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ABSTRACT OF DISSERTATION

HIGH QUALITY HUMAN 3D BODY MODELING, TRACKING AND
APPLICATION

Geometric reconstruction of dynamic objects is a fundamental task of computer vision
and graphics, and modeling human body of high fidelity is considered to be a core
of this problem. Traditional human shape and motion capture techniques require
an array of surrounding cameras or subjects wear reflective markers, resulting in a
limitation of working space and portability.

In this dissertation, a complete process is designed from geometric modeling de-
tailed 3D human full body and capturing shape dynamics over time using a flexible
setup to guiding clothes/person re-targeting with such data-driven models. As the
mechanical movement of human body can be considered as an articulate motion,
which is easy to guide the skin animation but has difficulties in the reverse process to
find parameters from images without manual intervention, we present a novel para-
metric model, GMM-BlendSCAPE, jointly taking both linear skinning model and the
prior art of BlendSCAPE (Blend Shape Completion and Animation for PEople) into
consideration and develop a Gaussian Mixture Model (GMM) to infer both body
shape and pose from incomplete observations. We show the increased accuracy of
joints and skin surface estimation using our model compared to the skeleton based
motion tracking.

To model the detailed body, we start with capturing high-quality partial 3D scans
by using a single-view commercial depth camera. Based on GMM-BlendSCAPE,
we can then reconstruct multiple complete static models of large pose difference via
our novel non-rigid registration algorithm. With vertex correspondences established,
these models can be further converted into a personalized drivable template and used
for robust pose tracking in a similar GMM framework. Moreover, we design a general
purpose real-time non-rigid deformation algorithm to accelerate this registration.

Last but not least, we demonstrate a novel virtual clothes try-on application based
on our personalized model utilizing both image and depth cues to synthesize and re-
target clothes for single-view videos of different people.

KEYWORDS: 3D Human Body Reconstruction, Mesh Deformation, BlendSCAPE,
Gaussian Mixture Model, Virtual Try-on
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Chapter 1 Introduction

1.1 Dissertation Statement

with sufficient data Computer Vision can 1) capture high quality human body shapes

from low-cost sensors; 2) produce realistic character animations; 3) achieve high speed

and practical computation; and 4) be applied to augmented reality applications.

1.2 Background

Human body understanding has a long history of studies attracting most of scientists’

interests, evidenced by famous human anatomy drawings from Leonardo da Vinci in

15th century. In the modern computer vision community, research of human body

has spanned a wide range from human performance capture, action analysis to health

care and daily entertainment.

Thanks to the recent emergence of high resolution cameras, such as PointGrey [2]

and real-time consumer level 3D sensors, such as SwissRanger [3] and Kinect [4], it

becomes possible to create high-quality 3D models using a single hand-held camera

at home, e.g., [5, 6]. The trend from the manufacture revolution in 3D printing

industry, e.g. [7], has also stimulated the desire of ordinary users to create their 3D

portraits in flexible and cheap ways.

With a big leap in human body modeling algorithms and software, one could

access a realistic virtual avatar to show off in social media websites, advanced video

games or teleconferences. By taking scans of the human body or inspecting body

information regularly, future medical care could track users’ health and fitness more

accurately and effectively. Creating virtual human bodies can also change online

shopping, e.g., “Virtual Try-on”, previewing virtual outfits on customer’s own body
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models before making decisions on purchases.

The requirement of approaches for lightweight full body acquisition rises from

the fact that traditional techniques in computer vision can only collect motionless

3D information from surrounding observations, e.g., [8–10], or a laser scanner [11],

which are either sparse or incomplete due to occlusions like the armpit or crotch.

While motion capture techniques, such as the commercial system [12], can deliver

highly accurate spare point and skeleton measurements, however, it requires markers

on tight suits, which may interfere with the nature pattern of locomotions or muscle

deformations, and the dedicated infrared light setup is not portable and is impractical

for ordinary users.

Simplification of data collection results in inevitable incompleteness and ambigui-

ties. How to build complete models from limited observations is one of the motivations

of this dissertation. Fortunately, large human measurement data projects, such as

CAESAR [13], provide opportunities for statistically studying human body shapes

and motions. Employing training data could be an effective and simple way to over-

come such shortcomings. The main task of this dissertation, therefore, is to present

automatic and efficient approaches to combine an existing database into a consumer

level data capture system to build high quality human 3D body models.

1.3 Trends in Related Work

To start with existing trends in recent related researches, I basically category two

main trends: mesh manipulate and data-driven human body modeling.

In the first part, how to merge partial deformable surfaces over time consistently

into a complete model is considered as an is an ill-posed problem [14] since the

occluded part can be in any shape at any instant. In general, this problem turns out

to be a general mesh deformation and registration problem, which has been studied

for decades but still remsains challenge. To deal with the free-form deformation,
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many assumptions in terms of regularization has been proposed to constrain desired

properties.

Existing non-rigid registration methods achieve highly accurate alignments for

subtle warps, but most of them are not suitable for large-scale deformations. Chang

and Zwicker [15, 16] solve a discrete labeling problem to detect the set of optimal

correspondences and apply graph cuts to optimize for a consistent deformation from

source to target. Huang and colleagues [17] use a technique that finds an alignment

by diffusing consistent closest point correspondences over the target shape while pre-

serving isometries as much as possible, but the correspondence search is sensitive to

topological changes and holes. Mitra and colleagues [18] aggregates all scans into a 4D

space-time surface and estimates inter-frame motion from kinematic properties of the

deforming surface. Shart et al. [19] introduced a volumetric space-time reconstruction

technique that represents shape motion as an incompressible flow of material through

time. Wand et al. [20, 21] introduced a statistical framework that performs pairwise

alignment and merging over all adjacent scans within a global non-linear optimization

process.

Many methods make use of a template model to simplify correspondence estima-

tion and provide a prior for geometry and topology reconstruction. Unsupervised

methods are proposed that require no manual intervention [22,23] but typically lead

to higher computational complexity that makes these methods less suitable for long

sequences. Park and Hodgins [24, 25] develop a system that uses a dense and large

set of markers to capture and synthesize dynamic motions such as muscle bulging

and flesh jiggling. Li and coworkers [26, 27] developed a registration framework that

solves for point correspondences, surface deformation, and region of overlap within a

single global optimization.

One of my basic assumption is, as we observe in the real world, most dynamic

objects behave continuously and predictable in a short temporal interval, especially

3



when capturing videos of a person in a designed scene. This makes the problem track-

able when the object deforms. The general deformation framework, however, mostly

emphasizes on detail preservation via some simple assumptions, e.g., local rotation

or normal changes should be smooth, objects should deform like rubber. While these

assumptions prevents implausible artifacts like stretch and shear, unfortunately, they

are only simple priors suitable for physical objects but difficult to constraints human

body motions in a wide range of poses and shape deformations.

The concern of “embedded deformation” provides a natural way to constrain the

manipulation of mesh to the deform space of objects embedded within it. Without

a strong shape prior, we still do not know what the deform space is and how the

local features rotate, e.g., there are large regions of the body where it is impractical

to find useful correspondences. Therefore, we turn our attention from the generic

regularization to data-driven methods, which integrate the strong body shape prior

to prevent the registration from undergoing implausible deformations, and have the

ability to explain poor or missing data and inherently resolve the ambiguities in

pairwise alignment.

The data-driven models are powerful as they enable the inference of object from

incomplete noisy and ambiguous 2D or 3D data. Specifically, the data-driven template

can model a consistent human body of a sufficient level of details in the case that the

general completion method has limitations due to insufficient point correspondences.

Importantly, the representation of the template-based method allows to model the

pose and the body shape deformation in each individual spaces and to be combined

properly. Therefore, it greatly improves robustness to missing data and ambiguities

and also provides a simple manner to describe pose dependent muscle deformations.

Similar to motion capture and skeleton tracking [28], although data-driven tem-

plate serves as a strong shape prior, it is still difficult to infer accurate pose and shape

without any manual intervention, in particularly, when there are significant limb oc-
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Figure 1.1: A pipeline of nonrigid reconstruction framework. Multiple single view
scans are combined to build multiple complete 3D models that serves training samples
for a final animatable avatar. A fitted pose is showed for a given point cloud.

clusions involved in partial body scans. Therefore, I claim that the human body

model should provide sufficient level of detail, a easy and direct way to manipulate,

and can be estimated robustly with little manual intervention.

In the last part, I expand the problem to clothes animation editing, which is

a challenge task to recover clothes geometry from 2D images, and becomes even

harder to obtain the motion when the garment swinging with rapid body movement.

Unlike the traditional approaches based on clothes simulation [29] and trained clothes

template [30], our method only focuses on the visual effect of different people trying

on the same virtual clothes via image re-targeting technique guided by our estimated

body shape.
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Figure 1.2: An example of the body swap application. A pre-recorded video (left)
is customized to a user (right) by taking a KinectFusion scan or input body sizes.
The application provides user (Person B) a feeling of what it looks like by trying on
virtual clothes.

1.4 Dissertation Overview

The core contribution of this dissertation is the mathematical design of the Gaussian

Mixture Model (GMM) based human shape and pose estimation framework: a general

solution to estimate human body geometry from highly incomplete and noise data.

The following topics unify the contribution of the dissertation in formulation, system

setup, performance analysis and also its typical applications in the coming chapters.

• GMM-BlendSCAPE: the statistical human body estimation model I develop to

overcome the challenge of automatic template model fitting in a general case which

contains data noise, occlusions and large deformations. Different from the original

BlendSCAPE model, a skinning weight optimization is designed to make this model

6



consistent with both BlendSCAPE and skeletal LBS system, making it more accurate

and able to be driven by either approach.

• A novel nonrigid reconstruction algorithm which generates 4D complete models

using multiple partial scans from a single-view depth camera. Based on the GMM-

BlendSCAPE fitting scheme, a good alignment initial guess can be provided mark-

erlessly without any manual intervention enabling a robust nonrigid registration for

large pose difference. Figure 1.1 illustrates the system overview.

• A generic acceleration scheme for the embedded mesh deformation that signif-

icantly reduces the computation cost and makes the nonrigid registration practical

for light-weight applications.

• Body Swap: A novel virtual clothes try-on application based on the personalized

template deployed in a GMM framework to guide re-targeting of clothes video from

a pre-recorded model to incoming customers. Figure 1.2 illustrates a re-targeting

example.

Dissertation Roadmap

Figure 1.3: Dissertation Chapter Overview

I illustrate the structure of this dissertation in a manner as Figure 1.3.
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Chapter 2 introduces the model of GMM-BlendSCAPE including the basic formu-

lation, how to train the model from a database and customized for a certain person,

and how to fit to observation efficiently.

Chapter 3 presents the nonrigid registration algorithm to build 4D complete mod-

els from low-cost depth scans based on initial alignment technique described in Chap-

ter 2.

Chapter 4 continues the analysis of the nonrigid deformation and presents an

efficient algorithm to achieve fast performance.

Chapter 5 describes a ”Virtual Try-on” application of the personalized model

using the presented GMM framework to reconstruct the body shape sequence and

guide the 2D image editing to swap different bodies.

Chapter 6 summarizes techniques and points to limitations and future researches.

Copyright c© Qing Zhang, 2015.

8



Chapter 2 Gaussian Mixture Based Human Body Shape and Pose Model

Estimating the geometry of a moving human body comprises a variety of challenges:

the body shape is unknown, the pose varies a lot, the skin surface deforms nonrigidly

according to movement, only a limited observation is available and also it may contain

noise, etc. In motion capture and analysis field, the shape of the object is usually

pre-obtained or has a preknowledge of its mechanical properties in general, and the

problem is specifically designed for skeletal tracking [31,32]. If neither shape nor pose

provided, the estimation problem is usually restrict to a specific kind of objects, e.g.,

human body animation, and also additional controlled environment is required, such

as surrounding cameras and wearing retro-reflective markers [33].

As a central contribution of this dissertation, a probabilistic human body model

(GMM-BlendSCAPE) is introduced in this chapter, aiming for the goal of estimating

human body robustly and markelessly of large shape and pose variations from a

limited number of views, e.g., a single view covering less than 50% of the subject.

2.1 Previous Work

Articulated Motion Estimation Human pose and motion estimation has a vast

literature previously summarized in [34, 35]. Based on commercial video cameras,

advances in methodology have been made. [36] tracked a hand wearing color coded

glove in real-time. [37] proposed a local mixture of Gaussian processes to regress

human pose. [38] tracked humans using twists and exponential maps from an initial

pose.

The recent availability of depth cameras has spurred further progress. Based on

Iterative Closest Point (ICP) approach, [39] tracked a skeleton from a starting posi-

tion. [40] built heuristic detectors for upper body parts using a linear programming.
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Learning based methods are proposed to label parts in depth images. [41] clas-

sified head and limbs and provide both location and orientation by finding geodesic

extrema interest points. [42] clustered appearances by finding body segments as pairs

of parallel lines. [43] presented poselets to detect clusters in both 3D pose and 2D im-

age using SVMs. [44] used an auto-context to obtain a coarse body part labeling. [32]

trained deep randomized decision forests to classify parts at 200 frames per second

on consumer hardware.

Shape and Pose Representation Earliest animatable body models tracked the

human body relying on simple geometric body shape representation [45–48]. SCAPE

(Shape Completion and Animation for PEople) [49] firstly modeled a more detailed

and realistic body shape using a large training database that spans variation in both

subject shape and pose and can fit to incomplete and noise data.

Based on SCAPE model, many variant applications have been developed. Blend-

SCAPE [50], the model our fitting approach based on, took all the body parts into a

blend weighted consideration without explicitly identifying each one and can be easily

employed into a global fitting scheme. The Stitched Puppet [51] chopped the 3D mesh

model into multiple body parts and fitted them together using a particle-based max-

product belief propagation. The TenBo (Tensor-Based Human Body Modeling) [52]

decomposes the shape parameters and combines the pose and shape in a tensor way

to add shape variations for each body part.

