the calculation and implementation of 

different balance metrics used within the literature. Twelve experienced 

handstanders completed the first part of study two. Subjects were required to 

perform five trials for a maximum of 30 seconds in each of the six conditions, 

including: double leg stance, single leg stance, and handstand, each with eyes 

open and eyes closed conditions. Traditional balance measures based on COP 

trajectories were compared with more sophisticated nonlinear time series 

analysis techniques. Analysis showed that COP signals contained a degree of 

deterministic structure, reinforcing the view that postural sway is not purely a 

random process. A summary of each of the groups of balance measures used 

within the current research is presented in tables 8.1 to 8.4. 
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Table  8.1: Summary of the traditional balance measures used in the current 
research 

Variable Description 

Range, SD, 
mean SV 

Standard deviation, range, and mean sway velocity of the COP 
signal, indicating how well the individual is controlling and 
minimising the displacement of their COP trajectory 

 

Table  8.2: Summary of the nonlinear and recurrence balance measures used 
in the current research 

Variable Description 

Determinism Assesses whether the underlying process of the signal is 
deterministic or stochastic; a higher value indicates balance is 
controlled by a deterministic process 

Lyapunov 
exponent/ 
Divergence 

The exponential divergence of local trajectories, relating to the 
stretching, folding, and contraction rate of the signal when 
reconstructed in the higher dimensional state space. Higher values 
suggest balance is controlled by a nonlinear process with quickly 
changing dynamics 

Entropy/ Sample 
Entropy 

The complexity and regularity within the signal, relating to the loss 
of information as the system evolves. Higher values suggest a 
complex nonlinear process is controlling balance 

Trend The amount of drift in the signal, with zero describing a stationary 
process. Non-zero values suggest drift within balance 

 

Table  8.3: Summary of the feedback time delay balance measures used in the 
current research 

Variable Description 

Delay An estimate of the feedback time delay based on delayed 
regressions, incorporating: time to reach sensory thresholds, 
neurological delay, and electromechanical delay 

R2 The R2 value for the regression model of torque against COM 
motion that was used to determine the feedback time delay 

Torque 
percentages 

The torque from proportional and derivative gains from the 
regression model, providing an estimate of passive stiffness 
control and the importance of COM displacement and velocity for 
determining the total torque generated to maintain balance 
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Table  8.4: Summary of the movement correction balance measures used in the 
current research 

Variable Description 

Corrections per 
second 

The number of small, medium, and large corrections per second 
used to maintain balance, based on joint torques or EMG activity 

Mean Torque/ 
Torque Impulse/ 
RMS 

The average amount of torque or muscle activity during small, 
medium, and large movement corrections 

Burst duration The average duration of small, medium, and large movement 
corrections 

 

Data suggests that the best balance metrics for distinguishing between each of 

the six conditions was the traditional balance measure of sway velocity. Sway 

velocity was able to distinguish between each posture, and between eyes open 

and eyes closed conditions in each posture. In contrast, nonlinear measures 

successfully differentiated between each posture, but not between eyes open 

and eyes closed conditions within each posture. Traditional measures of 

balance appear to be more sensitive to changes in balance performance, but 

cannot provide any further information on the underlying process of balance. 

Nonlinear measures of balance appear to offer insight into the underlying 

deterministic processes that control balance, offering measures of system 

determinism, complexity, and predictability. 

Further assessments of balance performance and the underlying process of 

postural control were provided by estimates of feedback time delay and 

movement corrections. Balance was modelled as a simple proportional and 

derivative controlled process, where joint torques about the ankle or wrist were 

regressed against COM displacements and velocities at earlier times based on 

the method of Yeadon and Trewartha (2003). The time that provided the largest 

R2 value was used as an estimate of the feedback time delay for postural 

control. An adapted model was also used, where a third term was entered into 

the regression model based on the COM displacement with zero delay, 

representing the torque due to a passive stiffness mechanism. 
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Feedback time delay estimates from the adapted method were typically larger 

than those from the Yeadon and Trewartha method, supporting the view that 

contributions of a passive stiffness mechanism may cause underestimations of 

feedback time delay from the Yeadon and Trewartha method (Yeadon and 

Trewartha, 2003). Typical estimates for feedback time delay from the adapted 

method were approximately: 265 ms for double leg standing trials, 225 ms for 

single leg standing trials, and 220 ms for handstand trials. Feedback time delay 

estimates were typically higher for trials with eyes closed compared to trials 

with eyes open for all postures. 

Extremely high R2 values for standing trials are consistent with modelling 

human standing balance as a simple inverted pendulum about the ankle joint. 

Lower R2 values in handstand are still promising, but may suggest that other 

factors need to be considered. Yeadon and Trewartha (2003) suggested that 

one cause for the lower R2 values could be due to noise within the sensory 

system resulting in errors in the subsequent responses. This view may be 

supported by the high R2 values found in standing trials, where sensory noise 

may be expected to be less. Additionally, a general decrease in feedback time 

delay estimates with increased mean sway velocity may suggest that velocity 

dependent sensory thresholds are of importance. 

Movement correlations were calculated based on changes in wrist and ankle 

joint torques. Data typically show that balance in standing exhibits bursts of 

torque activity that are longer and with a higher torque impulse compared to 

balance in handstand. Lower numbers of movement corrections per second are 

evident in standing trials, with the largest number of corrections occurring in 

handstand with eyes open and single leg stance with eyes open. 

Reduced mean torque and torque impulse during all movement corrections in 

handstand are indicative of the reduced muscular strength of the muscles found 

in the forearm compared to the lower leg. It would appear this leads to the 

requirement for a larger number of corrections per second, but with reduced 

burst duration, while balancing in handstand. 
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Assessments of feedback time delay and movement corrections appear to 

provide both an insight into the control of posture and help distinguish one 

condition from another. Future research may wish to employ both feedback 

time delay and movement corrections and magnitudes simultaneously to delve 

further into the postural control process. 

8.1.3. Learning to Balance 

Chapter 5 assessed which balance metrics best characterise improvements in 

balance performance when a novice learns to balance in handstand. Thirteen 

subjects completed all parts of study one, where they were required to practice 

handstands three times a week for 10-15 minutes each session over a period of 

eight months. Subjects were tested once a month to examine performance in 

handstand along with various kinematic and kinetic variables. The main 

criterion for assessing handstand performance was the duration that 

participants could maintain independent balance in the handstand position. All 

participants were unable to maintain independent balance in handstand for 

more than five seconds when attending the first assessment session. 

Novice handstanders showed a large variation in handstand balance 

performance based on all balance metrics. With practice and a longer duration 

in handstand this variability generally reduces. Large amounts of variation for 

handstand trials of short duration make it extremely difficult to compare data to 

determine if a linear or quadratic relationship is present. At the end of eight 

months of practicing handstands most subjects could not perform handstands 

for longer than 15 seconds duration, with only three subjects able to perform 

handstands for more than 20 seconds. Generally, with increased duration in 

handstand subjects displayed reduced sway as measured by traditional 

measures of balance. A more marked change in nonlinear measures of balance 

can be seen, with quicker reductions in variance for some nonlinear measures 

of balance than in the traditional measures. It may be that more pronounced 

changes in nonlinear measures represent changes in the subjects’ underlying 

process of postural control, whereas less pronounced changes in traditional 

measures relate more to their general ability or performance in the balance task. 
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Data suggests that the regression models of balance used to estimate 

feedback time delay may be a poor estimate of the postural control strategies 

employed when novices first learn to balance. With increased competence in 

handstand balance, as described by longer trial durations, regression models 

appear to become more applicable, suggesting subjects begin to adapt a 

strategy that is close to the one suggested by the regression model. Estimates 

of torque contributions from these regression models begin to plateau and 

resemble experienced handstanders for handstand trials above 15 seconds 

duration. Changes in torque contribution estimates may suggest that subjects 

are beginning to rely more on sensory feedback for postural control. 

Using a constraints led approach Newell (1986) redefined motor learning as an 

ongoing dynamic process involving a search for and stabilisation of specific 

functional movement patterns across the perceptual-motor landscape (Davids 

et al., 2008). In this way the exponential relationship between balance 

performance and trend and divergence may be described by the searching for 

a suitable pattern, or strategy, suggested by the first stage of Newell’s 

constraints theory.  Practice in the task results in a continual exploration of the 

perceptual-motor landscape, eventually leading to the emergence of an 

approximate solution to the task (Thelen, 1995). The slower changes to sway 

range and sample entropy would relate to refinement of this approximate 

solution, linked to improved fine control within the balance task. 

