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IDENTIFICATION OF MOTION CONTROLLERS IN

HUMAN STANDING AND WALKING

HUAWEI WANG

ABSTRACT

The method of trajectory optimization with direct collocation has the potential to extract 

generalized and realistic motion controllers from long duration movement data without 

requiring extensive measurement equipment. Knowing motion controllers not only can 

improve clinic assessments on locomotor disabilities, but also can inspire the control of 

powered exoskeletons and prostheses for better performance. Three aims were included in 

this dissertation.

Aim 1 was to apply and validate the trajectory optimization for identification of the 

postural controllers in standing balance. The trajectory optimization approach was first 

validated on the simulated standing balance data and demonstrated that it can extract the 

correct postural control parameters. Then, six types of postural feedback controllers, from 

simple linear to complex nonlinear, were identified on six young adults’ motion data that 

was collected in a standing balance experiment. Results indicated that nonlinear controllers 

with multiple time delay paths can best explain their balance motions. A stochastic trajec­

tory optimization approach was proposed that can help finding practically stable controllers 

in the identification process.

Aim 2 focused on the foot placement control in walking. Foot placement controllers 

were successfully identified through the trajectory optimization method on nine young 

adults’ perturbed walking motions. It was shown that a linear controller with pelvis po­

sition and velocity feedback, suggested by the linear inverted pendulum model, was not 

sufficient to explain their foot placement among multiple walking speeds. Nonlinear con­

trollers or more feedback signals, such as pelvis acceleration, are needed. Foot placement 

control was applied on a powered leg exoskeleton to control its legs’ swing motion. Two 

healthy participants were able to achieve stable walking with the controlled exoskeleton.
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Results suggested that the foot placement controller helped decelerate the swing motion at 

late swing.

In Aim 3, the trajectory optimization method was used to identify joint impedance 

properties in walking. Results of the synthetic study showed that relatively close impedance 

parameters can be identified. Then, a preliminary study was done to identify the ankle joint 

impedance properties of two participants at two walking speeds. The identified impedance 

properties were close to previous studies and consistent between different participants and 

walking speeds.
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CHAPTER I

INTRODUCTION

Locomotor disabilities can be caused by spinal cord injury (SCI), stroke, and lower limb 

loss. In just the United States, about 17,730 new SCI cases, 795,000 new stroke cases, and 

185,000 new lower extremity amputations occur each year. [1-3]. People with disabilities 

in locomotion have difficulties moving from one place to another which has largely limited 

their community participation and reduced the quality of their life. Powered exoskeletons 

[4-7] and prosthetic/orthotics (P/O) devices [8-12] have been designed and developed in 

the past several decades that intend to help these individuals regain the abilities to stand up, 

walk, and even run, as illustrated in Figure 1. Unlike passive devices, powered devices can 

offer more assistance in locomotion so that better motion patterns can be generated which 

provide a more comfortable wearing experience. It has been established that powered pros- 

theses can reduce the metabolic cost of amputees which as a result encouraged them walk 

longer distances and reach a wider community[13].

Powered exoskeletons and P/O devices share similar design ideas in which electrical 

motors are used to replace or assist the lost/nonfunctional joints. Even though the hardware 

design has become compact and elegant, the performance of current devices requires im­

provement. For instance, the motion of current exoskeletons is often jerky, and crutches are 

always needed to keep balance. The performance of current P/O devices largely depends 

on the experience of clinicians to manually tune the control parameters through many trials

1



Figure 1: Currently existing powered exoskeletons and P/O devices: a. Mina v2 (ihmc); b. C-Leg 
(Ottobock); c. Bionic Leg (MIT); d. ReWalk Personal 6.0 (ReWalk) e. Prosthetic Leg (Standford); 
f. ReStore™ Soft Exo-Suit (ReWalk); g. PHOENIX Medical Exoskeleton (SuitX); h. Open-source 
Bionic Leg (UMich); i. Indego (Parker Hannifin); j. REX (RexBionics).

of walking tests [14]. These unpleasant facts are mainly caused by the control algorithms 

that are currently used in these devices. For example, powered exoskeletons commonly use 

fixed reference trajectories for each joint which lack the ability to react to walking pattern 

changes and external perturbations [4-6]. Quasi-stiffness of lower limb joints in healthy 

humans’ locomotion is typically used as the starting point to tune the prostheses controller, 

which are usually far from the the actual suitable parameters [10].

While improving the performance of exoskeletons and P/O devices through the im­

provements in control theory or researchers’ experience has led to limited advances, a more 

promising approach is to better understand how healthy humans control their motions. Ex­

oskeletons and P/O devices are normally designed with similar structure and shape as hu­

man limbs; therefore, control information learned from healthy humans’ movement can be 

used or can provide a good reference for these devices to mimic the behavior of healthy 

humans. In general, it is good for people with locomotor disabilities to move like healthy 

humans because they can participate more actively in their community without drawing

2



Figure 2: Open-loop and closed loop controller identification approaches.

attention to their disability.

Studies have extracted the motion controllers of healthy humans in different activities, 

e.g. standing balance, walking, and running [10, 15-20]. These controllers were identified 

from movement data that mathematically mapped the motion control process. In general, 

two main approaches have been used to identify motion controllers: open-loop (direct) 

identification and closed loop (indirect) identification (Figure 2).

In the open-loop identification approach, only the controller input and output are used to 

identify the control parameters [18-20]. This ignores the closed loop connection between 

the controller and the plant. Thus, the identified controller might be the inverse of the 

plant dynamics, instead of the motion controllers. Studies on synthetic data have shown 

that the direct identification can cause bias in identifying the postural controllers of human 

standing balance, while the closed loop identification can provide correct results [21, 22]. 

In the closed loop identification approach, a simulation model is needed to represent the 

closed loop system. In the motion controller identifications, the simulation model contains 

a dynamic model of the human body and a motion controller. The motion controller is 

optimized such that the simulated closed loop system generates the motion that most closely 

resembles that of human subjects. The optimized motion controller is assumed to be the 

controller that the human subjects used in their movements.

The closed loop identification approach has been used in both frequency and time do­
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mains. In frequency domain, non-parametric motion controllers are usually identified, 

which are described as frequency response functions (FRF) [17, 23, 24]. The process of fre­

quency domain identification is finding the FRF of the simulation model, including plant 

dynamics and motion controller, that best fit the FRF of experimental data. Because the 

length of data does not matter when transferring to the FRF through the Fourier transform 

[25], this approach can be easily applied on long duration movement data. In general, 

longer duration movement data can provide more information which helps identify gen­

eralized motion controllers. In addition, random external perturbations can be applied as 

stimuli to trigger motion controllers in a more varied environment, which helps extract 

even more generalized controllers. However, the frequency identification method treats 

identifying systems as linear systems and therefore fails to identify nonlinear properties. 

Human locomotion includes many nonlinear components, e.g. the multi-segments body 

dynamics and the nonlinear property of muscles. Even for standing balance, a very simple 

human movement, studies have shown that we use nonlinear postural feedback controllers 

to maintain balance [15, 26]. Therefore, a method that can identify the nonlinear properties 

of human movements is needed.

Parametric controller identification is usually done in the time domain. The goal is to 

find appropriate control parameters in a predefined control structure that can best explain 

the movement data through the closed loop simulation model [15, 27, 28]. In this case, the 

controller identification problems can be solved through trajectory optimizations. Since it 

is in time domain, both the plant dynamics and the motion controller can be nonlinear since 

linearization is not required. However, motion controllers have only been identified from 

short duration movement data [15, 28]. This is a consequence of the shooting method that 

was used in previous studies, which isn’t efficient in long duration forward simulations, 

especially for human movements [29]. Direct collocation has recently become popular in 

human movement studies, such as optimal control and predictive simulation problems, due 

to its efficiency in trajectory optimization [30, 31]. However, to our knowledge, it has not 
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been used in human motion controller identification.

In summary, current methods for human motion controller identification can only ex­

tract linear controllers from long duration movement data or complex controllers from short 

duration movement data. In this dissertation work, we propose that trajectory optimization 

combined with direct collocation [22, 32] can identify complex (nonlinear) controllers from 

long duration motion data. With this method, motion controllers, including postural con­

trollers, step strategy controllers, and impedance controllers, for human standing balance 

and walking can be identified.

1.1 Research Goals

The following research goals are proposed:

Aim 1: Identify postural feedback controllers for human standing balance.

This work shows that trajectory optimization with direct collocation can identify complex 

(nonlinear) motion controllers from long duration movement data. Linear postural con­

trollers have been identified from human standing balance data with small or short duration 

of external perturbations [15-17, 27]. However, they are not suitable for using in powered 

exoskeletons and P/O devices, since large and long duration external perturbations are com­

mon in everyday life, e.g. standing in a moving bus or facing strong wind on a stormy day. 

Identifying complex postural controllers from standing balance data that includes large and 

long duration random perturbations better informs the controller design for exoskeletons 

and P/O devices. In this aim, standing balance experiments were first conducted to collect 

healthy young adults’ standing balance movement data under random square pulse pertur­

bations. Different types of postural feedback controllers, from simple linear to complex 

nonlinear, were then identified from the measured data. In addition, stochastic trajectory 

optimization was developed to help identify practically stable motion controllers.

5



Aim 2: Identify foot placement controllers for human walking.

In this aim, foot placement controllers were identified from perturbed walking data. Walk­

ing is a highly nonlinear activity, including dynamic changes (foot contact with ground or 

swing in the air), high system disturbance (impact at heel strike), and low constraints (can 

walk in different ways). Studies have focused on linear models to interpret the foot place­

ment control of the human walking [18-20, 33]. However, linear models can only explain 

part information of the walking control. In this aim, a 7-link nonlinear gait model was used 

to identify the highly nonlinear foot placement control loop of randomly perturbed walk­

ing. The identified controllers can be applied or provide good references for the control 

systems of humanoid robots, powered exoskeletons, and P/O devices. To verify these ap­

plication potentials, the foot placement control was applied on a powered leg exoskeleton. 

Leg muscle activations were measured of two participants wearing the controlled exoskele­

ton performing walking on a treadmill.

Aim 3: Identify impedance properties of leg joints in human walking.

This aim examines to what extent the trajectory optimization can identify the leg joints’ 

impedance parameters in perturbed walking. Quasi-stiffness is usually calculated as joint 

stiffness in walking, however, studies have shown that it may not be the real joint stiff­

ness [34]. The real stiffness of the ankle joint has been identified in several studies that 

rely heavily on specific perturbation devices [35, 36], which prevented the same method 

been applied on other leg joints, such as the knee and the hip. The advantage of identi­

fying impedance properties through trajectory optimization is that only joint motion data 

is needed which can be collected easily through motion capture systems or inertial mea­

surement units. However, it is still unknown how accurately trajectory optimization can 

identify the impedance parameters when the simulation model cannot perfectly represent 

the human systems, which normally is the case. To answer this question, identification was 

done on synthetic data where the impedance parameters were known. In the identification, 
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changes of identifying impedance parameters with respect to the model variation, such as 

small changes of mass properties or the foot size, were evaluated. After the synthetic study, 

a preliminary study was done identified the ankle joints impedance properties from two 

participants’ perturbed walking data.

1.2 Outline

This dissertation study is divided into three main parts:

Chapter I discusses the background and main aims of this dissertation study.

Chapter II introduces the general methods for motion controller identifications.

Part I addresses Aim 1 of this dissertation study:

• Chapter III: We designed and conducted a human standing balance experiment to 

obtain the motion data on how healthy young adults control their ankle, knee, and 

hip joints under random mechanical perturbations.

• Chapter IV: We developed a stochastic trajectory optimization method to help iden­

tify practically stable motion controllers from the measured data in chapter III.

• Chapter V: We identified several types of postural controllers, from simple linear to 

complex nonlinear, from the long duration standing balance data collected in chapter 

III.

Part II addresses Aim 2 of this dissertation study:

• Chapter VI: We identified foot placement controllers from a published perturbed 

walking data-set. Nine young adults’ walking data at three walking speeds were 

included in this study.

7



• Chapter VII: We evaluated the foot placement control by applying it on an Indego 

exoskeleton. Walking test was conducted with two healthy adults while wearing the 

controlled exoskeleton.

Part III addresses Aim 3 of this dissertation:

• Chapter VIII: We identified leg joints’ impedance parameters from simulated walk­

ing data through the same simulation model but with small changes in mass proper­

ties and the foot size. Then, preliminary studies were done identified the ankle joint 

impedance properties from two participants’ perturbed walking data.
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CHAPTER II

METHODS FOR CONTROLLER IDENTIFICATION

The indirect identification approach has been used in human movement studies to extract 

motion controllers [1-5]. It has been reported that the indirect approach can avoid the bias 

introduced by the direct approach, and is therefore more appropriate for the closed loop 

system identification [6, 7]. Indirect controller identification can be done in both frequency 

and time domains. In the time domain, trajectory optimization is usually used to solve the 

identification problems [1, 8].

In general, trajectory optimization requires a simulation model to represent the closed 

loop system. In controller identification studies, the simulation model includes a feedback 

controller and a dynamic model of the plant. To identify the feedback controller, control pa­

rameters are optimized such that the simulation model generates outputs that are closest to 

the observed trajectories. For example, in the controller identification for human standing 

balance, the simulation model consists of a state feedback controller and a two-link pendu­

lum model. The identification process is to optimize the control parameters inside the state 

feedback controller until the simulation model generates the closest balance movements as 

human subjects’ (Figure 3).

Shooting methods are commonly used in trajectory optimizations. However, they are 

not efficient, especially for long duration simulation with naturally unstable systems. For 

instance, in forward simulation of the human standing balance model, if the model falls
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Figure 3: Diagram of the indirect approach in postural controller identification.

down at the beginning of the simulation, the remaining simulation becomes useless and 

time consuming. In addition, divergence of the forward simulation can cause crash of the 

optimization process.

One way to avoid forward simulation is to use the direct collocation method. It has 

recently become popular in human movement studies, such as the optimal control and the 

predictive simulation problems, because of its efficiency in trajectory optimization [9, 10]. 

However, to our knowledge, no study has been found that use it for the human motion 

controller identification. As the motion controller identifications in time domain can be 

transferred to trajectory optimization problems, We believe that the direct collocation can 

help identify complex motion controllers from long duration movement data. In this chap­

ter, general formula of the human motion controller identification in the format of trajectory 

optimization with direct collocation is described.
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2.1 Trajectory Optimization

Trajectory optimization is the process of finding the best feasible trajectory for a given 

system, with a specified movement task and optimization objective.. In the human motion 

controller identifications, the aim is to let the closed loop simulation model generate the 

closest fit with the measured human motions. Feasible trajectories mean that these trajec­

tories must satisfy a variety of limits and constraints. For instance, feasible trajectories 

need to satisfy the dynamics of human body, boundary constraints, and the bounds on sys­

tem state and control. The definition of trajectory optimization in human motion controller 

identification is shown in Equation 2.1. Path constraints and boundary constraints were not 

used in this dissertation study.

Optimize trajectory g[x(t)] and control parameters P

Minimize the objective function F = Z kg[x(t)]m

0
- g[x(t)]k2 •dt

Subject to: human system dynamics: f (x(t),x(t),P, q(t')') = 0 (2.1)

bounds on state: xlow < x(t) < xupp 

bounds on control parameters: Plow < P < Pupp

where x(t) is the state trajectory of the simulation model; g[x(t)] represents simulated 

observations which can be any function of the state trajectory; g[x(t)]m represents the cor­

responding measurements; P represents the unknown parameters in the identifying con­

troller; T is the total time duration of the identifying data. q(t) represents external inputs 

to the closed loop system, such as mechanical perturbations.

Theoretically, the measured data used for human motion controller identification can be 

any variables as long as they can be generated by the simulation model, for instance, joint 

motions, joint moments, ground reaction forces (GRF), or even muscle activations. In this 

dissertation study, joint motions were selected as the tracking variable for the controller 
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identification for two main reasons. First of all, joint motion data is easy to get in hu­

man experiments using either the motion capture system or the inertial measurement units 

(IMU). GRF rely on force plates or instrumented treadmills which may not available for 

some active movements, e.g. skiing. Secondly, measured joint motion data can be much 

cleaner than the GRF or the Electromyography (EMG) data with current available sensors. 

It is well known that artificial component is included in GRF due to the moving part of the 

instrumented treadmills [11, 12] and electrical noise can easily affect the EMG data [13].

Take the posture controller identification in standing balance task as an example, the 

trajectory optimization with joint motion tracking is defined as:

Optimize trajectory x(t) and control parameters P

Minimize the objective function F =
iT IIMt) - 0(t)k2 • dt

0

Subject to: human system dynamics: f (x(t), x(t), P, a(t)) = 0 (2.2)

bounds on state: xlow < x(t) < xupp

bounds on control parameters: Plow < P < Pupp

where x(t) is the state trajectories of the simulation model for the human system in stand­

ing balance task, consisting of joint angles 0 and angular velocities 0; P represents the 

unknown parameters of the identifying controller; T is the total time duration of the identi­

fying data. 0m(t) is the measured joint motions in experiments; 0(t) is the optimized joint 

motions generated from the simulation model. a(t) is the mechanical perturbation, applied 

as horizontal accelerations of the standing surface.

The human dynamic model for the standing balance task was simplified as a two-link 

pendulum as shown in Figure 3. Its dynamic equation has the format of M(0(t)) • 0(t) + 

C(0(t), 0(t)) • 0(t) + G(0(t)) + F(0(t), a(t)) = t(t). In which, F(0(t), a(t)) is the force 

component that caused by the mechanical perturbation. Combined with the state feedback
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control law t(t) = Con(0(t),0(t),P), the generalized dynamic equation of the human 

standing balance system model can be written as: f (0(t),0(t),0(t),P,a(t)') = 0. By 

setting the system state x = [0(t), 0(t)], the dynamic equation can be finally summarized 

as: f (x(t), x(t), P, a(t)) = 0.

2.2 Direct Collocation

Direct collocation has shown better efficiency than the shooting method in trajectory opti­

mization, especially for naturally unstable systems [14]. Direct collocation avoids forward 

simulation by discretizing the optimizing trajectory into finite collocation nodes. System 

dynamics is guaranteed by applying constraints on the nearby collocation nodes through 

Euler or higher order methods. Again, taking the posture controller identification in human 

standing balance as an example, the formula of trajectory optimization in direct colloca­

tion format is shown in Equation 2.3. This trajectory optimization format can be solved by

18



nonlinear programming (NLP).

Optimize trajectory on collocation nodes [x(t1), x(t2), ..., x(tN)] and control parameters P
N

Minimize the objective function F = ||0m(tk) — 0(tk)k2

k=1

¿fo) = (x(t2) - x(ti))/h

Subject to: approximate differentiation: X(tk) = (x(tk) — x(tk-1))/h

X(tN) = (x(tN) - x(tN-1))/h 

f (x(ti),X(ti),P, a(ti)) = 0

human system dynamics: f (x(tk),X(tk),P, a(tk)) = 0

f (x(tN ),X(tN ),P,a(tN)) = 0

bounds on state: Xlow ^ X1,...,N ^ xupp 

bounds on control parameters: Plow < P < Pupp

(2.3)

where, ti is the time point of ith direct collocation node; N is the total number of direct 

collocation nodes; h is the time interval between direct collocation nodes;

2.3 Nonlinear Programming

Nonlinear programming problem is defined as optimization problem which contains non­

linear constraints. In human motion controller identification, the nonlinear constraints are 

the nonlinear dynamic equations of the simulation model which represents the closed-loop 

human system. The human motion controller identification in the nonlinear programming 
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format can be written as:

For Y = (x1, x2, ..., xN, P)

Minimize F (Y, Xm )

Subject to: h(Y) = 0
(2.4)

Y^w < Y < Yupp

where, Y represents the optimizing variables, including state trajectories x1, ..., xN and 

controller parameters P; Xm represents the measured data; F(Y, Xm) is the objective func­

tion; h(Y ) represents the nonlinear equality constrains.

Nonlinear programming problems can be solved by various numerical methods [15, 16]. 

In this dissertation, the interior point optimizer (IPOPT) [17], an open source software 

package for large-scale nonlinear optimization, was chosen. Itis a gradient based optimiza­

tion method, which requires gradient of the objective function and Jacobian matrix of the 

constrain functions. In my controller identification studies, the objective function is usually 

defined as a quadratic function. Therefore, its gradient is a vector that contains linear func­

tions, which is easy to obtain. The Jacobian of the nonlinear dynamic constraints is much 

harder to get, since the dynamic equations can be very complicated, especially for high 

dimensional systems. In this dissertation, Jacobian, the derivative of nonlinear constraints 

with respect to system states, was obtained using symbolic dynamic software/toolboxes, 

such as, Autolev (MotionGenesis), Sympy, and PyDy [18-20].

2.4 Reduce Local Optimum Solutions

Gradient based optimization cannot guarantee finding the global optimum. This is the con­

sequence of a poor initial guess and the non-convex property of the optimizing problem. 

One way to increase the chance of finding global optimum is to run multiple optimizations 

with different random initial guesses and choose the best result among these optimizations.
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Particularly, if a best solution (lowest objective value) can be found multiple times with 

different initial guesses, there is a high confidence that this best result is a global opti­

mum. This method for increasing the chance of finding global optimum was used in all 

identification studies in this dissertation.
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CHAPTER III

STANDING BALANCE EXPERIMENT WITH LONG DURATION

RANDOM SQUARE PERTURBATION

Non-peer Reviewed Publication:

1. Wang, Huawei, van den Bogert, Antonie. (2020). Standing Balance Experiment with Long Duration 
Random Pulses Perturbation (Version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3631958
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ABSTRACT

Standing balance experiment and its measurements are fundamental for identifying postu­

ral feedback controllers. As the complex feedback controllers can only be identified from 

long duration balance data (under random external perturbations), a standing balance ex­

periment was conducted and the long duration motion data was recorded. The recorded 

data-set consists of the standing balance data of 8 participants. Each participant performed 

4 experiment trials, including 2 quiet standing and 2 perturbed standing trials. Each trial 

lasted 5 minutes long. A total of 80 minutes quiet standing and 80 minutes perturbed 

standing data are included in the data-set. Recorded data includes three dimensional (3d) 

motion of 32 markers (27 on participants’ trunks and legs and 5 on treadmill frame), six 

dimensional ground reaction forces (GRF), and nine Electromyography signals (EMGs, 

of participants’ right legs’ muscles). In addition, the marker data was post-processed that 

filled the missing frames. The GRF was compensated to remove the inertia artifacts of the 

moving treadmill. The joint angles and torques were calculated using a 2d human body 

model.