Human Model Fitting The SCAPE model have been employed into many appli-

cations: Home 3D body scan [53] applied it to Kinect point cloud data and combined

the silhouette information. [54] fitted the body to multi-camera image data. Naked

Truth [55] estimated human body shape under clothes. [33] fitted the model to sparse

markers from a motion capture system. FAUST [56] provided high resolution 3D
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input scans and evaluated fitting methods with ground-truth generated by accurate

texture matching.

2.2 GMM-BlendSCAPE

The novelty of the GMM-BlendSCAPE different from the existing BlendSCAPE [50]

are in two folds: an adaptive skinning weight for a particular human shape and a

robust template fitting deployed in a probabilistic framework.

The BlendSCAPE Model The BlendSCAPE, firstly introduced in [50] utilizing

a skinning triangle mesh as the template, is a full body pose and shape deformation

model. The template of human is taken at a standard A-pose as the rest pose,

consisting of the surface vertex set V0 = {v0
m | m = 1, . . . ,M}, the triangle face index

set |F| = F and the skinning weight associated with each vertex w = [wm,b]M×B

of body parts or bones, indexed by b, in the kinematic tree. Suppose the rigid

transformation of each bone is [Rθ
b t

θ
b ], the deformed vertex position is represented

by a weighted sum as follows:

vθm =
B∑
b=1

wm,b[R
θ
b t

θ
b ]v0

m, (2.1)

where v0
m is in homogeneous coordinates. Given the template model of a general

shape and pose, the 3 × 3 linear transformation Af of a triangle face deforms each

edge of the rest pose to the corresponding target edge, i.e., AfT
0
f = Tf , where

T 0
f = [v0

f,2 − v0
f,1, v

0
f,3 − v0

f,1], Tf = [vf,2 − vf,1, vf,3 − vf,1], and the subscript 1, 2, 3

denotes the corresponding index of the triangle as illustrated in Figure 2.1.

The linear transformation Af depends on the pose parameters θ, the stacked

Euler vectors of body parts rotations (see the Appendix for computation 6.2), and

the shape parameters β. Specifically, Af (θ,β) = Bf (θ)Df (β)Qf (θ), the three 3×3

matrix are decomposed as follows:
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Figure 2.1: A transformation of triangle from template to a target pose.

• Bf (θ) - a weighted ”blend” of part’s rotations: Bf (θ) :=
∑

bwf,bRb and the

weight wf,b of a triangle is computed as the average weight of its three vertices.

• Df (β) - the shape variation of different people, whose stacked 9F × 1 vector D

can be described from a linear PCA space: D = Uβ+ µ, where U ,µ are pre-trained

PCA parameters, and β represents the coefficients.

• Qf (θ) - the pose related ”blend” nonrigid deformation, s.t., Qf (θ) = Q0
f +∑

c θcQ
c
f , where θc is the c-th element of the pose vector θ and Q0

f ,Q
c
f are learned

coefficients. Ideally, Qf (0) = Q0
f = I and Qc

f is sparse since the nonrigid skin and

muscle deformation is only related to the rotations of a few adjacent body parts.

To build the correspondence between the template at rest pose and an arbitrary

configuration, a coupling energy term is defined to stitch all triangle faces together:

Ec(θ,β) =
F∑
f=1

af
∥∥Tf −Bf (θ)Df (β)Qf (θ)T 0

f

∥∥2

F
, (2.2)

where af is the area of triangle f on the template mesh and ‖ · ‖F stands for the

Frobenius norm.
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It is easy to show that if both θ,β are given, vertex positions of the deformed

mesh can be determined up to a global translation by solving the linear least square

problem minv Ec(θ,β).

To train BlendSCAPE, we utilize the registered CAESAR database containing

two body scan corpora: one containing a person in many poses and one containing

people of different shapes in roughly a fixed pose.

In the former case, Df (β) is first set to identity, if Bf is given, Qf is solved by

minimizing the following function:

EQ(Qf ) =
F∑
f=1

af
∥∥Tf −BfDfQfT

0
f

∥∥2

F
+ wQ

∑
f1,f2 adj

af1,f2 ‖Qf1 −Qf2‖
2
F , (2.3)

where wQ = 0.001, af1,f2 =
af1+af2

3
and f1, f2 are adjacent faces. The problem

can be solved efficiently by taking each column vector of Qf as unknown. Once Qf

obtained, the decomposition of Qf is solved by minimizing the object function:

EQc(Q0
f ,Q

c
f ) =

∑
θ

∥∥∥∥∥Q0
f +

∑
c

θcQ
c
f −Qf

∥∥∥∥∥
2

F

+ λQ

(
‖Q0

f − I‖2
F +

∑
c

‖Qc
f‖2

F

)
,

(2.4)

in which λQ controls the relative influence of sparsity experimentally validated by

comparing with the training samples. The recall errors of different λQ are shown in

Figure 2.2. In general, the larger λQ is, the sparser the decomposition is. We choose

λQ = 5 in our experiment to comprise accuracy (mean fitting error less than 2cm)

and overfitting.

In the latter case, suppose θ,Bf are known and Q0
f ,Q

c
f have been trained from

the above for the template reference person, therefore Qf is known, for different
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Figure 2.2: The effect of the regularization weight λQ.

people, the shape deformation is solved by minimizing the following function:

ED(Df ) =
F∑
f=1

af
∥∥Tf −BfDfQfT

0
f

∥∥2

F
+ wD

∑
f1,f2 adj

af1,f2 ‖Df1 −Df2‖
2
F , (2.5)

where wD = 0.001 and each column of Df can be solved similarly. Once Df

are solved for all the people in the database, we reshape and stack them into a

9F × S matrix (S is the sample number) and apply the PCA to obtain U ,µ, s.t.,

D = Uβ+ µ.

The whole training process of BlendSCAPE is summerized in Algorithm 1, in

which the step of skinning weight adaptation algorithm will be introduced in the

next section.

Algorithm 1 BlendSCAPE Training

Input: registered pose dataset, registered shape dataset, initial skinning weight w

Output: BlendSCAPE: w, Q0
f , Q

c
f , U , µ

Set β = 0, use the registered pose dataset to apply adaptation Algorithm 2
Solve Df for all the registered shape dataset
Stack Df and apply PCA to train D = Uβ+ µ

Skinning Weight Adaptation Different from existing approaches, where skinning

weights wm,b are either designed manually [57] or solved by diffusion techniques, e.g.,

14



heat equilibrium [58], we emphasize that skinning weights and nonrigid deformation

terms Q0
f ,Q

c
f also depend on body shapes as personal parameters and need to be

estimated from multiple pose samples for a given shape.

Our skinning weight adaptation is inspired by skeletal rigging approaches [59,60].

Suppose a skeleton has been embedded in the template mesh, for a certain pose θ,

the rigid transformation of b-th bone in the kinematic tree relative to that of the rest

pose is denoted by [Rθ
b t

θ
b ]. If multiple pose samples are given as the training data

(|{θ}| =: Θ = 70 samples in total), we use them to optimize the skinning weights;

otherwise, we synthesize Θ different sample poses for a certain body shape using

the same pose parameters θ. The skinning weights are optimized by minimizing the

following problem:

Ew(w) = Ewd + Ew1 + λsEws,

where Ewd =
1

MΘ

M∑
m=1

∑
θ

∥∥∥∥∥
B∑
b=1

wm,bR
θ
bv

0
m + tθb − vθm

∥∥∥∥∥
2

2

,

Ew1 =
M∑
m=1

∣∣∣∣∣
B∑
b=1

wm,b − 1

∣∣∣∣∣
2

,

Ews =
B∑
b=1

wT
b Lwb,

subject to wm,b ≥ 0, ∀m, b

(2.6)

where wb = [w1,b, w2,b, . . . , wm,b]
T is the stacked weight vector for the b-th bone,

λs = 0.001 is a spatial smooth factor, and L is the M ×M spatial mesh Laplacian

matrix which can be pre-computed on the template mesh using the method [61].

Although the above optimization problem is a linear non-negative least square

(NNLS) problem, due to the large matrix size (3MΘ + M + MB)×MB, it is hard

for a general NNLS algorithm to deploy. Specially, the active-set algorithm requires

a huge mount of memory and takes nearly impossible long time to run, while the

interior-point algorithm is hard to converge to a globally reasonable solution. To
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solve this least square problem, we utilize a strategy recommended in [59]:

After taking the derivatives of Ew with respect to unknownsw = [w1,w2 . . . ,wb]
T ,

we can get a constrained linear system:

solve Aw = b subject to w ≥ 0 (2.7)

In the iterative approach, w is first solved from the unconstrained linear system

and then the lower bound is found by δ = min(w, 0), and then solve the system:

solve Aw = b−Aδ subject to w ≥ 0 (2.8)

The process repeats until ‖δ‖ is small enough. In our implementation, it converges

fast within less than 3 iterations and in the last step, w is normalized to row sum to

1.

If skinning weights w are fixed and Θ pose samples are given, we can estimate

each rigid transformation [Rθ
b t

θ
b ] from the following least square:

min
Rb,tb

M∑
m=1

wm,b‖Rθ
bv

0
m + tθb − vθm‖2. (2.9)

Note that this problem is an approximation of the term Ewd in 2.6 when wm,b ≈ 1,

therefore we truncate the equation to only involve rows that wm,b > 0.8.

As an optional output, when [Rθ
b t

θ
b ] are fixed, it is able to compute joint positions

in the kinematic skeletal tree by minimizing the following function:

EJ(c) =
∑
b1,b2

∑
θ

∥∥(Rθ
b1
−Rθ

b2
)cb1,b2 + (tθb1 − t

θ
b2

)
∥∥2

2
, (2.10)

where b1-th bone is the parent of b2-th bone in the kinematic tree and cb1,b2 denotes

the position of the joint connecting them.

To summarize, the skinning adaption stage is an iterative training process taking
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the given shape parameter samples as input and generating skinning weights m, pose

basis Q0
f ,Q

c
f and also optimized joint positions. The whole pipeline is summarized

in Algorithm 2.

Algorithm 2 The Skinning Weight Adaptation Algorithm

Input: shape parameter β, BlendSCAPE
Output: optimized w, Q0

f , Q
c
f

Synthesize Θ pose samples using initial BlendSCAPE by (2.2)
while converged 6= true do

Solve rigid transformation [Rθ
b t

θ
b ] for each bone by (2.9)

Solve new skinning weights wnew by (2.6)
Compute joints by (2.10)
if ‖wnew −w‖F < ε then

converged = true
else
w ← wnew

end if
end while
Compute Bf (θ) =

∑
bwf,bR

θ
b , ∀f,θ using the optimized w and Rθ

b

Solve Qf by (2.3)
Train Q0

f ,Q
c
f by (2.4).

Evaluation and Deform Results We first evaluate our skinning weight adapta-

tion algorithm in Algorithm 2 by computing the data fitting error with the 70 training

pose data. Taking the ground truth vertex correspondence, the deforming error is

computed by comparing the linear deformed vertex (2.1) using the skinning weight of

each iteration. The average deforming error of all 70 samples is plotted in Figure 2.3.

As the adaptation converges in less than 6 iterations, we plot the weight and

skeleton optimization for the first 6 iterations as shown in Figure 2.4.

For qualitative comparison with the linear blending system (LBS) [57, 62], we

show a sequence driven by LBS and our BlendSCAPE model in Figure 2.5, in which

we assign LBS with initial skinning weight and compare with our result after weight

adaptation in the row below.
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Figure 2.3: The mean error from the template to 70 training data using the ground
truth vertex correspondence. The process converges almost within 6 iterations.

Figure 2.4: The first 6 iterations of computed skinning weight and skeleton. In the
above row, only skinning weights for right upper arm, left shoulder and pelvis part
are color coded.

Shape and Pose Fitting within Probabilistic Framework In section, we fit

the trained BlendSCAPE model to an incomplete observation of arbitrary human

body and shape. Different from SCAPE-based approaches [49, 50, 52] that assume

a closed enough initial guess allowing to find the closest point correspondences and
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Figure 2.5: A pose driven sequence comparing the LBS system (above row) and our
model (below row). The LBS system cannot accurately represent the surface around
areas such as the armpit even with optimized skinning weights.

mocap approaches [33] that require sparse tracking markers, we deploy the model

fitting within a Gaussian Mixture Model (GMM) framework, which takes all the

data points in the observation into account, inherently robust to noise and occlusion,

and also enabling fitting from a large distance. The organization of this section is

first to formulate the model fitting as a Maximum Likelihood (ML) problem using

the GMM assumption and then to solve it using an Expectation Maximization (EM)

algorithm.

Suppose the input observation is a 3D point cloud X = {xn | n = 1, . . . , N} and

each vertex vm ∈ V , (V = {vm | m = 1, . . . ,M}) of the human body of pose θ and

shape β is considered as the Gaussian centroid of X , the probability of an observed
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data point xn can be expressed as

p(xn) = wn
1

N
+ (1− wn)

1

M

M∑
m=1

p(xn|vm), (2.11)

p(xn|vm) =
1

(2πσ2)3/2
exp

(
−‖xn − vm‖2

2σ2

)
, (2.12)

where we assume that the noise and outliers are accounted in the mixture model and

have a uniform distribution 1
N

and balanced by a weight 0 < wn < 1. And also each

Gaussian has an equal isotropic covariance σ2 and the prior probability of each vertex

is p(vm) = 1
M

.

The estimation of the vertices V can be modeled as a Maximum Likelihood

(ML) problem
N∏
n=1

p(xn), which turns out to minimize the negative log-likelihood

E = −
∑N

n=1 log p(xn) and usually can be iteratively solved by the Expectation Max-

imization (EM) algorithm.

In the expectation or E-step of the algorithm, a posteriori probability distribution

pold(vm|xn) of mixture components is calculated by Bayes rule:

poldmn := pold(vm|xn) =
exp

(
−‖xn−vm‖2

2σ2
old

)
∑M

m=1 exp
(
−‖xn−vm‖2

2σ2
old

)
+ c

, (2.13)

where c = (2πσ2
old)

3/2 wn

1−wn

M
N

and all the variables are known.