8.1.4. Responses to Mechanical Perturbations 

Chapter 6 evaluated estimates of feedback time delay provided by cross 

correlations and delayed regression models by comparison to the values 

provided by EMG latencies to a discrete perturbation. Eleven experienced 

handstanders completed the second part of study two. Subjects experienced a 

total of twelve platform perturbations in each posture, with three trials of each of 

the four platform perturbations, including: forwards and backwards translations 

of 0.1 m at 0.2 m·s-1, and forwards and backwards translations of 0.05 m at 0.1 

m·s-1. 
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EMG latencies in standing trials were calculated from the start of the platform 

translation to the time of the first major EMG burst via visual inspection (Tillin et 

al., 2010). Feedback time delay estimates from cross correlations were 

calculated between: COM and ankle/wrist joint torque, COM and ankle/wrist 

EMG, and ankle/wrist joint torques and ankle/wrist EMG signals. Further 

estimates of feedback time delay were provided by delayed regression models 

via the Yeadon and Trewartha method and the adapted method. 

Ankle EMG latencies to a discrete perturbation in standing were 96 to 126 ms, 

with estimates of feedback time delays provided by delayed regression models 

that were on average 24 ms longer for the Yeadon and Trewartha method and 

46 ms longer for the adapted method. Whereas, estimates of feedback time 

delays provided by cross correlations of ankle joint torque and COM 

displacement produced values that were on average 62 ms lower than that of 

EMG latencies in standing.  

Wrist EMG latencies to a discrete perturbation in handstand were 102 to 192 

ms, with estimates of feedback time delays provided by delayed regression 

models that were on average 3 ms longer for the Yeadon and Trewartha 

method and 32 ms longer for the adapted method. Estimates of feedback time 

delays provided by cross correlations of wrist joint torque and COM 

displacement produced values that were on average 105 ms lower than that of 

EMG latencies in handstand. 

Results suggest that cross correlations between joint torques and COM 

displacements can severely underestimate feedback time delay to a discrete 

perturbation. Using cross correlations to estimate feedback time delays during 

balance is not recommended. Delayed regression models seem to be an 

appropriate and useful tool for estimating feedback time delays during balance. 

Shorter delays for the Yeadon and Trewartha method were expected, as 

passive stiffness within the musculotendinous unit is likely to produce extra 

torque when forced into an eccentric action. The extra torque produced by this 



198 
 

passive stiffness will have approximately zero delay and will cause the 

estimated feedback time delay based on delayed regressions between joint 

torque and COM motion to be slightly underestimated. The adapted method 

addressed this issue by including a third term into the regression model based 

on COM displacement with zero delay. These results appear to support the use 

of this third term as a means of estimating the effect of passive stiffness on 

feedback time delay. 

Differences between EMG latencies and estimates of feedback time delay from 

regression models are most likely due to an electromechanical delay between 

the start of the EMG response to the start of a change in ankle or wrist joint 

torque. Comparisons between feedback time delay estimates in static balance 

and perturbed balance show differences of approximately 100 ms for standing 

trials and up to 25 ms for handstand trials. These differences are likely due to 

the extra time required to reach sensory thresholds in static balance conditions, 

with the lower difference in handstand trials indicating the difficult nature of 

balance in handstand. 

8.1.5. Sensory Perturbations and Restrictions 

Chapter 7 assessed how balance in standing and handstand may be affected 

by altered sensory feedback. Ten experienced handstanders completed the 

final stage of study two. Using the algorithms of Barton et al. (2006) the Stewart 

platform within the CAREN system was controlled so that horizontal and 

vertical translations of the platform were combined with rotations about the 

mediolateral axis so the platform could rotate about a virtual point. The virtual 

point was determined by markers placed on the subject’s ankle or wrist joints 

while in standing or handstand respectively. Body sway was tracked by 

markers at the next proximal joint, the knee for standing and the elbow for 

handstand, so that the rotation of the platform would track sway about the ankle 

or wrist. This procedure simulated the sway referenced platform motion of the 

sensory organisation test in both a standing and a handstand posture in an 

attempt to reduce ankle and wrist joint movement whilst allowing unrestricted 

body sway. 
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Subjects completed three trials in each of the eight conditions, including: 

standing on a static and sway referenced platform with eyes open and eyes 

closed, and handstand on a static and sway referenced platform with eyes 

open and eyes closed. 

The sway referenced platform resulted in increased sway in standing as 

measured by the traditional balance metrics. Further increases in postural sway 

were observed for subjects balancing on a sway referenced platform with eyes 

closed. A residual effect from the sway referenced platform appears to result in 

increased sway during static stance compared to a previous session, 

supporting the view that recent environmental changes may alter how the CNS 

weighs the relative information from each sensory system (McCollum et al., 

1996). 

Experienced handstanders balancing on a sway referenced platform in the 

handstand position found it particularly difficult to balance with reduced sensory 

information from wrist somatosensory proprioceptors, usually resulting in a loss 

of balance within five seconds. Similar to standing, a reduced performance 

during handstand balance on static platform within the sensory organisation 

test was observed when compared to a previous session involving only static 

balance. This would appear to indicate the relationship between somatosensory 

and visual cue utilisation, and how this is affected by recent environment 

experiences, is similar in both standing and handstand postures. 

Further analysis of COP trajectories during balance in handstand and standing 

in each of the conditions revealed little insight into the causes for increased 

sway during sway referenced conditions. Similarly, little change to the 

estimated feedback time delays during static platform and sway referenced 

platform conditions were evident. It would be expected that a sway referenced 

platform that successfully reduced somatosensory feedback during balance 

would also result in an increased feedback time delay. Although there was a 

small increase in feedback time delay during the sway referenced platform 
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condition, this difference is not statistically significant. A reason for this may be 

the apparent increase in passive stiffness at the controlling joint. 

Peterka (2002) found that sway referenced platform motion with amplified 

rotation could increase active and passive muscle stiffness by as much as 60%, 

and suggested that the increased stiffness may help to provide additional 

sensory feedback during times of sensory insufficiency. This view may be 

supported further by the results of the current research, which found a 

significant increase in mean joint torques for all movement correction 

magnitudes during standing trials on a sway referenced platform. One 

possibility is that increased joint torques, and increased tension in the ankle 

plantar flexors, will increase sensory information from force sensitive 

proprioceptors in the musculotendinous complex. Alternatively, this may simply 

be an attempt to rely on a passive stiffness mechanism to either control 

balance or to reduce sway velocity to allow more time for an appropriate 

response to be initiated. The latter interpretation seems to be the most likely, as 

subjects typically displayed fewer corrections per second when controlling 

balance on the sway referenced platform. 

8.2. Limitations and Future Directions 

The assumption of planar motion may be reasonable for balance in double leg 

stance, however, this may not be true for single leg stance or handstands. 

Several subjects were observed producing out of plane movements during 

attempts to remain balanced, such as flexing the elbows or abducting the hips 

during handstands. Although three dimensional joint moments were calculated 

in an attempt to address this issue, data were only analysed from a two 

dimensional perspective. Future research may wish to pursue additional 

methods of assessing balance that incorporates three dimensional motions. 

This would be particularly useful for assessing balance in single leg stance, 

where muscles crossing the ankle joint are likely to result in alterations to both 

mediolateral and anteroposterior sway. 
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Several methods of assessing balance have been designed to examine the 

trajectory of the COP. There is a growing number of sophisticated time series 

analysis tools employed in this area, but they remain focused on examining the 

trajectory of the COP, often in just one dimension. It may be possible to 

estimate the higher dimensional state space of a system via the delayed 

coordinates of a one dimensional signal, as discussed in Chapter 4. However, it 

is unwise to assume this method can accurately reconstruct the system in its 

entirety from just the COP trajectory. One alternative would be to reconstruct 

the state space from multiple signals, such as joint angles, joint torques, EMG, 

COM motion, and COP trajectories. Such an approach may provide further 

insight into the role of each signal in the postural control system, and may 

provide more insight into this challenging area of research. Before such an 

approach can be attempted, three main issues will need to be addressed: 

redundancy, scaling, and delays. 

Constructing the state space from multiple signals may result in a space that 

has higher dimensions than is required, and may lead to incorrect conclusions 

regarding which variables are of importance for the system to operate. In 

addition, signals with higher values, such as forces, may be given more 

importance than signals with lower values, such as displacements or EMG. A 

system incorporating such variables will likely use multiple gains to scale the 

signals in a meaningful way. Discovering these gains would be of enormous 

value in postural control research, however, this becomes increasingly difficult 

with a higher number of variables. The above difficulties are compounded if one 

or more of the variables required by the system to operate have a time delay 

relative to the other variables. 

8.3. Research Questions 

Four research questions were presented in Chapter 1, with each being 

addressed in Chapters 4, 5, 6, and 7 respectively. A summary of these are 

presented here. 
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Q1. How are balance metrics expressed differently when balancing 

in different postures; including handstand, single leg stance and 

normal standing? 

If the aim of a study is to assess balance performance, with no interest in the 

underlying postural control process, such as in an intervention study, then the 

traditional measure of sway velocity appears to be sufficient. If a researcher 

aims to delve further into the processes of postural control, more advanced 

analyses will be required. Although there is a growing number of studies within 

this area that are employing sophisticated nonlinear analysis methods, 

researchers must be clear in how these techniques inform on the underlying 

process of postural control. Assessment of feedback time delay and movement 

corrections may offer more insight into this process. 

