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Abstract

Currently, three-port converters (TPCs) are gaining popularity in applications which

integrate renewable energies, such as photovoltaics and wind, and energy storage

elements, such as batteries and supercapacitors with load. This is due to the advan-

tages of a single power conversion stage between any two ports for better conversion

efficiency and a highly integrated structure for compactness. Most of the reported

TPCs focus on the consuming load. However, there are applications such as hybrid-

electric vehicle braking systems and DC microgrids which have power generating

capability. A typical example is battery charging in a DC microgrid. When the

photovoltaics has inadequate power to charge the battery, the TPCs that consider

only consuming load need an extra DC/DC converter for the DC bus to charge the

battery. Three-winding transformers associated with full-bridge configurations as

the basis for TPCs can fulfill the purpose of bi-directional power flow between any

two ports. However, bulkiness of transformers and the need for more switches and

associated control mechanisms increases the converter complexity, volume and cost.

Solutions for integrating a regenerative load in NITPCs are still limited.

This research work focuses on the development of non-isolated three-port con-

verters (NITPCs), as they are capable of driving a regenerative load while offering

a compact solution. The study includes a systematic approach to deriving a family

of NITPCs. They combine different commonly known power converters in an inte-

grated manner while considering the voltage polarity, voltage levels among the ports

and overall voltage conversion ratio. The derived converter topologies allow for all

possible power flow combinations among the sources and load while preserving the

i



single power processing feature of the TPC. A design example of a boost converter

based TPC with a bi-directional buck converter is reported. In addition, a novel

single-inductor NITPC is proposed. It is a further integrated topology according

to the aforementioned design example where only one inductor is required instead

of two, and the number of power transistors remains the same. The detailed topo-

logical derivation, operation principles, steady-state analysis, simulation results and

experiment results are given to verify the proposed NITPCs.
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Chapter 1

Introduction

1.1 Research Background

The necessity of utilizing renewable energy sources (RESs) is presented from the

perspective of present energy status, environmental perspective and sustainable de-

velopment. Several RESs are introduced in regard to their characteristics, advan-

tages and disadvantages. To compensate for the problems of intermittency in RESs,

an energy storage storage system (ESS) is usually integrated. Finally, a series of

applications which integrate the RES and ESS are introduced.

1.1.1 Renewable Energy Sources

Renewable energy sources which include solar energy, wind energy, fuel cells, bioen-

ergy, etc. have gained in popularity over the last few decades, due to their undeniable

merits, such as clean energy and sustainable supply [1]-[2], [4] and [6].

It is not uncommon nowadays for many places to experience a shortage of electric

power supply [2]. The problems are not only because of the limited access to conven-

tional energies (e.g. coal, fossil fuel, etc.), but also due to the improper management

of the resources, poor energy policies, etc. However, according to Figure 1.1, tradi-

tional energy sources still form the primary/largest contributer to the main energy

supply. The contribution to the world energy supply by RES is relatively small, but
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Figure 1.1: World primary energy supply based on [3].

it has shown a great potential for further growth [4]. A graph of the projection of

the world population is shown in Figure 1.2. As with the growing population, the

energy demand increases accordingly, hence, to solve the current energy shortage

coupled with future energy demand, the exploitation of RES is essential.

From the environment perspective, climate change is a great concern. The most

apparent issue is the global warming, and it affects humanity in many ways. For

example, it increases the rate of the disease particularly in the tropical countries,

due to the probability of extreme weather (e.g. floods and droughts) etc. [1].

Climate change is closely related to the utilization of fossil fuel derived energy, due

to the emission of greenhouse gases as reported in [2]. Apart from climate change,

air pollution is also a major problem that is faced by mankind. To tackle these

environmental issues, the utilization of RESs is recommended.

From the sustainable development point of view, one of the strategies is substi-

tution of traditional fossil fuel by RESs, while another two approaches are energy

savings and efficient energy production [4]. A case study based on Denmark’s cur-

rent energy system is given and the barriers and perspectives of building an entirely

renewable energy powered system in the future are discussed. The study concluded
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Figure 1.2: World population projections - IIASA probabilistic projections compared
to UN projections [5].

that it can be realizable with the improvement of technology [4]. In [6], the RES

applications are also promoted for preserving the ecosystem.

According to the aforementioned aspects, they encourage the development of

the RES. Two potential RESs, namely, wind power and photovoltaic power are

introduced.

1.1.1.1 Wind Power

Wind power utilizes the motion of wind to drive the wind turbines and converts the

mechanical power into electric power. Figure 1.3 indicates the wind power process.

The wind power industry is currently in a rapid growth phase for the production

of electricity production, in particular in isolated sites, remote areas and offshore

islands owing to their clean and abundance generation, sustainable nature and wide

distribution etc. [1]. However, wind power is an intermittent power source, and the

generation capability is greatly influenced by the weather.
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Figure 1.3: Conversion of wind power to electrical power in a wind turbine[1].