3.1 Introduction

Standing balance experiment with external stimuli has become a common way to study 

the postural feedback control in humans’ central nervous system (CNS)[1-5]. External 

stimuli evoke participants’ body sway motion at variety situations, so that generalized mo­

tion controllers that cover these situations can be extracted. Two types of stimuli signals 

were mainly used in previous studies: short duration ramp perturbation[2, 4] and long 

duration random perturbation [1,3, 5-8]. Postural feedback controllers and the mathemat­

ical models of CNS have been identified from the experimental data with these two types 

of stimuli. However, these identified controllers are far from engineering applicable (on 

humanoid robots and P/O devices). The postural controllers identified from ramp pertur­
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bations showed that the control gains vary based on the amplitude of ramp perturbations, 

whereas it is impossible, in practise, to predict perturbation amplitudes before choosing 

the feedback control gains. This also suggested that the postural control in human stand­

ing balance is nonlinear in overall. Mathematical models of CNS identified from the ex­

perimental data with random perturbations have an assumption that the human standing 

balance system is linear. To make this assumption valid, the power spectrum of random 

perturbation was usually small. In this dissertation work, we proposed that a new con­

troller identification method (trajectory optimization with direct collocation) can identify 

nonlinear controllers from long duration experimental data. As a result, human stand­

ing balance data with perturbation that is long duration and large amplitude is required. 

Whereas, no suitable data sets were shared by previous studies. Therefore, the human 

standing balance experiment was conducted to provide motion data for the postural con­

troller identification in chapter IV and V. We also shared this data set on Zenodo for public 

usage https://doi.org/10.5281/zenodo.3631958.

3.2 Methods

In this section, the experiment design, participants, and the experiment setup are described 

first. Then, the design of mechanical perturbation is described.

3.2.1 Participants

Eight able bodied participates, including one female and seven males, with an average 

age of 27 ± 5.3 years, an average height of 1.71 ± 0.08 m, an average mass of 65.3 ± 

9.2 kg joined in this study. This study was approved by the Institutional Review Board 

of Cleveland State University(# IRB-FY2018-40). Also, written informed consent was 

obtained from each participant. Participation exclusion criteria is showing below. All five 

conditions need to be satisfied.
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• No any past extremity injuries on legs or feet and still affect movement and balance 

functions now.

• Not diagnosed with any neuron-muscle disease.

• Body Mass Index (BMI: body wight/body height) below 30 lbs/f t2.

• No neurological or other impairments that affects movements and balance.

• No pain or discomfort that could affect your movements.

Recorded data were anonymized with respect to the participants’ identities. A unique iden­

tification number was assigned to each subject. A selection of the meta data collected for 

each participant is shown in Table V. Participants were divided into those that were used 

for the protocol pilot trials, i.e., the first two (grey background), and those used for the 

final protocol (last six). The final four columns provide the trial numbers associated with 

each experiment trials, Q means the quiet standing trial; P means the perturbed trial. The 

mass information was computed from the mean of vertical ground reaction forces at quiet 

standing trials, if possible. Additional trial in the data set with the trial number 0 is the 

unloaded trial that was used for the inertial artifact compensation.

Id Gender Age (yr) Height (m) Mass (kg) Q1 P1 P2 Q2

Table I: Information of the eight participants in the order of collection date.

1 male 22 1.60 74.29 ± 0.26 1 2 3 4
2 female — — 48.37 ± 0.21 5 6 7 8
3 male 18 1.80 79.12 ± 0.20 9 10 11 12
4 male 27 1.78 63.10 ± 0.16 13 14 15 16
5 male 32 1.79 70.56 ± 0.19 17 18 19 20
6 male 35 1.65 58.24 ± 0.27 21 22 23 24
7 male 28 1.75 68.75 ± 0.17 25 26 27 28
8 male 27 1.63 60.33 ± 0.19 29 30 31 32
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3.2.2 Equipment

Experiments were conducted in the Human Motion and Control lab at the Cleveland State 

University. In the experiment, ten Osprey motion capture cameras (Motion Analysis) were 

used to track participants’ motions during experiment. A computer software Cortex (ver­

sion 5.0.1.1497) was used to control the recording process of these cameras. Motion data 

was recorded at a frame rate of 100 Hz. A four degree of freedom (DOF) V-Gait (Motek 

Medical) treadmill was used as standing platform to execute perturbation. Force sensors in 

the V-Gait were used to detect the six DOF ground reaction forces and moments under both 

feet. Nine EMG sensors (Delsys Inc.) were used to record participants’ muscle activation. 

EMG data was recorded at 1000Hz rate. The experiment setting is shown in Figure 4. In the 

experiment, D-Flow (version 3.26.0) software was used as an integral control tool that con­

trolled all equipment as well as saved the measured data. The D-Flow application designed 

for the standing balance experiment is shown in Figure 5. The MoCap module controlled 

the motion capture system and recorded the EMG, ground reaction forces, and 32 mark­

ers’ data. The V-Gait module controlled the motion of V-Gait treadmill with a perturbation 

signal written in a text file. The XSens module connected with two accelerometers on the 

V-Gait. The record data module recorded the V-Gait motion and XSens accelerometers’ 

data.

In the experiment, 27 markers were used to track the participants’ movement (trunk 

and legs). Five extra markers were placed on the standing platform to record its movement 

during the experiment. Table II describes the landmarks of these 32 markers. Nine Elec­

tromyography (EMG) sensors were used in the experiment to record nine muscle activa­

tions in the right leg. The EMG sensors were placed according to ABC of EMG (SENIAM) 

[9]. The EMG sensor number, corresponding analog channel number, and the measuring 

muscles are shown in Table III.
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Figure 4: Standing balance experiment setting. Perturbation was applied in anterior and posterior 
direction using the sway motion of V-Gait. EMG sensors were placed on the right leg. Twenty-seven 
markers were put on participant’s body to tracking motion.

Figure 5: D-Flow application in standing balance experiment.
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Table II: Reflex markers used in the experiment, including 27 subject markers and 5 treadmill mark­
ers. The label column matches the column headers in the mocap-xxx.txt files. Location of these 
markers on human body are in the last column.

Label Name Description
T10 T10 On the 10th thoracic vertebrae
SACR Sacurm bone On the sacral bone
NAVE Navel On the navel
XYPH Xiphoid process Xiphoid process of the sternum
STRN Sternum On the jugular notch of the sternum
LASIS Pelvis bone left front Left anterior superior iliac spine
RASIS Pelvic bone right front Right anterior superior iliac spine
LPSIS Pelvic bone left back Left posterior superior iliac spine
RPSIS Pelvic bone right back Right posterior superior iliac spine
LGTRO Left greater trochanter 

of the femur
On the center of the left greater trochanter

FLTHI Left thigh At 1/3 of the line between the LGTRO and LLEK
LLEK Left lateral epicondyle 

of the knee
On the lateral side of the joint axis

LATI Left anterior of the tibia On 2/3 on the line between the LLEK and LLM
LLM Left lateral malleoulus 

of the ankle
The center of the heel at the same height as the toe

LHEE Left heel Center of the heel at the same height as the toe
LTOE Left toe Tip of the big toe
LMT5 Left 5th metatarsal Caput of the 5th metatarsal bone, on joint line midfoot/toes
RGTRO Right greater trochanter 

of the femur
On the center of the right greater trochanter

FRTHI Right thigh At 1/3 of the line between the RGTRO and RLEK
RLEK Right lateral epi­

condyle of the knee
On the lateral side of the joint axis

RATI Right anterior of the 
tibia

At 2/3 of the line between the RLEK and RLM

RLM Right lateral
malleoulus of the 
ankle

The center of the heel at the same height as the toe

RHEE Right heel Center of the heel at the same height as the toe
RTOE Right toe Tip of the big toe
RMT5 Right 5th metatarsal Caput of the 5th metatarsal bone, on joint line midfoot/toes
RACR Right shoulder Right acromion
LACR Left shoulder Left acromion
T1 Treadmill marker 1 On the left rear corner of the treadmill
T2 Treadmill marker 2 At 1/2 of the line between T1 and T2
T3 Treadmill marker 3 On the left front corner of the treadmill
T4 Treadmill marker 4 On the right front corner of the treadmill
T5 Treadmill mraker 5 On the right rear corner of the treadmill
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Table III: Nine EMG sensors used in this study. # means the EMG numbers in Delsys system. EMG 
6 was not used due to a wireless connection issue. Analog channel column listed the corresponding 
analog column number in the recorded analog files.

# Analog Channel Muscle Names Muscle Locations
EMG 1 17 Tibialis anterior In the upper two-thirds of the lateral (out­

side) surface of the tibia
EMG 2 21 Soleus In the back part of the lower leg (the calf)
EMG 3 25 Medial gastroc­

nemius
On the medial back portion of the lower 
leg

EMG 4 29 Lateral gastroc­
nemius

On the lateral back portion of the lower 
leg

EMG 5 37 Vastus medialis In the anterior and medial compartment of 
thigh

EMG 7 41 Vastus lateralis In the anterior and lateral compartment of 
thigh

EMG 8 45 Rectus femoris Situated in the middle of the front of the 
thigh

EMG 9 49 Biceps femoris Begins in the thigh area and extends to the 
head of the fibula near the knee

EMG 10 53 Gluteus maximus Located in the buttocks

3.2.3 Perturbation Signal

In the standing balance experiment, perturbation was designed as random square signals, 

instead of the Gaussian random signals used in previous studies [1, 3, 5]. The main reason 

is to avoid damaging the V-Gait treadmill. The total mass of the V-Gait is a about 800 

lbs. In the experiment, the whole V-Gait will move laterally according to the perturbation 

signal (Figure 4). Large impact forces can be generated on the treadmill motors due to the 

frequent direction changes in the Gaussian random perturbation.

Parameters that determined the random square signal are the stage amplitude and the 

stage duration. The principle of designing the signal is to let participants feel a large per­

turbation but no so large that they respond by taking a step. After several tests, a suitable 

perturbation signal was designed using square pulses with five amplitudes [-5, -2.5, 0, 2.5, 

5] cm, and six stage duration [0.25, 0.5, 0.75, 1.0, 1.25, 1.5] seconds. Amplitudes and 

duration series were randomly generated to obtain a 300 second perturbation signal. All
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Figure 6: Comparison between the designed and actual standing balance perturbation. Designed 
perturbation has no dynamics and actual perturbation has a slow transient because of dynamics. 
Only the first 50 seconds is shown here.

participants experienced the same random square perturbations to check whether they have 

similar responses.

The actual sway motion of the V-Gait was calculated by averaging the motion of five 

reflect markers that were placed on the treadmill frame. The comparison between designed 

perturbation command and recorded V-Gait movement is shown in Figure 6. The difference 

between them was mainly caused by the dynamics of the V-Gait treadmill. In general, the 

actual perturbation closely tracked the designed signal.

3.2.4 Protocol

The experimental protocol consisted of both static measurements and experimental record­

ings. Experimental recordings include standing on the treadmill for five minutes with and 

without perturbation. On the day of experiment, the motion capture system was calibrated 

first using the manufacturer’s recommended procedure. Prior testing, participants were 

asked to change into barefoot, shorts, and tight t-shirts (sports bra for female). All twenty­

seven markers were applied directly to the skin except for the heel, toe, and hip markers, 
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which were placed on the respective article of clothing. Then age, gender, height, and 

mass were documented. Their knee and ankle widths were measured by the experimental­

ist. After obtaining the informed consent and a briefing by the experimentalist on the trial 

protocol, the experimental protocol for a participant was as follows:

1. The participant stepped onto the treadmill and markers were identified with Cortex.

2. A safety rope was attached loosely to the rock climbing harness such that no forces 

were acting on the subject during experiment. But the harness would prevent a full 

fall.

3. The participant started by stepping on sides of treadmill so that feet did not touch the 

force plates and the force plate signals were zeroed. Then participants were asked to 

step back to the treadmill.

4. A verbal countdown to the first quiet standing trial (Trial 1) was given by the experi­

mentalist. Participants were asked to look at a target at roughly same height as their 

eyes. The quiet standing trial was five minutes long.

5. After the quiet standing trial, participant was asked to continue the first perturbation 

trial (Trial 2), in which 5 minutes anterior and posterior perturbation was applied 

on the treadmill . In the perturbation trial, participants were asked to keep balance 

without taking a step. However, he/she is free to adjust his/her pose by actively 

control his/her joints.

6. The participant was instructed to step off the force plate after the second trial to have 

a rest for five minutes.

7. The participant was asked to repeat the perturbation trial after rest (Trial 3).

8. The participant was asked to have another five minutes quiet standing trial (Trial 4) 

after the repeated perturbation trial.
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Participants 3-8 were instructed to keep their vision on the horizontal target, having the feet 

width similar to the width of shoulder, and feel free to bend their trunk to keep balance. 

The first two participants were in the process of testing experiment protocol. The first 

participant had a wider stance, and the second participant used a strange (freezing) strategy 

to keep balance, instead of the normal strategy. The identification work in chapter IV and 

V used the last six participants’ data.

3.3 Raw Experimental Data and Post Processing

3.3.1 Raw Data

Each participant performed four trials. Each trial produced three raw data files.

1. Mocapxxxx.txt: contains motion capture marker data, ground reaction force, and 76 

analog channels. Data was recorded at 100 Hz sampling rate.

2. Mocapxxxx_Motion Analysis_analog.txt: contains 76 high sampling rate (1000Hz) 

analog channels’ data (Figure III)

3. Recordxxxx.txt: contains the sway motion data of treadmill and the three-axis accel­

eration data of two Xsens MTi-10 series sensors. Data was recorded at roughly 300 

Hz.

The mocap data (marker motion) might missed some frames when markers were obscured 

or not recognized by the Cortex software. The quality of the marker data of all eight 

participants was assessed by determining the percentage of data missing and the maximum 

missing gaps. Most of the 32 markers had very small missing percentages, which were less 

than 0.5%, except the marker of NAVE, XYPH, STRN, LASIS. The data quality of these 

four markers over all participants and experiment trials is shown in Table IV. These markers 

had relatively bad quality in the experiment trials of participant 2. In other participants’ 

data, their missing percentages were either lower than 1% or the maximum gaps of them 

were less than 200 frames (2 seconds).
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Table IV: Maximum numbers of continual missing frames and overall percentage of missing frames 
of all participants.

Marker names_______ NAVE XYPH_______ STRN_______ LASIS
Participant No. Trial Maximum gap (frames) {Missing data (%)}

1 0 {0.0} 144 {2.4} 0 {0.0} 0 {0.0}
Participant 1 2 6 {0.03} 9 {0.32} 5 {0.07} 0 {0.0}

3 0 {0.0} 8 {0.5} 6 {0.14} 0 {0.0}

4 4 {0.2} 20 {0.46} 0 {0.0} 0 {0.0}

1 0 {0.0} 28 {0.46} 0 {0.0} 0 {0.0}

Participant 2 2 0 {0.0} 49 {20.36} 1581 {5.12} 256 {37.06}
3 76 {2.22} 45 {7.44} 1434 {7.55} 2021 {90.93}
4 0 {0.0} 0 {0.0} 0 {0.0} 402 {4.34}
1 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

Participant 3 2 6 {0.08} 15 {2.84} 1 {0.0} 0 {0.0}

3 2 {0.11} 22 {1.03} 10 {0.55} 0 {0.0}

4 99 {17.29} 0 {0.0} 16 {0.24} 0 {0.0}

1 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

Participant 4 2 0 {0.0} 5 {0.15} 3 {0.03} 0 {0.0}

3 0 {0.0} 1 {0.0} 0 {0.0} 0 {0.0}

4 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

1 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

Participant 5 2 65 {1.29} 6 {0.13} 0 {0.0} 0 {0.0}

3 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

4 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

1 0 {0.0} 159 {32.72} 0 {0.0} 0 {0.0}

Participant 6 2 14 {0.08} 95 {4.33} 4 {0.11} 2 {0.01}

3 15 {0.17} 82 {3.8} 1 {0.0} 0 {0.0}

4 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

1 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

Participant 7 2 8 {0.14} 2 {0.02} 13 {0.59} 3 {0.02}

3 0 {0.0} 0 {0.0} 64 {1.75} 0 {0.0}

4 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

1 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

Participant 8 2 0 {0.0} 2 {9.68} 3 {9.68} 0 {0.0}

3 0 {0.0} 0 {0.0} 1 {3.23} 0 {0.0}

4 0 {0.0} 0 {0.0} 0 {0.0} 0 {0.0}

3.3.2 Missing Data Filling

Gaps (missing) of the marker data were filled using the interpolation function in MATLAB.

The filling process contained the following three steps:
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Figure 7: Gap filling result in experiment trial three of participant two. Red lines are original 
recorded data, which several frames’ data were zero due to marker missing. Blue lines are filled 
marker data, which all the gaps were filled with reasonable data.

1. Find out the index of marker data with value zero. (D-Flow writes zero value in the 

file when a marker is not recognized. We assume that the position of marker will 

never be exactly zero if the marker was not missing.)

2. Generate recorded marker data and corresponding time vector after removing the 

missing marker data and corresponding time stamps.

3. Generate the estimated value of missing marker data using interp1 function in MAT­

LAB with generated marker data in the above step.

Piece-wise Cubic Hermite Interpolating Polynomial (PCHIP) option was used in the ’in- 

terp1’ function in MATLAB. Good filling results were achieved even with large data gap 

period. One example of the gap filling is shown in Figure 7.

3.3.3 Calculation of Joint Angles and Torques

Joint angles and torques were calculated using a 2d gait model (https://github. 

com/csu-hmc/GaitAnalysisToolKit). In the calculation, joint angles were aver­

aged between the left and right legs based on the assumption that participants’ movement 
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were symmetric. Sign definition of the ankle, knee, and hip joints are shown in Figure 

8. Ground reaction forces(GRF) in the perturbed trials were compensated [10] to remove 

the inertia artifact of the moving treadmill. A comparison of raw GRF and the compen­

sated GRF is shown in Figure 9. Compensated GRF has much lower amplitude than the 

raw GRF, showing that the measured GRF was largely affected by the inertia of the heavy 

treadmill. Since almost all reactions to perturbation were in the sagittal plane, a two di­

mensional seven-link human body model was used [11] to calculate joint torques through 

inverse dynamics. Joint torques were also averaged between left and right legs. The sign 

convention for joint torques are the same as joint angles. An example (participant 7 trial 

3) of the calculated joint angles and torques is shown in Figure 10. Both joint angles and 

torques were zeroed by subtracting the mean value of the quiet standing period (first 10 

second) in each trial. The assumption here is that human trends to save energy in quiet 

standing, so that the joint angles should be close to zero which requires the minimum joint 

torques. In addition, because the postural feedback controllers that will be identified from 

the motion data is for controlling the humanoid robots or P/O devices, it is better to have 

zero joint angles at quiet standing, so that less joint torques will be required.

3.3.4 Repository of Processed Data

Processed data in each experiment trial were saved into four files:

1. Mocapxxxx.txt: contains the gap filled motion capture data and the inertia compen­

sated ground reaction force data.

2. Motionxxxx.txt: contains the calculated trajectories of three joints’ (hip, knee, and 

ankle) angles, angular velocities, moments, and joint contact forces.

3. Data_infoxxxx.txt: contains the quality of recorded raw marker data (percentage and 

biggest duration of missing marker data), and the percentage of removed the inertia 

artifacts in ground reaction forces.
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Figure 8: Human body diagram in standing balance task. The markers used for joint angles calcu­
lation is named in red color. The definition of joint angles is shown in the plot. Positive joint angles 
are defined with counterclockwise rotation. Joint torques have the same sign as joint angles.
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Figure 9: A comparison of raw ground reaction force and compensated ground reaction force.
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Figure 10: Joint angles and torques of participant 7 and experiment trial 3.
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4. MotionAnalysis.fig: shows the mean and standard deviation of three joints’ trajecto­

ries in four experimental trials.

3.3.5 Analysis of Joint Motions

Here we calculated the means and standard deviations of the joint angles for the last six 

participants. These statistical information are shown in Figure 11 - 16. The first and fourth 

experimental trials were quiet standing trials. The second and third trials were perturbed 

trials. Motion variations in perturbed trials were much larger than quiet standing trials, 

showing that perturbation had evoked the human standing system in a larger variety situa­

tions. The two quiet standing trials had similar variation of joint motion. However, there 

was a difference in the variation of joint motion between two perturbed trials. The second 

perturbation trials (repeated perturbation trial) had a relative smaller variation than the first 

perturbation trial for almost all participants.

3.4 Discussion

Based on our analysis, the measured data from the standing balance experiment has good 

quality for postural controller identification. Most marker data had less than 1% missing 

data or less than 20 frames (0.2 second) of the maximum missing gap, except for the third 

trial of the second participant. With 0.2 second data missing period, interpolation can help 

fill them up very well. Considering the first two participants were pilot studies (their data 

were not used in the identification study), the quality of the standing experiment data is 

good.

As expected, the perturbation trials had larger motions than the quiet standing trials. 

This means that perturbation did cause participants to control their body motions while 

maintaining standing balance. The averaged knee angles are positive and averaged hip 

angles are negative for most participants. This means that they bent their knee and leaned 

their trunk forward in the standing balance experiment. This is typical reaction for most
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Figure 11: Joint angle analysis of subject 3. Analysis includes the mean and standard deviation of 
the ankle, knee, and hip joint motions.
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Figure 12: Joint angle analysis of subject 4. Analysis includes the mean and standard deviation of 
the ankle, knee, and hip joint motions.
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Figure 13: Joint angle analysis of subject 5. Analysis includes the mean and standard deviation of 
the ankle, knee, and hip joint motions.
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Figure 14: Joint angle analysis of subject 6. Analysis includes the mean and standard deviation of 
the ankle, knee, and hip joint motions.
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Figure 15: Joint angle analysis of subject 7. Analysis includes the mean and standard deviation of 
the ankle, knee, and hip joint motions.
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Figure 16: Joint angle analysis of subject 8. Analysis includes the mean and standard deviation of 
the ankle, knee, and hip joint motions.
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people in daily experience during standing balance.