Q2. Which balance metrics best characterise improvements in balance 

performance when a novice first learns to balance in handstand? 

No balance metric can be considered to be appropriate for assessing 

handstand performance when a novice first learns to balance in handstand, as 

all measures show large amounts of variation for trials of short duration. Some 

nonlinear measures of balance, such as divergence and trend, appear to be 

sensitive to improvements in handstand performance based on handstand 

durations of more than ten seconds. As handstand balance improves and 

independent balance can be maintained for longer than 20 seconds, regression 

models, and their estimates of feedback time delay and the percentage torque 

from passive stiffness and delayed COM motion, appear to become appropriate 

approximations of the postural control strategies employed by the subjects. 

Postural control strategies appear to resemble those of experienced 

handstanders when the novice was able to maintain independent handstand 

balance for more than 20 seconds duration. 

Q3. How are the responses to mechanical perturbations different when 

balancing in handstand and normal stance postures? 

EMG latencies to a discrete platform perturbation were generally shorter for 

standing trials than for handstand trials, with a mean latency of 111 ms for 
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standing trials and 158 ms for handstand trials. Similarly, estimates of feedback 

time delay were shorter for standing trials than handstand trials, with a mean 

delay of 157 ms for standing trials and 190 for handstand trials. However, the 

difference between EMG latencies and estimates of feedback time delays were 

smaller for handstand trials, suggesting a smaller electromechanical delay. This 

is supported by the delays from cross correlations between EMG and torque, 

with a lower delay of 90 ms for handstand trials compared to 150 ms fom 

standing trials. 

Cross correlations between ankle and hip torques in standing, and between 

wrist and shoulder torques, and wrist and hip torques in handstand show no 

significant differences between delay estimates in standing and handstand 

trials. Data suggests the main strategy employed to maintain balance after a 

platform perturbation in standing was an ankle strategy with compensatory hip 

torques. Similarly, the main strategy employed to maintain balance after a 

platform perturbation in handstand was a wrist strategy with compensatory 

shoulder and hip torques. Although there appears to be some large 

intersegmental delays within the current findings, results suggest little 

difference between response strategies to a perturbation in standing versus 

handstand. 

Q4. In what way is balance affected by altered sensory inputs, and does 

this result in a change to the corrective strategies used to maintain 

balance? 

The sway referenced platform resulted in increased sway in standing as 

measured by the traditional balance metrics. Further increases in postural sway 

were observed for subjects balancing on a sway referenced platform with eyes 

closed. A residual effect from the sway referenced platform appears to result in 

increased sway during static stance compared to a previous session. 

Experienced handstanders balancing on a sway referenced platform in the 

handstand position found it particularly difficult to balance with reduced sensory 

information from wrist somatosensory proprioceptors, usually resulting in a loss 

of balance within five seconds. Similar to standing, a reduced performance 
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during handstand balance on static platform within the sensory organisation 

test was observed when compared to a previous session involving only static 

balance. This would appear to indicate the relationship between somatosensory 

and visual cue utilisation, and how this is affected by recent environment 

experiences, is similar in both standing and handstand postures. 

Further analysis of COP trajectories during balance in handstand and standing 

in each of the conditions revealed little insight into the causes for increased 

sway during sway referenced conditions. Similarly, little change to the 

estimated feedback time delays during static platform and sway referenced 

platform conditions were evident. It would be expected that a sway referenced 

platform that successfully reduced somatosensory feedback during balance 

would also result in an increased feedback time delay. Although there was a 

small increase in feedback time delay during the sway referenced platform 

condition, this difference is not statistically significant. A reason for this may be 

the apparent increase in passive stiffness at the controlling joint. 

8.4. Conclusions 

The purpose of the current research was to examine how a novel balance task 

is learnt by individuals with a mature neurological system, and to investigate the 

responses of experienced hand balancers to mechanical and sensory 

perturbations. Data from this study suggests that the best balance metrics for 

distinguishing between each of the balance conditions was the traditional 

balance measure of sway velocity. Nonlinear measures of balance appear to 

offer insight into the underlying deterministic processes that control balance, 

offering measures of system determinism, complexity, and predictability. 

Assessments of feedback time delay and movement corrections appear to 

provide both an insight into the postural control process and help distinguish 

one condition from another. In addition, both feedback time delay and 

movement corrections and magnitudes may be used simultaneously to delve 

further into the postural control process. 
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Generally, with increased duration in handstand novice subjects displayed 

reduced sway as measured by traditional measures of balance. A more marked 

change in nonlinear measures of balance can be seen, with quicker reductions 

in variance for some nonlinear measures of balance than in the traditional 

measures. It may be that more pronounced changes in nonlinear measures 

represent changes in the subjects’ underlying process of postural control, 

whereas less pronounced changes in traditional measures relate more to their 

general ability or performance in the balance task. 

Results suggest that cross correlations between joint torques and COM 

displacements can severely underestimate feedback time delay to a discrete 

perturbation. Using cross correlations to estimate feedback time delays during 

balance is not recommended. Delayed regression models seem to be an 

appropriate and useful tool for estimating feedback time delays during balance. 

Findings support the use of the third term in the adapted regression model as a 

means of estimating the effect of passive stiffness on feedback time delay. 

Differences between EMG latencies and estimates of feedback time delay from 

regression models are most likely due to an electromechanical delay between 

the start of the EMG response to the start of a change in ankle or wrist joint 

torque. 
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Learning to balance, its control, and its response to visual and proprioceptive 
stimuli 

 
Part 1 – Learning to balance in handstand 

 
INFORMED CONSENT FORM  

(to be completed after Participant Information Sheet has been read) 
 
 

The purpose and details of this study have been explained to me.  I understand that 
this study is designed to further scientific knowledge and that all procedures have 
been approved by the Loughborough University Ethical Advisory Committee. 
 
I have read and understood the information sheet and this consent form. 
 
I have had an opportunity to ask questions about my participation. 
 
I understand that I am under no obligation to take part in the study. 
 
I understand that I have the right to withdraw from this study at any stage for any 
reason, and that I will not be required to explain my reasons for withdrawing. 
 
I understand that all the information I provide will be treated in strict confidence and 
will be kept anonymous and confidential to the researchers unless (under the 
statutory obligations of the agencies which the researchers are working with), it is 
judged that confidentiality will have to be breached for the safety of the participant or 
others.  
 
 
I agree to participate in this study. 

 

                    Your name 

 

              Your signature 

 

Signature of investigator 

 

                               Date 

Appendix 1.1 – Informed Consent Form for Study 1 
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Learning to balance, its control, and its response to visual and proprioceptive 

stimuli 
 

Part 2 – Response to sensory perturbations in handstand balance 
 

INFORMED CONSENT FORM 
(to be completed after Participant Information Sheet has been read) 

 
 

The purpose and details of this study have been explained to me.  I understand that 
this study is designed to further scientific knowledge and that all procedures have 
been approved by the Loughborough University Ethical Advisory Committee. 
 
I have read and understood the information sheet and this consent form. 
 
I have had an opportunity to ask questions about my participation. 
 
I understand that I am under no obligation to take part in the study. 
 
I understand that I have the right to withdraw from this study at any stage for any 
reason, and that I will not be required to explain my reasons for withdrawing. 
 
I understand that all the information I provide will be treated in strict confidence and 
will be kept anonymous and confidential to the researchers unless (under the 
statutory obligations of the agencies which the researchers are working with), it is 
judged that confidentiality will have to be breached for the safety of the participant or 
others.  
 
 
I agree to participate in this study. 

 

                    Your name 

 

              Your signature 

 

Signature of investigator 

 

                               Date 

Appendix 1.2 – Informed Consent Form for Study 2 
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Appendix 2.1 – Subject Information Sheet for Study 1 

 
 

 
Learning to balance, its control, and its response to visual and proprioceptive 

stimuli 
Part 1 – Learning to balance in handstand 

 
Participant Information Sheet 

 
Investigator Contact Details: 
Glen Blenkinsop – UU.1.15 – G.Blenkinsop@lboro.ac.uk 
Dr Michael Hiley – UU.1.14 – M.J.Hiley@lboro.ac.uk 
Dr Matthew Pain – UU.1.07 – M.T.G.Pain@lboro.ac.uk 
Dr Sam Allen – UU.1.02 – S.J.Allen@lboro.ac.uk 
 
What is the purpose of the study? 
The aim of this research is to examine how balance in handstand is learnt over a period of 
approximately 8 months, and to assess what changes may occur to how a performer uses 
the different sensory information available to them as handstand balance improves. 
 
Who is doing this research and why? 
This study is part of a PhD research project examining the roles of different sensory 
information to balance in both normal stance and in handstand; and is conducted by the 
sports biomechanics and motor control research group. 
 