In the maximization or M-step, the new parameters are found by minimizing an

upper bound of the negative log-likelihood E as the objective function:

min
θ,β

−
N∑
n=1

M∑
m=1

poldmn

(
log

(
1− wn
M

pnew(xn|vm)

)
+ log

wn
N

)

∝ Q :=
N∑
n=1

M∑
m=1

1

2σ2

∑
n,m

poldmn‖xn − vm‖2 +
3P

2
log σ2,

where P =
N∑
n=1

M∑
m=1

poldmn

(2.14)
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in which unknowns to solve are vm(θ,β) and σ2. The EM algorithm for body and

clothes estimation is summarized in Algorithm 3.

Algorithm 3 EM algorithm for fitting body parameters

Input: initial θ, β, σ2, data points X
Output: optimized θ, β, σ2

Uniformly downsample (Poisson-Disk Sampling) the point cloud to a comparable
number of M
while θ, β not converged do

E-step: Compute posteriors {pm,n} by Eq. 2.13
M-step: Run the iterative solver by Algorithm 4 for θ, β, v and σ2.

end while

Parameters Optimization and Iterative Solution The M-step to minimize the

objective function 2.14 involves the vertex positions, therefore we can combine the

BlendSCAPE model 2.2 together and get the following minimization problem:

min
θ,β,σ2

Ec + λdataQ (2.15)

where the weight factor λdata controls how the strong data points affect the template

model, we choose λdata = 10 by default.

Taking the partial derivative of 2.15 with respect to σ2 and let it be zero, we get

σ2 =
1

3P

N∑
n=1

M∑
m=1

pmn‖xn − vm‖2. (2.16)

If σ2 is fixed, the problem 2.15 is a nonlinear optimization with respect to θ, β.

We design a linear iterative solution shown in 4 despite of a general nonrigid solver.

The first step is to solve all the vertices of the BlendSCAPE template from 2.2 as

a linear least square problem, next is to fix the shape parameter and solve the pose

change ∆θ, and the last step is to renew the shape parameter β with all the others

fixed.
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For the pose change ∆θ, which are essentially small rotations and can be dispensed

to each rigid part, we approximate it as the twist change to the rotation matrix such

that Rb ← (I + ∆θ̂b)Rb, in which ∆θ̂b is the 3 × 3 skew-symmetric matrix or cross

product matrix of the twist vector ∆θb. To solve ∆θ, resulting in the following linear

minimization.

ER(∆θ) =
F∑
f=1

af

∥∥∥∥∥Tf −
B∑
b=1

wf,b(I + ∆θ̂b)RbDfQfT
0
f

∥∥∥∥∥
2

F

+ wR
∑
b1,b2

‖∆θb1 −∆θb2‖
2 ,

(2.17)

where wf,b, Df , Qf are known and defined as in (2.3) and the last term prevents large

joint rotations where b1 and b2 are adjacent bone indices and wR = 0.1 is a trade-off

parameter.

For the shape update, since β is linearly involved when PCA basis U ,µ are fixed,

the objective reduces to minimizing a simple quadratic function:

min
β

F∑
f=1

af
∥∥Tf −Rb

(
Uβ + µ

)
QfT

0
f

∥∥2

F

subject to − 3σ ≤ β ≤ 3σ,

(2.18)

where σ is the standard deviation of β along each dimension computed during the

training stage (2.5). The optimization iterates until converged to a local optimum

of 2.15.

Evaluation and Fitting Results To evaluate the accuracy of our GMM-BlendSCAPE

fitting, we qualitatively compare the fitting result from the male template to each pose

in the training data set, where we set the initial pose and shape as identities and the

fitting process converges in 5 iterations on average. Figure 2.6 presents the quan-

titative results by aligning the fitted results to each point cloud. The error is also

computed by the ground truth point correspondence.
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Algorithm 4 E-step Optimization For θ, β, σ2

Input: initial θ, β, σ2, {pm,n}, data points X
Output: optimized θ, β, σ2

while θ, β, σ2 not converged do
Solve V by minimizing Equation (2.15)
Solve ∆θ by Equation (2.17)
Update Rb ← (I + ∆θ̂b)Rb and then θ
Compute Qb by the updated θ
Solve β by Equation (2.18) (skipped if β is fixed for pose tracking purpose)

end while

Figure 2.6: Auto registration results from the template to point cloud of sample
poses. The error is computed by ground truth correspondences. The red/blue colors
denote the data point cloud with random noise and the fitted model.

For incomplete data set, we qualitatively compare our fitting results with the LBS

fitting algorithm [62] in Figure 2.7.

GMM-BlendSCAPE Fitting Accuracy Evaluation We evaluate the accuracy

of GMM-BlendSCAPE tracking algorithm on a publicly free dataset PDT [63] which

contains ground truth joint locations. We fix a known body shape and only com-
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Figure 2.7: A result of fitting a female template to an incomplete point cloud sequence
from Kinect sensor. Note that we estimate the shape at the beginning of the video,
e.g., T-pose, and then we fix shape parameters and track poses only for the rest of
the video.

pare the pose tracking accuracy with the groundtruth joint locations 2.8 and several

existing motion tracking approaches 2.9 such as [62–64].

Copyright c© Qing Zhang, 2015.
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Figure 2.8: The mean joint errors of our GMMBS tracking algorithm with the pro-
vided groundtruth joint locations using PDT dataset.

Figure 2.9: Quantitative comparison of mean errors with existing motion tracking
methods [62–64] using PDT dataset.
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Chapter 3 Single View 4D Self Portrait Framework

Instead of fitting a general shape template from training database, in this chapter, we

presents a novel algorithm to build the complete 4D model, a personalized template,

from partially scanned data. As an active research topic, a number of approaches

have been developed to reconstruct complete models from depths. However, due

to the relatively low-quality depths they produce, multiple overlapping depth maps

have to be fused together to not only provide more coverage, but also reduce the

noise and outliers in the raw depth maps. Therefore these modeling approaches are

limited to static objects (e.g., the well-received KinectFusion system [65]), or human

in mostly static poses (e.g, the home body scanning system [66] and the 3D self-

portrait system [1]). Our main idea is to first create a drivable and detailed human

model, and then use the personalized model to synthesize a full 3D model that best

fit the raw input depth map containing dynamic human motion.

The entire modeling pipeline can be separated into three steps. In the first step, an

image+depth sequence is captured using a depth camera (e.g., Kinect sensor). Each

capture provides a partial surface and a texture of the subject person at each time

instant. The system allows to capture a desired local part and update the details to

the final complete model. To allow robust body parts registration, the image sequence

is used to locate temporal feature correspondences, which help track and warp each

articular or rigid part. In the second step, a parametric body template is associated

with the pre-defined key poses and shape detail parameters are automatic customized

to the subject person. In the third step, the template model is refined and registered

with respect to each partial scan and achieves a consistent and realistic complete

model animation.

While capturing human bodies has been widely studied using either an array
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of surrounding cameras, (e.g., [8, 9]), or a full body scanner (e.g., Cyberware body

scanner), we think the setup is expensive and cumbersome while obtained surface

data is incomplete due to occlusions. Encouraged by the recent development of handy

range sensors, we expect that color+depth videos will be easily captured and widely

used in our daily life. Therefore, we start with a single depth camera which is much

affordable and practical to carry around for outdoor capturing activities, however,

less visible part of the object can be observed at each time instant. The desire of

our proposed method is to complete the partial data into a fully animated 3D human

body model.

In the simplest case, if the object is rigid or less deformed, this completion task

becomes the well-studied Structure-from-Motion (e.g., [67, 68]) problem using 2D

image sequence or the Iterative Closest Point (ICP [69]) problem using 3D point cloud.

Although non-rigid registration techniques [53,70] have been presented for registering

and recovering human body under small deformations, modeling a complete model

of a particular person is still a challenging problem.

Our system first capture the human subject under different poses. The subject

needs to stand still for a few seconds per pose while a single depth sensor that is

mounted on a motorized tilt-unit scans the subject to obtain a relatively high-quality

partial 3D model. Unlike previous methods, the subject does not need to rotate

around and be scanned in the same pose from multiple angles. From the collection of

partial scans of different poses (some from the front, some from the back, and some

from the side), a complete 3D model is reconstructed using non-rigid point registration

and merging algorithms. The model is not only personalized to the subject, but also

rigged to support animation. Now our system is ready to synthesize high-quality

dynamic models using the low-quality depth input directly from the sensors. Note

that we are not simply driving the personalized model using standard skeleton-based

animation techniques. In each frame, the personalized model is updated to produce a
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best fit to the input for the visible part. Figure 1.1 shows a complete example of our

system. It should be noted that we achieve all of these using no more than a single

depth sensor.

To the best of our knowledge, our system is the first that can automatically

reconstruct a human model that is not only detailed but also drivable while using

only a single commodity depth camera. Our method does not rely on any training

database, requires very little user cooperation (each pose is scanned only once), and

can create high-quality dynamic models of human motions. Therefore we believe

our system can be used to expand the applications of depth sensors to the dynamic

human modeling area.

3.1 Previous Work

We review the related recent works in 3D human model reconstruction, mesh defor-

mation and registration.

The model completion task is closely related to two techniques: the deforma-

tion models [71–73] and the performance capture techniques [26, 27, 74]. Pekelny’s

method [74] aims to build a complete model over time with a single depth camera by

assuming the deformation as articulated and piecewise rigid, and merging partial rigid

surfaces over time using the Iterative Closest Point (ICP) method. Li’s method [26]

emphasizes on how to robustly register the pre-defined template model to non-rigid

partial scans frame by frame via non-linear optimization and also uses the temporal

coherence to fill holes in almost complete input mesh sequence [27].

Structure from Motion (SFM) techniques (e.g., [5, 10]), which was originally lim-

ited to static scenes, have been extended to reconstruct dynamic non-rigid scenes

by making extra assumptions about shape deformation. The motion of a non-rigid

time-varying object can be decomposed into a rigid transformation and non-rigid de-

formation. Represented by a set of sparse feature points and their motions, shape
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deformation has been successfully reconstructed using different models, including a

combination of several basic shapes [75, 76], Gaussian distributions [14], or based on

Probabilistic Principal Components Analysis [77]. Multiple view methods are widely

deployed to capture scenes (e.g., [8, 9]). Surface reconstruction can then be done

using either Multi-view stereo algorithms [78, 79], or Shape from Silhouette tech-

niques [80–82].

Hole filling is also known as a common problem in the geometric modeling com-

munity. Many methods have been developed to address this issue (e.g., [27, 83–86]).

Typically, they are focusing on high-quality static models that are acquired using

laser range scanner with relatively small missing parts. The problem we are trying to

solve here is significantly more challenging. We allow 3D models acquired by a sin-

gle depth camera (Time-of-Flight or Kinect depth sensor) as our input, since a laser

range scanner can hardly capture dynamic scenes. Compared with range scanners,

depth cameras contain more noise, and the input scan is less than 50% complete (one

depth map for each instant).

The mesh embedded deformation [72] uses a rough guided graph to deform the

mesh as rigid as possible. Based on the embedded model, the approach of Li et

al. [87] uses a pre-scanned object as shape prior and register. Despite of the nonlinear

embedded approach, linear mesh deformation methods such as [88,89] are more likely

to deal with small deformation and details transfer.

For handling the loop closure problem, the real time method [66] diffuses the

registration error and online updates the model. This method aims to align scans of

static objects. The global registration for articulated models [90] can cope with large

input deformation, but is less suitable for aligning human body and garment.

The full body multiple Kinect scanning system [70] captures a dense sequence

of partial meshes while the subject standing still on a turntable. All the partial

scans are registered together based on the error distribution approach [91]. 3D Self-
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Protraits [1] presents the first autonomous capture system for self-portraits modeling

using a single Kinect. The user stands as still as possible during capture and turn

roughly 45 degrees at each scan.

For registering dynamic input scans without large rotation change, the global

linear approarch [61] registers all the scans using the linear deformation model which

assumes small rotation angle of input scans.

3.2 Pairwise Nonrigid Registration Framework

In this section, we build complete 3D models for all the captured poses using partial

scans. First, we introduce our data capture setup and the initial alignment using a

general template model. Then we formulate the nonrigid registration problem using

the embedded model of a simple yet efficient loop constraints.

System Initial Setup We utilize the Kinect Fusion Explorer [65] tool in Microsoft

Kinect SDK to capture partial 3D meshes and colors. The subject person stands in

front of the sensor approximately one meter away. The Kinect sensor is tilt from 13

degree to −27 degree during each capture. It takes four seconds per scan and the

subject person keeps almost still at each pose. In order to build complete models, we

take multiple scans at different angles to ensure most of body can be seen at least

once.

Input meshes of Kinect Fusion are extracted from a volume of size 5123 and 768

voxels per meter. We uniformly sample the input mesh to an average edge length

of 4mm and erode from its boundary by 2cm to cut off sensor outliers. The floor is

removed using background subtraction.

Since there is neither a semantic information from the scanned meshes nor natural

correspondences, we adopt our GMM-BlendSCAPE fitting algorithm in the previous

chapter to align a generic template onto each of the scanned input point cloud. In
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Figure 3.1: The initial alignment of partial point cloud from eight views using our
GMM-BlendSCAPE template fitting.

despite of large pose difference, our fitting process generally provides sufficient good

initial fitting results as shown in Figure 3.1.

Pairwise Nonrigid ICP For pairwise registration of partial scans, we employ

the embedded deformation model [26, 72], which describes plastic deformation and

is effective to handle articular human motion [26]. The embedded method defines

the deformation of each vertex v on the mesh influenced by K nearest nodes g on

a coarse guide graph. In our case, two meshes Mi,Mj have already aligned with

their graphs Gi,Gj after our template fitting step, and also Gi,Gj have the same face

connectivity. The transformation from Gi to Gj is defined on each node gm: a 3 × 3

local rotation matrix Rm
i and a translation vector tmi . Given transformations, the

node on deformed graph G̃i is simply added the translation: g̃m = gm + tmi on the

graph and the deformed vertex is computed as ṽ =
m∑
k=1

wk(vi) [Rk(vi − gk) + gk + tk]

where wk(vi) is the influence weight inversely proportional to the distance from vi to

its control nodes ‖vi − gk‖.
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It can be easily verified that if (Rm
1 , t

m
1 ), (Rm

2 , t
m
2 ) are two consecutive deforma-

tions of Gi, the total deformation is (Rm
2 R

m
1 , t

m
2 t

m
1 ). Let Rm

2 = (Rm
1 )−1 and tm2 =

−tm1 , then the mesh deformed by (Rm, tm) can be restored using
(
(Rm)−1 ,−tm

)
.