Perturbation trials did not have a significant effect on the quiet standing balance. The 

first and fourth trials of each participant are two quiet standing trials which were before and 

after perturbation trials. The range of joint motion in these two trials does not have a signif­

icant difference. This suggests that perturbation experience does not affect quiet standing 

balance. However, this have not been confirmed by qualitative study. We encourage some 

qualitative studies be done with the experiment data in future.

Participants had smaller joint motion range after the first perturbation experience. The 

repeated perturbation trial always has smaller motion range than the first perturbation trial 

when comparing the motion range for each participant. Since the same perturbation signal 

was used in both trials, this means participants adapted to the perturbation and could keep 

balance using smaller body swing motions. The first perturbation trial was more appropri­

ate for extracting postural balance information in daily activity situation, since participants 

haven’t got used to the perturbation yet.

3.5 Conclusion

In the standing balance experiment, over 160 minutes standing balance data of 8 partici­

pants were recorded. From the analysis, the collected standing balance data are in good 

quality. Joint motions are reasonable and confirm with our daily standing balance ex­

perience. The collected experiment data is suitable for identifying generalized postural 

feedback controllers in the standing balance task.
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ABSTRACT

System identification can be used to obtain a model of the human postural control system 

from experimental data in which subjects are mechanically perturbed while standing. How­

ever, unstable controllers were sometimes found, which obviously do not explain human 

balance and cannot be applied in control of humanoid robots. Eigenvalue constraints can 

be used to avoid unstable controllers. However, this method is hard to apply to highly non­

linear systems and large identification datasets. To address these issues, we perform the 

system identification with a stochastic system model where process noise is modeled. The 

parameter identification is performed by simultaneous trajectory optimizations on multiple 

episodes that have different instances of the process noise. The stochastic and deterministic 

identification methods were tested on three types of controllers, including both linear and 

nonlinear controller architectures. Stochastic identification tracked the experimental data 

nearly as well as the deterministic identification, while avoiding the unstable controllers 

that were found with a deterministic system model. Comparing to eigenvalue constraints, 

stochastic identification has wider application potentials. Since linearization is not needed 

in the stochastic identification, itis applicable to highly nonlinear systems, and it can be ap­

plied on large data-sets. Stochastic identification can be used to avoid unstable controllers 

in human postural control identification.

4.1 Introduction

Feedback control is a well accepted paradigm for human postural balance [1]. Identification 

of a feedback control system from human experiments has several important applications. 

In neuroscience, control system models are used to understand how humans maintain bal­

ance. In clinical applications, a quantitative description of the control system, e.g. as feed­

back gains and time delays, may have clinical applications. Finally, in humanoid robotics, 

a control system identified from human subjects can produce behavior that is more human­
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like than a control system designed from conventional control engineering principles.

System identification methods have been used, in both frequency and time domains, 

to identify feedback controllers from human experiments [2-4]. In the frequency domain, 

information of human neuromuscular control were identified on experimental data with 

multiple random perturbations [2, 4-8]. In the time domain, parametric controllers were 

usually identified and it has been shown that a single stimulus is sufficient for multiple-input 

multiple-output (MIMO) system identification [9]. For instance, full-state proportional­

derivative (FPD) controllers were identified on short experimental data where ramp per­

turbations were applied to the standing surface. Results showed that controller gains were 

proportional to the amplitudes of ramp perturbations [3, 10], which suggests a nonlinear 

control system.

However, one common issue of the time domain identification work is that the best fitto 

the experiment was sometimes achieved with a controller that causes the closed loop system 

to be unstable. [3, 9]. While the best fit controller is always treated as the best identified 

controller, it is not useful since it can neither be applied to humanoid robots nor explain 

how humans control themselves. One possible reason of finding unstable controllers is that 

the process noise in both human system and experiment is not modeled. The identified 

controllers may take advantage of instability and sensitivity to initial conditions to achieve 

the best fit without falling.

To avoid instability, eigenvalue constraints have been used in the controller identifica­

tion. It enforces eigenvalues of the modeled closed loop system to be negative at a specific 

pose while identifying the controller parameters. This method was successful in avoid­

ing unstable linear controllers in standing balance identification under ramp perturbations 

[3]. However, the application of this method is limited. For instance, it cannot work with 

highly nonlinear systems, since only a limited set of linearization points can be checked. 

For complex tasks such as walking, this could become impractical. In addition, it is hard to 

incorporate eigenvalue constraints into identifications with long experimental recordings, 
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in which gradient-based optimization and collocation methods are needed. Long record­

ings, under continuous random perturbation, are needed to collect sufficient information to 

identifying more complex posture controllers. Direct collocation has been reported to be 

more efficient in such parameter identification problems [11, 12].

In this study, we hypothesize that a stochastic optimization, in which process noise is 

modeled, can help avoid finding unstable controllers in the standing balance identification 

problem. The stochastic optimization was applied on the identification of three types of 

controllers. Eigenvalue and forward simulations tests were done to examine the practical 

stability of the identified systems.

4.2 Methods

An indirect identification approach was used in this study [2-4, 9]. In the indirect approach, 

a model is built, which mathematically represents the closed loop system and an optimiza­

tion method is used to fit experiment data by optimizing the model parameters. It has been 

reported that, in identifying the feedback controllers, the indirect approach can avoid the 

bias introduced by the direct approach which only uses the information of controller in­

put and output [13]. In this study, the mathematical model of the human standing balance 

system was treated as a closed-loop system which includes a body dynamics model and a 

feedback controller. The body dynamics model was simplified as a double-link pendulum, 

since ankle and hip strategies are mostly used for standing balance [14, 15]. Three feed­

back controllers, as described below, were identified. The goal of the identification is to 

find the feedback controller parameters P which enable the closed-loop system generate 

the response that is closest to the human experimental data (Fig. 17).

4.2.1 Experiments

Experiments were performed on six participants (five male, one female, age 18-34 years) 

with approval from the Institutional Review Board of Cleveland State University with the
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Figure 17: For identification of controller parameters, the same perturbation which was applied in 
the experiment was applied to the closed-loop system model. Controller parameters are optimized 
to fit the experimental data. The experimental data (140 seconds) was divided into 3 sections. The 
first 100 seconds (blue) were used to identify the linear controllers. The first 10 seconds (green) 
were used to identify the nonlinear controller. The last 40 seconds (red) were used to verify all 
identified controllers.

study number IRB-FY2018-40. A R-Mill instrumented treadmill (Forcelink, Netherlands) 

was used to induce anterior-posterior (AP) perturbations of the standing platform through 

its ”sway” mechanism. Participants were asked to stand with their arms crossed in front 

of their chest and instructed to keep balance without taking a step. The perturbation signal 

was designed using random square pulses with five amplitudes ([-5, -2.5, 0, 2.5, 5] cm), 

and six pulse durations ([0.25, 0.5, 0.75, 1.0, 1.25, 1.5] seconds). Amplitudes and durations 

were randomly selected to generate a 140 second perturbation signal. Twenty-seven reflec­

tive markers were placed on each participant to record their reactions using a 10-camera 

motion capture system (Osprey 00882967, Motion Analysis Corp. Santa Rosa, CA). Hip 

and ankle joint motions were calculated from the recorded marker data, and the platform 
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motion was recorded from encoders. The commanded perturbation signal, actual pertur­

bation signal (standing platform motion) and balance reaction data (ankle and hip motion) 

of one participant can be found in figure 17. Data from this participant was used to show 

how the modeling of a stochastic environment affects the practical stability of identified 

controllers.

4.2.2 Controller Structures

Three feedback controllers were identified on the data described in Section A. Two of them 

are linear: a proportional-derivative (PD) controller and a full-state proportional-derivative 

(FPD) controller. The other one is nonlinear: neural network (NN) controller. Formulas of 

these three controllers are shown below:

PD controller:

-da Or

FPD controller:

Ta

Th

Kpa 0 Kda 0

0 Kph 0 Kdh

Oh -

0a

Oh

Oa

(4.1)
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Kpaa K pah
Kdaa Kdah
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Oh -
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Or 
h

- O

Or 
h

Oh

where Ta and Th are ankle and hip joint torques; Oa and Oh are ankle and hip joint angles;

Oar and Ohr are the reference joint angles for ankle and hip at quiet standing; Oa and Oh are 

ankle and hip joints angular velocities; Kp and Kd are proportional and derivative gains of 

feedback controllers.
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For the nonlinear controller, a standard neural network architecture [16] with 1 hidden 

layer and 4 hidden nodes was used. The inputs are the system state and a constant value 

node, and the outputs are joint torques (figure 18).

Figure 18: Structure of neural network controller that with 1 hidden layer and 4 hidden nodes.

The smoothed leaky-ReLU function was used as activation function and is showing 

in equation 4.3. The reason to smooth the activation function is make it continuously 

differentiable, which is essential to gradient-based optimization.

f (x) = x + 0.7(x -Vx22+0.0001) (4.3)

The control parameters in these two types of linear controllers are the proportional­

derivative gains K and reference joint angles 9r. The control parameters in the neural 

network are the weights Wij applied in between the input layer, the hidden layer, and the 

output layer. The total number of controller parameters in the PD, FPD, and NN controllers 

are 6, 10 and 30, respectively.

4.2.3 Controller Identification in Deterministic Environment

Models with a deterministic environment, without modeling of process noise, have been 

used in many controller identification studies [3, 4, 9]. The deterministic standing balance 
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controller identification problem can be defined as a combined trajectory and parameter 

optimization problem:

Optimize trajectory x(t) and control parameters P

Minimize objective function F =
iT kdm(t) - 0(t)k2dt

0
(4.4)

Subject to: body dynamics: f (x(t), x(t), P, a) = 0

where x(t) is the state trajectory of the identified system, including ankle/hip joint angles 0 

and angular velocities 0; P represents the control parameters inside the feedback controller; 

T is the total time period of the measured experimental data; 0m is the measured joint an­

gles; 0 is the optimized joint angles; a represents the acceleration of external perturbation;

4.2.4 Controller Identification in Stochastic Environment

In a stochastic environment, process noise is considered in the controller identification pro­

cess. In controller identification with stochastic environment, the optimization is carried 

out over multiple episodes. Each episode simulates the motions with the same controller, 

and the same perturbation signal, but with a different process noise signal. The identifica-
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tion problem for the stochastic environment is defined below:

Optimize trajectory {x1(t), ..., xM (t)} and Controller Parameters P
MT

Minimize objective function: F = i / ||0m(t) — 0s(t)||2 * dt 
s=1 0

fi(x(t),x(t),P, a) + ni(0, a) = 0
(4.5)

Subject to: body dynamics: fs(x(t), x(t), P, a) + ns(0,a) = 0 ►

fM (x(t),x(t),P,a) + nM (0,a) = 0

where M is the total number of episodes; s is the sth episode; xs (t) is the state trajectory 

of human system model in sth episode; ns(0, a) is random noise added to sth episode.

The direct collocation method [17] was used in this study. This transforms the trajectory 

optimization problem into a nonlinear program (NLP) with a finite number of unknowns: 

the states x at N collocation nodes, and the controller parameters [12, 15]. The Midpoint 

Euler approximation was used to convert the body dynamics constraint into algebraic con­

straints:

f(x x^xi+j-^i,p,a)=0, fori = 1,2,...,N — 1. (4.6)
2h

The number of collocation nodes was 50 per second, and IPOPT was used to solve the 

NLP [18].

Four identification problems were solved for each controller structure. For each con­

troller, a deterministic identification was performed first. For the linear controllers (PD, 

FPD), stochastic identifications with 2, 3, and 4 episodes were performed. For the nonlin­

ear neural network controller, stochastic identification were performed with 6, 8, and 10 
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episodes. The process noise was modeled as Gaussian random noise with amplitude of ± 

0.25 Nm, added to the controller outputs (joint torques) at each time step. The process 

noise in each episode was randomly generated, and kept the same during the optimiza­

tion process. For each identification problem, 10 optimizations with random initial guesses 

were performed. By selecting the best fit with experiment data among 10 optimizations, 

local optimum results can be largely prevented.

4.2.5 Practical stability evaluation

Eigenvalues and forward simulations were used to evaluate the finite time practical stability 

of the closed loop standing balance system with the identified controllers. In practice, it is 

very hard to quantify the stability of a nonlinear system, especially under external perturba­

tions. The practical stability [19] is a more appropriate concept to examine the stability of 

the identified systems here. In the eigenvalue test, the closed loop system dynamics were 

linearized to obtain eigenvalues at different operating points. These points covered the 

range of motion observed in the experiment. In the forward simulation tests, the identified 

controllers were used to perform 40 seconds simulations with all possible initial conditions 

inside the experiment data range. The perturbation (in red block) used in the forward sim­

ulation was different from the perturbation used in identifications. No process noise was 

used in these tests.

The distribution of four state variables (ankle angle, hip angle, ankle angular veloc­

ity, hip angular velocity) in the experimental data is shown in figure 2A. Ranges of these 

four state variables in degree and degree/s are between [-3.87, -9.49, -16.53, -50.74] and 

[2.41, 11.50, 18.38, 65.00]. To check the stability of identified controllers in a standard 

way, eleven equidistant values were chosen within the range of each state variable, result­

ing in 11 • 11 • 11 • 11 = 14641 operating points where eigenvalues were calculated. The 

percentage of stable operating points (all eigenvalues negative) was calculated. Forward 

simulation tests used each of these operating points as an initial condition. A simulation 
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was considered practically stable if the root mean square (RMS) between the forward sim­

ulations and the experiment data was within 3 times the standard deviation of experiment 

data. The percentage of practically stable simulations was calculated for each identified 

controller. The eigenvalue and forward simulation tests were performed using the Ohio 

Super Computer System [20].

4.3 Results

Results of the identifications are summarized in Fig. 19. The percentage of stable eigenval­

ues and practically stable forward simulations (Fig. 2b) is always below 100%. One reason 

is that many of the checking points were outside of the range of actual state trajectories. 

Nevertheless, the effect of identification method on practical stability was clearly seen.

In the PD and NN controllers, results suggest that mostly controllers found through 

the stochastic identification can achieve practically stable for the simulation system, while 

unstable controllers were found in the deterministic identifications. When the stochastic 

environment was introduced and the episode number increased to a specific number (3 

episodes for PD controller type, 8 episodes for NN controller type), the identified con­

trollers suggests practically stable, which has high percentages of stable eigenvalues and 

practically stable forward simulations.

In the FPD control architecture, the deterministic identification already suggested prac­

tical stability in about half of the tests. With the stochastic environment (2, 3, and 4 

episodes), the percentage of stable eigenvalues and forward simulation remained high.

4.4 Discussion

Our results confirmed previous findings of unstable controllers when a deterministic model 

is used for identification of the human postural control system [3, 9]. The optimization is 

likely taking advantage of instability to improve the fit. In a deterministic unstable sys­

tem, the final state can be made equal to the corresponding measurement, by extremely
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Figure 19: Eigenvalue and forward simulation test of identified best controllers on the operating 
points. Subplot A shows the range of each state variable from the human standing experiment data. 
subplot B is the percentages of stable eigenvalue and practically stable forward simulations of all 12 
identified best controllers on selected operating points. ”DET” means deterministic optimization. 
”STO i” means stochastic optimization with i episodes. Subplot C is one comparison between 
forward simulation and experiment data. RMS of this this forward simulation is about 1.3 STD of 
experiment data.

small changes in initial condition or controller parameters. We hypothesized that with a 

stochastic model, the optimization can no longer take advantage of instability to improve 

the fit with the experiment. The practical stability tests using eigenvalue analysis and for­

ward simulation tests supported our hypothesis. We also found that stochastic approach 

did not affect the practical stability very much when the deterministic approach already 

found a practically stable controller. Identified control gains and eigenvalue distributions 

of PD and FPD controllers are shown in Appendix. In general, practically stable controllers 

identified from stochastic model are close to these unstable controllers identified through 

deterministic approach.

It needs to be noted that the forward simulation test was not a fully sufficient proof 

of the practical stability, since not ’any’ x(t0) were tested. However, since a high density 
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mesh was used to generate the initial conditions x(t0), the high percentage of forward 

simulations that were within the 3 times STD of the experimental motion did suggest the 

finite time practical stability of the identified system.

The eigenvalue analysis and forward simulation tests were mostly in agreement about 

the practical stability of the system, except in the NN controller. This is not surprising 

because linearization may not give a reliable evaluation of stability in a system with strong 

nonlinearities. This finding also suggests that the use of eigenvalues as constraints in the 

identification problem [3] is not likely to give useful results for nonlinear controllers. In 

contract, the stochastic trajectory optimization presented here is directly applicable to non­

linear systems without linearization.

Generally, more episodes were needed to find practically stable controllers for more 

complex controller types with more free parameters. In the case of our study, identifica­

tion of a practically stable PD controller requires three episodes, while identification of 

a practically stable NN controller required eight episodes. Because controller parameters 

(which are the same in each episode) and free initial conditions (which are different in each 

episode) can both be used to take advantage of instability, we suspect that the required num­

ber of episodes equals the number of control parameters divided by the number of system 

state variables.

The amplitude of Gaussian noise used in this study was 0.25 Nm, applied to the joint 

torques of human balance system. This is approximately one percentage of the standard 

deviation of the joint torques in the standing balance experiment. An amplitude of 0.5 

Nm was also tried, which had the same practical stability effect of 0.25 Nm but resulted 

in slightly larger control parameter differences between the identified practically stable 

controllers.

Recently, similar ideas of using a stochastic environment were also used in other studies 

to get realistic and practically stable results in robotic control. Mordatch increased the 

success rate of path planning in a biped robot by adding model uncertainty [21]. Policies 
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for robot arm control were obtained by reinforcement learning in a simulated stochastic 

environment, making them robust enough for transfer to hardware [22]. Although these 

control optimization studies were not system identifications from experimental data, they 

share with our work the use of a simplified model of the real system. In order to avoid 

overly specialized controllers, stochastic dynamics can be used to produce better and more 

realistic solutions.

4.5 Conclusion

In this work, we showed that identification of human standing balance controllers by 

stochastic trajectory optimizations will produce controllers that are more robust than those 

obtained with a deterministic system model. When applied in robotic systems, these iden­

tified controllers will result in human-like behavior that is practically stable against small 

perturbations.
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CHAPTER V

IDENTIFICATION OF POSTURAL CONTROLLERS IN HUMAN STANDING

BALANCE

Conference Abstract:

1. H. Wang and A. J. van den Bogert. Standing balance Controller Identification with Direction Collo­
cation. Dynamic Walking 2016.
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ABSTRACT

Standing balance is a simple task for healthy humans but it is not known which control laws 

are used by the central nervous system (CNS). Identification methods have been used by nu­

merous studies and many mathematical models of the CNS have been extracted, however, 

limitations exist in these commonly used identification methods. In this chapter, we pro­

pose that the trajectory optimization with direct collocation method can identify parametric 

CNS models from long duration motion data without assuming the identifying system to 

be linear. We first examined this identification method using synthetic motion data which 

showed that it can extract correct control parameters. Then, six types of controllers, from 

simple linear to complex nonlinear, were identified from 100 seconds experimental data. 

Results from the identifications showed that time-delay and nonlinear property are both 

needed in order to explain the standing balance motions under randomly external perturba­

tions.

5.1 Introduction

Standing balance is a simple motion task which allows researchers to investigate the func­

tion of humans’ central nervous system (CNS). Numerous studies have treated the CNS in 

human standing balance as a postural feedback controller and identification methods have 

been used to find it’s mathematical model [1-13]. In most of these studies, an external 

stimulus or multiple stimuli, such as push/pull forces and standing platform motions, was 

used to evoke participants’ body sway motion at larger variety situations. Indirect identifi­

cation approaches were usually used in these studies, in which a closed-loop mathematical 

model of the human standing balance system is required. It has been reported that the 

indirect approach (closed-loop identification) can avoid the bias caused by the open-loop 

identification that only use the information of CNS inputs (joint motions) and outputs (joint 

torques) [14, 15]. Even though both non-parametric and parametric mathematical models 
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have been identified which have no doubt helped understand the function of the CNS in 

human standing balance activity, limitations exist in both study directions which prevented 

finding better mathematical models of the CNS.

In non-parametric postural controller identifications, the CNS was described as a fre­

quency response function (FRF) [11, 12, 16]. The frequency domain identification method 

was usually used to find the FRF of the closed-loop model including the CNS that can best 

explain the experimental data. Because the length of data does not matter when transferring 

to frequency domain through Fourier transform [17], this approach can be easily applied 

on long duration standing balance data that recorded from experiment where the random or 

multi-sine external perturbations were applied. In general, longer duration ofan experiment 

with random perturbation can provide more information of the CNS which helps identify 

a generalized CNS model. However, this frequency domain approach requires multiple 

stimulating sources to identify a multi-input and multi-output (MIMO) system which is 

typical for human standing balance task since at least the ankle and hip strategies were 

used. Developing a hardware device that could provide multiple stimuli across body seg­

ments may be very difficult for many research groups and clinic applications. In addition, 

this approach treat the identifying systems as linear systems which missed the ability to 

identify the nonlinear property of the CNS. The human system itself includes many nonlin­

ear components, e.g., the multibody dynamics and the nonlinear mechanical properties of 

muscles. It is reasonable to believe that the human standing balance task involves nonlinear 

properties, especially when external stimuli are large. For instance, studies have shown that 

humans use different feedback control gains to control postural on different amplitudes of 

perturbations [4, 7].

Parametric identification is to find appropriate control gains in a predefined control 

structure that can best explain the experimental data. Trajectory optimization can be used 

to solve this identification problem[18-20]. In this approach, both plant dynamics and the 

CNS control structure can be nonlinear since the identification is in time-domain and lin­
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earization is not needed. However, only linear controllers have been identified on short 

duration motion data that perturbed by short ramp perturbations [4, 7, 21]. One of the 

reasons is that the shooting method used in these studies cannot handle long duration tra­

jectory optimization, as the standing balance is naturally an unstable system. It is hard 

for the shooting method to find a long duration stable motion. Identifying postural con­

troller on a long duration of motion data is essential to get a generalized controller than 

can explain humans’ reactions at different situations, such as with ramp perturbations that 

have different amplitudes. Only recently, parametric identification has been done on long 

duration randomly perturbed standing motion data [22]. Whereas, the objective function 

in this study is to compare the FRF of the closed-loop model and the motion data in the 

frequency domain, which did avoid the forward simulation of the unstable system but has 

an assumption that identifying system is a linear system.