Are there any exclusion criteria? 
The study will include regular practice and assessment in the handstand position; 
therefore anyone who is unable to place themselves into the handstand position, either in 
free standing or against a support, will be unable to take part. In addition, anyone that has 
a current injury to their upper limbs that would make performing a handstand 
uncomfortable or unsafe should not take part in this study. It is expected that prospective 
participants will be able to perform a handstand for no more than 5 seconds when starting 
from support against a wall. 
 
Once I take part, can I change my mind? 
Yes!  After you have read this information and asked any questions you may have we will 
ask you to complete an Informed Consent Form, however if at any time, before, during or 
after the sessions you wish to withdraw from the study please just contact the main 
investigator.  You can withdraw at any time, for any reason and you will not be asked to 
explain your reasons for withdrawing. 
 
What will I be asked to do? 
Participants are asked to practice handstands up to 3 to 5 times a weeks, for a total of 
approximately 1hour per week, for the duration of the study. During this time participants 
are asked to monitor handstand performance on a weekly basis; therefore, stop watches 
will be available in the gymnastics hall along with a simple tracking sheet. Detailed 
biomechanical testing will be completed on a monthly basis, with the testing sessions 
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increasing in difficulty throughout the learning period (see timetable below). Testing 
session towards the end of the learning period will involve some changes to the 
environment, such as a moving platform; with testing spread over three sessions of 
approximately 30 minutes each. However, these more advanced sessions will only begin 
once participants have sufficient balance in handstand. 
 
Table 1: Provisional timetable for handstand testing 

Stage Month Protocol Expected Time 

Initial Oct 5 handstands for maximal length (all eyes open) 20 minutes 

1 Nov 5 handstands for maximal length (all eyes open) 20 minutes 

2 Dec 5 handstands for maximal length (all eyes open) 20 minutes 

3 Jan 10 handstands for maximal length (5 eyes open/ 5 eyes closed) 30 minutes 

4 Feb 10 handstands for maximal length (5 eyes open/ 5 eyes closed) 30 minutes 

5 Mar 10 handstands for maximal length (5 eyes open/ 5 eyes closed) 30 minutes 

6 Apr 

10 handstands for maximal length (5 eyes open/ 5 eyes closed) 30 minutes 

Sensory Test – Slow moving platform and visual surround 40 minutes 

Moving platform – Quick movements, of small or medium range 30 minutes 

7 May 

10 handstands for maximal length (5 eyes open/ 5 eyes closed) 30 minutes 

Sensory Test – Slow moving platform and visual surround 40 minutes 

Moving platform – Quick movements, of small or medium range 30 minutes 

Finial Jun 

10 handstands for maximal length (5 eyes open/ 5 eyes closed) 30 minutes 

Sensory Test – Slow moving platform and visual surround 40 minutes 

Moving platform – Quick movements, of small or medium range 30 minutes 

 
 
What type of clothing should I wear? 
EMG and reflective motion markers will be placed on the skin, therefore shorts will be 
required for all testing sessions to allow placement of markers on the hip and trunk area. 
 
What personal information will be required from me? 
Measurements of weight and height will be taken during each testing session, and a one-
off anthropometric assessment will be required. The anthropometric assessment will 
include measurements of different parts of the body, such as leg length and circumference, 
and can be performed at anytime when it is convenient to the participant. 
 
Are there any risks in participating? 
The activities within this study should be familiar to any recreational gymnast, and only 
those subjects that are comfortable in performing a handstand will be involved in this study. 
Although some testing procedures may be demanding, such as using a moving platform, 
the testing area is surrounded by a matted area to prevent injury in the unlikely event that 
a participant will lose control to such a degree that they fall off the platform. Also, all 
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handstand trials begin against a stable support surface to replicate how gymnasts often 
learn to handstand against a wall, and this support will remain in place for the participant to 
use to help prevent a fall. 
 
Will my taking part in this study be kept confidential? 
All data collected in this study will remain confidential and secure. Participants will be 
allocated an identification number for recording and storage of data, and no participant will 
be referred to by name outside of data collection sessions, such as publication of the study.  
 
What will happen to the results of the study? 
All data collected conform to the university’s guidelines on data collection and storage, and 
will therefore be stored securely in its original state for the duration of the collection, 
analysis and publication of the study. 
 
What do I get for participating? 
Participants will be allowed ongoing feedback on performance in the handstand task 
throughout the time of the study; however, a detailed biomechanical analysis of handstand 
performance will not be available until the research is completed. 
 
I have some more questions who should I contact? 
Any questions regarding the testing procedures or handstand practice should be first 
addressed to Glen Blenkinsop (G.Blenkinsop@lboro.ac.uk); alternatively, further queries 
may be addressed to Dr Michael Hiley, Dr Matthew Pain or Dr Sam Allen listed above. 
 
If you have any concerns regarding your participation in this study, or the conduct of any of 
the investigators involved, please refer to the university’s policy relating to research 
misconduct at the following link: 
 
http://www.lboro.ac.uk/admin/committees/ethical/Whistleblowing(2).htm. 
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Appendix 2.2 – Subject Information Sheet for Study 2 

 
 

 
Learning to balance, its control, and its response to visual and proprioceptive 

stimuli 
Part 2 – Response to sensory perturbations in handstand balance 

 
Participant Information Sheet 

 
Investigator Contact Details: 
Glen Blenkinsop – UU.1.15 – G.Blenkinsop@lboro.ac.uk 
Dr Michael Hiley – UU.1.14 – M.J.Hiley@lboro.ac.uk 
Dr Matthew Pain – UU.1.07 – M.T.G.Pain@lboro.ac.uk 
Dr Sam Allen – UU.1.02 – S.J.Allen@lboro.ac.uk 
 
What is the purpose of the study? 
The aim of this research is to examine how different sensory information contributes 
to balance in handstand, normal stance and single leg stance. This study will assess 
how participants’ performance in handstand, normal stance, and single leg stance 
balance tasks change when exposed to a number of sensory disturbances, such as 
moving the support surface or visual surround. 
 
Who is doing this research and why? 
This study is part of a PhD research project examining the roles of different sensory 
information to balance in both normal stance and in handstand; and is conducted by 
the sports biomechanics and motor control research group. 
 
Are there any exclusion criteria? 
The study will include some demanding tasks in the handstand position; therefore 
participants with a strong background in handstand balance are required, and 
anyone who is unable to remain in the handstand position for at least 30 seconds will 
be unable to take part. In addition, anyone that has a current injury to their upper 
limbs that would make performing a handstand uncomfortable or unsafe should not 
take part in this study. It is expected that prospective participants will have a strong 
gymnastic background, with experience in performing a variety of skills in hand 
support, and may be able to perform a handstand for more than 60 seconds. 
 
Once I take part, can I change my mind? 
Yes!  After you have read this information and asked any questions you may have 
we will ask you to complete an Informed Consent Form, however if at any time, 
before, during or after the sessions you wish to withdraw from the study please just 
contact the main investigator.  You can withdraw at any time, for any reason and you 
will not be asked to explain your reasons for withdrawing. 
 
What will I be asked to do? 
Participants will be asked to attend 4 testing sessions, where a detail biomechanical 
assessment will be completed for the different postures during a variety of testing 
procedures. During these sessions reflective markers will be placed on the skin to 
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measure the movement of different body landmarks, EMG sensors will be placed on 
key muscles to measure underlying muscle activity, and balance tasks will be 
performed on two force platforms to measure the forces generated by the body. The 
four different balance assessments are as follows: 

 Static balance – Balance in handstand/standing for up to 60 seconds, with 
eyes open and eyes closed conditions 

 Muscle Response – Specific platform movements intending to unbalance the 
participant and assess the muscle activity and response delay 

 Sensory Assessment – Balance during 4 conditions aimed to reduce 
sensory inputs, where the support surface moves as the participant sways in 
balance 

 Visual Response – Specific movement of the visual surround, to assess the 
importance of different types of visual information during balance 

During each of the testing sessions balance will be assessed in both standing and 
handstand positions, and each task will be expected to last no more 90 minutes, to 
be completed at the participant’s convenience. 
 
What type of clothing should I wear? 
EMG and reflective motion markers will be placed on the skin, therefore shorts will 
be required for all testing sessions to allow placement of markers on the hip and 
trunk area. Female participants are asked to wear a crop top or sports bra so that 
markes can be placed on the lower back and shoulders. 
 
What personal information will be required from me? 
Measurements of weight and height will be taken during the first testing session, and 
a one-off anthropometric assessment will be required. The anthropometric 
assessment will include measurements of different parts of the body, such as leg 
length and circumference, and can be performed at anytime when it is convenient to 
the participant. This will usuallt take place in one of sessions, and will add an extra 
15-20 minutes to the session. 
 