We assume all the {Rm} are almost rigid and this property holds in our case.

For registeringMi toMj, transformations (Rm
i , t

m
i ) are solved by minimizing the

energy function similar to [26]:

min Efit + λregEreg,

where Efit =
∑
c

αpoint‖vci − ṽci‖2 + αplane
∣∣ñTi (vci − ṽci )

∣∣2 ,
Ereg =

∑
m

∑
l∈N(m)

∥∥Rm
i (gli − gmi )− (gli + tli − gmi − tmi )

∥∥2
,

(3.1)

in which the fitting term Efit constrains the deformed position of a subset of vertices

and the regularization term Ereg ensures the smoothness of the deformation and is

balanced by a weight λreg. Specially, ṽci specifies the destination of vci and ñi is the

normal on the surface of Mj accordingly.

To search for the correspondence, we can benefit from the same embedded graph,

that is associated graphs Gi and Gj have the same face connectivity, and then we are

able to segment each mesh by corresponding graph nodes as shown in Figure 3.2.

The same colored region denotes vertices influenced by same graph nodes. When

searching correspondences from Mi to Mj, we perform iterative closest point (ICP)

algorithm to align large patches (area > threshold) and search for the closest point

after ICP. Faraway or normal inconsistent pairs are excluded. We obtain in roughly

2000 correspondences for a pair of scans.

The cost function equation (3.1) is minimized by Gauss-Newton solver and see [26,

72] for details. After registration, we get all of the transformations {(Rm
i , t

m
i )},

the deformed graph, the deformed mesh and a corresponding point set. Another

tradeoff is to set a relatively larger regularization weight wreg and smaller fitting
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Figure 3.2: We search for corresponding points by aligning patches controlled by the
same graph nodes using ICP.

weight wfit. It results in slower convergence to correct destination of the overall

algorithm but benefits the avoidance of severe failure deformation of the graph such

as self intersection and volume collapse due to error accumulation. In our experiment,

it shows that the whole algorithm still converges within 5-10 iterations as Figure 3.5.

3.3 Global Nonrigid Registration Algorithm

Now that we have n partial scans in the capture stage and they are aligned with graphs

in 3.1. In this section,we register all scans to each pose while achieving global ge-

ometry consistency. Inspired by [70,91], we develop an iterative optimization scheme

to 1) pairwise register scans and 2) adjust them by distributing accumulative error

using loop closure constraints. Different from the method in [70], since the defor-

mation of a graph is simply adding the translation tmi to each node, Rm
i does not

interfere with the graph directly. Therefore, we deal with translational and rotational

error distribution separately, and translational error optimization is simpler and more

efficient.

Preprocessing Given input scans and graphs, we initially register all the graphs

to the target graph and deform all scans accordingly as shown in Figure 3.3. To
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suppress outliers occurring near joints, we remove faces of long edge length and clean

disconnected small patches from the deformed mesh. To reduce the influence of

badly deformed vertices, we compute the affine transformation near each vertex and

compare the deviation angle of the corresponding Laplacian coordinates. Each vertex

is assigned to a confidence weight Wlap inversely proportional to the deviation.

After the rough registration, the covered region on the target graph of each scan

is known. By aligning the torso part (chest and abdomen), we can roughly determine

each virtual camera pose in the target coordinate system. Sorting angles from the

target camera to each virtual camera, we finally get a circle of n scans denoted as

M1,M2, . . . ,Mn and the target scan w.l.o.g., is denoted as M1 in Figure 3.3.

Bi-directional Loop Constraints Now we have a loop of n scansMi, i = 1, . . . , n,

the graph G1 is aligned with M1 correctly and we use it as the embedded graph to

registerM1 toM2 by using the deformation described in 3.2. After the registration,

M1,G1 are deformed as M1,2,G1,2 and transformations are denoted as {(Rm
1 , t

m
1 )}.

By using the weight and node indices of G2 but the node positions of G1,2, we register

M2 to M3 and get M2,3,G2,3. The process continues until registering Tn back to G1

with transformations {(Rm
n , t

m
n )}. We call this step as the pairwise registration in the

context of this section. For a globally correct registration, we have Gn,1 = G1, that is

for each node, tm1 + tm2 + · · ·+ tmn = 0, and the deformed meshMn,1 is consistent with

M1. When the deformation is highly rigid, applying the multiplication of consecutive

deformations, the product of rotations along the loop will be an identity, that is

Rm
nR

m
n−1 · · ·Rm

1 = I.

Due to error accumulation, the pairwise registration will drift and violate such con-

straints. Similar to [70], we distribute the accumulated rotational and translational

error and choose a weight wi = 1/Dist(Mi,i+1,Mi+1) to transformations {(Rm
i , t

m
i )},

where Dist(Mi,i+1,Mi+1) is the average fitting error of Efit in 3.1, for all i = 1, . . . , n.
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Figure 3.3: Stages in our global registration. All the partial scans are initially aligned
to the target using the general template model. Virtual cameras are estimated in
the coordinate system of the target pose to determine the loop closure. The fitted
template model is reduced to a rough graph to guide the embedded registration.
Pairwise accumulated registraton error is distrubuted after each loop adjustment.

(n+ 1 we refer to 1.) Since every node will be optimized in the same way, we ignore

the superscript k in the following.

The translational error is distributed by solving the following optimization,

min
n∑
i=1

w2
i

∥∥t̂i − ti∥∥2
, s.t.,

n∑
i=1

ti = 0, (3.2)

and the solution is found using Lagrange multipliers, t̂i = ti−αi
n∑
j=1

tj, with the scalar
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αi as

αi =
1

w2
i

/
n∑
j=1

1

w2
j

(3.3)

The rotational error distribution is to minimize the total rotational deviation:

min
n∑
i=1

wi∠(R̂i,Ri), s.t.,Rm
nR

m
n−1 · · ·Rm

1 = I, (3.4)

where the angle between two rotations is defined as ∠(A,B) = cos−1
(
tr(A−1B)−1

2

)
.

Analyzed in [91], the optimal R̂i is computed as

R̂i = E<αi>
i Ri,

Ei = (RkRk−1 · · ·R1RnRn−1 · · ·Rk+1)−1,
(3.5)

where αi is referred to equation (4.7), and E<αi>
i is defined to be the rotation matrix

that shares the same axis of rotation as Ei but the angle of rotation has been scaled

by αi.

Once all the optimal
{(
R̂m
i , t̂

m
i

)}
are obtained, we use the total transforma-

tion

{((
R̂m

1 R̂
m
i−1R̂

m
i

)−1

, . . . ,−t̂mi − t̂mi−1 − · · · − t̂m1
)}

to deform the meshMi with

Gi−1,i back to M1.

This can be easily verified by that M1 can be deformed using the total trans-

formation
{(
R̂m

1 · · · R̂m
i−1R̂

m
i , t̂

m
i + t̂mi−1 + · · ·+ t̂m1

)}
to register with Mi and then

we can apply the multiplication property to deform Mi back to M1. After all the

meshes Mi updated, we repeat the pairwise registration step from M1 and G1. The

graphs G1,G1,2, . . . ,Gn,1 will finally converge to a constant graph and
{(
R̂m
i , t̂

m
i

)}
converges to the globally optimal solution as plotted in Figure 3.5.

In the sense that the error distribution step can prevent graph drifting and pull

it towards the optimal position, we can perform an interleaved bi-directional way

to avoid large accumulative errors. The basic idea is to perform an inverted itera-
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tion using the order of M1,Mn,Mn−1, . . . ,M3,M2,M1 after a forward directional

iteration. The directional scheme is in essential the same to the multiple cycle blend-

ing technique described in [91] and the total time complexity to convergence is the

same because they traverse in both direction in one iteration and we perform in each

direction once but need two iterations.

Postprocessing Once all the partial scans are registered to the target pose, the

final water-tight surface is extracted by using Screened Poisson Surface method [92]

which takes the point confidence into account. We assign a blending confidence for

each point W = Wnormal ∗ Wsensor ∗ Wlap: Wnormal is inversely proportional to the

angle between the original input normal and the z-axis; Wsensor is proportional to

the distance from a point to the mesh boundary; Wlap is inversely proportional to the

deviation Laplacian coordinates, and the final weight W is pruned to [ε, 1], ε > 0. The

surface color is transferred from the input color and diffused using Poisson blending

method [93] to achieve seamless.

3.4 Training of Parametric Kinematics

In this section, we align all the complete 3D models built in the above section to

train an animatable parametric model and fit it to the new incoming depth sequence.

Different from the generic template based methods [49, 52, 53] that varies at the

ability of representing level of details. Our complete models are inherently specified

to a certain user and have no shape variations, therefore we only need to train the

pose variation for a personalized model.

To train the parametric model similar to our generic BlendSCAPE model, all of

the 3D models are required to be mesh topology consistent (i.e., one-to-one vertex

correspondence). We pick a neutral pose as the reference pose and deform it to all the

other 3D models. Similar to the nonrigid ICP registration in section 3.2, we register
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the reference model to each complete model by taking the alignment of their associ-

ated graphs as the initial guess. As a result of nonrigid registration, corresponding

points are found with normal consistency. We employ the detail synthesize method

to make subtle adjustment of the warped reference model:

min
di

∑
vi

‖vi + dini − vci‖
2 + β

∑
i,k

|di − dk|2 , (3.6)

in which vi and vci are corresponding points, di is the distance along its normal

direction ni. The distance field is diffused among neighboring vertices i and k. β =

0.5 in the experiments.

After registered to all the other n− 1 example poses, the model at the reference

pose is taken as the template for training. Since the embedded graph is fit by GMM-

BlendSCAPE template, on which each vertex is associated with a skinning weight,

we first transfer the skinning weight to the reference model. And then all the rest

of training stages are the same as training the GMM-BlendSCAPE by fixing shape

parameters, i.e., the same steps in Algorithm 1 by always setting the shape related

matrix Df be identity. When fitting the trained personalized model to incoming new

point cloud, same EM iterations in Algorithm 3 are performed to estimate the pose

of the personalized model.

Note that in our case, we have less (usually n = 8) poses than the SCAPE training

data. However, since the regression is linear, the ability of its representation depends

on the range of joint angles instead of number of samples. In our capture stage,

the subject person is required to perform different joint configurations as much as

possible. And then the trained model ends up being able to recover the personalized

style of movement.
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3.5 Results and Evaluation

We validated our system by scanning the mannequin for performance evaluation and

accuracy comparison. We scanned male and female subjects at several challenging

poses to build 3D model training samples. We captured several video sequences to

validate the fitting using our trained model.

Mannequin Validation As an accuracy test of our system pipeline, we acquired

a 3D model of an articular mannequin and compared our results to a model captured

using a high-performance structured light scanner with a 0.5mm spatial resolution.

In this test, we manually turned the mannequin around by approximately 45

degrees at each time. The mannequin was not totally rigid, and its arms and legs were

slightly moved when turned around. In this case, we directly perform the pairwise

registration step with loop closure adjustment. We compare it with the groundtruth

to achieve an average alignment error of 2.45mm. We also compare the result with

the previous paper [1] and the comparable result is shown in Figure 3.4.

In another mannequin set, we test the performance of our system by capturing

large pose changes. The mannequin’s arms and legs were articulately moved to sev-

eral poses. The qualitative evaluation results are shown in Figure 3.6. In Figure 3.5,

we show the algorithm performance to register all scans to the target pose 3.3. Ac-

cording to the results, the optimization procedure converges in 5 − 10 iterations for

both rotational and transnational error distributions. The final average variation in

rotation is less than 0.5 degree and the variation in translation is less than 0.1mm,

which we set as a terminating condition for real person modeling.

Real Person Examples We validate our system to reconstruct both female and

male persons in regular clothes. It takes several minutes to capture static scans and

then watertight example poses are reconstructed as shown in Figure 3.7. We pick the
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Figure 3.4: The reconstructed mannequin of an almost static pose. Error map com-
pared to the groundtruth is plotted.

Figure 3.5: The deviation of mannequin data. The left is the rotation angle changes
in degrees and the right is the translation in milimeters.

neutral pose as the reference and train parametric model. The final avatar is at the

resolution of 100k faces.

Driving and Fitting to Video Sequence After training the parametric model,

we test our drivable avatar using the full body video sequence at a distance about 2m

to the Kinect sensor. Our parametric model is initially driven to the pose estimated

by skeleton and then iteratively fitted to the input point cloud. Figure 3.8 shows
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Figure 3.6: The reconstructed mannequin of some articulated arm movement.

Figure 3.7: The reconstructed watertight models after our global registration. The
bottom row shows the input partial scans and the upper row shows the reconstructed
models at each pose.

several frames of our final fitting result.

Copyright c© Qing Zhang, 2015.
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Figure 3.8: The final fitting result with our personalized parametric avatar. We
compare our avatar with the general SCAPE model to show more realistic details.
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Chapter 4 Real Time General Mesh Embedded Deformation

As analyzed in the previous chapter, the globally nonrigid registration is time con-

suming mostly due to the involved embedded deformation, which is called in every

pairwise registration, and in general, the nonlinear problem is solved in a Gauss-

Newton iterative manner that prevents the overall solving speed. Motivated by ac-

celerating the computation of registration framework, we investigate the performance

of embedded deformation and provide an efficient and fast solution for generic object

deformation in this chapter.

For a general purpose deformation system, a challenge task is to quickly gener-

ate convincing results that preserve geometry details and also easy to manipulate

for non-expert users. Most of existing real-time deformation approaches relay on

skeleton or cage like handles and require sophisticated artistic skills to paint weights.