The goal of this study is to identify complex CNS models (control parameters) through 

trajectory optimization with the direct collocation method. This method has the advantage 

that it can identify complex nonlinear controllers from long duration experimental data. 

We first validate this method by doing identification on simulated data where the feedback 

control parameters are known. Then, we identified six types of feedback controller, from 

simple linear to complex nonlinear, on 100 seconds experimental data from a standing 

balance experiment. In the simulation study, we also investigated the effect of data length 

on the accuracy of identified control gains. In the controller identification of experimental 

data, identified control gains and suggesting properties of the CNS in standing balance 

were provided. The identification method proposed in this dissertation study is not limited 

on the postural controller identification, but can be extended to other studies, for example 

identifying step controllers from walking data.
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5.2 Methods

An indirect identification approach was used in this study [3, 4, 22, 23]. In the indirect 

approach, a mathematical model is built, which represents the identifying system and an 

optimization method is used to fit experimental data by optimizing the model parameters. 

In this chapter, the mathematical model of the human standing balance system was treated 

as a closed-loop system which includes a standing dynamics model and a feedback con­

troller. The standing dynamics model was simplified as a double-link pendulum without a 

knee, since ankle and hip strategies are mostly used for standing balance [19, 24]. Detail 

of the dynamic model can be found in Appendix A. The goal of the identification is to find 

the feedback controller parameters P which enable the closed-loop system model generate 

the response that is closest to the human experimental data (figure 20).

Figure 20: The indirect approach of standing balance controller identification. Identification can 
be treated as a trajectory optimization problem, in which the control parameters are optimized to 
minimize the difference between the model output and the experimental data.
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5.2.1 Standing Balance Experiments

Experiments were performed on eight able-bodied participants (seven male, one female, 

age 18-35 years) with approval from the Institutional Review Board of Cleveland State Uni­

versity with the study number IRB-FY2018-40. A R-Mill instrumented treadmill (Forcelink, 

Amsterdam, Netherlands) was used to induce anterior-posterior (AP) perturbations of the 

standing platform through its ”sway” mechanism. Participants were asked to stand with 

their arms crossed in front of their chest and instructed to keep balance without taking a 

step. The perturbation signal was designed using random square pulses with five ampli­

tudes ([-5, -2.5, 0, 2.5, 5] cm), and six pulse durations ([0.25, 0.5, 0.75, 1.0, 1.25, 1.5] 

seconds). Amplitudes and durations were randomly selected to generate a 300 seconds 

perturbation signal. Twenty-seven reflective markers were placed on each participant to 

record their reactions using a 10-camera motion capture system (Osprey 00882967, Mo­

tion Analysis Corp. Santa Rosa, CA). Hip and ankle joint motions were calculated from 

the recorded marker data, and the platform motion was recorded from encoders.

The experimental procedure started with a 300 seconds quiet standing trial and then 

followed by a 300 seconds perturbation trial. Then participants were asked to sit down 

and rest for 300 seconds. After the rest, another 300 seconds perturbation trial which used 

the same perturbation as the previous trial was recorded. Finally, participants were asked 

to do another trial of 300 seconds quiet standing. General information of the participants 

are shown in Table V Experimental data and some preliminary analysis were shared on 

Zenodo: https://doi.org/10.5281/zenodo.3631958.

Simulated Motion Data

The identification method used in this chapter was first validated through simulated motion 

data. The closed-loop mathematical model in the indirect identification work was used to 

generate the simulation data. Parameters of the standing dynamics model, such as the seg­

ment mass, length, inertia, and the center of mass, were calculated based on the height and

74

https://doi.org/10.5281/zenodo.3631958


Table V: Information of the eight participants in the order of collection date.

Id Gender Age (yr) Height (m) Mass (kg)
1 male 22 1.60 74.29 ± 0.26
2 female — — 48.37 ± 0.21
3 male 18 1.80 79.12 ± 0.20
4 male 27 1.78 63.10 ± 0.16
5 male 32 1.79 70.56 ± 0.19
6 male 35 1.65 58.24 ± 0.27
7 male 28 1.75 68.75 ± 0.17
8 male 27 1.63 60.33 ± 0.19

weight of participant No. 4 using the anthropometry table in Winter’s book[25]. External 

perturbation used here is the randomized square pulses that used in the standing balance 

experiment. The postural feedback controller, a full state feedback PD controller with time 

delay, was the same as in the simulation study did by Goodworth and Peterka [22] Mathe­

matical equation of the controller is shown in Eqn. 5.3. Pink noise (similar to Goodworth’s 

study) was added at the motion feedback loop of each joint as sensor noise. One hundred 

seconds simulation data was generated using the Midpoint Euler method [26] and sampled 

in 100 Hz. Ten different realizations of sensor noise were generated and ten trials of simu­

lated data under each sensor noise were generated. External perturbation, sensor noise, and 

simulated motion of one trial were shown in figure 21.

5.2.2 Controller Identification on Simulated Data

Controller identification on the simulated motion data was done through the described indi­

rect approach by replacing the experimental data with simulated data. Five lengths (10, 30, 

50, 70, and 90 seconds) of the simulation data (figure 21) were selected to be used for the 

controller identification. Lower and upper boundaries of the identifying controller param­

eters are 0 and 2 times the real control parameters. Ten optimizations were performed on 

each controller identification problem (controller identification on one period of data) with 

randomized initial guesses within the boundaries to eliminate local minimum. The identi­

fication result with the lowest objective function among ten optimizations was selected as
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Figure 21: Simulated motion data with one realization of sensor noise. Sensor noise 1 is for ankle 
joint and 2 is for hip joint. Five data periods (10, 30, 50, 70, 90 seconds) were selected to identify 
the feedback control gains.

the best result and shown in the results section.

5.2.3 Controller Identification on Experimental Data

Controller identification on experimental data using the same indirect approach as the sim­

ulated data identification. One hundred seconds of the experimental data was selected in 

the middle of each perturbation trial of each participant to avoid the transit period of bal­

ance motion. Last six participants in the Table V were identified in this chapter, since the 

first two participants were in the preliminary testing of the experiment protocol. In total, 

there are 12 periods of experimental data (6 participants and 2 perturbation trials for each 

participant) that been selected to identify the standing balance controller.

Six types of controllers, from simple linear to complex nonlinear, were identified on 
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each selected data period. Three of them are linear: the proportional-derivative (PD) con­

troller, the full-state proportional-derivative (FPD) controller, and the full-state proportional­

derivative feedback with time delay controller (FPDTD) (a controller type that Goodworth 

used in his simulation study [22]). The other three are nonlinear: the linear state combi­

nation with time delay (LSCTD) controller, the neural network (NN) controller, and the 

neural network with time delay (NNTD) controller. The formulas of these six controllers 

are:

PD controller:

ri - 9i(t)

Ti(t) _ Kii Bii 0 0 0 — 9i(t)

T2(t) 0 0 K22 B22 r2 - 92(t)

0 — @2(t)

(5.1)

FPD controller:

T1(t)

T2(t)

Kii Bii K2i B2i

Ki2 Bi2 K22 B22

ri - 91(f)

0 - 9i(t)

r2 - 92(t)

0 — @2(t)

(5.2)
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FPDTD controller:

T1 (t + td1)

T2 (t + td2)

LSCTD Controller:

Kpas1 0

Kpas2

r1

r2

91(t + tdi)

92(t + td2)

K11

K12

B11 K21

B12 K22

B21

B22

ri - 9i(t)
•0 — 9a(t)

r2 - 9h(t)
•

0 - 9h(t)

(5.3)

-

0 -

+

i
11

i
12

i K21

i K22

B2i1

B2i2

r1 — 01(t — i • At)

0 — 91 (t — i • At)

r2 — 6*2 (t — i • At)

0 — 92 (t — i • At) J y 

(5.4)

where T1(t) and T2(t) are the ankle and hip joint torques at time t; 91 (t) and 92 (t) are the 

ankle and hip joint angles at time t; r1 and r2 are the reference angles of the ankle and 

hip joints; K11 and B11 are the proportional and derivative gains for the ankle joint; K22 

and B22 are the proportional and derivative gains for the hip joint; K21 and B21 are the 

proportional and derivative gains for the ankle joint from the hip joint angle and angular 

velocity feedback; K12 and B12 are the proportional and derivative gains for the hip joint 

from the ankle joint angle and angular velocity feedback; Kpas1 and Kpas2 are the passive 

proportional gains for ankle and hip joints; td1 and td2 are the delay time for the ankle and 

hip joints in the FPDTD controller; 91 (t — i • At) and 92(t — i • At) are ankle and hip 

joint angles at i • At time prior to the current time t; Ki and Bi are the proportional and 

derivative gains that multiply with the state at i • At time prior to the current time t; D is 

the total number of delayed state feedback.
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NN Controller:

The NN controller in this chapter was defined as standard neural network with one hid­

den layer and four hidden nodes (figure 22). It is a nonlinear controller, since its activation 

function is defined as a smoothed leaky-ReLU function: f (x) = x + 0.7(x-^x2+0.0001). 

Inputs of the NN controller are the state of the closed-loop model (two joint angles and two 

angular velocities) and a constant node (unit input). The hidden layer included a constant 

node (unit input) also. Outputs of the NN controller are two joint torques.

Figure 22: Structure of neural network controller with 1 hidden layer and 4 hidden nodes.

NNTD Controller:

The NNTD controller in this chapter also used the standard neural network but with one 

hidden layer and eight hidden nodes. Inputs of the NNTD controller are the current state 

information and several prior state information (delayed feedback). Outputs of the NNTD 

controller are two joint torques. Same activation function used in NN controller was used 

here.

In these six types of controllers, optimizing parameters are the control gains, reference 

angles, and the time delay parameters. In LSCTD and NNTD controllers, three prior state 

information (60ms, 120ms, and 180ms delayed feedback) were used to form the feedback 
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control loop. The total number of optimizing parameters in the PD, FPD, FPDTD, LSCTD, 

NN, and NNTD controllers are 6, 10, 14, 34, 30, and 154, respectively.

5.2.4 Trajectory Optimization with Direct Collocation

The indirect identification approach mentioned above can be treated as trajectory optimiza­

tion problems where the state trajectories and control parameters are optimized at the same 

time. In this chapter, the direct collocation method [27, 28], instead of shooting method 

[29], is used in the trajectory optimization, which transferred the continuous state trajec­

tories into finite discrete points and the dynamics of forward simulation was transferred 

into constraints of the optimization problem. As a result, we only need to solve a nonlin­

ear program problem, instead of run the forward simulation for the trajectory optimization. 

Formula of the trajectory optimization with direct collocation in standing balance controller
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identification task is:

Find state trajectories: X = {x1, x2, ..., xN} 

and control parameters: P

To minimize the objective function:
N

F=X
(0nm - dn)2 + (ffn^ - ^n)2 

2TN

Subject to: system dynamics:

f1(X1,XC 1,P,Vbelt,1) = 0

f2(x2,x; 2,P,Vbeit,2) = 0
(5.5)

fN (xN,xN ,P,Vbelt,N ) = 0

xlow,1 < x1 < xupp,1

bounds on state trajectories:
xlow,2 < x2 < xupp,2

...

xlow,N < xN < xupp,N

bounds on control parameters: Plow < P < Pupp

where, xn is the state of the closed-loop model at the nth collocation node, including joint 

angles and joint angular velocities [01,01,02,02]; 01,02 are the ankle and hip joint angles; 
n,m n,m01, 02 are the joint angular velocities of the ankle and hip joints; 01, , 02, are the ankle 

and hip joint angles of the measured data at time point n; fn = 0 is the dynamic constraint 

of the closed-loop model at the nth collocation node. Equations of the dynamic model can 

be found in the appendix A.

The Interior Point Optimizer (Ipopt) [30] was used to solve the large scaling nonlinear 

program in this chapter. The Ohio supercomputer [31] was used to speed up the optimiza­

tion process.

Ten optimizations were performed with random initial guesses of the optimizing con-
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trol parameters in each identification problem to eliminate local optimum. An identification 

problem is defined as the identification of one type of controller on one period of experi­

mental data. The optimizing result which has the lowest objective function among these ten 

optimizations was select as the best solution for the identification problem. For the NNTD 

controller type, only one optimization was run in each identification problem due to the 

very long computational time. In total, we solved 72 identification problems (12 periods 

of data and 6 types of controllers) which include 612 large scaling optimizations in this 

chapter.

For the PD and FPD controllers, we also applied stochastic identification [20] to help 

identify practically stable controllers by enforcing the closed-loop model generates practi­

cally stable motions among multiple episodes of process noises. Two and three episodes 

were used in the stochastic identifications for the PD and FPD controllers, respectively.

5.3 Results

5.3.1 Identification Results on Simulated Data

Figure 23 shows the mean and standard deviation (STD) of identified control gains among 

ten realizations of sensor noise (identified gains in each realization of sensor noise was 

selected as the best fit result from the ten random initial guess optimizations). The leftmost 

bar in each subplot indicates the ”true” value of the control gain that was used to generate 

the simulated motion data. The other five bars from left to right in each subplot shows the 

identified control gains from five lengths of simulated data periods (10, 30, 50, 70, and 90 

seconds). In general, the identified control gains are close to the ’true’ value, except for 

the two passive proportional gains. However, the differences between the ’true’ value and 

identified results are small when adding the passive and active proportional control gains 

together (bottom two subplots). Another significant result is that with the increase of the 

data length, the standard deviation of identified gains among different realizations of sensor 

noise is decreasing.
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Figure 23: Identified control gains from simulated data.

Percentage of bias error and variability across 10 noise seeds of all identifying control 

parameters are shown in Figure 24. This result is from the identification of fifty seconds of 

simulated data. The bias error of all identified parameters are less than 2.5% of the ’true’ 

value, except the two passive proportional gains. The variation of identified control gains 

among ten realizations of noise are below 10% of the averaged gain values, except the two 
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passive proportional gains.

Figure 24: Bias error and variation of the identified control gains from simulated data.

5.3.2 Identification Results on Experimental Data

Figure 25 shows the root mean square (RMS) of the experimental data (first two box plots) 

and the fits (difference) between experimental data and the motion output of the closed- 

loop model with the six controller types (rest box plots). With the increase of the controller 

complexity, RMS is gradually decreasing which suggests better fit. Specifically, the FPD 

controller has lower RMS than the PD controller indicating that the cross joints feedback 

can better explain the CNS of human standing balance. However, the FPDTD controller 

does not has a significant lower RMS than the FPD controller, which suggests that the time 

delay component added to the FPDTD controller may not be sufficient to explain the CNS 

system. LSCTD controller has a more generalized delay structure, which generated better 

fit with experimental data than the FPD controller type. Controller NN also has lower RMS 
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than the FPD controller type given the only difference is that NN is a nonlinear controller. 

Lastly, the NNTD controller has both generalized time delay and non-linearity, which re­

sulted the lowest RMS among all six types of controllers. This shows that human CNS 

has both non-linearity and time delay to control standing balance at randomly perturbed 

simulation. Fit of ankle and hip joints’ motion of one participant can be found in Appendix

C.

Figure 25: Root mean square (RMS) of the experimental data (first two box plots) and the fits 
between experimental data and the motion output of the closed-loop mathematical model with the 
six controller types (rest box plots).

RMS value of the PD controller is about half of the RMS value of the experimental 

data showing that the PD controller can only explain about 50% amplitude of the standing 

balance motion. RMS value of the NNTD controller is about one fourth of the RMS value 

of the experimental data showing that the NNTD controller can explain about 75% ampli­

tude of the standing balance motion. Considering there is one optimization in the NNTD 

controller identification, whereas PD controller result is the best result among ten optimiza­

tions. The actual RMS of NNTD controller could be even lowers than what is showing in 

the plot.

Even though the variation of experimental motion among different subjects is large, 

the RMS of the controller fit are much smaller of all controller types. This means that the 
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amplitude difference of balance motion can be explained by the feedback controllers that 

have the same structure. Considering that human have the same biological structure and 

function, it is reasonable to believe that human used the same structure of CNS to control 

standing balance. Another interesting fact is that the perturbation trial 2 has a relative 

smaller RMS than the perturbation trial 1 at most controller types. This is because that 

participants have a relatively smaller body sway motion in trial 2 comparing to the trial 1 

showing that participants got adapted to this type of perturbation at the second perturbation 

trial.

Identified control gains of PD, FPD, and FPDTD type of controllers are shown in the 

figure 26, 27, and 28. These gains were normalized to a standard human with weight of 

70 kg and height of 1.75 m. In the normalization process, joint torques were normalized 

by the product of body mass and height; joint angular velocities were normalized by the 

square root of the gravity divided by the body height. In general, the identified feedback 

control gains were consistent among subjects and two perturbation trials. In all three types 

of controllers, proportional control gain K11 (K11 + Kpas1) of the ankle joint has a larger 

value than the hip joint’s K22 (K22 + Kpas2). This makes sense since the ankle joint re­

sponds to the balance of full body segments and the hip joint only responds to the trunk 

balance. The K21, B21, K12, B12 in the FPD controller type are significantly different from 

zero confirmed with previous analysis that human use cross-joint feedback to control stand­

ing balance. In FPDTD controller type, time delay parameter of ankle joint is smaller than 

the hip joint, which are not as expected, as the distance for the nervous signal translation 

is longer for ankle joint so that larger delay time should exist. The proportional feedback 

gain K22 (K22 + Kpas2 ) of the hip joint has a higher value in the second perturbation trial 

than the first perturbation trial, which explained the smaller balance motion in the second 

perturbation trial.
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Figure 26: Identified PD control gains from experimental data.

Figure 27: Identified FPD control gains from experimental data.
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Figure 28: Identified FPDTD control gains from experimental data.

5.4 Discussion

5.4.1 Identification on Simulated Data

Identification results on simulated data showed that the identification method (trajectory 

optimization with direct collocation) used in this study was able to find the correct control 

parameters. More importantly, the identified control gains in our study had less bias error 

and variation comparing to Goodworth and Peterka’s simulation study [22]. One possible 

reason is that the external stimulus in this study is much larger than what Goodworth used 

in his study. The peak value of the stimulus in their study is only 5 Nm. We used an 

stimulus which the peak value of equivalent torque perturbation reached around 30 Nm for 

the hip joint and 50 Nm for the ankle joint. In general, large perturbation generates low 

noise-to-signal ratio (NSR) which helps find true control parameters. This indicates that the 

external stimulus used in this study was large enough to collect useful human reaction data 

from experiment. This also confirmed with the recently published results of Schut et al. 

(2019) [32]. They showed that the 10 cm peak to peak perturbation amplitude is sufficient 
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to collect low NSR data in the standing balance experiment.

Another possible reason that Goodworth and Peterka’s results have large variation is 

that the trajectory optimization method used in their papers makes it harder to find a good 

solution than the optimization method used in this study. In their study, optimizations 

were performed with the objective function to minimize the FRF between the experimen­

tal data and the closed-loop mathematical model. It is hard to calculate the derivatives of 

the FRF with respect to the optimizing parameters, which limited the optimization perfor­

mance. In our optimization, the gradient of objective function and Jacobian matrix of the 

dynamic constraints can be easily provided in the analytical format which helped the opti­

mizer quickly find good solutions. As a result, we are able to get small standard deviation 

among different sensor noise seeds by selecting the best solution from only 10 optimiza­

tions with random initial guesses comparing to 50 optimizations that was done in their 

study.

5.4.2 Identification on Experimental Data

RMS results of the six types of controllers suggests that both time delay and nonlinear con­

trol laws are needed to explain human’s standing balance control under random external 

perturbations. This confirmed with the results of previous studies [4, 33] that the control 

gains vary with respect to the amplitude of the ramp perturbations, which suggested non­

linear property in humans’ postural control. In addition, the identified feedback control 

gains in this study have similar amplitudes with the study that Park et al. (2004) did. One 

difference is that we allow the control gains on the cross-joint feedback to be negative. As a 

result, the proportional gain for the hip joint from the feedback of ankle angle have slightly 

negative values for most participants.

The identification approach used in this study does not require a linear model and can 

extract human postural controllers from a long duration of experimental data. As far as we 

aware, it is the first time that highly nonlinear controllers were identified from 100 seconds 
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of standing balance data under random perturbations. This method can be applied to more 

complex controller identification tasks, for instance the step strategy controller in human 

walking. In addition, this approach is not limited to human-related studies, but can be 

applied to other areas.

Due to the long computational time, only one optimization was applied on the NNTD 

controller identification. Considering the possibility of only finding local minimum results, 

the RMS in Figure 25 can be even lower. Neural network controller has the generalized 

nonlinear property which is good for testing the ability of nonlinear controllers. However, 

it may not be a good controller because the control performance is not predictable beyond 

the trained sections. Normally, its performance can be tested through the so called vali­

dation process, which is to perform forward simulation with the other perturbations that 

were not used for the identifications and check how close they are comparing to the human 

subjects’ motions. This was not included in this study because the NNTD controllers were 

just used to demonstrate the ability of nonlinear and time delay. For engineering applicable 

nonlinear controllers, we suggest to try deterministic nonlinear structures, such as polyno­

mials functions, in which the identified controller parameters have a physical meaning and 

their performance is predictable.

5.5 Conclusion

In this work, we showed that trajectory optimization with direct collocation method can 

identify the correct control parameters from simulated motion data. Six types of postural 

controllers, from simple linear to complex nonlinear, were identified from 100 seconds ex­

perimental data indicating that the identification method used in this dissertation study have 

the ability to identify complex nonlinear controllers from long duration motion data. Iden­

tification results suggest that humans’ CNS includes both time delay and strong nonlinear 

properties.
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CONTROL OF WALKING
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CHAPTER VI

IDENTIFICATION OF THE FOOT PLACEMENT CONTROL IN HUMAN WALKING

Conference Presentation:

1. H. Wang and A. J. van den Bogert. Identification of Swing Leg Feedback Control in Human Walking. 
Midwest ASB Conference, 2019.
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ABSTRACT

Humans and humanoid robots use foot placement to control balance during walking. Hu­

manoid robots have been successfully controlled by placing the foot at the capture point of 

a simple inverted pendulum, resulting in a control law with linear feedback from center of 

mass position and velocity. It is not known, however, whether humans use the same control 

algorithm, or whether they use the same feedback gains. In this study, step controllers with 

a control structure from capture theory were identified on 27 trials of perturbed walking 

data (nine participants, three speeds) through a closed-loop identification approach using 

a 9-dof planar model of gait dynamics. The identified step controllers generated perturba­

tion responses in the model that were nearly the same as in the human participants. The 

controller gains were similar among participants and close to the capture theory, but with 

generally smaller position gains and larger velocity gains. The identified step control gains 

were dependent on walking speed, which suggests that the step controller might be nonlin­

ear in humans.