Are there any risks in participating? 
The activities within this study are familiar to prospective participants, and only those 
subjects that are skilled in the handstand will be involved in this study. Although 
some testing procedures may be demanding, such as using a moving platform, the 
testing area is surrounded by a matted area to prevent injury in the unlikely event 
that a participant will lose control to such a degree that they fall off the platform. Also, 
all handstand trials begin against a stable support surface to replicate how gymnasts 
often learn to handstand against a wall, and this support will remain in place for the 
participant to use to help prevent a fall. 
 
Will my taking part in this study be kept confidential? 
All data collected in this study will remain confidential and secure. Participants will be 
allocated an identification number for recording and storage of data, and no 
participant will be referred to by name outside of data collection sessions, such as 
publication of the study.  
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What will happen to the results of the study? 
All data collected conform to the university’s guidelines on data collection and 
storage, and will therefore be stored securely in its original state for the duration of 
the collection, analysis and publication of the study. 
 
What do I get for participating? 
Participants will be allowed ongoing feedback on performance in the handstand task 
throughout the time of the study; however, a detailed biomechanical analysis of 
handstand performance will not be available until the research is completed. 
 
I have some more questions who should I contact? 
Any questions regarding the testing procedures or handstand practice should be first 
addressed to Glen Blenkinsop (G.Blenkinsop@lboro.ac.uk); alternatively, further 
queries may be addressed to Dr Michael Hiley, Dr Matthew Pain or Dr Sam Allen 
listed above. 
 
If you have any concerns regarding your participation in this study, or the conduct of 
any of the investigators involved, please refer to the university’s policy relating to 
research misconduct at the following link: 
 
http://www.lboro.ac.uk/admin/committees/ethical/Whistleblowing(2).htm 
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Marker Label Marker Position Description and Directions 

Finger (R/L) End of 3rd distal phalanx (finger) Tip of middle finger 

5MCP (R/L) Dorsal aspect of the head of the 5th metacarpal Medial and lateral projections of the MCP joint centre (mid-

point of these two markers is the MCP joint centre) 2MCP (R/L) Dorsal aspect of the head of the 2nd metacarpal 

US (R/L) Lateral aspect of the styloid process of the ulna Medial and lateral projections of the wrist joint centre (mid-

point of these two markers is the wrist joint centre) RS (R/L) Lateral aspect of the styloid process of the radius 

LE (R/L) Lateral aspect of the lateral humeral epicondyle Medial and lateral projections of the elbow joint centre (mid-

point of these two markers is the elbow joint centre) – elbow 

extended 

ME (R/L) Lateral aspect of the medial humeral epicondyle 

Acromion (R/L) Superior tip of the Acromion process  

Shoulder (R/L) Estimated lateral projection of the glenohumeral 

joint centre when the arm is elevated 

Approximately the belly of the posterior Deltoid when the arm 

is elevated 

Anterior 

Shoulder (R/L) 

Estimated anterior projection of the glenohumeral 

joint centre when in the anatomical position 

Mid-point of these two markers is the shoulder joint centre 

(only used for static trials) 

Posterior 

Shoulder (R/L) 

Estimated posterior projection of the 

glenohumeral joint centre when in the anatomical 

position 

R_Scapula Middle of right scapula Used only for identification of right side 

Sternum Superior tip of the manubrium of the sternum Suprasternal notch at top of sternum 

Xiphoid Centre of the xiphoid process of the sternum Inferior tip of sternum 
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C7 7th cervical vertebra Prominence at base of neck when the neck is flexed 

T10 10th thoracic vertebra Count up from L1 (moving the skin over the spinous 

processes) 

L1 1st Lumbar vertebra Find L5 between right and left PSIS and count up 

L_iliac Superior border of left iliac crest Used only for identification of left side 

ASIS (R/L) Anterior superior iliac spine, in line with hip joint 

centre 

Bony landmark on the front of the pelvis (level with your belt) 

PSIS (R/L) Posterior superior iliac spine Dimple in the skin at the back of the pelvis (a little lower than 

ASIS) 

Hip (R/L) Greater trochanter of the femur Palpate the upper and lower aspects, and place in centre 

MK (R/L) Lateral aspect of the medial femoral epicondyle Medial and lateral projections of the knee joint centre (mid-

point of these two markers is the knee joint centre) – knee 

extended 

LK (R/L) Lateral aspect of the lateral femoral epicondyle 

LM (R/L) Lateral aspect of the lateral malleolus of the fibula Medial and lateral projections of the ankle joint centre (mid-

point of these two markers is the ankle joint centre) MM (R/L) Inferior tip of the medial malleolus of the fibula  

1MTP (R/L) Head of the 1st metatarsal Medial and lateral projections of the MTP joint centre (mid-

point of these two markers is the MTP joint centre) 5MTP (R/L) Head of the 5th metatarsal 

Toe (R/L) End of 1st distal phalanx Tip of big toe 

Head Band Four markers placed at front right/left and back left/right of the head 
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EMG Label Sensor Position Description and Directions 
1 + 2 = WF  
(wrist flexors) 

Medial aspect of the forearm, approximately 6-7 
cm distal to the medial epicondyle of the humerus 
and lying over the bellies of flexor carpi ulnaris 
and Palmaris longus muscles 

With forearm in supination, palpate during resisted wrist 
flexion and position over largest and most tense bulk on line 
from medial epicondyle of the elbow to the styloid process 
of the ulna 

3 + 4 = WE 
(wrist extensors) 

Posterior lateral aspect of the forearm, 
approximately 6-7 cm distal to the lateral 
epicondyle of the humerus and lying over the 
bellies of extensor carpi radialis longus and brevis 
muscles 

With forearm in pronation, palpate during resisted wrist 
extension and position over largest and most tense bulk on 
line from lateral epicondyle of the elbow to the styloid 
process of the ulna 

5 + 6 = MD 
(shoulder 
flexors) 

The belly of the middle fibres of the deltoid muscle 
(which is positioned posterior to the glenohumeral 
joint when the arm is elevated fully) 

With arms fully elevated, position over the belly of the 
medial deltoid muscle, which will be approximately 5-10 cm 
above the acromion process (viewed as a depression) 

7 + 8 = LD 
(shoulder 
extensors) 

Middle of the latissimus dorsi muscle, which is 
approximately 5-10 cm inferior to the tip of the 
scapula when the arm is relaxed 

With arms fully elevated, position over the middle portion of  
the lateral aspect of the latissimus dorsi muscle; this should 
be prominent as a band of muscle running down the lateral 
side of the trunk from behind the posterior deltoid muscle to 
mid-low ribs 

9 + 10 = RA  
(trunk flexors) 

Belly of rectus abdominis muscle, 3 cm superior 
and 2 cm lateral to the umbilicus 

In standing, look for and palpate the muscle segment 
approximately 3 cm superior and 2 cm lateral to the 
umbilicus; place in the middle of muscle segment 

11 + 12 = PS  
(trunk 
extensors) 

Belly of the paraspinal muscles, 2 cm lateral and 5 
cm inferior to the spinous process of the L1 
vertebra (L2 – L3 region) 

In standing, place 2 cm lateral and 5 cm inferior to the 
marker placed on the spinous process of the L1 vertebra 

13 + 14 = RF  
(hip flexors) 

Belly of rectus femoris muscle, approximately 1/3 
of the way between the AIIS and the superior tip 
of the patella 

In sitting with the leg extended fully and with thigh above 
the chair (straight leg raise), find the distal end of the rectus 
femoris muscle and place sensor 5-10 cm proximal to this. 

15 + 16 = BF 
(hip extensors) 

Belly of biceps femoris muscle on the middle of 
the posterior lateral aspect of the thigh 

In standing, palpate the distal aspect of the biceps femoris 
muscle on the posterior lateral aspect of the thigh, and 
place the sensor 10-15 cm proximal to this 

Odd = Right; Even = Left
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EMG Label Sensor Position Description and Directions 
1 + 2 = TA  
(tibialis anterior) 

At 1/3 on the line between the head of the fibula 
and the tip of the medial malleolus. 

With the subject standing, palpate the head of the fibula just 
below the lateral aspect of the knee, and trace a line to the 
medial malleolus of the ankle. The sensor should be 
positioned on the muscle belly, lateral to the anterior crest 
of the tibia. 

3 + 4 = MG 
(medial 
gastrocnemius) 

On the most prominent bulge of the 
gastrocnemius on the medial aspect of the lower 
leg. 

With the subject standing, palpate the most prominent 
bulge on the medial aspect of the posterior lower leg (calf 
muscle). Position the sensor in the middle of the bulge. 

Odd = Right; Even = Left 

All EMG placements are in accordance with the SENIAM guidelines or from Konrad (2005). 

