1,027 research outputs found

    Changes and classification in myocardial contractile function in the left ventricle following acute myocardial infarction

    Get PDF
    In this research, we hypothesized that novel biomechanical parameters are discriminative in patients following acute ST-segment elevation myocardial infarction (STEMI). To identify these biomechanical biomarkers and bring computational biomechanics ‘closer to the clinic’, we applied state-of-the-art multiphysics cardiac modelling combined with advanced machine learning and multivariate statistical inference to a clinical database of myocardial infarction. We obtained data from 11 STEMI patients (ClinicalTrials.gov NCT01717573) and 27 healthy volunteers, and developed personalized mathematical models for the left ventricle (LV) using an immersed boundary method. Subject-specific constitutive parameters were achieved by matching to clinical measurements. We have shown, for the first time, that compared with healthy controls, patients with STEMI exhibited increased LV wall active tension when normalized by systolic blood pressure, which suggests an increased demand on the contractile reserve of remote functional myocardium. The statistical analysis reveals that the required patient-specific contractility, normalized active tension and the systolic myofilament kinematics have the strongest explanatory power for identifying the myocardial function changes post-MI. We further observed a strong correlation between two biomarkers and the changes in LV ejection fraction at six months from baseline (the required contractility (r = − 0.79, p < 0.01) and the systolic myofilament kinematics (r = 0.70, p = 0.02)). The clinical and prognostic significance of these biomechanical parameters merits further scrutinization

    Non compact conformal field theory and the a_2^{(2)} (Izergin-Korepin) model in regime III

    Full text link
    The so-called regime III of the a_2^{(2)} Izergin-Korepin 19-vertex model has defied understanding for many years. We show in this paper that its continuum limit involves in fact a non compact conformal field theory (the so-called Witten Euclidian black hole CFT), which leads to a continuous spectrum of critical exponents, as well as very strong corrections to scaling. Detailed numerical evidence based on the Bethe ansatz analysis is presented, involving in particular the observation of discrete states in the spectrum, in full agreement with the string theory prediction for the black hole CFT. Our results have important consequences for the physics of the O(n) model, which will be discussed elsewhere.Comment: 57 pages, 19 figures; v2: reference adde

    Estimating cardiac active tension from wall motion—An inverse problem of cardiac biomechanics

    Get PDF
    The contraction of the human heart is a complex process as a consequence of the interaction of internal and external forces. In current clinical routine, the resulting deformation can be imaged during an entire heart beat. However, the active tension development cannot be measured in vivo but may provide valuable diagnostic information. In this work, we present a novel numerical method for solving an inverse problem of cardiac biomechanics—estimating the dynamic active tension field, provided the motion of the myocardial wall is known. This ill‐posed non‐linear problem is solved using second order Tikhonov regularization in space and time. We conducted a sensitivity analysis by varying the fiber orientation in the range of measurement accuracy. To achieve RMSE 0.95). The results obtained with non‐matching input data are promising and indicate directions for further improvement of the method. In future, this method will be extended to estimate the active tension field based on motion data from clinical images, which could provide important insights in terms of a new diagnostic tool for the identification and treatment of diseased heart tissue

    On motion in dynamic magnetic resonance imaging: Applications in cardiac function and abdominal diffusion

    Get PDF
    La imagen por resonancia magnética (MRI), hoy en día, representa una potente herramienta para el diagnóstico clínico debido a su flexibilidad y sensibilidad a un amplio rango de propiedades del tejido. Sus principales ventajas son su sobresaliente versatilidad y su capacidad para proporcionar alto contraste entre tejidos blandos. Gracias a esa versatilidad, la MRI se puede emplear para observar diferentes fenómenos físicos dentro del cuerpo humano combinando distintos tipos de pulsos dentro de la secuencia. Esto ha permitido crear distintas modalidades con múltiples aplicaciones tanto biológicas como clínicas. La adquisición de MR es, sin embargo, un proceso lento, lo que conlleva una solución de compromiso entre resolución y tiempo de adquisición (Lima da Cruz, 2016; Royuela-del Val, 2017). Debido a esto, la presencia de movimiento fisiológico durante la adquisición puede conllevar una grave degradación de la calidad de imagen, así como un incremento del tiempo de adquisición, aumentando así tambien la incomodidad del paciente. Esta limitación práctica representa un gran obstáculo para la viabilidad clínica de la MRI. En esta Tesis Doctoral se abordan dos problemas de interés en el campo de la MRI en los que el movimiento fisiológico tiene un papel protagonista. Éstos son, por un lado, la estimación robusta de parámetros de rotación y esfuerzo miocárdico a partir de imágenes de MR-Tagging dinámica para el diagnóstico y clasificación de cardiomiopatías y, por otro, la reconstrucción de mapas del coeficiente de difusión aparente (ADC) a alta resolución y con alta relación señal a ruido (SNR) a partir de adquisiciones de imagen ponderada en difusión (DWI) multiparamétrica en el hígado.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    HIGH QUALITY HUMAN 3D BODY MODELING, TRACKING AND APPLICATION

    Get PDF
    Geometric reconstruction of dynamic objects is a fundamental task of computer vision and graphics, and modeling human body of high fidelity is considered to be a core of this problem. Traditional human shape and motion capture techniques require an array of surrounding cameras or subjects wear reflective markers, resulting in a limitation of working space and portability. In this dissertation, a complete process is designed from geometric modeling detailed 3D human full body and capturing shape dynamics over time using a flexible setup to guiding clothes/person re-targeting with such data-driven models. As the mechanical movement of human body can be considered as an articulate motion, which is easy to guide the skin animation but has difficulties in the reverse process to find parameters from images without manual intervention, we present a novel parametric model, GMM-BlendSCAPE, jointly taking both linear skinning model and the prior art of BlendSCAPE (Blend Shape Completion and Animation for PEople) into consideration and develop a Gaussian Mixture Model (GMM) to infer both body shape and pose from incomplete observations. We show the increased accuracy of joints and skin surface estimation using our model compared to the skeleton based motion tracking. To model the detailed body, we start with capturing high-quality partial 3D scans by using a single-view commercial depth camera. Based on GMM-BlendSCAPE, we can then reconstruct multiple complete static models of large pose difference via our novel non-rigid registration algorithm. With vertex correspondences established, these models can be further converted into a personalized drivable template and used for robust pose tracking in a similar GMM framework. Moreover, we design a general purpose real-time non-rigid deformation algorithm to accelerate this registration. Last but not least, we demonstrate a novel virtual clothes try-on application based on our personalized model utilizing both image and depth cues to synthesize and re-target clothes for single-view videos of different people
    corecore