Other mesh deformation techniques that do not depend on such pre-defined handles

have less abilities to preserve details and a large computation complexity for high

resolution meshes. The embedded deformation and its related extensions [26, 72]

offer a amount of powerful and convenient tools to design 3D shapes. The main

advantage of embedded deformation is that the computation is independent of both

shape’s representation and geometry complexity while the manipulation is still direct

on the mesh. It also preserves the shape details as-much-as-possible after deforming,

which means the local features do not stretch or shear. Due to the flexibility, the

embedded deformation is used in non-rigid mesh registration [1], reconstructing com-

plete models from multiple partial meshes. The common issue that arise in current

embedded-based approaches is its lack of efficient linear solutions preventing from

further real-time interactive manipulation.

In the embedded deformation framework, a reduced model called the deformation
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graph is created and the object deforms as a linear combination of transformations

of the graph nodes. Manipulating the shape is to solve both deformations of the

object and graph while satisfying global consistency. Despite of its simple structure,

the optimization involves local affine transformations and globally ends up solving a

large nonlinear system by using computational costly Gauss-Newton iterations.

Real-time performance is crucial for interactive 3D modeling. Users always want

the deformation to be responsive in real-time and easy to control. It is a main reason

that skeleton-based methods still dominate the practical usage, even though they

require cumbersome pre-definition of control primitives in order to preserve geometry

details properly.

Our goal is to provide similar plausible deformation to the embedded deformation

by using efficient linear solvers. We aim for real-time interaction for manipulating

high-resolution meshes but don’t require any information about the object’s skeleton

or topology.

In our novel deformation scheme that achieves interactive rate, we divide the

nonlinear problem of solving embedded deformation into linear sub-problems and

combining them in an iterative way similar to the as-rigid-as-possible surface mod-

eling [94]. Local rotations are solved parallelly by using GPU and then propagated

over the embedded graph also by an efficient linear system. In order to accelerate the

convergence, we develop a hierarchical structure of graphs and significantly improve

the overall speed especially when manipulating high-resolution meshes.

The contributions of our acceleration algorithm are mainly twofold:

• a linear and efficient approach to achieve the comparable quality to the nonlinear

embedded deformation.

• a hierarchical strategy to accelerate the rate of convergence and make high-

resolution mesh editing interactivable.
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4.1 Previous Work

A vast amount of literature deals with geometry deformation and mesh registration.

We discuss the following three aspects most related to our approach.

Linear Blend Skinning This sort of approaches such as [95,96] dominates current

practical use as the fastest method, because it defines skeletons or cages and utilizes

them as handles to manipulate the shape. The object deforms as a linear blending of

the predefined structures. Computing the deformed shape is so-called skinning [95],

the step of computing skinning weights is called binding or rigging. In general, the

LBS approach can deform the object fast (small pose time) but require a relatively

large bind time in the preprocess step.

Cage-based methods such as [97–99] compute weights via mean-value interpolation

or solving harmonic constraints and then deform the mesh by translating the cage

vertices. Since the cage greatly reduces the object complexity, it is convenient and fast

to deform a local region of object by operating on cages. In order to deform detailed

shapes, however, refining cage positions may require tedious manual work. [96] unifies

multiple types of control handles and relieves users from the burden of manually

paining blending weights. Although it allows users to freely choose handles, the bind

time is still in the order of seconds per handle for 3D meshes.

Extended to the traditional LBS, [100] enables the deformation to operate within

the context of given examples - so-called characteristic shapes. [101] generalizes the

skinning concept to multiple deformers like proxy curves and polygons. [102] defines

the transformation on tetrabones and adds more physical constraints such as length

and balance constraints to make the deformation look more natural. Another trend

is extended from mesh-based inverse kinematics (MeshIK) [103], which stacks defor-

mations of mesh triangles into a single vector and applys PCA to extract a feature

space from training examples. [104] takes into account of articulated constraints and

applies MeshIK to skeletal animation with skinning.
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Mesh Deformation We refer this kind of deformation to direct manipulation on

mesh by specifying a set of positions or gradients instead of controlling pre-defined

structures. Although all the above LBS methods can be modified to implicitly solve

transformations of handles, we emphasize this category of approaches does not require

to bind handles or simply relies on self-adaptive structures.

The survey paper [105] compares a number of related linear methods such as

thin-shell method and Laplacian mesh editing [88]. As-rigid-as-possible surface mod-

eling [94] is considered as one of the best linear deformations by taking local rotations

into account. The prior art of nonlinear approach based on embedded deformation

technique [72] has been successfully used in many recent applications dealing with

flexibly deformation and achieving plausible mesh registration. The primary draw-

back of these approaches is that they rely on optimization at pose time, preventing

an interactive manipulation.

Mesh Registration One application of mesh deformation is registration among

multiple objects. [26] introduces the embedded deformation [72] to performance cap-

ture by registering a pre-scanned detailed object to input data. [70] utilizes the em-

bedded method [26] to reconstruct human body shape by capturing a dense sequence

in a turntable setup. Global registration errors are minimized by using a loop clo-

sure distribution approach. 3D Self-portraits [1] register eight surrounding scans of

the object and automatically merge them into a complete watertight 3D model, only

requiring the subject keeping still during each scan. However, all of these approaches

require a large amount of pose time until one can obtain a decent registration result.

In addition to geometry registration, one widely-used free-form deformation is

based on Gaussion mixture models (GMM). A general probabilistic framework called

coherent point drift (CPD) is developed by [106], in which they fit the GMM centroids

to the target data by maximizing the likelihood and impose the coherence constraint

by regularizing the displacement field in the maximization step of the EM algorithm.
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[90] develops a two-phase global registration approach for articulated objects similar

to the EM algorithm. In the first step, they estimate joint locations and solve rigid

transformations by searching the closest points; in the second step, they optimize

weights for input samples and re-solve discrete labeling of rigid parts. [107] applies

the method [90] to make a global consistent avatar by nonrigid registration, however,

the EM algorithm costs a large amount of time. Another drawback of this kind of

approaches is its lack of local property and it is hard to control a certain portion of

the mesh intuitively or edit shape details incrementally.

Different from the above, our method deals with editing on the mesh directly

without knowing the topology of the object or cumbersome manual rigging, has the

comparable quality to the nonlinear embedded approach, but runs much faster than

existing pose-time computing approaches especially when the target mesh is in high-

resolution.

In the following sections, we will first give a brief overview of the original embedded

deformation method and our linear system to solve translations (4.2). This is then

followed by a GPU-based parallel rotation solver (4.2) and a linear metric to regularize

all the rotations (4.2). These three steps lead to our basic solution (4.2) and then

we present a hierarchy structure of the embedded graph to accelerate the rate of

convergence (4.3); the computation complexity will be briefly analyzed (4.3). In

Section 4.4, we will discuss possible applications of our algorithm and demonstrate

the real-time performance.

4.2 Linear Embedded Deformation

The embedded mesh deformation computes a smooth warping field from a given 3D

mesh M (vertex set V and face set F) to a target mesh M̃ achieving position and

normal consistency as described in the previous chapter 3.1. By coupling the nodes
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g ∈ G, the regularization term can be represented by the following:

Ereg :=
m∑
i=1

∑
gk∈N (gi)

α2
ik ‖(I −Ri)(gi − gk) + ti − tk‖2 , (4.1)

=
m∑
i=1

∑
gk∈N (gi)

α2
ik ‖(g̃i − g̃k)−Ri(gi − gk)‖2 (4.2)

where the weight αik is proportional to the degree to which the influence of nodes gi

and gk overlap.

Existing approaches such as [72] implement Gauss-Newton iterations to optimize

the above in an unconstrained nonlinear least-square problem by minimizing the ob-

jective function 3.1. In despite of the fixed non-zero pattern of Jacobian matrix in

each iteration, which can be precomputed to speed up the solver, the overall compu-

tation cost is still too high to achieve interactive performance. The nonlinear problem

arises from solving both Ri and ti simultaneously. However, a direct observation is

that if rotations are fixed, solving translations ti becomes a linear least-square prob-

lem. The key insight of our approach is to solve for translation first and then solve

for rotation in another efficient step.

Parallel Computation of Rotations When it comes to solving rotations Ri with

ti fixed, we notice that node positions of the deformed graph have been already fixed,

and then rotations are mainly determined by the deformed graph to achieve the local

orientation consistency. Specifically, every rotation Ri is determined by minimizing

the energy function Eq. 4.2.

By representing each Ri using quaternion as shown in Appendix, computing each

rotation is essentially equivalent to an eigenvalue decomposition of a 4×4 symmetric

matrix, which can be efficiently solved by Jacobi eigenvalue algorithm and more

importantly, can be explicitly implemented in GPU programming language such as

CUDA. Our result shows that solving 100k rotations only costs several milliseconds
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in a middle-end graphics card.

Rotational Regularization When rotation of each node has been solved in paral-

lel, we observe that rotations over the graph are not necessary spatial consistent and

make the deformed mesh unsmooth, we therefore provide a rotational regularization

to constrain neighboring rotations over the graph. According to the regularization

term 4.1, we notice that neighboring nodes gi and gk always appear in pairs and

αik = αki in symmetry. Therefore, we can combine both terms and apply a triangle

inequality,

α2
ik ‖(I −Ri)(gi − gk) + ti − tk‖2

+α2
ki ‖(I −Rk)(gi − gk) + ti − tk‖2

≥α2
ik ‖Ri(gi − gk)−Rk(gi − gk)‖2 /2

=α2
ik

∥∥(I −RiR
T
k )(gi − gk)

∥∥2
/2. (4.3)

Since gi− gk can be in arbitrary configuration, it ends up to minimize the metric∥∥I −RiR
T
k

∥∥2
, which is functional and bounded equivalent to the geodesic distance

on the unit sphere, i.e., Φg = ‖ log(RiR
T
k )‖2 as shown in [?], where the log map gives

the skew symmetric matrix that embodies both the unit rotation axis and angle of

the matrix and ‖ log(·)‖ therefore gives the magnitude of the rotation angle in the

range [0, π).

All the 3D rotations can be represented in the form of {exp([θu]×) : θ ∈ (−π, π]}.

Since the embedded warping field is smooth and the deformation is required to be

as rigid as possible, we also assume that the rotation of an angle π, an extreme case

most of deformation methods can not deal with, will never happen. And then the

representation R = exp([θu]×) is unique and the exponential mapping R 7→ θu is

injective where θ ∈ [0, π) is the rotation angle and u is a unit axis.
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As the representation is unique, we can define a simple metric Φ : SO(3) ×

SO(3)→ R+ except the rotation angle π case,

Φ(R1,R2) = ‖θ1u1 − θ2u2‖. (4.4)

It is easy to verify that the metric satisfies that 1) Φ(R1,R2) = 0 ⇔ θ1 = θ2 and

u1 = u2; 2) Φ(R1,R2) = Φ(R2,R1); 3) Φ(R1,R3) ≤ Φ(R1,R2) + Φ(R2,R3). Also

we will show that the metric is bounded equivalent to the geodesic distance and hence

the right hand side in Equation 4.3:

lim
u1·u2→1

Φ(R1,R2)

Φg(R1,R2)
=

lim
u1·u2→1

√
θ2

1 + θ2
2 − 2θ1θ2(u1 · u2)

arccos
(
2(cos θ1

2
cos θ2

2
+ sin θ1

2
sin θ2

2
(u1 · u2))2 − 1

)
=
|θ1 − θ2|
|θ1 − θ2|

= 1. (4.5)

Therefore, when neighboring rotation axes are sufficiently close, we can replace reg-

ularization terms in Equation 4.1 by the following energy,

Erot(θu) =
∑
i,k

α2
ik‖θiui − θkuk‖2, (4.6)

which is a straightforward least square problem and can be easily converted into a

linear system. When some of θiui are known according to the above section 4.2, we

can move corresponding columns to the right hand side and solve the rest unknowns

efficiently.

To define weights αik, we first initialize them as α0
ik = max(0, (1−‖gi−gk‖2/r2)3)

for all neighbors gk ∈ N (gi) and normalize to sum to one. And then αik assigned to
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all the edges of the graph are solved by the following linear optimization,

argmin
∑
i,k

(
αik − α0

ik

)2
+ (αik − αki)2 . (4.7)

Iterative Solution To summarize, we solve the embedded deformation in an iter-

ative scheme involving three steps:

• SolveT: solving all the transformations by minimizing energy E1 and fixing all

the rotations (initials are identities);

• SolveR: computing all the rotations of the constrained nodes parallelly from

eigenvalue decomposition;

• DiffuseR: interpolating all the other rotations in a linear system using Eq. 4.6.

The process iterates by feeding the resulting rotations back into step SolveT until

all the transformations converge within a pre-defined threshold.

Comparing to the nonlinear optimization method by computing Jacobians [72],

our linear approach involves much less computations and converges fast usually in

3∼5 iterations. Also eigenvalue decompositions can be easily implemented in GPU.

4.3 Real Time Algorithm for General Mesh Embedded Deformation

Hierarchical Algorithm The above iterative method has already performed bet-

ter than a Gauss-Newton non-linear solver. In practice, however, we found that linear

solvers of steps SolveT and DiffuseR prevent the overall performance to achieve real-

time when the number of nodes are large. Since the embedded graph is leveraged to

be as simple as possible and yet have sufficient number of nodes to represent complex

shapes, thousands of nodes might be necessary to provide enough accuracy when the

mesh to deform is highly detailed.

One observation is that the graph always deforms consistently with the mesh,

that is the warped graph can be thought as a reduced version of the deformed mesh
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Figure 4.1: A graph hierarchy built for the bar-twist example. Two layers of graphs
are plotted. In order to pass the transformation from a graph of coarser level, we
simplify the mesh while preserving the node positions. In other words, the nodes of
a lower level is the subset of a higher level.

(shown in Figure 4.1). Moreover, if positions of the warped graph are given, the whole

deformation process is almost done only except that one more iteration is needed to

solve the remaining unknown rotations. Motivated by these facts, we build a graph

hierarchy instead of one single embedded graph.

Suppose Gl is the graph for the mesh defined in Equation 3.1, a new graph Gl−1

can be built for the previous graph in the same manner by considering Gl as the

source mesh but with a larger influence radius rl−1 > rl. Node positions of a higher
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level graph serves as the point terms in Equation 3.1 and we simply ignore the plane

fitting term because the normal can not be meaningful when the graph is coarse and

not smooth.