 

Konrad, P. (2005). The ABC of EMG: a practical introduction to kinesiological electromyography. Retrieved June 2011: 
https://hermanwallace.com/download/The_ABC_of_EMG_by_Peter_Konrad.pdf 
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Kinematics Based on Quaternion Algebra 
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function [AVQ,AAQ,LDQ,LVQ,LAQ,PQ] = QCAL(r,hz,p1,p2,warn) 
%Quaternion calculations from the rotation matrices in r 
  
%   The equations employed in this m-file are taken from the calculations 
%   from: 
% 
%       Dumas, R., Aissaoui, R. and De Guise, J.A. (2004). A 3D generic 
%       inverse dynamic method using wrench notation and quaternion 
%       algebra, Computer Methods in Biomechanics and Biomedical 
%       Engineering, 7(3), 159-166. 
% 
%   and 
% 
%       Kuipers, J.B. (1999). Quaternions and Rotation Sequences, Princeton 
%       University Press: Oxford 
% 
  
  
%========================================================================== 
% INPUTS: 
%-------------------------------------------------------------------------- 
% 
%    r = 3 by 3 by n matrix of n rotation matrices (n = number of frames) 
% 
%   hz = sample frequency (1/hz = time between frames) 
% 
%   p1 = COM local vector in a 3 by 1 or 3 by n matrix [optional] 
% 
%   p2 = segment end global vector in a 3 by n matrix [optional] 
% 
% 
%-------------------------------------------------------------------------- 
% NOTES 
%-------------------------------------------------------------------------- 
% 1. If p1 is in a 3 by 1 matrix, then it is assumed this is the local 
%    vecor for all n frames, and it is copied n times into a 3 by n matrix 
% 
% 2. If p1 is not present then no linear calculations will be made, and 
%    only angular outputs will be generated 
% 
% 3. If p2 is not present a matrix of zeros is used, therefore linear 
%    motions of p1 will be relative to the segment end to which the vector 
%    p1 relates 
% 
%========================================================================== 
% OUTPUTS: 
%-------------------------------------------------------------------------- 
% 
%    PQ = 7 by n matrix with the displacement p2 (3 by n) and the 
%         attitude quaternions from the rotation matrices (4 by n) 
% 
%   LDQ = 4 by n pure quaternion representing the displacement of p1 
% 
%   LVQ = 4 by n pure quaternion representing the linear velocity of p1 
% 
%   LAQ = 4 by n pure quaternion representing the linear acceleration of p1 
% 
%   AVQ = 4 by n pure quaternion representing the angular velocity of the 
%         segment 
% 
%   AAQ = 4 by n pure quaternion representing the angular acceleration of 
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%         the segment 
% 
%-------------------------------------------------------------------------- 
% NOTES 
%-------------------------------------------------------------------------- 
% 1. All pure quaternions represent a vector, were the first element is 
%    irrelevant (and should be close to zero) and the next three elements 
%    represent the vector. 
% 
%========================================================================== 
  
if nargin==3 
    p2=zeros(size(r,3),3); 
    warn=0; 
elseif nargin==4 
    warn=0; 
end 
  
n=size(r,3); 
  
%Calculate quaternions (all versions): 
[Q,QQ] = glen_dcm2quat2(r); 
%q0=glen_dcm2quat(r); 
%q0=dcm2quat(r); 
  
q0=Q; 
q1=QQ(:,:,1); 
q2=QQ(:,:,2); 
q3=QQ(:,:,3); 
q4=QQ(:,:,4); 
  
%check the size of p1 (COM) 
if size(p1,1)<size(q1,1) && size(p1,1)==1 
    p1=ones(size(q1,1),1)*p1; 
end 
  
%create the 7D vector of proximal end and quaternion (not needed?) 
PQ=[p2,q1]; 
  
%differentiate ponits twice (segment proximal end) 
dp2=glen_diff(p2); 
ddp2=glen_diff(dp2); 
  
%differentiate quaternions twice 
dq1=glen_diff(q1); 
dq2=glen_diff(q2); 
dq3=glen_diff(q3); 
dq4=glen_diff(q4); 
dq0=glen_diff(q0); 
  
ddq1=glen_diff(dq1); 
ddq2=glen_diff(dq2); 
ddq3=glen_diff(dq3); 
ddq4=glen_diff(dq4); 
ddq0=glen_diff(dq0); 
  
  
%Calculate velocities and accelerations based on all sets of quaternions 
% - LDQ = Linear Displacement 
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% - LVQ = Linear Velocity 
% - AVQ = Angular Velocity 
% - LAQ = Linear Acceleration 
% - AAQ = Angular Acceleration 
AVQ0=2*(q_prod(dq0,[q0(:,1),-q0(:,2:4)]))*hz; 
AVQ1=2*(q_prod(dq1,[q1(:,1),-q1(:,2:4)]))*hz; 
AVQ2=2*(q_prod(dq2,[q2(:,1),-q2(:,2:4)]))*hz; 
AVQ3=2*(q_prod(dq3,[q3(:,1),-q3(:,2:4)]))*hz; 
AVQ4=2*(q_prod(dq4,[q4(:,1),-q4(:,2:4)]))*hz; 
  
AAQ0=2*(q_prod(ddq0,[q0(:,1),-q0(:,2:4)])+q_prod(dq0,[dq0(:,1),... 
    -dq0(:,2:4)]))*hz.^2; 
AAQ1=2*(q_prod(ddq1,[q1(:,1),-q1(:,2:4)])+q_prod(dq1,[dq1(:,1),... 
    -dq1(:,2:4)]))*hz.^2; 
AAQ2=2*(q_prod(ddq2,[q2(:,1),-q2(:,2:4)])+q_prod(dq2,[dq2(:,1),... 
    -dq2(:,2:4)]))*hz.^2; 
AAQ3=2*(q_prod(ddq3,[q3(:,1),-q3(:,2:4)])+q_prod(dq3,[dq3(:,1),... 
    -dq3(:,2:4)]))*hz.^2; 
AAQ4=2*(q_prod(ddq4,[q4(:,1),-q4(:,2:4)])+q_prod(dq4,[dq4(:,1),... 
    -dq4(:,2:4)]))*hz.^2; 
  
  
%only run linear if p1 is present 
if nargin>2 
    %displacement 
    LDQ=[zeros(n,1),p2]+q_prod(q_prod(q0,[zeros(n,1),p1]),... 
        [q0(:,1),-q0(:,2:4)]); 
    %velocities 
    LVQ0=([zeros(n,1),dp2]+q_prod(q_prod(dq0,[zeros(n,1),p1]),... 
          [q0(:,1),-q0(:,2:4)])+q_prod(q_prod(q0,[zeros(n,1),p1]),... 
          [dq0(:,1),-dq0(:,2:4)]))*hz; 
    LVQ1=([zeros(n,1),dp2]+q_prod(q_prod(dq1,[zeros(n,1),p1]),... 
          [q1(:,1),-q1(:,2:4)])+q_prod(q_prod(q1,[zeros(n,1),p1]),... 
          [dq1(:,1),-dq1(:,2:4)]))*hz; 
    LVQ2=([zeros(n,1),dp2]+q_prod(q_prod(dq2,[zeros(n,1),p1]),... 
          [q2(:,1),-q2(:,2:4)])+q_prod(q_prod(q2,[zeros(n,1),p1]),... 
          [dq2(:,1),-dq2(:,2:4)]))*hz; 
    LVQ3=([zeros(n,1),dp2]+q_prod(q_prod(dq3,[zeros(n,1),p1]),... 
          [q3(:,1),-q3(:,2:4)])+q_prod(q_prod(q3,[zeros(n,1),p1]),... 
          [dq3(:,1),-dq3(:,2:4)]))*hz; 
    LVQ4=([zeros(n,1),dp2]+q_prod(q_prod(dq4,[zeros(n,1),p1]),... 
          [q4(:,1),-q4(:,2:4)])+q_prod(q_prod(q4,[zeros(n,1),p1]),... 
          [dq4(:,1),-dq4(:,2:4)]))*hz; 
    %accelerations 
    LAQ0=([zeros(n,1),ddp2]+q_prod(q_prod(ddq0,[zeros(n,1),p1]),... 
          [q0(:,1),-q0(:,2:4)])+2*(q_prod(q_prod(dq0,[zeros(n,1),p1]),... 
          [dq0(:,1),-dq0(:,2:4)]))+q_prod(q_prod(q0,[zeros(n,1),p1]),... 
          [ddq0,-ddq0(:,2:4)]))*hz.^2; 
    LAQ1=([zeros(n,1),ddp2]+q_prod(q_prod(ddq1,[zeros(n,1),p1]),... 
          [q1(:,1),-q1(:,2:4)])+2*(q_prod(q_prod(dq1,[zeros(n,1),p1]),... 
          [dq1(:,1),-dq1(:,2:4)]))+q_prod(q_prod(q1,[zeros(n,1),p1]),... 
          [ddq1,-ddq1(:,2:4)]))*hz.^2; 
    LAQ2=([zeros(n,1),ddp2]+q_prod(q_prod(ddq2,[zeros(n,1),p1]),... 
          [q2(:,1),-q2(:,2:4)])+2*(q_prod(q_prod(dq2,[zeros(n,1),p1]),... 
          [dq2(:,1),-dq2(:,2:4)]))+q_prod(q_prod(q2,[zeros(n,1),p1]),... 
          [ddq2,-ddq2(:,2:4)]))*hz.^2; 
    LAQ3=([zeros(n,1),ddp2]+q_prod(q_prod(ddq3,[zeros(n,1),p1]),... 
          [q3(:,1),-q3(:,2:4)])+2*(q_prod(q_prod(dq3,[zeros(n,1),p1]),... 
          [dq3(:,1),-dq3(:,2:4)]))+q_prod(q_prod(q3,[zeros(n,1),p1]),... 
          [ddq3,-ddq3(:,2:4)]))*hz.^2; 
    LAQ4=([zeros(n,1),ddp2]+q_prod(q_prod(ddq4,[zeros(n,1),p1]),... 
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          [q4(:,1),-q4(:,2:4)])+2*(q_prod(q_prod(dq4,[zeros(n,1),p1]),... 
          [dq4(:,1),-dq4(:,2:4)]))+q_prod(q_prod(q4,[zeros(n,1),p1]),... 
          [ddq4,-ddq4(:,2:4)]))*hz.^2; 
end 
  
