313 research outputs found

    Non-Isolated Single-Inductor DC/DC Converter with Fully Reconfigurable Structure for Renewable Energy Applications

    Full text link
    © 2017 IEEE. A novel non-isolated three-port converter (NITPC) is introduced in this brief. The purpose of this topology is to integrate a regenerative load such as DC bus and motor with dynamic braking, instead of the widely reported consuming load, with a photovoltaic (PV)-battery system. Conventional methods require either a separate DC-DC converter to process the reversible power flow or employing an isolated three-port converter (TPC), which allows bi-directional power flow between any two ports. However, these methods require many switches, which increases the converter size and control complexity. This brief hence presents a compact but fully functional design by combining and integrating basic converters to form a simplified single-inductor converter structure while keeping a minimum amount of switches. The resultant converter is fully reconfigurable that all possible power flow combinations among the sources and load are achieved through different switching patterns, while preserving the single power processing feature of TPC. This brief presents a design example of the proposed NITPC for a PV-battery powered DC microgrid. Detailed circuitry analysis, operation principles of both DC grid-connected and islanded modes, and experimental results of different modes in steady state and mode transitions are presented

    Topology Derivation and Development of Non-Isolated Three-port Converters for DC Microgrids

    Get PDF
    Currently, three-port converters (TPCs) are gaining popularity in applications which integrate renewable energies, such as photovoltaics and wind, and energy storage elements, such as batteries and supercapacitors with load. This is due to the advantages of a single power conversion stage between any two ports for better conversion efficiency and a highly integrated structure for compactness. Most of the reported TPCs focus on the consuming load. However, there are applications such as hybrid-electric vehicle braking systems and DC microgrids which have power generating capability. A typical example is battery charging in a DC microgrid. When the photovoltaics has inadequate power to charge the battery, the TPCs that consider only consuming load need an extra DC/DC converter for the DC bus to charge the battery. Three-winding transformers associated with full-bridge configurations as the basis for TPCs can fulfill the purpose of bi-directional power flow between any two ports. However, bulkiness of transformers and the need for more switches and associated control mechanisms increases the converter complexity, volume and cost. Solutions for integrating a regenerative load in NITPCs are still limited. This research work focuses on the development of non-isolated three-port converters (NITPCs), as they are capable of driving a regenerative load while offering a compact solution. The study includes a systematic approach to deriving a family of NITPCs. They combine different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and overall voltage conversion ratio. The derived converter topologies allow for all possible power flow combinations among the sources and load while preserving the single power processing feature of the TPC. A design example of a boost converter based TPC with a bi-directional buck converter is reported. In addition, a novel single-inductor NITPC is proposed. It is a further integrated topology according to the aforementioned design example where only one inductor is required instead of two, and the number of power transistors remains the same. The detailed topological derivation, operation principles, steady-state analysis, simulation results and experiment results are given to verify the proposed NITPCs

    Three-Port Bi-Directional DC–DC Converter with Solar PV System Fed BLDC Motor Drive Using FPGA

    Get PDF
    The increased need for renewable energy systems to generate power, store energy, and connect energy storage devices with applications has become a major challenge. Energy storage using batteries is most appropriate for energy sources like solar, wind, etc. A non-isolated three-port DC–DC-converter energy conversion unit is implemented feeding the brushless DCmotor drive. In this paper, a non-isolated three-port converter is designed and simulated for battery energy storage, interfaced with an output drive. Based on the requirements, the power extracted from the solar panel during the daytime is used to charge the batteries through the three-port converter. The proposed three-port converter is analyzed in terms of operating principles and power flow. An FPGA-based NI LabView PXI with SbRio interface is used to develop the suggested approach’s control hardware, and prototype model results are obtained to test the proposed three-port converter control system’s effectiveness and practicality. The overall efficiency of the converter’s output improves as a result. The success rate is 96.5 percent while charging an ESS, 98.1 percent when discharging an ESS, and 95.7 percent overall

    Multiport DC-DC Converters for Hybrid Energy Systems

    Get PDF
    Renewable energy sources (RESs) like solar and wind have gained attention for their potential to reduce reliance on fossil fuels and mitigate climate change. However, integrating multiple RESs into a power grid is challenging due to their unpredictable nature. Power electronic converters can manage hybrid energy systems by controlling power flow between RESs, storages, and the grid. Conventional single input dc-dc converters have limitations such as low efficiency, bulky designs, and complex control systems. Multiport dc-dc converters (MPCs) have emerged as a solution for hybridizing multiple sources, storages, and load systems by providing a common interface. Existing MPCs have limitations such as high component count, limited operational range, complex control strategies and restrictions on the number of inputs to list a few. Thus, there is a need to develop new MPCs that combine the advantages of existing designs while overcoming their limitations. Isolated MPCs with unipolar or bipolar outputs are needed that can accommodate any number of inputs, offer high voltage gain, use fixed magnetic components for galvanic isolation (regardless of the number of ports), and have a simplified control strategy. Additionally, new non-isolated MPCs with unipolar or bipolar outputs are required, featuring reduced component count, simultaneous power transfer and power flow between input ports, high voltage gain, low control complexity, and modular design allowing for arbitrary increase in the number of input ports. There is also an opportunity to apply MPCs in the integration of RESs and storages to ac grids through multilevel inverters for low component count, high efficiency, low harmonics, and higher power density. Further, advances in bipolar MPCs provide the chance to balance the dc bus without requiring a complex control system.acceptedVersio