1.1.1.2 Photovoltaic Power

Solar energy is one of the RESs with huge potential, not only for its clean and re-

newable merits, but also for its availability for almost all regions of the world. A

PV power system, therefore, is well- suited for remote areas where no electricity is

available and there is an abundance of solar irradiation [1]. PV power can be ac-

quired by using a PV panel which converts the sunlight into electricity through the

photovoltaic effect. However, the conversion efficiency of PV panels is low, 9-17%

[7]. Furthermore, PV power generation is greatly affected by the solar irradiation,

as shown in Figures 1.4(a) and (b). It can be observed that, the PV current drops

dramatically while the voltage decreases slightly, the overall power generated there-

fore decreases. In other words, cloudy or rainy weather degrades the PV panel

power generation capability, while no PV power is available during nighttime. Fig-

ure 1.4(c) shows the PV panel current-voltage feature with different temperature

and the voltage-power characteristic of the BP-MSX120 model. As can be seen,

the PV power generation is also influenced by the temperature, with higher power

achievable in a colder weather. Figure 1.4(d) illustrates there exists a maximum

power point with a certain current and voltage. To achieve the maximum available

power from the solar panel, maximum power point tracking (MPPT) algorithms are

widely adopted especially for scenarios like the partial shading condition. MPPT

techniques such as hill climbing perturb and observe(P&O), incremental conduc-

tance, and constant voltage and current are introduced [7]. In this thesis, PV panels
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Figure 1.4: (a) Voltage-Current characteristics of the model at different irradi-
ances. (b) Voltage-Power characteristics of the model at different irradiations. (c)
Voltage-Current characteristics of the PV panel model at four different tempera-
tures. (d)Voltage-Power characteristics of the BP-MSX120 model. [9]

are used and the P&O algorithm is selected for the ease of implementation.

1.1.2 Energy Storage System

To minimize the effects of intermittency of the RES and increase the reliability of the

RES applications, energy storage systems are becoming the main solution [8]-[11]. In

[8], three ESSs, namely, pumped hydroelectricity storage (PHES), batteries and fuel

cells are discussed; coupled with the necessity of integrating an ESS in applications.

PHES is considered as a mature technology with large storage capacity and high

conversion efficiency [10]-[11]. However, the drawbacks are high capital investment,

long construction time and limited suitable sites. One application of the PHES is

the integration with wind farming [8]. Batteries are one of the most widely accepted

ESSs and can be applied in many applications such as energy management and

transportation systems [10]. In this thesis, batteries are used as the energy storage

element due to their cost-effectiveness and reliability.
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1.2 Applications of Photovoltaic Power Systems

With the high penetration of renewable energy sources, a variety of applications

have emerged. This section focuses on the PV stand-alone power system, the PV-

DC microgrid system and more electric aircrafts (MEAs).

1.2.1 Stand-Alone Power System

A stand-alone power system is an off-grid system which generates electricity inde-

pendently through e.g. PV panels, wind turbines, etc. A PV stand-alone system

contains a PV panel as the electricity generation element, a battery as an energy

storage device, a control unit for the power flow management and regulators for the

loads. It is well- suited for remote areas where the utility grid cannot be reached

due to geographical constraints and economic viability [12]-[13].

1.2.2 DC Microgrids

To encourage the exploitation of RESs, the penetration of it into utility grid has

increased [14]. However, the RESs which are directly connected to the main grid

degrade the grid stability due to the their intermittence feature [14]. Microgirds,

which are well- suited to interface the RESs with the mains grid have been adopted.

AC/DC microgrids are defined as local distribution systems which integrate dis-

tributed generation (DG) units especially the RESs, ESS and local load with a

AC/DC bus [14]-[16]. Figures 1.5(a) and (b) depict the typical DG units interfaced

with DC and AC microgrids respectively. They can work either in grid-connected

mode or disconnected mode which is also called islanded mode. The islanded mode

happens when a fault occurs at the bus line, during regular power plant maintenance

or during a blackout. The motivations for considering a DC microgrid instead of a

AC microgrid are as follows [16]:

1. DC loads are common, such as computers, TVs, solid state lights and DC

motors.
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2. The widely accepted RESs, such as PV and fuel cells, are of a DC nature.

3. The ESS such as batteries inherits DC characteristics.

4. Integrating all the DC featured elements into a DC microgrid saves one DC/AC

conversion stage compared with the AC microgrid (as can be observed in

Figure 1.5).

Another application that employs the DC distribution system is the more electric

aircraft (MEA). A future trend of using electric systems instead of the traditional

pneumatic, hydraulic and mechanical system to meet the requirement of reducing

emission and lessening the usage of the fuel is reported in [17]-[18]. With the increas-

ing numbers of the electrical devices, the advantage of a high-voltage DC (HVDC)

network over the transitional AC distribution system could promisingly cut-down

the weight of the aircraft. Figure 1.6 shows a simplified power distribution system

of MEA. As can be seen, a high-voltage DC (HVDC) bus is used for integrating the

starters/generators (S/Gs) and loads, such as environmental control systems (ECS),

and electro mechanical actuator (EMA) which driven by the permanent magnet mo-

tor (PMM) drives and others [17]. A great number of power converters, especially

the multi-port converters are used to manage both the power generation and power

flow.