6.1 Introduction

Bipedal locomotion in humans and humanoid robots is unstable. Joint angle control is 

not sufficient, because the system is under-actuated, requiring control of foot placement 

to prevent falling [1-3]. In general, falls of humanoid robots and humans can always be 

prevented if the swing leg can step to the appropriate location with correct timing. However, 

finding an effective control algorithm for the step strategy could be difficult, especially in 

the case of an unpredictable environment. One successful paradigm is capture theory [4], 

which predicts the desired foot placement based on a linear inverted pendulum (LIP) model 

[5]. Both simulation and hardware tests have proven its usefulness in humanoid robots to 

maintain stable walking under external perturbations [6]. Nonetheless, the algorithm for 

estimating the desired foot placement inside the capture theory requires some assumptions.
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The desired foot placement is based on the capture point, in which the LIP will fully stop 

(“captured”) at the subsequent mid-stance [4, 7]. However, the center of mass (CoM) in 

human gait has a relatively constant speed during the gait cycle. In addition, the swing leg 

dynamics and the landing energy lost (heel strike) were not considered [8, 9]. Studies have 

pointed out that humans do not step on the capture point or the extrapolated center of mass 

(XCoM), but behind and outward of them [10, 11].

In order to determine how humans control their foot placement, system identification 

methods can be used. Control identification can be performed using open loop methods, 

i.e. observing the input and output of the controller, and fitting a control law to the data. 

It has been shown, however, that this approach biases the control law towards the inverse 

plant dynamics [12]. To avoid this, it is important to employ proper closed loop identifi­

cation methods, such as the indirect method where the input and output of the closed loop 

system are observed and a controller and/or plant model is fit to the data. For example, 

one can use mechanical perturbations as the input, assume a known plant dynamics model, 

and determine which controller explains the output of the closed loop system. Open-loop 

and indirect controller identification methods have been used to extract phase-dependent 

step controllers from both unperturbed and randomly perturbed walking data through lin­

ear models [13-15]. These studies have shown correlations between foot placement and 

changes of pelvis position and velocity. However, these phase-dependent step controllers 

may not be able to explain the correct foot placement when walking in the presence of 

random perturbations. Variation of pelvis position and velocity at a certain phase in walk­

ing cycle cannot determine the foot placement by itself since the foot placement could be 

largely affected by perturbation after that phase. Furthermore, a poor fit has been found 

when using a simple plant model [14], suggesting a more complicated plant model may be 

necessary for predicting human foot placement.

In this study, we hypothesis that phase-independent foot placement controllers can be 

identified from human walking data. To prove it, this type of controllers were identified 
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from randomly perturbed walking data with a 9-dof gait dynamics model (plant) through an 

indirect system identification approach. The results of this work have potential applications 

in robotics and in human gait assessment. Robots can behave more human-like with the 

foot placement controllers obtained from humans. In humans, the ability to quantify the 

feedback gains of an individual’s step strategy could be useful as a clinical assessment of 

walking balance.

6.2 Methods

A flowchart of the indirect approach for the step controller identification is shown in Fig­

ure 29. There are two components in the identification: One is the closed loop simulation 

model which includes the gait dynamics and the gait controller (the hypothesized step strat­

egy control law). Another component is the experimental data obtained from participants 

exposed to perturbations during walking. The overall goal of the indirect approach is to 

minimize the difference between the outputs of the closed loop model and the experimen­

tal data, by optimizing the controller parameters. Therefore, the foot placement control 

gains were identified through a trajectory optimization. We assume that the correct step 

controllers are found if the nonlinear gait dynamics can reproduce the motions of testing 

participants under the same perturbation.

6.2.1 Experimental Data

All identifications were done using previously published data [16]. In the experiment, 

participants’ motions were recorded while they were walking on a treadmill with a con­

tinuously perturbed belt speed. Each participant was tested under three walking speeds: 

0.8m/s, 1.2m/s, and 1.6m/s. Optical motion capture with 10 cameras (Motion Analysis 

Corp., Rohnert Park, CA) and 47 markers was used to obtain full-body motion. An in­

strumented treadmill (Motekforce Link) was used to perturb belt speed and record ground 

reaction forces. Joint angles were calculated by inverse kinematics using the Human Body
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Figure 29: Indirect approach for identification of foot placement in walking. This approach consists 
of two components: a simulation model and an experiment. The simulation model is a closed 
loop system, with external perturbation as the input. Experiment recorded participant’s reaction 
under the same external perturbation. The control gains P were optimized by letting the simulation 
model reproduce the angle trajectories of the experiment. In this gait controller identification, angle 
trajectories are the motion of trunk, hip, knee, and ankle.

Model (HBM) (van den Bogert et al., 2013). Nine participants (Table VI), which have high 

quality data recorded, were selected from the data-set. For the controller identification, ten 

seconds of perturbed walking data was selected for each participant at each walking speed 

Table VI: Information about the selected nine participants. There are four females and five males. 
They are all young adults with the average age of 24. There are two male participants with over­
weighted BMI and one male participant in Obesity. All other participants are in normal weight 
category.

Id Gender Age (yr) Height (m) Mass (kg) Original Id
1 female 29 1.72 64.5 ± 0.8 7
2 female 32 1.62 54 ± 2 3
3 female 21 1.70 58 ± 2 13
4 female 28 1.69 56.2 ± 0.6 16
1 male 20 1.57 74.9 ± 0.9 8
2 male 20 1.69 67 ± 2 9
3 male 23 1.73 71.2 ± 0.9 5
4 male 26 1.77 86.8 ± 0.6 6
5 male 19 1.77 92 ± 0.2 10
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6.2.2 Gait Dynamics

The gait dynamics (plant) used in the identification is a two-dimensional torque-driven 

seven-link gait model [17, 18], as shown in Figure 29. The model has 9 degrees of freedoms 

and 6 controllable joints. Hip flexion, knee extension, and ankle dorsiflexion were defined 

positive. In identification, the model was scaled based on the weight and segment lengths 

of each participant [19]. Belt speed perturbation was modeled by varying the ground speed 

in the foot-ground contact model. Details are provided in Appendix D(1).

6.2.3 Gait Controller

The gait controller used in this study has a similar control architecture as the M2V2 robot 

[6] and consists of two components: open-loop torque control and feedback control (Figure 

30). Feedback control was used to control the motion of the hip and knee joints of the 

swing leg. The ankle joint of the swing leg and all joints of the stance leg were controlled 

by open-loop torques. The focus of this study is to identify control parameters inside the 

swing leg feedback control loop. Joints controlled by the open-loop torques can generate 

arbitrary motion, which converged towards experimental data in the identification process. 

The feedback control consists of four items: a foot placement controller, a swing path 

generator, an inverse kinematics module, and a local tracking controller.

Foot Placement Controller

The function of foot placement controller is to generate a proper foot placement for the 

swing leg based on the state of the system. Our feedback control structure is largely based 

on capture theory [7]. Capture theory predicts foot placement using linear feedback from 

position and velocity of the CoM projected on the ground relative to the standing foot. Our 

modification replaces the CoM position and velocity with the pelvis position and velocity. 

Pelvis position and velocity were calculated from the stance leg’s trunk, hip, and knee an­

gles and velocities and the leg geometry. In addition, we take a linear combination of these
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Figure 30: Structure of the locomotion control system for the step strategy identification. The stance 
leg and the ankle joint in swing leg are controlled by open-loop torques. The hip and knee joints 
of swing leg are controlled by the state feedback control loop. The purpose of open-loop torque 
control is just to let these controlled joints following the experimental data. The focus of this study 
is to identify control parameters inside the swing leg control loop.

two terms with the coefficients as control parameters to be identified from experimental 

data. The foot placement controller used in this study is:

Xifp(t) = P1 • Xp(t) + P2 • xp^
Wo (6.1)

Xfp(t + At) = Xifp(t) • ew^At

where, xifp is the instantaneous desired foot placement based on the pelvis position and 

velocity feedback; xp is the pelvis position that projected on the ground in sagittal plane 

relative to standing foot; xp is the horizontal velocity of pelvis; P1 and P2 are the two 

gains applied on the two feedback signals, which needs identified; W0 = Vg/Lieg is the 

reciprocal of the time constant of the human dynamic model, where g represents the gravity 

and Lleg is the length of leg;; and xfp(t + At) is the desired foot placement when At is the 
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remaining swing time.

Swing Path Generator

The swing path generator calculates the trajectory of the swing ankle joint in Cartesian 

space and in the x and y directions separately. Considering that the overall shape of the 

swing paths is consistent, a normalized polynomial function was used to describe it. The 

polynomial function in both the x and y directions have the same structure:

Nt
f (Psta, Pdes,T, t) = YA" * - P^) * (T )n (6.2)

n=1

where, Psta is the starting swing position; Pdes is the estimated foot placement; T is the total 

swing time; t is the current swing time; N is the total order of the polynomial function; An 

is the coefficient of the nth order polynomial term.

The polynomial coefficients An were optimized over 500 experimental swing paths for 

each participant at one walking speed. Details are provided in appendix D(2). The output 

of the foot placement controller is used to scale the horizontal component of the swing 

path.

Inverse Kinematics

The inverse kinematics module resolves the joint angles of the swing leg to produce the 

swing ankle position at each time frame. Based on the geometry of the leg, the kinematic 

function between swing leg joint angles and ankle joint position can be described as:

Px lthigh * sin(^h) + lshank * sin(^h + ^k)
(6.3)

Py lthigh * cos(^h) lshank * cos(^h + ^k)

where, Px is the foot position in x direction; Py is the foot position in y direction; lthigh is 
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the length of thigh; Ishank is the length of shank; Oh is the hip joint angle; Ok is the knee 

joint angle.

In a controller, one would solve for the two joint angles. In our controller identification, 

equation 7.3 were added as constraints to the trajectory optimization, which produces the 

same result when the optimization is completed.

Local Tracking Controller

The local tracking controller controls the hip and knee joints to track the commanded joint 

angles from the inverse kinematics module. A proportional-derivative (PD) controller was 

used:

Th = Kph * (Ohef - Oh) + Kdh * (Ohef - Oh)
(6.4)

Tk = Kpk * (Orref - Ok) + Kdk * (Orref - Ok)

where Oh and Ok are the hip and knee angles; Th and Tk are the hip and knee joint torques; 

The proportional and derivative gains K ph/k and Kdh/k were assumed constant for each 

joint and optimized during the identification process. Reference angles and angular veloc­

ities Ohre/fk and Ohre/fk were commanded by the inverse kinematics module.

Indirect Identification Approach

The indirect identification approach finds control parameters such that the output of the 

closed-loop model best fits the participants’ motions in the presence of same perturbation 

(Figure 29). This system identification problem can be treated as a trajectory optimiza­

tion problem, where the state trajectory x(t) and unknown parameters P are optimized 
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simultaneously [20]. The problem was formulated as:

Find state trajectories: x(t) and control parameters: P

To minimize the objective function: F =
/T kdm(t) - d(t)fdt 

0

Subject to: system dynamics: f (x(t),x(t), P,Vbelt(ty) = 0 (6.5)

bounds on state: xlow < x(t) < xupp

bounds on control parameters: Plow < P < Pupp

where, f = 0 represents the dynamics of the closed-loop system model, consisting of the 

gait dynamics and gait controller; x(t) is the state of gait model which included gener­

alized coordinates q and velocities q; 0(t) represents the angles in trunk, hip, knee, and 

ankle; P = [P1, P2, Kph, Kdh, Kpk, Kdk, Topen(t)] represents the control parameters in­

side the locomotion controller. Time-discretized open-loop joint torques Topen were used 

to drive the stance leg joints and the swing leg ankle. T is the duration of the experimen­

tal data; vbelt (t) is the known (measured) velocity of the treadmill belt, including random 

perturbations in the walking experiment.

This trajectory/parameter optimization problem was solved with the direct colloca­

tion method [17, 21] and gradient-based optimizer IPOPT [22]. Trajectories were time- 

discretized at 20 ms intervals and the dynamics were approximated by the backward Euler 

formula. In total, there were 27 identification problems (9 participants, 3 walking speeds 

for each participant). Each optimization problem was solved 10 times, with a random ini­

tial guess for P. Experimental data was used as initial guess for x(t).The solution with the 

lowest objective value F was selected and shown in results. Overall, 270 optimizations 

were conducted in this study, requiring about 500 computing hours in an Intel i5-8300H 

CPU.
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6.3 Results

Twenty-five out of twenty-seven identification problems were solved successfully. Table 

VII shows the best coefficients of determination (R2) between the identified joint trajec­

tories and the experimental data for all twenty-seven trials. Two ’N/A’ values in the table 

indicate cases where IPOPT failed to produce a solution with any of the ten initial guesses. 

Best solutions of other identification problems all have very high R2 values (R2¿0.97), 

which indicates that the nonlinear gait model was able to reproduce participants’ responses 

with the identified step controllers. A typical example (participant M5 at 1.2m/s) is shown 

in Figure 31. With the high R2, the joint motion generated by the identified step controller 

is almost identical to the participant’s responses under the same belt speed perturbation. 

Specifically, almost every large and small variations among gait cycles was matched, in­

stead of only fitting the average motions.

Table VII: Coefficient of determination (R2) between identified trajectories and experiment data. 
’M’ means male subjects; ’F’ means female subjects. ’N/A’ means the identification problem was 
not successful.

Speed M1 M2 M3 M4 M5 F1 F2 F3 F4
0.8 m/s 0.990 0.982 0.991 0.973 0.964 0.991 0.988 0.983 0.992
1.2 m/s 0.989 0.977 0.991 0.981 0.983 0.992 0.993 0.989 N/A
1.6 m/s 0.979 0.974 0.989 0.983 0.982 0.988 0.988 N/A 0.986

Identified step control gains of nine participants at three walking speeds are shown in 

Figure 32. There are two dimensionless gains in the step strategy as motioned in the section 

2.4: position gain and velocity gain. In general, the identified gains are not far from those 

suggested by capture theory (grey lines). Specifically, identified position gains have an 

average value of 0.86 and velocity gains have an average value of 1.12. Despite variations 

among participants, both single participant results and overall results clearly indicate that 

there are trends in both position and velocity gains versus walking speed. This dependence 

on walking speed suggests that constant gains in the feedback control structure of capture 

theory cannot explain the foot placement choice of the testing participants. There was no
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Time (s) Time (s)

Experiment data 
* Model fit

Figure 31: The identified joint trajectories of male participant 5 at walking speed 1.2m/s. The 
red solid line is the experimental trajectories, and the blue dash line is the identified trajectories. 
Note how the model replicates the variation in peak hip flexion angle at the end of stance, which is 
strongly related to foot placement.

difference between male and female participants.

Controller actions during one swing period are shown in Figure 33, depicting the motion 

of the seven-link gait model with the swing path and planned foot trajectory throughout a 

swing motion. This shows that the swing leg successfully follows the generated swing path. 

More importantly, the desired foot placement calculated by the identified step controller is 

not a fixed point on the ground but keeps changing based on the participant’s pelvis motion 

throughout the swing phase. For instance, at t = 0.24 second, there is a large change of the 

desired foot location due to the belt speed perturbation.

The ten optimizations with different initial guesses often found similar results from the 

same data, suggesting that a global optimum was found. Optimizations were repeated using 

a 20-second and a different 10-second data segment, from the same experimental condition, 

and similar results were found. Details can be found in appendix D.3 and D.4.
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Figure 32: The identified foot placement gains in the foot placement controller. The position and 
the velocity gains are showing in the subplot left and right, respectively. Female subjects are marked 
with solid circle and male subjects are marked with solid triangles. Identified gains in one participant 
are connected by dash lines.

6.4 Discussion

In this study, control gains in a step controller based on capture theory were identified from 

human responses to continuous mechanical perturbations during walking. In general, both 

identified position gains and velocity gains were close to the capture theory, which sug­

gested that our approach is valid and could find reasonable step controllers from walking 

data. For the highest speed (1.6m/s), both the averaged position gain (0.93) and the aver­

aged velocity gains (0.96) are slightly lower than one, which confirmed the conservative 

property of the capture point. However, results of other walking speed did not support this. 

It should be noted that our controller predicted the location of swing ankle joint instead of 

the center of pressure (CoP) using feedback from position and velocity of the pelvis (hip) 

rather than the CoM, so not directly comparable to a controller based on capture theory and
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Figure 33: Stick plots of one swing motion. The red leg is the swing leg, and the blue leg is the 
stance leg. The green dashed line is the swing path based on the identified step strategy algorithm. 
The beginning and ending two green points are the start swing and end swing points.

a LIP model. The identified step control gains depend on walking speed, which is not pre­

dicted by capture theory. This suggests that humans may use a single nonlinear feedback 

controller or more feedback paths for foot placement control, instead of the linear control 

law from the capture theory. This difference may come from the simplification of the LIP 

model that capture theory used. By doing simultaneous trajectory optimizations on three 

velocities, our approach can be extended towards identification of parameters in a single 

nonlinear control law.

Wang and Srinivasan (2014) obtained phase dependent control gains, while our results 

show that one set of step strategy control gains can explain the step length changes in 

the perturbed walking data [13]. One possible reason is that they studied the relationship 

between the walking state of a specific phase and the foot landing position, which ignores 

the changes that happened after the studied phase.

The indirect identification approach prevents results that are biased towards the inverse 

plant dynamics [12] but requires a model of plant dynamics, so that the closed loop sys­

tem can be simulated. Our gait dynamics model was a simple planar representation of the 
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human body and may have affected the results. In the present study, we believe this is 

justified because the control laws are also very simple: linear without time delay. Identifi­

cation of a more realistic control system, with a more realistic gait dynamics model, will 

require more state variables and controller parameters, and tracking experimental data of 

longer duration. This is a straightforward extension of our approach, but beyond the current 

capabilities of computational methods for trajectory optimization.

Potential applications of our approach are twofold. First, the identified parameters may 

provide clinically relevant information about an individual’s balance control system during 

walking. Although currently based on simple models, underlying neural mechanisms are 

represented in the results. Second, bipedal robots can use the identified control laws to 

better mimic human responses to perturbations. For this application, it is helpful that a 

robot-like gait dynamics model was used. This guarantees that the identified controller can 

produce human-like responses in a robot that is close enough to the gait dynamics model. 

In fact, human-like responses can even be elicited in a distinctly non-human system, using 

our approach for identifying a controller for such a non-human plant.

Reproducing the joint motion is better than just studying the foot placement. Foot 

placement only happens once per gait cycle which is accumulated results of all the previous 

changes or perturbation in the swing. It is impossible to decompose the final foot placement 

information into multiple individual contributors. In contrast, the joint motion is continuous 

information which includes all the adjustments of the desired foot location. It was shown 

that the shape of the swing phase is relatively consistent although the step lengths and swing 

duration lengths are different. Therefore, changes in the desired foot location will directly 

affect the swing leg joint motion by shortening or stretching the swing path. Through 

kinematics, the swing leg hip and knee joint angles are directly affected by the changes of 

the swing path.

The duration of the swing phase was not an optimized parameter in the step strategy 

identification. We predefined the stance and swing periods for each gait cycle based on 
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the experimental data. In principle, these durations could be optimized but this would 

dramatically increase the complexity of the trajectory optimization problems, which may 

no longer be solvable. Since the goal of the identification was to reproduce the human joint 

motions, fixing the swing period will automatically guarantee that the swing period is the 

same as experimental data once a solution is found. We therefore do not think that the 

results were affected by this simplification of the problem.

The gains in local tracking controllers for the hip and knee joints were also optimized 

in the step strategy identifications. However, these values are not the main concerns in 

this study. In humanoid robots, the local tracking controller is usually designed based on 

the specific structure of the robot hardware and our identified gains cannot provide a good 

reference. Also, methods other than PD control could be used to achieve the local joint 

tracking. However, we found that it was better to optimize these gains in our identification 

work rather than pre-selecting the values, because it allowed closer tracking of experimental 

data.

This study is not perfect due to several simplifications. First of all, the estimated foot 

placement from the identified step controller was the ankle joint position, which does not 

account for the center of pressure (CoP) changes in the feedback control. However, the CoP 

changes were included in the closed-loop gait system by allowing the motion of ankle joint 

tracking the experimental data. Incorporation of CoP in the step controller identification is 

possible since the nonlinear gait model we used has the potential of calculating the CoP. 

This will be included in future work. Future work will also include control of mediolateral 

foot placement, which requires a 3d gait model but will use the same methods and approach 

that was presented in this study.

6.5 Conclusion

In this study, step controllers that have a similar feedback structure as the capture theory 

were successfully identified from walking experiment data. Identification results suggested 
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that a controller based on capture theory was able to explain human responses to pertur­

bations during walking, although humans had lower position feedback gains and higher 

velocity feedback gains. Furthermore, the human feedback gains were dependent on walk­

ing speeds, suggesting that the humans use nonlinear controllers or more feedback signals, 

such as acceleration of the pelvis, to choose their foot placements in perturbed walking.

6.6 REFERENCES

[1] M. A. Townsend, “Biped gait stabilization via foot placement,” Journal of Biome­

chanics, vol. 18, no. 1, pp. 21-38, 1985.

[2] J. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue, “Dynamically-stable 

motion planning for humanoid robots,” Autonomous Robots, vol. 12, no. 1, pp. 105­

118, 2002.

[3] B. Stephens, “Humanoid push recovery,” in Humanoid Robots, 2007 7th IEEE-RAS 

International Conference on, pp. 589-595, IEEE, 2007.

[4] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step toward hu­

manoid push recovery,” in Humanoid Robots, 2006 6th IEEE-RAS International Con­

ference on, pp. 200-207, IEEE, 2006.

[5] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3d linear in­

verted pendulum mode: A simple modeling for a biped walking pattern generation,” 

in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and 

Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. 

No. 01CH37180), vol. 1, pp. 239-246, IEEE, 2001.