By building the hierarchical structure, we provide a recursive algorithm for the

approach in 4.2. After finishing the SolveT step, a subset of nodes, which involves in

the data term 3.1, is chosen to be a new set of constrained points for a higher level

recursive call and the shape of the graph is then deformed according to its higher

level graph. Denoting the subset index hierarchy as {indl} and node hierarchy as

{gl}, l = 1, . . . , n, we summarize the entire procedure in Algorithm 5 and in our

experiments, we choose n ≤ 3.

Algorithm 5 The Recursive Linear Embedded Deformation: RLEDeform

Input: x, {indl},y, {gl}, n
Output: x̃

R← I, g ← gn, converged = false
gs ← ChooseSubsetByIndex(gn, indn)
while converged 6= true do
t← SolveT(x, indn,y, gn,R)
g̃ ← gn + t
g̃s ← ChooseSubsetByIndex(g̃, indn)
if n > 1 then
g̃ ← RLEDeform(gn, {indl}, g̃s, {gl}, n− 1)
g̃s ← ChooseSubsetByIndex(g̃, indn)

end if
Rs ← SolveR(gs, g̃s)
R← DiffuseR(Rs, gn, indn)
if ‖g̃ − g‖ < ε then

converged = true
else
g ← g̃

end if
end while
x̃← Deform(x, gn,R, t)
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Performance Analysis First of all, we validate that our algorithm converges to the

correct solution that minimizes the cost functions 3.1. Suppose {Ri}, {ti} are our re-

sult sequences at iterations i = 1, 2, . . . . Substituting them into the cost function E1,

since t2 minimizes it by fixing R1, then E1(R1, t2) < E1(R1, t1). On the other hand,

R2 minimizes E1 by fixing t2, and then E1(R2, t2) < E1(R1, t2). Hence E1(R2, t2) <

E1(R1, t1). In the same manner, we can get E1(Ri+1, ti+1) < E1(Ri, ti), i = 1, 2, . . . .

Therefore the sequence {E1(Ri, ti)} is monotonic decreasing and bounded below by

0. It will converge to a small error ε > 0.

It is also easy to check ‖ti+1 − ti‖ ≤ Efit(R
i, ti+1) + Efit(R

i, ti) < 2Efit(R
i, ti) <

2E1(Ri, ti). Therefore {ti} converges as E1 goes to small enough. Ri can be consid-

ered as a function of ti according to our representation and hence the sequence {Ri}

also converges. Note that our solution does not mean a global minimum, where the

error ε comes from the inconsistency in the energy Efit. According to our results, we

can still achieve a comparable solution to the original Gauss-Newton solver.

To compare with existing linear deformation approaches, as-rigid-as-possible sur-

face modeling [94] can be viewed as an iterative version of Laplacian mesh editing [88]

and each iteration solves a Laplacian deformation with local rotations. If we build a

single graph to be exact the mesh itself and apply the SolveR step to all the nodes,

our approach is then equivalent to the as-rigid-as-possible deformation. Since nonzero

entries of the Laplacian matrix mainly locate near its main diagonal, each iteration

takes time of approximately O(m3
v) and the total time complexity is O(km3

v), where

mv is the number of mesh vertices and k ≤ 5 is the number of iterations.

Our method has a lower time complexity in two folds: firstly, each embedded

graph layer has much less nodes than the mesh in the below layer m1 � m2 � · · · �

mn = m� mv (in which we choose ml

ml−1
= γ ≈ 10 in our experiments); secondly, the

convergence is faster thanks to the upper layer deformation. According to our results

in section 4.4, k is usually no more than 2 except for the top layer. In summary, our
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embedded hierarchy approach can be considered as an acceleration scheme for the

as-rigid-as-possible deformation, reducing the time complexity to O(
n∑
l=2

m3
l + km3

1) ≈

O( r3

r3−1
m3).

To compare with the nonlinear method [72], the linear system JTJ it solves

is much larger due to that the number of unkowns is the same as the number of

constraints in Equation 3.1, which is larger than the number of nodes m in our

method, and also a Gauss-Newton solver takes more iterations to converge.

4.4 Applications and Results

We present both synthetic and real world experimental results to demonstrate the

qualitative and speed performance of our method and also compare with existing ap-

proaches such as the as-rigid-as-possible modeling [94] and the nonlinear embedded

manipulation [72]. As an interesting application, we provide an implementation of

the 3D Self-Portraits [1] using our deformation model and compare the overall per-

formance. Our performance measurement is taken on a 3.4GHz quad-core CPU and

a Nvidia GTX 560Ti graphic card using unoptimized Matlab/C++ hybrid code.

User Interactive Editing First of all, we evaluate our method with a benchmark

dataset provided from the survey paper [105]. Time costs are measured for Laplacian

mesh editing, as-rigid-as-possible modeling, embedded deformation and our method.

Specially, we time for our single layer and hierarchical versions separately. In Ta-

ble 4.2, the single layer version has the same bind time as the embedded manipulation

but has a much faster pose time. According to our experiments, when the number of

nodes does not exceed 1500, the deforming time of the single layer method is always

less than 0.5 second. We choose an additional graph layer of 120 ∼ 250 nodes for

testing our hierarchy method and achieve an average of 10 ∼ 16 frames per second

even in Matlab code.
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Table 4.2: A benchmark dataset

Approach Pure Trans-
lation

120◦ Bend 135◦ Twist 70◦ Bend

Original Model

40401 vertices 4802 vertices 6084 vertices 5261 vertices

Laplacian
Surface Edit-
ing [88]

2.16 sec 0.23 sec 0.31 sec 0.26 sec

As-Rigid-
As-Possible
Modeling [94]

7.63 sec 1.28 sec 2.09 sec 1.01 sec

Emedded Ma-
nipulation [72]

1681 nodes 530 nodes 1001 nodes 1053 nodes
bind 0.27 sec
pose 35.89 sec

bind 0.029 sec
pose 8.39 sec

bind 0.043 sec
pose 9.83 sec

bind 0.046 sec
pose 24.47 sec

Our Method
(Two Layers)

121 nodes 138 nodes 249 nodes 252 nodes
bind 0.31 sec
pose 0.094 sec

bind 0.061 sec
pose 0.073 sec

bind 0.090 sec
0.068 sec

bind 0.10 sec
pose 0.062 sec
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For more synthetic object editing, we present an interactive UI allowing the user

to click a part on the model, and drag or rotate that part. The selected part serves

both point and normal terms for the deformation energy Eq. 3.1. In Table 4.3,

the selected parts are shown in the first column. When operating on one part, we

assume that the others are fixed. To compare with the embedded method [72], we

record every destination points with their according transformations and execute

the nonlinear embedded approach offline. Results and performance comparisons are

shown in Table 4.4 and Table 4.3. In the experiment, we choose two graph layers for

Alligator and Hand examples and three graph layers for the others. Our supplemental

video also provides the complete UI operations using a simple Matlab interface.

Table 4.3: Speed test on synthetic data. The time unit is second.

Alligator Hand Horse Armadillo Dragon
]Vert 17k 36k 48k 173k 437k
]Nodes 915 1748 2204 2881 4979
]CtrlPts 3946 4219 7090 17319 49081
BindTime 0.19s 0.35s 0.44s 1.78s 3.74s
Embedded 13.94s 161.1s 327.27s 92.74s 407.70s
Ours 0.079s 0.047s 0.106s 0.114s 0.134s

Non-rigid Mesh Registration Another interesting application of nonrigid regis-

tration is so-called 3D Self-Portaits [1], which reconstructs a person’s full body model

from multiple scans, and can potentially be used for 3D printing, social network and

entertainment. The actor is required to rotate himself in front of a scanner but

keep still and the same pose every time. Once all the partial scans are registered, a

complete model can be extracted by using volumetric methods.

The whole process is essentially to perform a global non-rigid registration in an

iterative closest point (ICP) strategy and apply loop closure constraints [1]. In our

setup, we use a structured light device to capture eight scans and the actor rotates

about 45 degrees each time. We first estimate the rotation axis as an initial guess and
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Table 4.4: The interactive mesh editing results

Original Model Embedded [72] Our Method Embedded [72] Our Method

align all eight scans rigidly by using ICP method. Since subtle movements can easily

result in errors by only using rigid registration (fist row in Table 4.1), a nonrigid

refinement is necessary to make subtle surfaces consistent.

In this case, we build three graph layers for each partial mesh once in the pre-

process (250k vertices and 3k nodes on average). With a similar correspondence

searching step [1], we deform each partial mesh to its next neighbor. Loop closure

constraints are applied after all the meshes are registered. To avoid local minima, we

also employ a relaxation framework: if the global registration is done, we reduce the

regularization weight in half wreg ← wreg/2 and repeat the process.

We obtain a visually plausible result after 5 iterations in a total of 12.16 seconds
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Figure 4.2: The interactive editing of synthetic data. The first row shows control
vertices and parts. The second and third rows are the results from the embedded
method and from ours respectively. The last row shows the compared results .

while the original approach [1] costs about 2040 seconds in 5 iterations. The final

output results are comparable as shown in Table 4.1.

Copyright c© Qing Zhang, 2015.
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Chapter 5 Body Swap: Application to Virtual Try-On

In this chapter, we focus on an application of our GMM-BlendSCAPE framework to

swap dressed people in 2D videos. Instead of explicitly modeling clothes geometry

such as [30] or clothes physical simulation such as [108], we only estimate 3D body

shape that leads to clothes geometry change and finally use the shape prior to guide

video re-shaping or re-targeting.

Clothing animation plays an important role in all kinds of applications involving

dressed virtual characters. Early clothing representation relies on texture mapping

on the body geometry or coarse clothes meshes. To make better quality animations,

physics based simulation (PBS) [108] are employed into clothes modeling, which has

the advantage of producing realistic visual effect, however with a relatively high com-

putational cost. Furthermore, the results of clothes simulation are specific to a par-

ticular body model. Each character requires a new simulation with typically manual

initialization. These limitations make PBS suitable to animated movies that have an

abundant time budget and a limited number of characters, but not for applications

such as internet-scale virtual fashion or retail clothing try-on.

Virtual try-on, due to its large commercial potential, has been explored before.

The general idea is to track the user’s motion, in either 2D or 3D [108–111], and

synthesize clothes that can be overlayed on the user’s image. However, realistic cloth

simulation is a long-standing open problem in computer graphics. Instead we choose

an image-based approach to replace/reshape the human who is under the clothes with

a different one. In order to generate photo-realistic results, we present this body swap

application as a RGB-D video synthesis system that can replace the full body of a

human subject, including face, with a different one. The different one can come from

another person, or computer synthesized. The driving application for our system is
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virtual try-on. With the caveat of capturing with a RGB-D camera, we provide a

way to let anyone to virtually appear on fashion shows, with the proper body shape

and face appearance.

Our system requires a standard RGB-D camera. It first acquires a body model

of Actor A. The body model is based on a personalized GMM-BlendScape model,

which is deformable and animatable as presented in previous chapters. Then RGB-D

video footage of Actor A wearing different clothes are captured. The body pose of

Actor A is tracked with a novel formulation that combines a probabilistic tracking

using Gaussian Mixtures with a personal BlendScape model. For a new actor B, his

body shape is also acquired and fitted with another BlendShape model. Now given

the correspondence between the two models of Actor A and Actor B, we apply image

warping to the RGB frames, which contains A, to match the body-shape of B. In

addition, the face of Actor A is also tracked and replaced with B’s face. The end

result is a new video sequence that looks as if Actor B were in it.

The overall pipeline is illustrated in Figure 5.1. From a technical standpoint,

mostly related to our work is the MovieReshape by [112], in which the body shape

of a human subject can be changed as a post-processing step. While very realistic

results are demonstrated, it was acknowledged that loose clothes (such as long skirts)

would problematic. We are able to overcome this difficulty by using (1) 3D data,

and (2) a probabilistic formulation on in our tracking method, instead of explicit

correspondences. In addition, our system can replace a subject’s face as well.

5.1 Related Work

Cloth Modeling and Simulation Modeling real fabric material has a long list of

literature but still remains an open problem to achieve realistic effect. Elastic models

have been devoted to find numerical solutions to a variety of specific structures [113,

114]. To widen the range of materials, data driven approaches are developed to make
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Figure 5.1: The pipeline of our body swap system.

the elastic bending effect more accurate [115,116].

The active topic on cloth simulation focuses on modeling the physical properties of

cloth and developing stable methods that can deal with cloth collisions, friction, and

wrinkle buckling [29]. To overcome the high computational cost of traditional simula-

tors, efficient approaches are developed including the Verlet integration scheme [117]

and GPU acceleration [118] and widely applied in game development.

Morphable Clothes Model To avoid employing complex simulator, many variant

applications have been developed based on the simple SCAPE-like model [49]. The

Naked Truth [55] estimates human body shape under clothing. DRAPE (DRessing

Any PErson) [30] uses the naked body under clothing and learn the clothing shape

and pose model. All these methods rely on a large training database. These result

models lack facial details, hairs, and clothing effect.
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Virtual Try-On Compared with the previous two problems, virtual try-on and

personalized 3D garment design is a much less studied problem. Most existing sys-

tems treat virtual clothing as static texture patches and use image-based rendering

techniques to virtually drive the cloth [119]. Many methods rely on a pre-captured

database with subjects in a large variety of poses to find a best match and perform

local refinement [109, 120–122]. While these methods, to a large extend, ignore the

interaction between users and the clothes, some pioneered this area by combining

real-world data with physically based cloth simulation. There are two main strate-

gies to animate virtual clothing in a virtual try-on system. A straightforward and

robust way is to create an avatar that has the same body shape as the user, and

then simulate virtual clothing on it. The body size can either be specified by the

user input [110, 123, 124], or using depth sensors [125]. While these techniques can

accurately model virtual clothing on a static body shape, they cannot easily handle

body motions. The triMirror system [110] simulated virtual clothing on a moving

avatar, whose motion was controlled by the user’s skeleton pose. However, as its

result showed, their system seemed to use a pre-defined avatar which did not exactly

match the user’s body shape. Alternatively, it is preferable to obtain body shape

from depth data. One such example is the Fitnect [111] system. While it successfully

animated part of the clothing by body motion, the rest still needed to be static. In

addition, it only treated clothes as a piece of cloth in front of the user, and it had

difficulty in forcing the clothes to follow body motion exactly. Compared to the ex-

isting methods, our system can effectively capture the pose and shape of the user,

and provide realistic cloth simulation.