    Development of Multiport Single Stage Bidirectional Converter for Photovoltaic and Energy Storage Integration

    Get PDF
    The energy market is on the verge of a paradigm shift as the emergence of renewable energy sources over traditional fossil fuel based energy supply has started to become cost competitive and viable. Unfortunately, most of the attractive renewable sources come with inherent challenges such as: intermittency and unreliability. This is problematic for today\u27s stable, day ahead market based power system. Fortunately, it is well established that energy storage devices can compensate for renewable sources shortcomings. This makes the integration of energy storage with the renewable energy sources, one of the biggest challenges of modern distributed generation solution. This work discusses, the current state of the art of power conversion systems that integrate photovoltaic and battery energy storage systems. It is established that the control of bidirectional power flow to the energy storage device can be improved by optimizing its modulation and control. Traditional multistage conversion systems offers the required power delivery options, but suffers from a rigid power management system, reduced efficiency and increased cost. To solve this problem, a novel three port converter was developed which allows bidirectional power flow between the battery and the load, and unidirectional power flow from the photovoltaic port. The individual two-port portions of the three port converter were optimized in terms of modulation scheme. This leads to optimization of the proposed converter, for all possible power flow modes. In the second stage of the project, the three port converter was improved both in terms of cost and efficiency by proposing an improved topology. The improved three port converter has reduced functionality but is a perfect fit for the targeted microinverter application. The overall control system was designed to achieve improved reference tracking for power management and output AC voltage control. The bidirectional converter and both the proposed three port converters were analyzed theoretically. Finally, experimental prototypes were built to verify their performance

    DC-Transformer Modelling, Analysis and Comparison of the Experimental Investigation of a Non-Inverting and Non-Isolated Nx Multilevel Boost Converter (Nx MBC) for Low to High DC Voltage Applications

    Get PDF
    This paper mainly focuses on the analysis, DC-transformer modeling, comparison, and experimental investigation of a non-inverting and non-isolated Nx multilevel boost converter (Nx MBC) for low to high DC applications. Recently, numerous isolated and non-isolated DC-DC converter configurations have been addressed for low to high DC voltage conversion purposes, which is vital for several applications (e.g., renewable energy, medical equipment, hybrid vehicles, fuel cells, DC-links, multilevel inverters, and drive applications), by utilizing and modifying the structure of reactive elements (switched capacitors and switched inductor circuitry). Among all the switched reactive structures, voltage multiplier circuitry provides a feasible solution for low to high DC voltage conversion due to its flexible and modular structure, voltage clamping capability, reduced rating of components, and ease of modification. Non-inverting and non-isolated Nx MBC combine the features and structures of conventional boost converters and voltage multiplier circuitry. DC-transformer modeling of Nx MBC is discussed for the continuous current mode (CCM) and discontinuous current mode (DCM), which helps to analyze the characteristics of the converter in a more practical way and helps to study the effect of semiconductor components, internal resistances, and load on the voltage conversion ratio of the converter. The mode of operation of Nx MBC in the CCM and DCM is also discussed with the boundary condition. The derived analysis is verified by simulations and experimental investigations, and the obtained results of 3x MBC always show good agreement with each other and the theoretical analysis

    A Three-Port DC/DC Converter (TPC) for Small-Scale Standalone PV-Battery Systems

    Get PDF
    While conventional electricity generation relies on fossil fuels like coal, oil, and gas, renewable energy relies on abundant sources like sunlight, wind, water, and geothermal heat, offering eco-friendly alternatives with minimal emissions. Unlike conventional electricity generation, renewable sources reduce our carbon footprint, aid in combating climate change, and provide lasting energy security. Due to their intermittent nature, implementing energy storage and smart grid technologies becomes essential to maintain a stable electricity supply. Off-grid communities face challenges in accessing reliable energy due to lack of connection to centralized grids. Therefore, renewable energy sources, such as solar, wind, and other sources can help these communities establish self-sustaining, clean, and cost-effective power solutions. Despite the impressive advancements in renewable energy technologies, a significant global population still lacks access to basic energy. According to the United Nations, their ambitious objective is achieving universal energy access, aiming for 100% global coverage by 2030. Therefore, this thesis provides a solution for off-grid communities who lack energy access. It proposes a novel design of a three-port DC/DC Converter (TPC) for small-scale standalone PV-Battery applications. The derivation process of the topology and the optimization methodology are comprehensively explained. Moreover, the modes of operation are elaborated to demonstrate the functionality of the TPC. Furthermore, the controlling method to regulate the output voltage, control the battery current, and track the maximum power point (MPP) of the PV source is discussed. The performance of the proposed topology is validated using PSIM software. A comprehensive simulation analysis is conducted for a load profile of an induvial household in Zimbabwe over a 24-hour period. The steady-state waveforms for all the modes and the mode transition waveforms are all presented and discussed. Additionally, the efficiency for the proposed design is calculated for different range of loads and compared with other topologies. Finally, two case studies are given to observe and analyze the system's response to different scenarios during the 24-hour period
    • …
    corecore