[6] J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson, and 

P. Neuhaus, “Capturability-based analysis and control of legged locomotion, part 2: 

112



Application to m2v2, a lower-body humanoid,” The International Journal of Robotics 

Research, vol. 31, no. 10, pp. 1117-1133, 2012.

[7] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-based 

analysis and control of legged locomotion, part 1: Theory and application to three 

simple gait models,” The International Journal of Robotics Research, vol. 31, no. 9, 

pp. 1094-1113, 2012.

[8] L. Zhang and C. Fu, “Predicting foot placement for balance through a simple model 

with swing leg dynamics,” Journal of Biomechanics, vol. 77, pp. 155-162, 2018.

[9] A. D. Kuo, J. M. Donelan, and A. Ruina, “Energetic consequences of walking like 

an inverted pendulum: step-to-step transitions,” Exercise and Sport Sciences Reviews, 

vol. 33, no. 2, pp. 88-97, 2005.

[10] A. Hof, M. Gazendam, and W. Sinke, “The condition for dynamic stability,” Journal 

of Biomechanics, vol. 38, no. 1, pp. 1-8, 2005.

[11] A. L. Hof, “The ‘extrapolated center of mass’ concept suggests a simple control of 

balance in walking,” Human Movement Science, vol. 27, no. 1, pp. 112-125, 2008.

[12] H. van der Kooij, E. van Asseldonk, and F. C. van der Helm, “Comparison of different 

methods to identify and quantify balance control,” Journal of Neuroscience Methods, 

vol. 145, no. 1-2, pp. 175-203, 2005.

[13] Y. Wang and M. Srinivasan, “Stepping in the direction of the fall: the next foot place­

ment can be predicted from current upper body state in steady-state walking,” Biology 

Letters, vol. 10, no. 9,p. 20140405, 2014.

[14] V. Joshi and M. Srinivasan, “A controller for walking derived from how humans re­

cover from perturbations,” Journal of the Royal Society Interface, vol. 16, no. 157, 

p. 20190027, 2019.

113



[15] N. Seethapathi and M. Srinivasan, “Step-to-step variations in human running reveal 

how humans run without falling,” eLife, vol. 8, p. e38371, 2019.

[16] J. K. Moore, S. K. Hnat, and A. J. van den Bogert, “An elaborate data set on human 

gait and the effect of mechanical perturbations,” PeerJ, vol. 3, p. e918, 2015.

[17] M. Ackermann and A. J. Van den Bogert, “Optimality principles for model-based 

prediction of human gait,” Journal of Biomechanics, vol. 43, no. 6, pp. 1055-1060, 

2010.

[18] H. Geyer and H. Herr, “A muscle-reflex model that encodes principles of legged me­

chanics produces human walking dynamics and muscle activities,” IEEE Transactions 

on Neural Systems and Rehabilitation Engineering, vol. 18, no. 3, pp. 263-273, 2010.

[19] D. A. Winter, Biomechanics and motor control of human movement. John Wiley & 

Sons, 2009.

[20] J. Moore and A. van den Bogert, “Human standing controller parameter identification 

with direct collocation,” in 15th International Symposium on Computer Simulation in 

Biomechanics, ISB, 2015.

[21] C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using nonlinear pro­

gramming and collocation,” Journal of Guidance, Control, and Dynamics, vol. 10, 

no. 4, pp. 338-342, 1987.

[22] A. Wachter and L. T. Biegler, “On the implementation of an interior-point filter line­

search algorithm for large-scale nonlinear programming,” Mathematical program­

ming, vol. 106, no. 1, pp. 25-57, 2006.

114



CHAPTER VII

EVALUATION OF FOOT PLACEMENT CONTROL ON A LOWER LIMB

EXOSKELETON
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7.1 Introduction

Lower limb exoskeletons have been developed that intend to help people with locomo­

tor disabilities regain the ability to stand up, walk, and even run [1-4]. Even though the 

hardware design of current devices has become compact and elegant, crutches are always 

needed to keep balance. This limitation is a consequence of fixed reference trajectories 

used to control joint motions, lacking the ability to response to walking pattern changes 

and external perturbations.

Humans use the so-called “step strategy” during walking to maintain balance. The 

strategy involves controlling the swing leg stepping to appropriate locations. Studies have 

shown that healthy adults may choose their foot placement based on the position and veloc­

ity of the pelvis or the Center of Mass (CoM) [5, 6]. The Linear inverted pendulum (LIP) 

model has been proposed to derive a control law for foot placement [7-9]. Even though 

our controller identification study has shown that humans do not use the control gains pre­

dicted by the LIP model suggested to control their foot placement, humanoid robots have 

achieved remarkably stable walking performance, even with external perturbations, using 

this control structure [10]. Theoretically, this control structure also has the potential to be 

applied to lower limb exoskeletons to generate better balanced walking motion. However, 

to our knowledge, such studies have not been done yet.

We propose that the foot placement controllers identified from the previous chapter can 

be applied on lower limb exoskeletons and help users maintain balance during walking. To 

answer this, we implemented the foot placement control algorithm on an Indego exoskele­

ton (Parker-Hannifin Corp., Cleveland, OH) and conducted walking tests with healthy 

adults. Activation of six leg muscles was measured and analyzed to show the effects of 

the controller, compared to the passive mode of Indego.
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7.2 Methods

The structure of the foot placement controller identified in previous chapter was used to 

control the Indego exoskeleton. Some necessary changes (described in sections below) 

were made to make it suitable for the Indego hardware. In addition, components in the foot 

placement control were personalized for each testing participant.

7.2.1 Test Procedure

Two healthy young adults (both male) were included in the walking test. The tests were 

conducted over two days. On the first day, participants were asked to perform normal 

walking without the Indego exoskeleton and then walking with the passive Indego. During 

normal walking, a motion capture system (Motion Analysis Crop., Rohnert Park, CA) with 

27 markers was used to track participants’ motion. In the walking trial with the passive 

Indego, leg motion was detected through the encoders in the Indego motors at the hip and 

knee joints. An instrumented treadmill (Motekforce Link, Amsterdam, Netherlands) was 

used to record the ground reaction forces. Five electromyographic (EMG) sensors were 

used to record leg muscle activation during walking. Motion data of the walking trial with 

passive Indego were used to personalize the foot placement controller for each participant: 

detecting the control gains in the foot placement controller and the polynomial functions 

for the swing path. Details can be found in Appendix E.

On the second day, participants were asked to walk with both the passive and the foot 

placement-controlled Indego. Motion data were recorded through the Indego’s encoders. 

Ground reaction force data were recorded through the instrumented treadmill. Six leg mus­

cles were measured through EMG sensors. Measured muscles are: Biceps Femoris; Glu­

teus Maximus; Semitendinosus; Lateral Gastrocnemius; Medium Gastrocnemius; Rectus 

Femoris. Each walking trial was 2.5 minutes long.

Muscle activation from each walking trial was processed (25Hz high pass filter, full­

wave rectification, 6Hz low pass filter) and averaged over gait cycles [11]. EMG compar­
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isons between normal walking, walking with passive Indego, and walking with the con­

trolled Indego will be presented.

7.2.2 Foot Placement Control

In this study, the foot placement controller includes four components: the foot placement 

estimator, the path planning component, the inverse kinematics component, and the local 

proportional-derivative (PD) tracking controllers (figure 34).

Foot 
Placement 
Estimator

Local PD 
Controllers

Estimated 
foot 
placement

Instrumented treadmill 
(detect the swing and stance phase)

Swing path 
for ankle jointPath 

Planning
Inverse 

Kinematics

Figure 34: Structure of the foot placement control for Indego Exoskeleton.

Reference 
joint 
trajectory

The foot placement estimator generates a desired landing location of the swing foot 

based on the pelvis position and velocity relative to the stance foot (equation 7.1). The 

pelvis position and velocity were calculated in real time from the hip and knee joint angles 

and angular velocities of the stance leg, using forward kinematics.

x
xifl = P1 • xp + P2 • ~

(7.1)
Xifi(M) = Xifi(0) • ew0^At

where, xifl is the instantaneous desired foot location in sagittal plane based on the state 
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feedback; xp is the relative pelvis position to stance leg ankle position in sagittal plane; 

xp is the velocity of pelvis in sagittal plane; P1 and P2 are the two gains applied on these 

two feedback signals; ^0 is the reciprocal of the time constant of a pendulum with the leg 

length of human, ^0 = v/g/Lleg; xifl (At) is the desired foot location at the coming At 

time point; xifl (0) is the current instantaneous desired foot location.

The path planning component generates paths (vertical and horizontal directions) for 

the swing foot based on two scaled polynomial functions. The scaling parameters are the 

step length and the total swing duration (Equ. 7.2). There is a difference between the 

path planning in this study and the identification study in Chapter VI. In this chapter, the 

swing paths were relative to the location of stance foot, while in the previous chapter, the 

swing paths were relative to the location of pelvis. In general, they are the same but for 

different purposes. Coefficients of the polynomial functions were calculated based on the 

swing motion in each participant’s walking when wearing the passive Indego. Detailed 

information can be found in Appendix E.1 and E.3. The swing foot location at the swing 

time t is calculated from:

N-1 N-1

f (Psta, Pdes,T,t') = Psta + An ’ (Pdes - Psta) ’ (^)n + (1 - An)(Pdes - Psta) ’ (^)N

n=1 n=1
(7.2) 

where, Psta is the swing foot location at the beginning of swing; Pdes is the estimated foot 

placement at the end of swing; T is the total swing duration; t is the current swing time 

frame; N is the total order of the polynomial function; An is the coefficient of the nth order 

polynomial term.

An inverse kinematics module calculates the reference joint angles for the swing leg 

at each time frame in the swing period based on foot position. The foot position at each 

time frame can be calculated based on the above polynomial functions. The reference hip 
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and knee joint angles were calculated by solving the following nonlinear equations through

Newton’s method.

Px lthigh • sin(^h) + lshank ’ sin(Oh + Ok)
(7.3) 

Py lthigh ’ cos(Oh') lshank ’ cos(Oh + Ok)

where, Px is the desired foot position in the x direction; Py is the desired foot position in 

the y direction; lthigh is the length of thigh; lshank is the length of shank; Oh is the joint angle 

of hip; Ok is the joint angle of knee.

Proportional-derivative (PD) controllers were used at the hip (1600 Nm/rad and 120 

Nm s/rad) and knee (1200 Nm/rad and 80 Nm s/rad) joints to track the calculated reference 

joint angles. The gains of these two tracking controllers were set as zeros in the stance 

phase, which made Indego’s leg fully passive in the stance phase.

7.2.3 Hardware Setup

In the hardware side, the Indego walking test includes an instrumented treadmill, a windows 

computer equipped with Matlab/Simulink, and the Indego itself (Fig. 35). The instru­

mented treadmill detects the ground reaction forces under each foot, in which the vertical 

force was used to determine the stance and the swing phases. The instrumented tread­

mill communicate with the windows computer through a data acquisition (DAQ) device 

(National Instruments PCI-6014). The computer communicates with the Indego through a 

CAN bus. The Simulink desktop real-time toolbox was used that enabled the real-time data 

transition between devices. The control algorithm (foot placement control) in Simulink ex­

ecuted with the ’external’ model which compiled the entire control model into C code and 

sent to the Indego’s micro-processor (target machine). The entire system runs at 200 Hz 

sampling rate.
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Fy <= 150N -> Swing

Figure 35: Hardware setting of the Indego test.

7.3 Results

Results of the walking test will be described into two parts. Result of the first day’s test are 

described first to show the difference between normal walking and walking with passive 

Indego. Results of the second test day are described in the second part, which compared 

between walking with passive and controlled Indego.

7.3.1 Comparison Between Normal Walking and Walking with Passive Indego

In this section, the second participant’s data is demonstrated. The first participant had a 

similar result and is shown in the appendix E.5. EMG results indicate that walking with 

passive Indego largely affected the activation pattern of leg muscles comparing to normal 

walking (Fig. 36). In five monitored muscles, walking with passive Indego shows higher 

activations in the phase of early stance. The function of these five muscles is to extend the 

hip joint and flex the knee joint. For the hip joint, higher muscle activations indicate larger 

efforts were needed to extend the hip joint. For the knee joint, higher muscle activations 

may indicate stronger co-contraction. In the phase of early swing, Gluteus Maximus and 

Gastrocnemius muscles have higher activations in the case of wearing passive Indego. This 

demonstrates that the participant tried to slow down the swing leg and tried harder to lift 

up the swing foot avoiding the interaction with the ground at early swing. In the late swing
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phase, Biceps Femoris, Semitendinosus, and Gastrocnemius muscles all have smaller mus­

cle activations in the walking trial with the passive Indego, shown that less efforts were 

used to slow down the swing leg.

Biceps Femoris

Semite ndinosus

Gluteus Maximus

Medium Gastrocnemius

Gait Phase

Normal Walking std 
Normal Walking mean 
Passive Walking std 
Passive Walking mean

Rectus Femoris

Figure 36: Activation of selected muscles in normal walking and walking wearing passive Indego. 
(Please note that Rectus Femoris was not recorded in the normal walking trial.)

Beside the muscle activations, motion data also showed significant difference between 

normal walking and walking with the passive Indego. Based on the joint motions of stance 

leg, pelvis position and velocity were calculated (37). Comparing to the normal walking, 

walking with passive Indego have much higher variation in terms of the pelvis velocity. 

Instead of having two peaks in the normal walking, only one larger peak exist in the early 

stance.
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Figure 37: Pelvis position and velocity of participant two in normal walking and walking with 
passive Indego.

7.3.2 Comparison Between Passive and Foot Placement Controlled Indego Walking

In general, the first participant had significant higher muscle activations (yellow line in­

dicates significant difference (P < 0.05) between two trials) in the walking trial with foot 

placement controlled Indego (blue line and area) than with the passive Indego (red line 

and area) during the majority of swing period (grey x axis) (Fig. 38). Biceps Femoris, 

Gluteus Maximus, and Semitendinosus have significant smaller muscle activations at the 

early swing with the foot placement-controlled Indego. Higher muscle activation in the 

walking trial with foot placement-controlled Indego was not expected which means that 

the participant was fighting with the exoskeleton.
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The second participant had significant higher muscle activations in the walking trial 

with foot placement controlled Indego at early and middle swing phases (Fig. 39). At the 

late swing, smaller muscle activations of almost all six monitored muscles were recorded. 

These lower muscle activations indicate that the controlled exoskeleton was helping him

slow down the swing leg before landing.

Figure 38: Difference between leg muscle activation of participant one while wearing the passive 
and swing controlled Indego.

7.4 Discussion

Both participants were able to keep stable walking with the foot placement controlled In­

dego. They all mentioned that the foot placement-controlled exoskeleton was helping them
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Figure 39: Difference between leg muscle activation of participant two while wearing the passive 
and swing controlled Indego.

to swing their legs forward which reduced around 40 % - 50% of their total efforts. How­

ever, muscle activation of these two participants does not fully support their feeling.

EMG and motion results of the passive Indego walking trial indicate that it introduced 

instability to the walking motion. Participants used higher co-contraction in the stance 

phase to perform stable walking. The passive Indego also introduced resistance to partici­

pants in the walking, which showed smaller muscle activations in the late swing phase.

EMG results of the controlled Indego walking trial did not fully support our hypothesis 

that the foot placement controller can reduce muscle activations in the swing phase. One 
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important reason is that participants didn’t trust the controller and cannot fully turn off their 

muscles. On one hand, participant does not have sufficient time to be trained to fully turn 

off their leg muscles during the swing phase. On the other hand, since the Indego does not 

have an ankle joint, foot drop will happen if leg muscles are fully turned off in the swing 

phase. In the walking test, the second participant had much more significant foot drop 

(his foot was more frequently interacting with the treadmill belt in the middle swing) than 

the first participant, which turned out had lower muscle activations. In addition, since the 

passive Indego already worked as resisting device that slowed down the swing motion at 

late swing, it is hard to see a significant reduce of the muscle activations even with the foot 

placement control. The second participant did show some reduce of the muscle activations, 

which indicate that the swing controller provide more help to slow down the swing leg.

7.5 Conclusion

In this study, we implemented the foot placement controller on a lower limb exoskeleton 

and generated stable walking motion with healthy participants. Muscle activation results 

showed inconclusive effects of this controller. More studies are needed.
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PART III.

JOINT IMPEDANCE PROPERTIES
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CHAPTER VIII

IDENTIFICATION OF JOINT IMPEDANCE PARAMETERS THROUGH

TRAJECTORY OPTIMIZATION
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8.1 Introduction

The impedance control algorithm [1,2] has been used in controlling prosthetic legs [3-5]. 

Comparing to track fixed reference trajectories, it has the advantage that the soft interaction 

between prosthetic devices and their users can be achieved. However, implementing the 

impedance control on prosthetic legs isn’t as straight forward as implementing on robot 

manipulators. One key issue is that suitable impedance parameters are not easy to find that 

can allow people with disabilities to regain normal and natural motions.

A common way to find suitable impedance parameters is through manually tuning on 

massive walking trials. In the tuning process, the quasi-stiffness and damping parameters 

of healthy humans’ joints were normally used as a starting point to find the final appropri­

ate parameters [6]. This process can generally achieve suitable and comfortable walking 

patterns for amputees, however, it requires highly skilled clinicians and is time consuming. 

Even though a cyber expert system [7] was developed that helped make this process easier, 

its tuning results were not as good as clinic experts. In addition, special lab equipment 

was required which may not be available in the clinic. Studies also showed that the quasi­

stiffness and damping parameters are far from suitable values that can generate reasonable 

walking motions [3]. It is believed that the real joint impedance properties can provide 

better starting points for this tuning process [8].

To find the real impedance properties of human leg joints, studies have been done on 

walking with mechanical perturbations [9-13]. In these studies, joint impedance proper­

ties were calculated from the small variations of the joint motions and the changes in joint 

torques that were caused by the perturbations. As a result, these perturbations have to be 

applied on specific gait timing so that an averaged perturbation effects can be achieved 

by averaging multiple gait cycles. In addition, these perturbation devices must also pro­

vide information, such as ground reaction forces, to calculate joint torques. Finally, they 

should not affect participants’ walking pattern when perturbation was not applied. Due 

to these critical requirements, only the ankle joint was studied using this approach so far

131



[11]. Trajectory optimization [14, 15] has the potential to identify the impedance proper­

ties of humans leg joints directly from walking data that was randomly perturbed by just 

belt speed. Since a simulation model is included in the trajectory optimization, it only re­

quires the joint motion information which does not rely on specific perturbation devices. 

However, to our knowledge, this approach has not been validated yet.

Thus, in this study, we propose that the trajectory optimization can identify leg joints’ 

impedance properties from randomly perturbed walking data. Two parts of work were done 

here. Through synthetic data, we first inspected whether sensor noise and model errors will 

affect the accuracy of identifying impedance properties through trajectory optimization. 

Then, a pilot study was done that identified the ankle joint impedance properties from 

perturbed walking data of two participants at two walking speeds.

8.2 Validation of the Trajectory Optimization on Identifying Joint Impedance Prop­

erties

8.2.1 Methods

The synthetic data was generated through an optimization process. It was based on a seven­

link 2 dimensional gait model [15]. While generating the data, the knee and ankle joints in 

the model’s left leg were controlled by two four-phases impedance controllers, respectively. 

The other joints were driven by open-loop torques. In addition, the walking data was 

generated under random (belt speed) perturbations [16] at an averaging walking speed of 

1.2 m/s.

Ten seconds of stable walking motion which satisfied these conditions was found through 

trajectory optimization. Parameters of the impedance controller were optimized in this pro­

cess, because it is very hard to achieve ten seconds stable walking under external pertur­

bation with predefined control parameters. In the trajectory optimization, one participant’s 

walking motion from a published data-set [16] was used as the reference motion for the 

gait model. This helped find reasonable results and reduced the computation time.
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The four-phase impedance control includes two components: the periodic baseline 

torques and the proportional-derivative (PD) tracking controller. The periodic baseline 

torques is the same in gait cycles, which represents the average joint torques of the normal 

walking. In perturbed walking, durations of the gait cycles might be different. Accounting 

for this, the baseline torques were time-scaled to the gait duration of each gait cycle in 

the reference walking motion which is perturbed. The PD tracking controller tracked the 

averaged normal walking motion (unperturbed) of the same participant (equation 8.3.1). 

The tracking controller was defined as a four-phases control in each gait cycle. Two con­

trol gains were included in each walking phase. Four phases were predefined based on the 

information of the reference motion: early stance, late stance, early swing, and late swing 

[3] (figure 46).

Ti = rb + K • <«m - «i) + K • (em - »<) 

where, ri represents the impedance controlled joint torque at the ith data node; rib represents 

the baseline torque at the ith data node; Kpj is the proportional gain of the jth phase of the 

gait cycle; Kdj is the derivative gains of the jth phase of the gait cycle; eim represents the 

joint angle at the ith data node of the normal walking motion; ei represents the joint angle 

at the ith data node of the optimized motion.

Figure 40: Four phase finite state controller for walking.

In the trajectory optimization, tracking the reference walking motion was not the only 
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thing in the objective function. Other components were included to make the optimized 

motion reasonable:

1. Track the reference motion:

tm == Pi=1(gm-gi)2

2. Smooth joint motion:

F N

F ™sm
PN— 1 ( ^i+1— ei \2 
i=i=( ( At )

N

3. Smooth joint torques:

Fst =
PN — 1 ( Topen,i+1

N

Topen,i )2 EN — 1/Tbaseline,i+1 Tbaseline,i\2 
i=1 ( At )At 

N

-

+

4. Minimize the impedance control terms:

Timp = Kp • (^m d) + Kd • (0m - d)

Fmt =
PN-1 2
i=i=( ['imp!

-

N

5. Periodicity of the baseline torques:

Fpt = (Tbaseline,1 2 Tbaseline,N)-

Five weights were setup to multiple these five components to adjust their impacts inside 

the overall objective function. These weights were manually tuned based on the optimiza­

tion results. Weight values that used to generate the simulated motion data are:

Table VIII: Weights of the objective components.

Weights Wtm Wsm Wst Wmt W’ .