  
% Remove singularities when crossing zero 
limit=10; 
  
AVQ=AVQ0; 
AAQ=AAQ0; 
  
AVQQ=AVQ1; 
AVQQ(:,:,2)=AVQ2; 
AVQQ(:,:,3)=AVQ3; 
AVQQ(:,:,4)=AVQ4; 
  
AAQQ=AAQ1; 
AAQQ(:,:,2)=AAQ2; 
AAQQ(:,:,3)=AAQ3; 
AAQQ(:,:,4)=AAQ4; 
  
for v=1:5 
    if v==5 
        %singularities from calculations 
        if any(isnan(AVQ(:))) 
            warning('Quaternion error: AVQ nan') 
        end 
        if any(isnan(AAQ(:))) 
            warning('Quaternion error: AAQ nan') 
        end 
  
        % spikes in calculations 
        AVQ_test=abs(AVQ(:,2:4))>ones(size(AVQ,1),1)... 
                *(mean(abs(AVQ(:,2:4)))+std(abs(AVQ(:,2:4)))*limit); 
        if any(AVQ_test(:)) 
            if warn==1 
                warning('Possible AVQ error: spike') 
            end 
            %get lowest spike (could just be noisey 
            [row,col]=find(abs(AVQ)>ones(size(AVQ,1),1)... 
                     *(mean(abs(AVQ))+std(abs(AVQ))*limit)); 
            for v1=1:length(row) 
                temp=permute(AVQQ(row(v1),:,:),[3,2,1]);    %collect all 
                temp=sqrt(sum(temp.^2,2));                  %get norms 
                f1=find(temp==min(temp),1);                 %use smallest 
                AVQ(row(v1),:)=AVQQ(row(v1),:,f1); 
            end 
        end 
        AAQ_test=abs(AAQ(:,2:4))>ones(size(AAQ,1),1)... 
                *(mean(abs(AAQ(:,2:4)))+std(abs(AAQ(:,2:4)))*limit); 
        if any(AAQ_test(:)) 
            if warn==1 
                warning('Possible AAQ error: spike') 
            end 
            %get lowest spike (could just be noisey 
            [row,col]=find(abs(AAQ)>ones(size(AAQ,1),1)... 
                     *(mean(abs(AAQ))+std(abs(AAQ))*limit)); 
            for v1=1:length(row) 
                temp=permute(AAQQ(row(v1),:,:),[3,2,1]);    %collect all 
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                temp=sqrt(sum(temp.^2,2));                  %get norms 
                f1=find(temp==min(temp),1);                 %use smallest 
                AAQ(row(v1),:)=AAQQ(row(v1),:,f1); 
            end 
        end 
    else 
        %singularities from calculations 
        if any(isnan(AVQ(:))) 
            AVQ(isnan(AVQ(:,1)),:)=AVQQ(isnan(AVQ(:,1)),:,v); 
        end 
        if any(isnan(AAQ(:))) 
            AAQ(isnan(AAQ(:,1)),:)=AAQQ(isnan(AAQ(:,1)),:,v); 
        end 
  
        % spikes in calculations 
        AVQ_test=abs(AVQ(:,2:4))>ones(size(AVQ,1),1)... 
                *(mean(abs(AVQ(:,2:4)))+std(abs(AVQ(:,2:4)))*limit); 
        if any(AVQ_test(:)) 
            [row,col]=find(abs(AVQ)>ones(size(AVQ,1),1)... 
                     *(mean(abs(AVQ))+std(abs(AVQ))*limit)); 
            AVQ(row,:)=AVQQ(row,:,v); 
        end 
        AAQ_test=abs(AAQ(:,2:4))>ones(size(AAQ,1),1)... 
                *(mean(abs(AAQ(:,2:4)))+std(abs(AAQ(:,2:4)))*limit); 
        if any(AAQ_test(:)) 
            [row,col]=find(abs(AAQ)>ones(size(AAQ,1),1)... 
                     *(mean(abs(AAQ))+std(abs(AAQ))*limit)); 
            AAQ(row,:)=AAQQ(row,:,v); 
        end 
    end 
end 
  
  
if nargin>2 
    % linear stuff 
    LVQ=LVQ0; 
    LAQ=LAQ0; 
  
    LVQQ=LVQ1; 
    LVQQ(:,:,2)=LVQ2; 
    LVQQ(:,:,3)=LVQ3; 
    LVQQ(:,:,4)=LVQ4; 
  
    LAQQ=LAQ1; 
    LAQQ(:,:,2)=LAQ2; 
    LAQQ(:,:,3)=LAQ3; 
    LAQQ(:,:,4)=LAQ4; 
  
    for v=1:5 
        if v==5 
            %singularities from calculations 
            if any(isnan(LVQ(:))) 
                warning('Quaternion error: LVQ nan') 
            end 
            if any(isnan(LAQ(:))) 
                warning('Quaternion error: LAQ nan') 
            end 
  
            % spikes in calculations 
            LVQ_test=abs(LVQ(:,2:4))>ones(size(LVQ,1),1)... 



252 
 

                    *(mean(abs(LVQ(:,2:4)))+std(abs(LVQ(:,2:4)))*limit); 
            if any(LVQ_test(:)) 
                if warn==1 
                    warning('Possible LVQ error: spike') 
                end 
                %get lowest spike (could just be noisey 
                [row,col]=find(abs(LVQ)>ones(size(LVQ,1),1)... 
                         *(mean(abs(LVQ))+std(abs(LVQ))*limit)); 
                for v1=1:length(row) 
                    temp=permute(LVQQ(row(v1),:,:),[3,2,1]);%collect all 
                    temp=sqrt(sum(temp.^2,2));              %get norms 
                    f1=find(temp==min(temp),1);             %use smallest 
                    LVQ(row(v1),:)=LVQQ(row(v1),:,f1); 
                end 
            end 
            LAQ_test=abs(LAQ(:,2:4))>ones(size(LAQ,1),1)... 
                    *(mean(abs(LAQ(:,2:4)))+std(abs(LAQ(:,2:4)))*limit); 
            if any(LAQ_test(:)) 
                if warn==1 
                    warning('Possible LAQ error: spike') 
                end 
                %get lowest spike (could just be noisey 
                [row,col]=find(abs(LAQ)>ones(size(LAQ,1),1)... 
                         *(mean(abs(LAQ))+std(abs(LAQ))*limit)); 
                for v1=1:length(row) 
                    temp=permute(LAQQ(row(v1),:,:),[3,2,1]);%collect all 
                    temp=sqrt(sum(temp.^2,2));              %get norm 
                    f1=find(temp==min(temp),1);             %use smallest 
                    LAQ(row(v1),:)=LAQQ(row(v1),:,f1); 
                end 
            end 
        else 
            %singularities from calculations 
            if any(isnan(LVQ(:))) 
                LVQ(isnan(LVQ(:,1)),:)=LVQQ(isnan(LVQ(:,1)),:,v); 
            end 
            if any(isnan(LAQ(:))) 
                LAQ(isnan(LAQ(:,1)),:)=LAQQ(isnan(LAQ(:,1)),:,v); 
            end 
  