Face Replacement A lot of previous works have been devoted in this area. The

commercial software FaceSwap can realistically swap inner face of two subjects.

In [126], they successfully replace the face in a video sequence with different ex-
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pression, however, they didn’t handle poses so that their result is more like the mor-

phed version of source and target person. [127] comes up with an efficient pipeline

to transfer one specific photographic style to a static head portrait. [128] renders a

target movie sequence to a tone and style of given exampled movie sequence smoothly

in temporary space.

5.2 System Overview and Preliminary

Our system consists of three stages (summarized in Figure 5.1): building a per-

sonalized morphable body model for either an actor or a new customer (Sec 5.2),

automatically tracking the animated body in a video sequence (Sec 5.3), and re-

shaping the video sequence to the new customer’s body size with face replacement

(Sec 5.4). Specifically, for the video of the actor or person A, we record a single-view

RGB-D video sequence dressed in the target clothes; on the customer side or person

B, we only capture static KinectFusion [65] scans or allow users to enter body sizes.

We currently use a Kinect V2 depth sensor, which inherently provides a background

segmentation and a initial skeleton tracking.

As an application of our GMM-BlendSCAPE framework (Chapter 2), we apply the

markerless fitting algorithm to the RGB-D video, also considering both the sensor’s

skeleton tracking and image silhouette cues to enhance the body tracking accuracy.

Build A Personalized Morphable Model The first step of our system is to

build a personalized morphable model which is later used for tracking or animating

in a video. To capture details of body shape, we take multiple KinectFusion scans of

a person who dresses tightly and keeps a static pose during a scan as Figure 5.2. The

scans are similar to the input of the 3D Self-Portaits system [1]: the person rotates

45 degrees at each scan and body poses are not required to be exactly the same.

Different from 3D Self-Portaits, which builds a static detailed human model, our
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goal is to use the model to animate a video sequence of the actor wearing outer

clothes. Therefore, we do not require a precise detailed personal model and only need

the body shape of the subject, who is required to wear tight-fitting clothes.

Similar to the process of GMM-BlendSCAPE parameter estimation in Chapter 2,

we apply the shape adaption for all the static scans this time. First we fit the Blend-

SCAPE model to the frontal partial scan using the algorithm GMM-BlendSCAPE

and provides a rough initial guess of the body shape β. And then we fix the shape

and apply GMM-BlendSCAPE to every static scans and get multiple pose parame-

ters. Next, each pose parameter is fixed and and a common β is solved by taking

all scans into account. The process iterates and converges to a local optimum of a

unique shape parameter β and multiple pose parameters in Figure 5.2.

The personalized model is based on BlendSCAPE model but added a detailed

layer P to the pose-independent shape matrix, Dnew ← PD(β). To establish the

detail transformation P , we simply project the aligned BlendSCAPE model to the

frontal and back scans along each vertex normal direction and compute the new

transformation for each triangle as Dnew. This personalized BlendSCAPE model is

ready for pose stracking, which will be discussed in the next section.

5.3 Depth Sequence Tracking

The core contribution of our system is a robust automatic body tracking framework

with the personalized BlendSCAPE model built in the above paragraph. The inputs

are the human body mesh sequence extracted from depths and masks and associated

with skeleton provided by Kinect depth sensor.

Pose Initialization Before fitting personalized BlendSCAPE to the mesh sequence,

we compute an initial pose configuration with joints read from Kinect data. We first

compute the global transformation [Rg tg] by aligning the root joint and its chil-
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Figure 5.2: The personalized BlendSCAPE models. Column a) shows the fitted
BlendSCAPE model to partial scans of column c); Column b) shows the personalized
model after adding the detailed shape layer on the BlendSCAPE model.

dren around the body pelvis area to the input skeleton. And then we employing an

optimization strategy similar to [60] to solve [Rb tb] of each bone, where bones are

updated one by one while keeping the remaining bones fixed and traversed in the

skeleton kinematic tree.

To estimate [Rj tj] of bone j, we also solve the energy function in eq. ?? in an

EM iterative process combining with joint constraints to optimize in the following

object function.
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∑
m,n

pmn

∥∥∥∥∥wm,j(Rjv
0
m + tj) +

B∑
b6=j

wm,b(Rbv
0
m + tb)− xn

∥∥∥∥∥
2

(5.1)

+λJ
∑
k

‖RjC
0
k + tj −Ck‖2,

where λJ = MN is assigned to a large weight to match the all the possible input

joints Ck on the bone. Finding the optimal solution is a standard weighted Absolute

Orientation problem and can be solved by dual quaternion representation or SVD

decomposition [69]. In practice, we prune the energy by only solving the terms of

weight wij > 0.6. Note that since the number of joint terms are always less than

2, when ambiguous multiple rotations are found with small errors, we choose the

rotation that has a smaller joint angle to its parent bone in the skeletal tree.

Once all the bone transformations are solved, we can compute the initial pose

parameter of the BlendSCAPE model and drive the model for each frame. Although

we have observed in our system that the initial process provides rough and unstable

pose tracking result, it can reduce pose tracking ambiguities when the human body

moves within loose clothes.

GMM-BlendSCAPE Tracking Refinement Since the initialization step con-

siders only one body part at each optimization, it may generate unsmooth pose

configuration. We perform a refinement process to perform the following two steps

iteratively:

1. GMM-BlendSCAPE Fitting the depth input as in Algorithm 3 .

2. Refining vertices on the model and recompute pose θ.

In the second step, we refine the pose parameter Θ by minimizing the following

68



energy:

Ef (∆Θ) = λsEs(∆Θ) + λpEp(∆Θ) + λlEl(∆Θ), (5.2)

El(∆Θ) :=
M∑
m=1

‖(vm − voldm )− 1

|Nm|
∑
j∈Nm

(vj − voldj )‖2, (5.3)

where El is a Laplacian regularizer to ensure the smoothness of body deformation.

The solution is similar to the inverse kinematics problem and ends up solving a linear

system for parameters ∆Θ in each iteration.

The purpose of the whole pose refinement is both to constrain the estimated body

within the silhouette of captured depthmap and to push the body inside the clothes

surface. The whole refinement algorithm is summarized in Alg. 6. Figure 5.3 gives

an example frame after five iterative refinement.

Algorithm 6 Pose Θ Refinement

Given the initial Θ
while Θ not converged do

Update vertices vΘ
m

Transfer part labels to the depth mesh
Check silhouette constraints and compute new positions
Remove outliers
Check interpenetration vertices
Solve inverse kinematics problem by Eq. 5.2

end while

Silhouette Penalties The first term Esil in Eq. 5.2 stands for the silhouette

penalty. The silhouette constraints are checked for each body part individually:

• Arms within masks of arms and shoulders (left and right respectively);

• Legs within masks of legs and trunk (left and right respectively);

• The head within the mask of head;

• Shoulders and trunk within the whole mask.
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Figure 5.3: The pose and mesh refinement for the first five iterations.

Silhouette penalties have two-fold meanings: first, if the projection of a vertex lies

outside of the corresponding silhouette, we find the closest 2D point on the silhouette

boundary, unproject it as a line passing through the camera center and image pixel,

and then choose the projection on the line as the new position; second, we render

the body onto the depth image to get the body silhouette. If a depth point locates

outside of its body silhouette, we unproject it as a line and find the closest point on

the body silhouette and take its new position as its projection on the line.

Different from existing 2D image based silhouette refinement approaches such

as [112, 129], given Kinect meshes as input, we dedicate a more precise scheme to

penalize the body shape in 3D as well as considering the body parts semantics.

We label out seven body parts (arms, legs, shoulders, trunk and head) according

to the skinning weight beforehand. When a body shape {vΘ
m} is reconstructed via

an estimated Θ, we find point correspondences (u,v) between points on Kinect mesh

and vertices of body by using the following criteria:

(1) The corresponding point u on Kinect mesh locates near (a small geodesic
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distance) the intersection of the line passing through the body vertex along its normal

and the mesh.

(2) The angle between normals of u and v is small.

(3) The intersection u′ of the line through u along its normal and the body

should be close to v in the body’s geodesic distance.

(4) The angle between the normals of u′ and v is small.

Once seed points on the Kinect meshes are found, we assign part labels from the

corresponding vertices and propagate the label through the mesh by breadth-first

search.

After searching correspondences for every pair of parts, we employ an effective

strategy to suppress outliers:

(1) The moving distance will not exceed the standard deviation of all moving

distances.

(2) The new position will not be occluded by the new body.

(3) The face normal of the new body will still point towards the camera.

Denoting the final subset of moved points as S, the silhouette penalty is simply

defined as:

Es(θ) =
∑
i∈S

‖vnew
i − vi‖2. (5.4)

Clothes-body Interpenetration The second term Ep in Eq. 5.2 prevents the

body-mesh interpenetration, i.e., vertices “in front of ” the input mesh. We detect

the clothes-body interpenetration along the normal direction n of a body vertex v.

Suppose the intersection u is sought on the depth mesh, the interpenetration happens

when nT (u−v) < 0. Inspired by the refinement method in [30], we define the penalty

for the set of penetrated vertices P :

Ep(θ) =
∑
i∈P

‖ε+ n̂Ti (ui − vi)‖2, (5.5)
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where the clothes thickness term ε = −1mm pushes the body sufficiently inside the

clothes.

5.4 Video Re-targeting

The re-targeting stage consists of three steps: first, we build the customized Blend-

SCAPE model for the new person (Sec 5.2); second, we refine the head pose tracking

and replace face for the new person in the video; in the last step, the video after face

replacement is reshaped by image warping techniques.

Head Pose Refinement Since the depth sequence tracking (Sec 5.3) is a global

body pose estimation approach, which is insufficient for accurate head mesh align-

ment, we perform a head refinement process before the face replacement by adding

landmark detection and ICP registration.

In the automatic head tracking procedure,we assume that human head is a rela-

tively rigid object and motion between two successive frames are small. Given a input

of the RGB-D sequence and the pre-fitted model of the person, the goal of head re-

finement is to register the head part to each depth mesh frame. The first refinement

is to employ a robust ICP algorithm: for each frame, we initialize the head pose with

the previous frame, then perform ICP to register the head part from the model to

depth mesh. The motion between successive frames can be simply regarded as rigid

transformation, therefore we can incrementally multiply these rigid transformations

along the video sequence. To prevent the interruption from sensor noise and occlu-

sions, instead of applying ICP directly, we first extract a loose bounding box of the

head from the previous frame, and perform ICP to the points only in the box.

One drawback of ICP refinement is that the tracking will drift by accumulation

error and large motion between frames may lead to a tracking failure. To address

the failure case, we leverage 2D landmarks to initialize our 3D alignment. First, we

72



utilize the standard approach [130] to detect 68 2D landmarks in an image, and then

we shoot rays from landmarks to get intersection on the mesh, which are considered

as the visible 3D landmarks. Given the same set of 3D landmarks in the previous

frame, we can solve the transformation between landmarks as the initialization. Once

a failure of tracking detected, in which the rotation angle between current frame and

previous frame exceed a threshold or the projected landmarks has a big error with the

corresponding landmarks detect in color image, we perform the landmark registration

in the first failed frame. According to our experiment, our head pose refinement can

handle big pose jump even in the turning around case, where no 2D landmarks can

be observed.

Face Re-targeting After head pose refinement, we obtain a sequence of the source

head aligned to each depth frame. The next is to build correspondence between the

target head model and each source head. We adopt a hybrid of Laplacian mesh

deformation [88] and embedded mesh deformation [72] to align the detailed full scan

of target head model to every source head. Since the source head has already been

aligned to each depth frame, we get the alignment of the target head to each depth

frame.

We then project visible correspondent vertices in both source and target head

model to the image and use such 2D correspondences to guide the image warping.

After image warping, we have two face images of the same target shape: the warped

source person and the rendered target person. By subtracting a pre-defined face mask

on the target head model, we then perform seamless image replacement for all the

frames. Figure 5.4 illustrates the whole pipeline of our face re-targeting stage.

Our goal of face replacement is to replace human face in a video sequence with

extreme poses naturally and seamlessly with transformed appearance and shapes. To

achieve this, we first adjust the target image color to fit the source. We employ a

73



Figure 5.4: The pipeline of face retargeting process

method similar to [131] and [127] to first decompose the source and target images into

multiple layers in CIE LAB color space (7 layers in our case). And then a per pixel

gain map is computed in each layer by minimizing the following energy function:

‖tL(p) ·GL(p) − SL(p)‖+ ‖GL(p) −GL(q)‖ (5.6)

in which tL is the target image in level L, SL is L-th layer of source image, and p

denotes any pixel in the face mask. The unknown to solve is the per-pixel gain map

GL(p). The first term ensures that the tuned pixel in target matches the intensity of

the one in source, and the second term ensures the spatial smoothness by considering

adjacent pixels p and q. After applying the gain map in each layer, we composite

the color harmonized target image from all all the color corrected layers. The target

image is then matted with source to generate the final result.

It is needed to mention that we deal with the occlusion case independently as

shown in the Figure 5.5. In this case, we warp the depth map in the same way

as the corresponding color image, and then we apply K means method to segment

foreground and background and generate a mask (c in Figure 5.5). The mask is
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automatic combined in the matted process as:

α · Itarget + (1− α) · Isource (5.7)

in which Itarget is the warped background (b in Figure 5.5) occluded in some regions

that will be finally filled with foreground Isource (d in Figure 5.5).

Figure 5.5: Illustration of dealing with occlusion cases

Image Warping We deal with image warping separately in the case of face re-

placement and body reshaping, because different from body reshaping, face warping

requires to keep as rigid as possible and the warping is only performed in the face

area. Specifically, we warp the face by using a similar method to [132], in which we

add a background fix term to prevent body from moving.