Value 100.0 5e - 3 1e - 5 1e - 7 1e - 1

In the trajectory optimization, optimizing variables were: the joint motions and veloci­

ties; the baseline torques; PD gains in the tracking controllers. The reference joint motion 

was used as the initial guess for the optimizing joint motion. The averaged joint torques of 

the participant’s normal walking data was used as the initial guess for the baseline torques.
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Initial guess of the impedance control parameters (PD gains) were randomly selected be­

tween the lower and upper bounds. The lower bounds were set as zero for all control 

parameters. The upper bounds were shown in table IX, which are five times of the esti­

mated impedance parameters in previous studies [3, 9]. Ten optimizations were conducted 

and the result with the lowest objective function was selected as the simulation data.

Table IX: Upper bounds for the optimizing impedance parameters.

Phase Knee Ankle
Kp (N m/rad) Kd (Nm • s/rad) Kp (Nm/rad) Kd (Nm • s/rad)

1 450 1.5 750 3.6
2 600 6 1500 3.0
3 30 3 150 5.1
4 30 6 150 4.2

Impedance controller identifications were applied on the simulated motion data through 

the trajectory optimization method. This is to check whether the correct impedance values 

can be found. These identifications were conducted in four different conditions. The goal is 

to examine the effect of the each condition on the identified impedance control parameters.

• The first test condition is to identify the impedance control parameters from the pure 

simulated data. The goal is to check if trajectory optimization can find the correct 

control gains directly from the simulated data. For identification, the same objective 

function in generating the simulation data was used. The only difference is to replace 

the reference motion with the simulated motion. The simulated motion data was used 

as the initial guess for the optimizing motion. Initial guess for the impedance control 

parameters were randomly selected between the lower and upper bounds which are 

the same as the setup in generating the simulation data. Ten optimizations were 

conducted and that optimizing result that has the closest fit with the simulation data 

was selected.

• The second test is to identify the impedance control parameters from the simulated 

data with sensor noise. The goal is to check the effect of sensor noise on the accuracy 
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of the identified impedance parameters. The same objective function as in generat­

ing the simulation data was used here. The only difference of this study from the 

first situation is that six sensor noise signals were added to the the six joint (left/right 

hip, knee, and ankle) motions of the simulated data. These sensor noises were de­

signed as pink noises. Their power spectrum was based on the noise level in human 

quiet standing trials [17]. Ten instances of these sensor noises were generated in ten 

impedance control parameter identifications, respectively. In each identification with 

one instance of sensor noises, ten optimizations were conducted with random initial 

guesses of the identified impedance parameters. The optimization result that has the 

closest fit with the simulation data was selected from these ten optimizations.

• The third test is to check whether the change of dynamic parameter of the gait model 

largely affects the identifying impedance parameters. Therefore, impedance control 

parameters were identified on the simulated data with the adjusted gait model where 

its dynamic parameters were slightly changed. These changed parameters include 

segment mass, inertia, and center of mass location of each segment. Segment length 

was not changed, since it can be accurately measured. In total, 13 dynamic parame­

ters (left and right leg were assumed symmetric) were randomly changed within 90% 

and 110% of its original value (used to generate simulated data). Ten instances of this 

random change were generated in ten impedance control parameter identifications, 

respectively. In each identification, these 13 parameters were randomly changed. In 

each identification problem with one instance of the parameter adjustment, ten op­

timizations were conducted with random initial guesses of the identified impedance 

parameters. the Optimization result that has the closest fit with the simulation data 

was selected from these ten optimizations.

• The fourth test is to check the effects of foot size in the gait model on the identified 

impedance control parameters. Thus, impedance control parameters were identified 
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on the simulated data with the gait model that the foot size were slightly changed. 

These changed parameters include foot height, the horizontal length from ankle joint 

to toe, and the horizontal length from ankle joint to heel. These three parameters (left 

and right foot were assumed symmetric) were randomly changed within 90% and 

110% of its original value (used to generate simulated data). Ten instances of this 

random change were generated in ten impedance control parameter identifications, 

respectively. In each identification, these three parameters were randomly changed. 

In each identification problem with one instance of the parameter adjustment, ten op­

timizations were conducted with random initial guesses of the identified impedance 

parameters. The optimization result that has the closest fit with the simulation data 

was selected from these ten optimizations.

8.2.2 Results

This work aims to validate the ability of the trajectory optimization method for identifying 

correct impedance properties of human leg joints. Figure 41 shows the reference motion 

and the generated simulation data. The bottom two subplots are the left and right vertical 

ground reaction forces (GRF) from the reference motion data. Four walking phases were 

divided (marked with different color) based the ankle and knee joint motions as well as 

the vertical GRF. Overall, the generated walking motion was close to the reference motion, 

but with some differences at peaks. Variations among gait cycles existed in the generated 

motion data, even though not as large as the reference data. Joint motions in the generated 

data were smooth in general, except the right ankle motion.

Figure 42 shows the joint motions that were controlled by impedance controllers and 

the corresponding baseline motions which is the averaged gait data in normal walking. 

The generated motion data was close to the baseline motion, which indicates that the PD 

tracking controller is only response for the small variations of the generated joint motions 

that were away from the baseline joint motions, instead of the entire joint torques.
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The optimized impedance control gains are shown in table X. There are two gains for 

the knee and ankle joint in each phase of the impedance control. Most of these parameters 

were located between the lower and upper bounds, except one derivative gain (at knee joint 

in phase 4) hit the upper bound and two derivative gains (at ankle joint in phase 1 and 2) 

hit the lower bounds. The proportional (stiffness) gains of the knee joint were less than the 

proportional gains at the ankle joint in all phases. In the knee joint, proportional gains had 

similar values among all four phases. In the ankle joint, the proportional gains in the two 

stance phases were significantly larger than the gains that in the two swing phases.

Figure 41: Comparison between the reference motion and the generated motion data.
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Figure 42: Comparison between the baseline joint motions and the generated joint motions

Phase Knee Ankle

Table X: Optimized impedance parameters of the generated simulation data.

Kp (N m/rad) Kd (Nm • s/rad) Kp (Nm/rad) Kd (Nm • s/rad)
1 13.788 1.250 440.650 0.0
2 6.977 0.481 361.956 0.0
3 12.515 0.011 147.408 4.063
4 10.932 6.000 15.795 0.073

Impedance parameter identifications were conducted on four situations to check the 

effects of different factors. Results of the identifications are shown in figure 43 and 44. The 

first bar in each subplot shows the true impedance parameter that generated the synthetic 

data. The other four bars are the identified impedance control gains in four situations. 

In the first situation, only one best result was selected from ten optimizations, therefore, 

there is no standard variation shown in the plot. In the other situations, ten instances of 
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corresponding changes were made and ten best results were selected in ten identifications 

with these changes. The heights of these bars indicate the averaged value of these ten 

best results, and the vertical black lines represent their standard deviation. In general, the 

identified impedance parameters are different from the true value, even in the first situation 

where no changes were made. However, the absolute errors between them was not large. In 

the knee joint, the absolute errors of the proportional gains in all situations were less than 

9 Nm/rad (Table XI). The error of derivative gains were less than 0.3 Nms/rad (Table XI). 

In the ankle joint, even though the absolute errors of the identified proportional gains at the 

first and second gait phase were large, relative errors of them were relatively small (no more 

than 11,05%) (Table XII). Absolute errors of other identified parameters were small. The 

only exception is the derivative gain in the third walking phase, where the absolute error 

reached to around 3.5 Nms/rad and the relative error reached to around 90%. The identified 

baseline torques in all four situations were also close to baseline torques that generated the 

synthetic data.

Comparing between identification situations, the fourth situation (foot size change) 

caused the largest standard deviations in both knee and ankle joints.
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Figure 43: Identified impedance control parameters of the knee joint among four test conditions. 
Test condition 1 had perfect data and model. Test condition 2 had perfect model but noisy data. Test 
condition 3 had perfect data but adjusted model that changed dynamic properties. Test condition 4 
had perfect data but adjusted model that changed foot size.
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Figure 44: Identified impedance control parameters of the ankle joint among four situations. Test 
condition 1 had perfect data and model. Test condition 2 had perfect model but noisy data. Test 
condition 3 had perfect data but adjusted model that changed dynamic properties. Test condition 4 
had perfect data but adjusted model that changed foot size.

Test conditions Phase 1 Phase 2

Table XI: Absolute and relative error of identified impedance parameters in the knee joint.

Kp (Nm/rad) Kd (Nm • s/rad) Kp (Nm/rad) Kd (Nm • s/rad)
1 7.86 (57.02%) 0.05 (4.17%) 1.73 (24.81%) 0.18 (38.30%)
2 6.85 (49.68%) 0.01 (0.81%) 4.93 (70.66%) 0.18 (37.23%)
3 8.36 (60.64%) 0.01 (0.97%) 4.14(59.37%) 0.16 (32.87%)
4 6.26 (45.44%) 0.01 (0.64%) 4.40 (63.10%) 0.26 (53.62%)

Phase 3 Phase 4
Kp (Nm/rad) Kd (Nm • s/rad) Kp (Nm/rad) Kd (Nm • s/rad)

1 0.36 (2.87 %) 0.01 (133.53%) 3.80 (34.72%) 0.00 (0.00%)
2 0.48 (3.79%) 0.11 (1031.15%) 5.33 (48.78%) 0.00 (0.00%)
3 0.52 (4.15%) 0.13 (1251.1%) 5.36 (49.06%) 0.00 (0.00%)
4 1.57 (12.56%) 0.17 (1631.26%) 5.79 (52.93%) 0.00 (0.00%)
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Test conditions Phase 1 Phase 2

Table XII: Absolute and relative error of identified impedance parameters in the ankle joint.

Kp (Nm/rad) Kd (Nm • s/rad) Kp (Nm/rad) Kd (Nm • s/rad)
1 40.38 (9.16%) 0.00 (100%) 31.33 (8.65%) 0.00 (99.97%)
2 48.62 (11.03%) 0.00 (568.53%) 8.44 (2.33%) 0.36 (1000+%)
3 42.30 (9.60%) 0.00 (25.27%) 14.68 (4.06%) 0.16 (1000+%)
4 43.47 (9.87%) 0.00 (27.95%) 8.83 (2.44%) 0.11 (1000+%)

Phase 3 Phase 4
Kp (Nm/rad) Kd (Nm • s/rad) Kp (Nm/rad) Kd (Nm • s/rad)

1 2.59 (1.75 %) 2.42 (59.58%) 0.91(5.79%) 0.12 (165.26%)
2 2.59 (1.76%) 3.67 (90.22%) 3.26 (20.64%) 0.18 (240.06%)
3 2.59 (1.76%) 3.79 (93.27%) 3.05 (19.33%) 0.20 (275.41%)
4 2.58 (1.75%) 3.34 (82.31%) 1.88 (11.93%) 0.20 (271.53%)

Figure 45: Identified baseline torques of the knee and ankle joints among four test conditions. Test 
condition 1 had perfect data and model. Test condition 2 had perfect model but noisy data. Test 
condition 3 had perfect data but adjusted model that changed dynamic properties. Test condition 4 
had perfect data but adjusted model that changed foot size.

8.2.3 Discussion

The goal was to check whether the trajectory optimization can extract correct impedance 

parameters from the simulated data where the impedance control parameters were known. 

Results of the identifications in four different test conditions indicated that the trajectory 

optimization approach can identify relative close impedance parameters from just the joint 

motion data.

Identification in the first test condition (perfect data and model) find close but not the 

same impedance parameters that generated the simulation data. This did not fit our expec­
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tation. In the first condition, the same gait model and pure simulated data were used in 

the trajectory optimization. We expected that the trajectory optimization will find the same 

impedance parameters that generated the simulation data. The main reason this did not 

happen is that the objective function included multiple components, not only the tracking 

part. The minimum of the objective function when generating the simulation data was not 

the minimum when the simulated motion was the tracking target. A new minimum of the 

objective function caused a different set of impedance parameters. On the other hand, we 

don’t want to only tracking the motion. Other components in the objective function can 

make the identified motion more realistic. For instance, the component to smooth joint 

torques can avoid the rapid torque changes which cannot happen in a real human walking.

If the identified impedance parameters in test condition one was used as the comparison 

reference for the other three conditions, the absolute and relative errors, due to the sensor 

noise, model parameter changes, and foot size changes, would be much smaller. This 

comparison is valid, since they all converged to similar minimums. In test condition one, 

nothing related to the gait model or the simulated motion data was changed. The other three 

test conditions changed one factor of the gait model or the simulated data, respectively. 

Therefore, the differences in identified results between test condition one and the other 

three conditions indicate the effects of these change factor.

The optimized ankle joint proportional gains that generated the simulation data were 

slightly larger than previous identification studies [9]. To our knowledge, no studies have 

been done to identify the knee joint stiffness while walking. However, the optimized knee 

joint proportional gains were smaller than the manually tuned stiffness of a transfemoral 

prosthetic leg [3]. We suspect that these might because the improper weights on the ob­

jective function components. For instance, a large weight on the component that mini­

mize the torques generated by the impedance controller may reduce the identified values of 

impedance parameters. This is our future study direction: to check how the weight changes 

on the objective components affect the identified impedance parameters.
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8.3 Identification of the Ankle Joint Impedance Properties from Real Experimental 

Data

8.3.1 Methods

This pilot study was to identify impedance control parameters of ankle joint from the ran­

domly perturbed walking data [16] through the trajectory optimization approach. One, two, 

and four-phases impedance controllers were identified from five seconds experimental data 

of one participant at 1.2 m/s walking speed. In addition, one-phase impedance controllers 

of ankle joint were identified for two participants at two walking speeds (0.8 m/s and 1.2 

m/s).

The impedance control structure was slightly changed comparing to the impedance 

controller in the synthetic study: the zero joint position was used as the reference motion, 

instead of the averaged normal walking motion:

Ti = Tb + Kp • (0 - Si) + K • (0 - Si)

The objective function here is simpler than the objective function used in the synthetic 

study. It only included the motion tracking component and the toque smoothing compo­

nent. Ten optimizations were included in each identification problem to eliminate local 

minimums. Optimizing result that has the best fit with the experimental joint motions was 

selected from these ten optimizations as the best result.

Figure 46: Identifications on experimental data.
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8.3.2 Results

Figure 47 shows the identified results of participant 2 at walking speed of 1.2 m/s. One, 

two, and four-phases impedance controllers were identified from five seconds experimen­

tal data. The identified proportional gains in stance phases were larger than in the swing 

phases. The early stance stiffness is much higher than the late stance and the swing phases. 

The identified joint motions and the experimental data are shown in figure 48. The identi­

fied joint motions that with different phase impedance controllers were close to the experi­

mental data. The left ankle (controlled by the identified impedance controllers) was able to 

generate the variations between gait cycle.

One phase impedance controllers were identified from two participants at two walking 

speeds (Figure 49). In general, participant two had slightly higher proportional gains than 

participant one in both speeds. Also, at faster walking speed, the proportional gains were 

higher. The derivative gains were almost zero.
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Figure 47: Impedance control parameters that identified for the ankle joint with different control 
structures.
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Figure 48: Motion that identified for the ankle joint with different control structures.
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Figure 49: One-phase impedance control parameters of the ankle joint that were identified of two 
participants at two walking speeds.

8.3.3 Discussion

The identified proportional gains of the ankle joint are close to previous identification stud­

ies [9, 11]. One difference lies in the change direction of the identified stiffness. Rouse 

et. al. showed that the stiffness of ankle joint keeps increasing from the early stance to 

late stance, while, our results showed the opposite trend. One possible reason might be 

the changes that were made to the impedance control structure: using zero joint angle and 

the reference motion, instead of the normal walking motion. This can be examined in our 

further studies.

These identified impedance parameters were consistent between different participants 
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at at different walking speed. Also, parameters in different phases impedance controllers 

showed consistency. This may indicate that the trajectory optimization approach is robust 

in identifying the impedance properties. However, this needs to be examined by doing 

identification work on more participants’ data.

8.4 Conclusion

In this work, the trajectory optimization approach was validated on identifying the joint 

impedance parameters through the synthetic study. Results indicated that it can identify 

relative accurate impedance parameters by only using the motion data. In addition, the 

this approach was used to identify impedance controllers that with different structures on 

two participants’ perturbed walking data. Consistency results were got which indicates the 

robustness of this identification approach.
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Understanding how humans control their movements can inspire the control of powered 

exoskeletons and prostheses for better performance. The method of trajectory optimiza­

tion with direct collocation has the potential to extract generalized and realistic motion 

controllers from long duration movement data without requiring extensive measurement 

equipment. Therefore, this dissertation validated and applied this method on extracting the 

feedback motion controllers of two types of human movements. Three aims were defined:

• Aim 1: Identify postural feedback controllers for human standing balance.

• Aim 2: Identify step strategy controllers for human walking.

• Aim 3: Identify joint impedance properties for human walking.

In chapter III, the human standing balance experiment was conducted on eight young 

adults. Movement data (optical motion capture data and ground reaction forces) was 

recorded in both the quiet and perturbed standing balance trials. The raw and processed 

experimental data, including joint angles and torques, was publicly shared on Zenodo. In 

chapter IV, a stochastic trajectory optimization approach was proposed. It was suggested 

that this approach can help find practically stable controllers in the identification process, 

which was not guaranteed in past motion controller identification studies [1-3]. In chapter 

V, the trajectory optimization approach was validated on simulated standing balance data 

to demonstrate that it can extract the correct postural control parameters. Then, five types 

of postural feedback controllers, from simple linear to complex nonlinear, were identified 

on the standing balance data-set from chapter III. Results indicated that a nonlinear con­

troller with multiple time delay paths can best explain the balance control of those young 

adults.

In chapter VI, step strategy controllers were successfully identified on perturbed walk­

ing motions from a published data-set [4]. It was shown that young adults use nonlinear 

feedback controllers or more feedback inputs to estimate their foot placements, instead of 

the linear control suggested by the linear inverted pendulum model. In chapter VII, the step 
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strategy control was applied on a power exoskeleton (Indego, Parker-Hannifin, Cleveland, 

US) to control its leg swing motion. Walking tests with two healthy participants did not 

show a clear conclusion, but suggested that the step controller was trying to help decelerate 

the swing motion at the late swing phase.

Finally, in chapter VIII, the trajectory optimization was used to identify the joint impedance 

properties. Results of the synthetic study showed that relatively close impedance parame­

ters that used to generate the synthetic data can be identified from just joint angle data. 

Then, a preliminary identification study was done identified the ankle joint impedance 

properties of two participants at two walking speeds and showed consistent results.

9.1 Future Perspective

The complex motion controllers that can explain long duration movements under random 

perturbation conditions preferable, compared to the simple controllers that can only explain 

specific short motions, since they can make assistive devices smarter in handing complex 

conditions. The studies in this dissertation explored a method that can help achieve this 

goal. Even though the trajectory optimization with direct collocation can identify complex 

nonlinear controllers from long duration motion data, limitations exist that prevented us 

getting more promising results. The identification of human movement control will be 

more useful if these limitations can be overcome in future studies.

A main limitation is that, in all identification studies in this dissertation, the identified 

results were limited by the predefined structures of the identifying controllers. Although the 

parameters in these predefined controllers can be optimized, their control properties cannot 

beyond the defined control structure. For instance, a predefined linear feedback controller 

can never generate a nonlinear relationship with any control gains. We have tried to define 

and identify more general nonlinear controllers, such as neural network controllers. How­

ever, the size (hidden layers and nodes) of them cannot be very large, for two reasons. First, 

large size neural network controllers can largely increase the computation time. Second, 
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we don’t want to have over-fitting. Another drawback of the neural network controllers is 

that it is hard to interpret the physical meanings of the optimized weights.

One possible way to solve this issue is to describe motion controllers as lookup tables, 

in which the discrete data nodes describe the relationship between the control inputs and 

outputs. The motion controller identification can be defined to identify these discrete data 

nodes. Taking the foot placement controller as an example, the control structure of it was 

defined that the desired foot placement is proportional to pelvis position and velocity and 

the proportional gains were constant. To break this control structure, we can just assume 

that the relationship between the desired foot placement and the pelvis position and velocity 

is a 2 dimensional lookup table. Value between the discrete data nodes can be calculated 

using linear or spline interpolation. Theoretically, this lookup table can describe any type 

of controllers, including linear and nonlinear. Comparing to the neural network controllers, 

the physical meaning of the lookup table controllers can also be easily interpreted. One 

difficulty of this idea is to make sure that the lookup table controller is continuous and 

the continuous derivative can be obtained, because this is required for the gradient-based 

trajectory optimization approach.

The second limitation is that some of the identified controllers in this dissertation will 

need to be adjusted before applying to assistive devices, such as exoskeletons and pros- 

theses. One main reason is that these controllers are torque controllers which are strongly 

correlated with the dynamic property of the studying target. The dynamic property of hu­

man with exoskeleton or amputee with prosthesis is different from the dynamic property 

of healthy humans. Therefore, the controllers identified from healthy human movements 

cannot be directly used to control these devices. One way to solve this issue is to include 

assistive devices inside the identification process. This requires accurate dynamic models 

of these assistive devices, which are not extremely hard to get. The dynamic properties of 

them can either be identified from operation data or calculated from the design files. Con­

sidering that controller identification could become an integral part of the controller design 
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of assistive devices as computer power increases, accurate dynamic properties of the user 

will be needed also.
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APPENDIX A: Human Standing Balance Model

The system model of human standing balance includes two components: human body dy­

namic model and the postural feedback controller (figure 20). The human body was sim­

plified to a two-link pendulum in the standing balance tasks. Its standing plate is a movable 

base where the displacement perturbation was applied. The dynamic equation of the human 

model is:

(IL + IT + dL • mL + mT • (dT + 2dTlLcOs^h) + lL)) (IT + dT • mT • (dT + lLcOs^h))) Oa

(It + dTmT • (dT + Il • cos(Oh))) (It + dT • mT) Oh

2
dT • Il • mT • Oa sin(Oh) - dTIl • mT • (da + Oh) • sin(Oh)

2
dT • Il • mT • Oa • sin(Oh)

+
-dL • gmLsin(Oa) - dT • g • mT • sin(Oa + Oh)

-dT • g • mT • sin(Oa + Oh)

+
dL • mL • cos(0a) + dT • mT • cos(0a + Oh) + Il • mT • cos(0a)

• a
dT • mT • cos(Oa + Oh)

Ta

Th

(1)

where. Oa and Oh represent the ankle and hip joint angles, respectively; lL represents the 

length of leg; mL and mT represent the masses of leg and trunk; dL and dT represent the 

center of mass location in leg and trunk; Ta and Th represent the joint torques at ankle 

and hip joints; g is the gravity; a is the acceleration of the standing plate due to external 

perturbation.
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In the identification study, the joint torque Ta and Th were assumed to be generated by

state feedback controllers:

Ta

Th

fa(0a,Oh,0a,0h,Pa)

fh(0a,0h,0a,0h,Ph)
(2)

where, fa and fh are the control equations of the ankle and hip joints; Pa and Ph represent 

the control gains inside the ankle and hip controllers.