            % spikes in calculations 
            LVQ_test=abs(LVQ(:,2:4))>ones(size(LVQ,1),1)... 
                    *(mean(abs(LVQ(:,2:4)))+std(abs(LVQ(:,2:4)))*limit); 
            if any(LVQ_test(:)) 
                [row,col]=find(abs(LVQ)>ones(size(LVQ,1),1)... 
                         *(mean(abs(LVQ))+std(abs(LVQ))*limit)); 
                LVQ(row,:)=LVQQ(row,:,v); 
            end 
            LAQ_test=abs(LAQ(:,2:4))>ones(size(LAQ,1),1)... 
                    *(mean(abs(LAQ(:,2:4)))+std(abs(LAQ(:,2:4)))*limit); 
            if any(LAQ_test(:)) 
                [row,col]=find(abs(LAQ)>ones(size(LAQ,1),1)... 
                         *(mean(abs(LAQ))+std(abs(LAQ))*limit)); 
                LAQ(row,:)=LAQQ(row,:,v); 
            end 
        end 
    end 
     
end 
  
end 
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%========================================================================== 
% Quaternion Product Function 
%-------------------------------------------------------------------------- 
function [Q] = q_prod(q1,q2) 
    Q=nan(size(q1)); 
    Q(:,1)=(q1(:,1).*q2(:,1))-dot(q1(:,2:4),q2(:,2:4),2); 
    Q(:,2:4)=q1(:,1)*[1,1,1].*q2(:,2:4)+q2(:,1)*[1,1,1].*q1(:,2:4)... 
            +cross(q1(:,2:4),q2(:,2:4),2); 
end 
%========================================================================== 
% DCM to Quaternion conversion - not used 
%-------------------------------------------------------------------------- 
function [Q] = glen_dcm2quat(R) 
  
    q=sqrt(R(1,1,:)+R(2,2,:)+R(3,3,:)+1)/2; 
    Q=[q,(R(2,3,:)-R(3,2,:))./(4*q),(R(3,1,:)-R(1,3,:))./(4*q),... 
      (R(1,2,:)-R(2,1,:))./(4*q)]; 
    Q=permute(Q,[3,2,1]); 
  
    %find problems with rotations of 180 (divide by zero) 
    f=find(isnan(sum(Q,2))); 
    for n=1:length(f) 
        Q(f(n),:)=[0,double(diag(R(:,:,f(n)))==1)']; 
    end 
  
end 
%========================================================================== 
% Differentiation with estimated terminal values 
%-------------------------------------------------------------------------- 
function [out] = glen_diff(data) 
  
    out=nan(size(data)); 
    out(2:end-1,:)=(data(3:end,:)-data(1:end-2,:))/2; 
     
    %three point forward difference from Lagrange interpolating polynomial 
    out(1,:)=(-3*data(1,:)+4*data(2,:)-data(3,:))/2; 
    out(end,:)=(3*data(end,:)-4*data(end-1,:)+data(end-2,:))/2; 
  
end 
%========================================================================== 
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APPENDIX 6 

Matlab Function for Calculating 3D Inverse Dynamics from 
Wrench Notation 
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function [W1,W2,AVQ,AAQ,LDQ,LVQ,LAQ,PQ,dH,dH1] = 
wrench(R,hz,I,COM,PROX,DIST,W0) 
%Calculate joint moments and forces using wrenches 
  
  
%   The equations employed in this m-file are taken from the calculations 
%   from: 
% 
%       Dumas, R., Aissaoui, R. and De Guise, J.A. (2004). A 3D generic 
%       inverse dynamic method using wrench notation and quaternion 
%       algebra, Computer Methods in Biomechanics and Biomedical 
%       Engineering, 7(3), 159-166. 
  
%========================================================================== 
% INPUTS: 
%-------------------------------------------------------------------------- 
% 
%     R = 3 by 3 by n matrix of n rotation matrices (n = number of frames) 
% 
%    hz = sample frequency (1/hz = time between frames) 
% 
%     I = inertial data of segment 1 by 4 array (mass, Ix,Iy,Iz) 
% 
%   COM = COM local vector in a 1 by 3 or n by 3 matrix 
% 
%  PROX = segment proximal end global vector in an n by 3 matrix 
% 
%  DIST = segment distal end(s) global vector(s) in an n by 3 by m matrix 
% 
%    W0 = distal wrench(es) from previous segment(s) in the GCS in an n by  
%         6 by m matrix [optional] 
% 
% 
%-------------------------------------------------------------------------- 
% NOTES 
%-------------------------------------------------------------------------- 
% 1. If COM is in a 3 by 1 matrix, then it is assumed this is the local 
%    vector for all n frames, and it is copied n times into a 3 by n matrix 
% 
% 2. If W0 or DIST is not present then a matrix of zeros is used as it  
%    assumes it is the first segment 
% 
% 3. DIST and W0 can be more than one segment, denoted by m, and allows two 
%    or more segments to come together, such as with the pelvis 
% 
%========================================================================== 
% OUTPUTS: 
%-------------------------------------------------------------------------- 
% 
%    W1 = n by 6 matrix with the forces (columns 1:3) and the moments 
%         columns (4:6) in the GCS 
% 
%    W2 = n by 6 matrix with the forces (columns 1:3) and the moments 
%         columns (4:6) in the LCS of the present segment 
%-------------------------------------------------------------------------- 
% NOTES 
%-------------------------------------------------------------------------- 
% 1. This also outputs [AVQ,AAQ,LDQ,LVQ,LAQ,PQ] from the function QCAL 
%========================================================================== 
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if nargin == 6 
    W0=zeros(size(R,3),6); 
elseif nargin == 5 
    W0=zeros(size(R,3),6); 
    DIST=zeros(size(R,3),3); 
end 
  
s=size(R,3); 
  
% Gravity vector 
g=ones(s,1)*[0 0 -9.81]; 
  
% Call QCAL to calculate all quaternions 
[AVQ,AAQ,LDQ,LVQ,LAQ,PQ] = QCAL(R,hz,COM,PROX); 
  
 %Calculate segment inertial tensor and derivative of angular momentum 
 I_GCS=nan(size(R)); 
 dH=nan(s,3); 
 H=nan(s,3); 
for n1=1:s %can only do this one frame at a time 
    I_GCS(:,:,n1)=R(:,:,n1)*diag(I(2:4))*inv(R(:,:,n1)); 
     
    % Calculate derivative of angular momentum (dH/dt) 
    dH(n1,:)=(I_GCS(:,:,n1)*AAQ(n1,2:4)'+cross(AVQ(n1,2:4)',... 
              I_GCS(:,:,n1)*AVQ(n1,2:4)'))'; 
     
    % Alternative: Calculate angular momentum 
    H(n1,:)=(I_GCS(:,:,n1)*AVQ(n1,2:4)')'; 
end 
  
% Alternative: Calculate derivative of angular momentum (dH/dt) 
dH1=glen_diff(H)*hz; 
  
% weight wrench = mg & c x mg (at proximal joint) 
Ww = [I(1)*g,cross(LDQ(:,2:4)-PROX,I(1)*g,2)]; 
  
% dynamic wrench = ma & c x ma (at proximal joint) 
Wdyn = [I(1)*LAQ(:,2:4),cross(LDQ(:,2:4)-PROX,dH+I(1)*LAQ(:,2:4),2)]; 
  
% distal wrench 
Wdis=zeros(s,6); 
for m=1:size(DIST,3) 
    Wdis = Wdis+[-W0(:,1:3,m),-W0(:,4:6,m)-cross(DIST(:,:,m)... 
          -PROX,W0(:,1:3,m),2)]; 
end 
  
% Combine all for the total wrench 
W1 = Wdyn-Ww-Wdis; 
  
  
%Matrix format? (need to do it in loop above 
  
% Convert wrench into LCS of segment (is this needed?) 
W2 = [q_prod(q_prod(PQ(:,4:7),[zeros(s,1),W1(:,1:3)]),... 
     [PQ(:,4),-PQ(:,5:7)]),q_prod(q_prod(PQ(:,4:7),... 
     [zeros(s,1),W1(:,4:6)]),[PQ(:,4),-PQ(:,5:7)])]; 
  
% Remove scalar parts 
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W2(:,1)=[]; 
W2(:,5)=[]; 
  
end 
  
%========================================================================== 
% Quaternion Product Function 
%-------------------------------------------------------------------------- 
function [Q] = q_prod(q1,q2) 
    Q=nan(size(q1)); 
    Q(:,1)=(q1(:,1).*q2(:,1))-dot(q1(:,2:4),q2(:,2:4),2); 
    Q(:,2:4)=q1(:,1)*[1,1,1].*q2(:,2:4)+q2(:,1)*[1,1,1].... 
            *q1(:,2:4)+cross(q1(:,2:4),q2(:,2:4),2); 
end 
  
%========================================================================== 
% Differentiation with estimated terminal values 
%-------------------------------------------------------------------------- 
function [out] = glen_diff(data) 
  
    out=nan(size(data)); 
    out(2:end-1,:)=(data(3:end,:)-data(1:end-2,:))/2; 
     
    %three point forward difference from Lagrange interpolating polynomial 
    out(1,:)=(-3*data(1,:)+4*data(2,:)-data(3,:))/2; 
    out(end,:)=(3*data(end,:)-4*data(end-1,:)+data(end-2,:))/2; 
  
end 
%========================================================================== 
  
  
  