Ed + α ∗ Es + Eb (5.8)

After the face re-target, we warp the whole body by using [133] with the projected

vertices of source and target model as control points.
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5.5 Results

We perform the video reshape and re-targeting from two dancing Kinect color+depth

sequences: a slim girl dressing on a skirt and rotating 360 degrees in front of the

camera; a male dancer with large arm movement. The result figures 5.6 and 5.7, and

the supplemental video show that the quality re-targeting result by modifying videos

of loose clothes and with large movement to target persons: the slim girl is replaced

by a taller woman and the male dancer is changed to a tall and strong man.

Figure 5.6: The video result of replacing the dancing girl to a taller female user.

Besides taking the target 3D body model, we demonstrate a movie reshape result

by entering body parameters with a simple user input interface. In Figure 5.8, the

user modified the original video sequence with a larger breast girth.
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Figure 5.7: The video result of replacing the male dancing to a taller and stronger
male user.

Figure 5.8: The movie reshape result by entering body sizes. The user modified the
video by entering a larger bust size.

Copyright c© Qing Zhang, 2015.
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Chapter 6 Conclusion

In this dissertation, I have explored a potential of automatically recovering human

body shape using a single commodity depth sensor from a single view. Three main al-

gorithms have been developed to achieve state-of-the-art results. The first algorithm

provides an automatic estimation framework for recovering body size, tracking pose

via a generic trained template with levels of details. On top of the pose hallucinat-

ing framework, the second algorithm dedicates reconstructing personalized avatars

from highly incomplete scans of multiple poses, achieving the first algorithm building

personalized detailed human bodies and enabling robust pose tracking. In the last

chapter, a novel application is developed based on a robust body and face tracking

algorithm in RGB-D video for body swap and clothes re-targeting, namely Virtual

Try-On.

6.1 Contributions

• We have successfully introduced Gaussian Mixture Model (GMM) into the body

shape and pose inference framework, which advances future techniques in markerless

tracking scenarios where finding accurate point correspondences is considered to be

challenge and even harder if the human body moves quickly and the subject wears

obtrusive clothes. knowledge

• We have investigated the potential to establish soft correspondences with GMM

in a global optimal fashion between a generic or personal specific template and high

incomplete point cloud. Our algorithm better accommodates fast and complex motion

and also adapts significant body size and height change.

•We have established a fast way of scanning human full body models and measuring

human body sizes by automatically registering BlendSCAPE model to high quality
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single-view scans. It enables users to create and access their 3D virtual body model

at home without specific prior knowledge.

• We have designed an acceleration scheme for the embedded mesh deformation

of general objects, making the nonrigid deformation and registration process more

interactive and responsive.

• We have deployed the GMM-BlendSCAPE model to the body swap and clothes

virtual try-on applications. The novel application is able to provide customers a

more natural way for future online shopping.

6.2 Future work

In the scope of highly detailed human modeling, looking into the future, we plan

to increase the model resolution and speed up the inference fitting process, which

ends up incorporating the detailed scanned model from our 4D portrait system to

the GMM pose and shape technique. In addition, we plan to employ calibration

techniques such as the bundle adjustment to increase the robustness and accuracy of

the modeling process. Moreover, we intend to add more machine learning features to

deal with motion ambiguities and allow the subjects to perform more free movements.

Copyright c© Qing Zhang, 2015.

79



Appendix: Rigid Transformation Representation and Solver

The rigid group notation

• SO(3) - The special orthogonal group of all 3× 3 rotation matrices:{
R ∈ SO(3) : RTR = I, det(R) = 1

}
.

• so(3) - The Lie algebra of SO(3), consisting of all skew-symmetric 3× 3 matrices:{
ω̂ ∈ so(3) : ω̂T = −ω̂, ω × x = ω̂x, ∀ω,x ∈ R3

}
.

• SE(3) - The special Euclidean group of all rigid transformations of the form:

{[R t] ∈ SE(3) : R ∈ SO(3), t ∈ R3}.

• se(3) - The Lie algebra of SE(3), consisting of all 4× 4 twists:

ξ̂ =

 ω̂ v

0 0

 ,

where ξ = [v ω]T ,ω ∈ R3,v ∈ R3 are called twist coordinates.

Convert SE(3) to Lie algebra

Suppose the point p(t) rotates about an axis ω, the projection on the rotation axis

is q(t), by computing the velocity, we have

ṗ(t) = ω × (p(t)− q(t)) . (1)

Define v := −ω × q then,

 ṗ

0

 =

 ω̂ v

0 0


 p

1

 (2)
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or ˙̄p = ξ̂p̄ in homogeneous coordinates. Therefore, p̄(t) = eξ̂tp̄(0) by solving the

differential equation.

Suppose the rotation angle in radian is θ, ω is a unit vector, the above analysis

implies a rigid motion [R t] ∈ SE(3) can be presented by a twist (v ωθ) ∈ se(3)

as,

 R t

0 1

 =

 eω̂θ (I − eω̂θ)(ω × v) + ωωTvθ

0 1

 . (3)

Note that the exponetial map from the Lie algebra se(3) to the group SE(3) is

surjective.

Dual quaternion representation

While twists representation are mostly used in mechanics, robots and motion analysis,

dual quaternion representation are more widely applied in computer graphics. In

essential, a unit quaternion is equivalent to an Euler axis/angle in so(3) and a dual

quaternion is equivalent to a twist in se(3).

A rotation eω̂θ around a unit axis ω of a counterclockwise radian θ can be repre-

sented by a quaternion:

q =

[
ω sin

θ

2
, cos

θ

2

]T
=: [qv qs]

T . (4)

Define two matrix functions of the quaternion as:

P (q) :=

 qsI + q̂v qv

−qTv qs

 ; Q(q) :=

 qsI − q̂v qv

−qTv qs

 . (5)
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It is easy to show that P (a)b = Q(b)a, ∀a, b quaternions and

Q(q)TP (q) =

 R 0

0T 1

 , if ‖q‖2 = 1, (6)

or explicitly,

R = (q2
s − qTv qv)I + 2qvq

T
v + 2qsq̂v. (7)

Analogous to the twist representation, by using dual quaternions p, q, a transla-

tion vector t ∈ R3 can be defined by

 t
0

 := Q(q)Tp =

 qsI + q̂v −qv

qTv qs


 pv
ps

 =

 qspv − psqv + qv × pv

qTp

 .
(8)

Therefore an arbitrary pair of quaternions (q,p) can represent a rigid transforma-

tion [R, t], which a six degrees of freedom, if and only if they satisfy two constraints:

qTq = 1 and qTp = 0.

Solve rigid transformation by quaternions

Suppose there are two 3D point sets to be aligned: X := {xi ∈ R3} and Y :=

{yi ∈ R3}, associating with a point-wise positive weighting factor wi, i = 1, 2, . . . , N .

To estimate the rigid transformation [R t] ∈ SE(3) from X to Y is to minimize the

following function

min
R,t

N∑
i=1

wi‖Rxi + t− yi‖2. (9)

In homogeneous coordinates and quaternion representation, we have

Rxi + t = Q(q)TP (q)xi +Q(q)Tp. (10)
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Therefore, minimizing the objective function (9) can be converted into a con-

strained quadratic minimization of q and p

min
q,p

qTC1q + wpTp+ pTC2q + const.

subject to qTq = 1, qTp = 0,

(11)

where

C1 = −2
N∑
i=1

wiP (yi)
TQ(xi),

C2 = −2
N∑
i=1

wi [Q(xi)− P (yi)] ,

w =
N∑
i=1

wi,

const. =
N∑
i=1

wi(x
T
i xi + yTi yi). (12)

The constrained least square problem can be solved by Lagrange multipliers,

min
q,p

qTC1q + wpTp+ pTC2q + const.+ λ1(qTq − 1) + λ2q
Tp (13)

Taking the partial derivatives and let them be zeros gives,

(C1 +CT
1 )q +CT

2 p+ 2λ1q + λ2p = 0, (14)

2wp+C2q + λ2q = 0. (15)

To combine above equations we can easily get that: q is the eigenvector correspond-

ing to the largest eigenvalue of the matrix 1
2

[
1

2w
CT

2 C2 −C1 −CT
1

]
, and then p is

computed by p = − 1
2w
C2q.

Copyright c© Qing Zhang, 2015.

83



Bibliography

[1] Hao Li, Etienne Vouga, Anton Gudym, Linjie Luo, Jonathan T. Barron, and
Gleb Gusev. 3d self-portraits. SIGGRAPH Asia, 32(6), November 2013.

[2] Point Grey Inc. http://www.ptgrey.com.

[3] MESA Imaging Inc. http://www.mesa-imaging.ch.

[4] Microsoft Inc. https://www.microsoft.com/en-us/kinectforwindows.

[5] M. Pollefeys, R. Koch, and L. Van Gool. Self-Calibration and Metric Recon-
struction in spite of Varying and Unknown Internal Camera Parameters. In
ICCV, 1998.

[6] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard New-
combe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, An-
drew Davison, and Andrew Fitzgibbon. Kinectfusion: Real-time 3d reconstruc-
tion and interaction using a moving depth camera. ACM Symposium on User
Interface Software and Technology (UIST), pages 559–568, 2011.

[7] i.materialise Inc., 2015. http://i.materialise.com.

[8] T. Kanade, P. Rander, S. Vedula, and H. Saito. Virtualized reality: Digitizing
a 3d time-varying event as is and in real time. In Mixed Reality, Merging Real
and Virtual Worlds, pages 41–57. 1999.

[9] C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon Winder,
and Richard Szeliski. High-quality video view interpolation using a layered
representation. ACM Transactions on Graphics,, 23(3):600–608, 2004.

[10] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and Steven M.
Seitz. Multi-View Stereo for Community Photo Collections. In ICCV, 2007.

[11] Cyberware Inc., 2014. http://cyberware.com.

[12] Vicon Inc. http://www.vicon.com.

[13] Civilian American and European Surface Anthropometry Resource Project-
CAESAR. http://store.sae.org/caesar.

[14] Lorenzo Torresani, Aaron Hertzmann, and Chris Bregler. Learning non-rigid
3d shape from 2d motion. In In proceedings of NIPS, 2003.

[15] Will Chang and Matthias Zwicker. Automatic registration for articulated
shapes. Comput. Graph. Forum, 27(5):1459–1468, 2008.

[16] Will Chang and Matthias Zwicker. Range scan registration using reduced de-
formable models. Comput. Graph. Forum, 28(2):447–456, 2009.

84



[17] Qi-Xing Huang, Bart Adams, Martin Wicke, and Leonidas J. Guibas. Non-rigid
registration under isometric deformations. Comput. Graph. Forum, 27(5):1449–
1457, 2008.

[18] Niloy J. Mitra, Simon Flory, Maks Ovsjanikov, Natasha Gelfand, Leonidas
Guibas, and Helmut Pottmann. Dynamic geometry registration. In Eurograph-
ics Symposium on Geometry Processing, 2007.

[19] Andrei Sharf, Dan A. Alcantara, Thomas Lewiner, Chen Greif, and Alla Sheffer.
Space-time surface reconstruction using incompressible flow. In Siggraph Asia.
ACM, 2008.

[20] Michael Wand, Philipp Jenke, Qixing Huang, Martin Bokeloh, Leonidas Guibas,
and Andreas Schilling. Reconstruction of deforming geometry from time-varying
point clouds. In Eurographics Symposium on Geometry Processing, 2007.

[21] Michael Wand, Bart Adams, Maksim Ovsjanikov, Alexander Berner, Mar-
tin Bokeloh, Philipp Jenke, Leonidas Guibas, Hans-Peter Seidel, and Andreas
Schilling. Efficient reconstruction of nonrigid shape and motion from real-time
3d scanner data. ACM Transactions on Graphics, 28(2), 2009.

[22] D. Anguelov, D. Koller, H. Pang, P. Srinivasan, and S. Thrun. Recovering
articulated object models from 3d range data. In Proceedings of UAI, 2004.

[23] Alexander M. Bronstein, Michael M. Bronstein, Alfred M. Bruckstein, and
Ron Kimmel. Matching two-dimensional articulated shapes using generalized
multidimensional scaling. In AMDO, pages 48–57, 2006.

[24] Sang Il Park and Jessica K. Hodgins. Capturing and animating skin deformation
in human motion. ACM Trans. Graph., 25(3):881–889, 2006.

[25] Sang Il Park and Jessica K. Hodgins. Data-driven modeling of skin and muscle
deformation. ACM Trans. Graph., 27(3), 2008.

[26] Hao Li, Bart Adams, Leonidas J. Guibas, and Mark Pauly. Robust single-view
geometry and motion reconstruction. ACM Trans. Graph., 28(5), 2009.

[27] Hao Li, Linjie Luo, Daniel Vlasic, Pieter Peers, Jovan Popovic, Mark Pauly,
and Szymon Rusinkiewicz. Temporally coherent completion of dynamic shapes.
ACM Trans. Graph., 31(1):2, 2012.

[28] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux,
David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges,
and Andrew W. Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In ISMAR, pages 127–136, 2011.

[29] David Baraff and Andrew Witkin. Large steps in cloth simulation. In SIG-
GRAPH ’98: Proceedings of the 25th annual conference on Computer graphics
and interactive techniques, pages 43–54, New York, NY, USA, 1998. ACM.

85



[30] Peng Guan, Loretta Reiss, David A. Hirshberg, Alexander Weiss, and Michael J.
Black. DRAPE: dressing any person. ACM Trans. Graph., 31(4):35, 2012.

[31] Yasutaka Furukawa and Jean Ponce. Dense 3d motion capture from synchro-
nized video streams. In Computer Vision and Pattern Recognition. IEEE, 2008.

[32] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew W. Fitzgibbon, Mark Finoc-
chio, Andrew Blake, Mat Cook, and Richard Moore. Real-time human pose
recognition in parts from single depth images. Commun. ACM, 56(1):116–124,
2013.

[33] Matthew Loper, Naureen Mahmood, and Michael J. Black. Mosh: motion and
shape capture from sparse markers. ACM Trans. Graph., 33(6):220, 2014.

[34] Thomas B. Moeslund, Adrian Hilton, and Volker Krüger. A survey of advances
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