By putting the state feedback controller into the equation 1, the closed-loop dynamic 

model of the human standing balance system can be described in the format:

M(q) • q + C(q, q) + G(q) + D(q, a) - F(q, q,p) = 0 (3)

where, q = [0a, 0h] includes the joint angles of the system; M (q) is the mass matrix; C (q, q) 

is the col force term; G(q) is the gravity term; D(q, a) is the joint torque term that caused 

by mechanical perturbation; F(q, q, P) is the joint state feedback control term.

In trajectory optimizations, this dynamic equation was implemented as a equality con­

straint. A more generalized format of the system dynamics can be wrote as:

f(x, (x), P, a) = 0 (4)

where x = [q, q] represents the system state.
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APPENDIX B: Identified Control Gains in Stochastic Trajectory Optimization

This appendix includes the gains and eigenvalue distributions of identified controllers in 

both deterministic and stochastic environments.

Identified control gains of PD and FPD control structures are shown in table XIII and 

XIV. Weights of neural network controller is not shown here, since they do not have 

a realistic meaning. Eigenvalue distributions of the identified PD and FPD controllers 

are shown in table XV and XVI. Eigenvalues are calculated at the neutral pose (stand­

ing straight) which is close to the close-loop system equilibrium point. The eigenval­

ues of the neural network controllers are not shown either, since eigenvalue at one point 

does demonstrate stability for nonlinear systems. All proportional gains Kp shown be­

low have a unit of Nm/rad. All derivative gains Kd shown blow have a unit of Nm 

• s/rad.Allreferenceanglesrefhaveaunitofrad.IntheTablell(FPDcontrollers), footxyafterKpand 

means a proportional gain that use the feedback information of hip to the control target of 

ankle. Experimental data, identification code, and related results were included in a public 

GitHub repository https://github.com/HuaweiWang/Stochastic_Paper.

Table XIII: Identified control parameters in the PD control structure.

DET STO2 STO3 STO4
K p,ankle 883.80 ± 0.08 766.04 ± 0.00 972.25 ± 1.84 970.91 ± 1.52
K d,ankle 18.33 ± 0.01 20.33 ± 0.00 29.68 ± 1.25 30.23 ± 1.12
Kp,hip 222.05 ± 0.01 224.24 ± 0.00 236.58 ± 0.57 236.94 ± 0.58
Kd,hip 8.99 ± 0.00 7.84 ± 0.00 10.57 ± 0.03 10.56 ± 0.03

Ref,ankle 0.0014 ± 0.00 0.0026 ± 0.00 0.0007 ± 0.00 0.0007 ± 0.00
Ref,hip -0.0005 ± 0.00 -0.0006 ± 0.00 -0.0015 ± 0.00 -0.0016 ± 0.00
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Table XIV: Identified control gains in the FPD control structure.

DET STO2 STO3 STO4
Kp,aa 341.49 ± 0.57 431.78 ± 5.17 454.75 ± 37.77 453.08 ± 34.30
Kp,ah 412.23 ± 0.47 336.78 ± 4.23 318.62 ± 28.74 322.54 ± 27.21
Kd,aa 68.84 ± 0.10 59.35 ± 0.85 55.29 ± 5.58 56.30 ± 4.86
Kd,ah 47.65 ± 0.06 49.07 ± 0.45 50.18 ± 0.89 49.48 ± 0.87
Kp,ha -105.74 ± 0.19 -81.13 ± 2.12 -74.46 ± 11.64 -73.15 ± 10.04
Kp,hh 364.04 ± 0.16 339.79 ± 1.24 334.14 ± 9.25 335.36 ± 8.71
Kd,ha 19.93 ± 0.04 17.29 ± 0.31 16.15 ± 1.74 16.29 ± 1.44
Kd,hh 23.44 ± 0.02 24.09 ± 0.20 24.50 ± 0.34 24.19 ± 0.33

Ref,ankle -0.0005 ± 0.00 0.0000 ± 0.00 0.0000 ± 0.00 0.0000 ± 0.00
Ref,hip -0.0052 ± 0.00 -0.0047 ± 0.00 -0.0046 ± 0.00 -0.0047 ± 0.00

Table XV: Eigenvalue distribution of identified best PD controllers. The best controllers were those 
with the lowest RMS in each identification problem.

DET STO2 STO3 STO4
Eig1 -2.344 + 8.717i -2.151 + 8.529i -2.940 + 9.115i -2.949 + 9.118i
Eig2 -2.344 -8.717i -2.151 - 8.529i -2.940 - 9.115i -2.949 - 9.118i
Eig3 -0.987 -1.273 -0.181 + 0.046i -0.181 + 0.046i
Eig4 0.715 1.032 -0.181 - 0.046i -0.181 - 0.046i

Table XVI: Eigenvalue distribution of identified best FPD controllers. The best controllers were 
those with the lowest RMS in each identification problem.

DET STO2 STO3 STO4
Eig1 -2.097 + 8.550i -2.092 + 8.539i -2.091 + 8.535i -2.083 + 8.529i
Eig2 -2.097 - 8.550i -2.092 - 8.539i -2.091 - 8.535i -2.083 - 8.529i
Eig3 -1.020 -0.991 -0.981 -0.967
Eig4 -0.053 -0.062 -0.061 -0.073
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APPENDIX C: Supplementary Materials of the Postural Controller Identification

C.1: Motion Fit of Six Identified Controllers

Motion fit of the identified six types of controllers of participant 3. Top two subplots are the 

external stimulus signal (standing platform translation). Left subplots are the ankle joint 

motion fit. Right subplots are the hip joint motion fit. It is clear that the fit got better with 

the complex increase of the controller types.

Figure 50: Motion fit of identified six types of controllers of participant 3.
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C.2: Eigenvalue Distribution of the identified PD and FPD Controllers

The eigenvalue analysis of the identified PD and FPD controllers are shown in figure 51 

and 52, respectively.

Figure 51: Eigenvalue analysis of the identified PD controllers.

Figure 52: Eigenvalue analysis of the identified FPD controllers.

Subject01_Pertl 
SubjectOL_Pert2 
SubjectO2_Pertl 
SubjectO2Pert2 
SubjectO3_Pertl 
SubjectO3 _Pert2 
SubjectO4_Pertl 
SubjectO4_Pert2 
SubjectO5_Pertl 
SubjectO5_Pert2
SubjectO6_Pertl 
SubjectO6_Pert2

Subject01_Pertl 
Subject01_Pert2 
5ubjectO2_Pertl 
SubjectO2_Pert2 
5ubjectO3_Pertl 
SubjectO3_Pert2 
Subject04 Pertl 
5ubjectO4_Pert2 
SubjectO5_Pertl 
SubjectO5_Pert2 
SubjectO6_Pertl 
SubjectO6_Pert2

164



APPENDIX D: Supplementary Materials of the Foot Placement Identification

The appendix contains the following sections:

• Section D.1: lists the dynamic equations of the nonlinear gait model described in 

Figure 1 of the main manuscript.

• Section D.2: provides the information about the normalized polynomial function for 

the swing phase generator

• Section D.3: gives information of the similarity of the identified step control gains 

among ten optimizations.

• Section D.4: provides information of the cross-check.

D.1: Dynamic Equation of the Gait Model

The model used in the foot placement study is a two dimensional seven-link gait model 

(figure 29), which has been used in many gait studies [1-2]. The dynamic equation of this 

seven-link gait model was generated using Kane’s method through AUTOLEV [3]. The

dynamic equation is in the format of general robotics: M(q) • q + C(q, q) • q + G(q) =

Tjoint + Tgrf , where q = [x, y, @trunk, @Lhip, ^Lknee, ^Lankle, ^Rhip, @Rknee, @ Rankle] repre

sents motion variables of the gait model, including pelvis motion and joint angles; M (q) 

represents the mass matrix of the gait model and is a function of motion variables q; C(q, q) 

represents the Coriolis matrix and is a function of motion variables q and velocity variables 

q; G(q) represents the gravity matrix and is a function of motion variables q; Tjoint rep­

resents the external joint torques and Tgrf represents the effect of ground reaction force 

applied on the gait model.

The contact model between the gait model and ground is modeled as a nonlinear spring­

damper system in the vertical direction [2]. In the horizontal direction, a Coulomb friction 
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model smoothed by a logistic function was included. The effect of speed perturbation in 

this gait model is modeled as relative speed changes in the contact model. In each foot, 

there are two contact points (heel and toe). The vertical and horizontal contact forces are 

calculated:

Fy = Kp • d • (1 - Kd • d)

Fx = -Cfriction • Fy -(vx-Vground)

(1 + e vo

(5)

where, Fy is the vertical contact force; Fx is the horizontal contact force; Kp is the 
• rr ri <7 / (y2+^2)—y         stiffness of the ground; d = —-------2------ is the constraint vertical position of contact point,

which limited that valuable vertical ground reaction force only exist when contact point 

interact with ground; a is a small number which controls the smoothness of the constraint 

vertical position; Kd is the damping property of the ground; d is the constraint vertical 

velocity of the contact point; Cf riction is the horizontal friction coefficient of the ground; 

vx is the horizontal velocity of the contact point; vground is the horizontal velocity of the 

ground; v0 is the parameter which determines how large the difference between contact 

point velocity and ground velocity when friction force appears.

The contact model was modeled with continuous functions in which gradients always 

exist. This guaranteed that the plant model in loop optimization can be solved by gradient­

based method. Considering that ground contact forces are functions of the position and 

velocity of contact point which are functions of the gait model state, the dynamic equa­

tion of the gait model with ground contact can be written in the format of M(q)q + 

C(q,q)q + G(q) — E(q,q,vground) = Tjoint. In which the contact model is included in 

the E(q, q, Vground) component.

The step controller identified in this study is a state feedback controller which has the 

format of Tjoint = f (P, q, q), in which P represents control parameters. Combine this state 
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feedback controller with gait model and contact model, the dynamic equation of the closed- 

loop system can be written as M(q)q + C(q, q)q + G(q) - E(q, q, Vground) - f (P, q, q) = 0 

. In simplification, it can be written in the format of: F(q, q, q, P, vground) = 0.

D.2: Normalized Polynomial Function for the Swing Foot

The swing foot trajectory is described as normalized polynomial functions in both vertical 

and horizontal directions. The coefficients of the polynomial functions were optimized to 

fit with the swing paths in the experimental data. For each participant at one walking speed, 

swing paths from over 500 gait cycles were used to optimize the coefficients. An example 

swing path from one participant at one walking speed is shown in figure 53. The swing 

path is relative motion which is relative to the pelvis point.

Figure 53: Swing trajectories from the experimental data. Subplot 1) shows the swing trajectory 
in the swing phase. It starts at the swing starting position and finishing at the touch down point. 
Subplot 2) shows the swing trajectory shape in the x and y directions over 500 gait cycles. The 
swing path of the ankle joint is relative to the pelvis position
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The optimization problem of the polynomial coefficients is regular optimization prob­

lem which is defined in follow:

Find coefficients: An

M Ti
To minimize the objective function: obj = ^2 (fdata(t) - fpolynomial (An, t))2 • dt

i=1 t=0

Subject to: fpiolynomial(An, 0) = fdiata(0), f ori = 1,2, ..., M 

fpiolynomial (An, T) = fdiata(T), fori = 1, 2, ..., M

(6)

where, An represents coefficients of the polynomial function; M represents the total num­

ber of the experimental swing paths; fpiath(t) represents the ith experimental swing path; Ti 

represents the swing time length for the ith experimental swing path; fpiolynomial (An, t) = 

PN=1 An • (fpath(T) - fPath(0y) ' (T^i)n rePresents the Path generated by the normalized 

polynomial function for the ith experimental swing path with the coefficients An ;

Constraints of the oPtimization guaranteed that the normalized Polynomial function 

starting and ending with the same values as exPerimental swing Paths. The oPtimization 

Problem is solved by using the minimize function in Python sciPy.oPtimize Package [4]. 

Different orders of the Polynomial functions, from first and sixth, were oPtimized to find the 

number of orders that holds the best fit. Based on the fitting results, fifth order Polynomials 

are selected for both x and y directions of the swing Path. Root-mean-square errors for the 

different orders of the normalized Polynomial functions with exPerimental data and one 

examPle of the swing Path fit are shown in figure 54.
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Figure 54: Fits between the optimized polynomial functions and the experimental swing paths. Sub­
plot 1) shows the means and standard deviation of the difference between the polynomial functions 
and experimental data. The fit improves as the degree of polynomial functions increases. Subplot 
2) shows one example of the fit for one optimized polynomial function. In which, the best, median, 
and worst fits in over 500 experimental swing trajectories are shown.

D.3: Similarity of the Identified Control Gains among Ten Optimizations

To increase the confidence that the identified step strategies are not a bad local optimum 
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result, the number of results similar to the best result out of the ten optimizations were 

counted in each identification problem (table XVII). The similar best results were defined 

within 5% variation when comparing the root-mean-square (RMS) of the difference be­

tween the identified trajectories and the experimental data. In most identification problems, 

the similar best results were found more than once, which suggests that the identified step 

controllers are more likely not the bad local solutions. The standard deviation of the control 

gains in the corresponding best similar results are shown in table XVIII and table XIX. In 

general, they are around or less than 5%, which means that the identified step strategies 

among the similar best fits are similar. This, in another aspect, suggests that the identified 

step controllers are good results.

Table XVII: The number of similar best results in each identification problem. In most of the 
identification problems, similar best results were found more than once. Only six out of twenty­
seven identification problems found one similar best result. There are two identification problems 
which were not successful in finding feasible results.

Speed M1 M2 M3 M4 M5 F1 F2 F3 F4
0.8 m/s 7 5 5 1 1 4 2 2 1
1.2 m/s 4 2 3 9 3 4 8 2 0
1.6 m/s 7 2 1 8 2 2 1 0 1

Table XVIII: The standard deviation of the similar best results as a percentage of the averaged 
position feedback gains. For the identification problems which have no solution, or only one best 
result, there is no standard deviation and ’N/A’ was wrote.

Speed M1 M2 M3 M4 M5 F1 F2 F3 F4
0.8 m/s 2.34% 2.44% 3.56% N/A N/A 5.34% 4.21% 2.47% N/A
1.2 m/s 0.69% 0.45% 3.80% 2.56% 1.17% 3.39% 1.66% 1.58% N/A
1.6 m/s 1.73% 1.82% N/A 1.53% 0.16% 0.43% N/A N/A N/A%

Table XIX: The standard deviation of the similar best results as a percentage of the averaged veloc­
ity feedback gains. For the identification problems which have no solution, or only one best result, 
there is no standard deviation and ’N/A’ was wrote.

Speed M1 M2 M3 M4 M5 F1 F2 F3 F4
0.8 m/s 0.69% 0.71% 0.67% N/A N/A 0.14% 0.13% 0.49% N/A
1.2 m/s 0.45% 0.54% 1.93% 1.97% 1.68% 0.30% 1.62% 1.81% N/A
1.6 m/s 0.60% 0.34% N/A 1.29% 0.30% 0.65% N/A N/A N/A%
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D.4: Cross Check of the Identified Control Gains

To make sure that ten seconds experimental data is sufficient to identify the two feedback 

gains in the step controllers, cross check of the identified control gains was done. Beside 

the ten seconds perturbed walking data used in the identification in the main manuscript, we 

also identified the step strategy on another ten- and twenty-seconds perturbed walking data, 

which did not show significant differences with the results on the ten seconds data (figure 

55). Using a significance level of a = 0.05, one-way ANOVA tests showed that there is 

no significant difference between the three periods. Tests on the gains of different speeds 

showed that there is significant difference between three speeds. Since joint motion is the 

reproducing target in this research, instead of the foot placement, ten seconds perturbed 

walking data contains enough information for identifying the two feedback gains.
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Figure 55: Comparison of the identified control gains among three periods of experimental data. 
In which, period 1 is the 10 seconds experimental data mentioned in the Result section; period 
2 is the 20 seconds experimental data which includes the period 1 data; period 3 is another 10 
seconds experimental data away from the period 1 and 2. One-way ANOVA tests show that there 
is no significant difference of the identified control gains (P > 0.05) among the three data periods. 
Two-way ANOVA tests indicate that there is significant difference of the identified control gains 
(P = 0.015 < 0.05 for position gain, P = 0.00878 < 0.05 for velocity gains) among the three 
speeds.
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APPENDIX E: Supplementary Materials of the Indego Test

E.1: Swing Path Polynomial Function of Participant One

Recorded data of the walking with the passive Indego exoskeleton on the first day was used 

to personalize the foot placement estimator and the path planning components.

Two scaled polynomial functions were used to describe participant’s swing motion in x 

and y direction, respectively. Coefficients of each polynomial function were optimized to 

minimize the difference between its output and the swing motion data. Taking participant 

two as an example, the optimized polynomial functions are:

fx(Psta,x, Pdes,x, Ts, t) Psta,x + 0.1795 • (Pdes,x Psta,x ) ' ( T, )

+ 2.4645 • (Pdes,x - Psta,x) • ()2 - 1.6440 • (Pdes,x - Psta,x) • ()3 (7)
Ts Ts

fy (Psta,y , Pdes,y , Ts , t) = Psta,y
26.8977 • (Pdes,y - Psta,y) • (t-) 

Ts
-

- 73.8179 • (Pdes,y - Psta,y) • (T-)2 - 65.9014 • (Pdes,y - Psta,y) • (T)3

+ 19.4716 • (Pdes,y - Psta,y) • (Tt)4 + 0.5186 • (Pdes,y - 
Ts

Ps<a,y) • ()5 (8) 
Ts

where, Psta,x and Psta,y are the swing foot locations in x and y directions at the starting 

swing time; Pdes,x and Pdes,y are the estimated foot locations in x and y directions at the 

ending swing time; Ts is the total swing time (0.6 second); t is the current swing time point;

Third order polynomial function was used to describe the swing motion in the x di­

rection. Fifth order polynomial function was used to describe the swing motion in the y 
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direction. With the optimized coefficients, x direction polynomial function was able to 

describe the second participant’s swing motion roughly good (figure 56).

Figure 56: Polynomial fit of the swing motion in the x and y direction, respectively.

E.2: The Foot Placement Control Gains of Participant One

With the optimized polynomial functions, gains inside the foot placement estimator was 

manually tuned to make the swing path smooth and reach the actual landing location in the 

walking data (figure 57). For the second participant, gains that multiple to pelvis position 

and velocity (equation 7.1) were both set as 1.4.
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Figure 57: Estimated swing motion with selected foot placement control gains of participant one.

E.3: Swing Path Polynomial Function of Participant Two

Recorded data of the walking with the passive Indego exoskeleton on the first day was used 

to personalize the foot placement estimator and the path planning components.

Two scaled polynomial functions were used to describe participant’s swing motion in x 

and y direction, respectively. Coefficients of each polynomial function were optimized to 

minimize the difference between its output and the swing motion data. Taking participant 

two as an example, the optimized polynomial functions are:

fx(Psta,x, Pdes,x,Ts, t) = Psta,x + 0.3836 • (Pdes. Psta,x ) ’ ( t )-

+ 1.6011 • (Pdes,x - Pstax) • Gtt)2 - 0.9847 • (Pdes,x - PstaX • (7^r)3 (9)Ts Ts
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fy (Psta,y , Pdes,y , Ts , t) = Psta,y 4.8123 • (Pdes Psta,y) • ( t )- -

- 19.2268 • (Pde,,y - P,ta,y ) • ( t- )2 + 107.6261 • (Pdes,y - 
Ts 

- 138.1750 • (Pdesy - Ps,a,y) • ( 1 )4 + 55.5880 • (Pde, 

Ts

Psta,y ) • ( t )

- Ps«,y) • (tT)5 (10) 
Ts

where, Psta,x and Psta,y are the swing foot locations in x and y directions at the starting 

swing time; Pdes,x and Pdes,y are the estimated foot locations in x and y directions at the 

ending swing time; Ts is the total swing time (0.6 second); t is the current swing time point;

Third order polynomial function was used to describe the swing motion in the x di­

rection. Fifth order polynomial function was used to describe the swing motion in the 

y direction. With the optimized coefficients, these two polynomial functions are able to 

describe the second participant’s swing motion roughly good (58).

Figure 58: Polynomial fit of the swing motion in the x and y direction, respectively.

E.4: The Foot Placement Control Gains of Participant Two

With the optimized polynomial functions, gains inside the foot placement estimator was 

manually tuned to make the swing path smooth and reach the actual landing location in the 

walking data (Fig. 59). For the second participant, gains that multiple to pelvis position
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and velocity (Equ. 7.1) were both set as 1.2.

Figure 59: Estimated swing motion with selected foot placement control gains of participant two.

E.5: Test Data of Participant One

Muscle activation of normal walking and walking with passive Indego was shown in 

figure 60. From these three muscles that were monitored in both conditions, it is clear 

the passive Indego largely affected the pattern of muscle activations, which is similar to 

participant two.
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Normal Walking std 
Normal Walking mean 
Passive Walking std 
Passive Walking mean

Figure 60: Activation of selected muscles in normal walking and walking wearing passive Indego 
of participant one. (Please note that Gluteus Maximums, Medium Gastrocnemius, Rectus Femoris 
were not recorded in the normal walking trial.)

Rectus Femons
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APPENDIX F: Code and Data for this Dissertation

Code used in this dissertation was organized in a public repository on GitHub: https: 

//github.com/HuaweiWang/Dissertation_Work .

Data used in this dissertation was uploaded in a public project on Zenodo. The data can be 

accessed by searching the project number (3767611) on Zenodo.

Merging the code folders and data folders together, theoretically, you can reproduce all the 

results in this dissertation. Feel free to contact me (huawei.wang.buaa@gmail.com), if you 

faced issues using this code. I am happy to help you make it work as well as to improve 

the code repository.
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