1.3 Research Motivation

The DC bus is critical in a DC microgrid as it facilitates a bi-directional power

transfer mechanism and maintains stability and reliability. The motivation of this

research work is to integrate RES and ESS with a load which possesses the regener-

ative capability, especially for a PV-battery powered DC microgrid application. In

order to combine the aforementioned elements, a DC/DC switching power converter

is needed with the following requirements:

1. Two of the three interfaces should be able to control bi-directional power

flow as both the DC bus and the ESS are current reversible sources. The
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Figure 1.5: (a) Typical configuration of the DG units with a low voltage DC (LVDC)
network. (b) Typical configuration of the DG units with a low voltage AC (LVAC)
network. [15]

Figure 1.6: Power distribution of a MEA.[17]
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remaining one is a unidirectional port which serves as an input port for the

RES to generate power.

2. The converter should be flexibly reconfigured to satisfy all possible power flow

combinations among the three ports.

3. In order to improve the converter efficiency, single-stage power conversion,

instead of conventional multiple-stage power processing due to cascaded con-

verter connections, between any two ports is recommended.

1.4 Dissertation Outline

In Chapter 2, a review of recently published DC-DC converters for integrating re-

newable energy sources and batteries with load is given. Conventional converters

and three-port converters (TPCs), which include isolated and non-isolated config-

urations, are analyzed in terms of structure, control strategy, efficiency and size.

The purpose of this chapter is to summarize the benefits of the existing TPCs for a

stand-alone system. However it is shown that compact solutions to interface with a

bi-directional load are still limited.

In Chapter 3, a family of novel non-isolated three-port converters (NITPCs) are

introduced for the PV, storage system and a DC bus (or regenerative load). The

derivation, analysis, development and characteristics of the proposed converter fam-

ily are presented. A design example of a selected topology with detailed circuit

description, operation analysis and experimental verifications is given. The simu-

lation results of other selected topologies in this family are also shown to further

explain their distinctive features and basic operation principles.

In Chapter 4, a single-inductor NITPC with a fully reconfigurable structure

for renewable energy applications is introduced. This work is based on the design

example in Chapter 3. Nevertheless due to a simplified structure where only four

switches and one inductor is employed, the converter in this chapter presents a lower

cost but highly integrated solution. The circuitry analysis, operation principles and

9



experimental results are presented.

In Chapter 5, a conclusion is given to summarize the presented work against the

objectives and to highlight the contributions. A discussion of future work is also

given.
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Chapter 2

Review of Existing DC/DC

Converters for Integrating

Renewable Energy Sources and

Energy Storage Elements with

Load

2.1 Introduction

Recently, a number of DC/DC converter structures and topologies that integrate

RES and ESS with load have been published. These include the conventional well-

known converters, two-stage converters and three-port converters. Among them,

the widely adopted solutions which use conventional converters coupled with the

recently recommended three-port converters (TPCs) are reviewed. TPCs are prefer-

able solutions due to their compact, highly integrated and efficient design which are

introduced in Section 2.3.
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Figure 2.1: Typical configuration of DC microgrid [19].

2.2 Brief Review of Traditional and Two-stage

Converters

Figure 2.1 shows a typical architecture of a DC microgrid with RESs (e.g. wind, PV,

etc.), ESSs (e.g. energy storage, ultracapacitor), loads, switching power converters,

etc. As can be seen, both the RESs and ESSs have their own converters. The

structure can be further simplified as shown in Figure 2.2 (a), if considering only

a PV source in the RES end, an energy storage in the ESS end and a load in the

output end. It is a traditional power electronics system widely adopted either in RES

stand-alone systems or in microgrids and it is a typical two-stage converter design.

Another typical combination of the PV converter and the energy storage converter is

shown in Figure 2.2 (b). The difference between these two structures is the position

of the bi-directional converter, that allows battery charging or discharging, namely,

either in the RES end or the output end.

An example that employs the converter structure of Figure 2.2(b) is shown in

Figure 2.3(a) which is a PV stand-alone system [21]. The proposed system employs a

boost DC/DC converter to regulate the DC link voltage, a bi-directional buck/boost

converter for battery energy management and to achieve the MPPT function. The

detailed structure is shown in Figure 2.3 (b). In addition, a novel multiloop PI con-
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Figure 2.2: Conventional power electronics system in renewable energy system
(a)Type1, (b)Type2 [20].

troller and the sliding-mode control (SMC) strategies enable the system to acquire

a reliable and satisfied output voltage regulation (e.g. fast responding). However,

a two-stage power processing can be observed when the battery charges the DC

link, which implies a reduced conversion efficiency. Moreover, the size and cost are

relatively high due to the extra circuitry.

2.3 Review of Three-Port Converters

Three-port converters have recently become popular for integrating the RES and

ESS with the load, due to their simplified converter structure while allowing multiple

power sources and reducing the repeated power processing. Figure 2.4 shows the

general structure of a TPC, in which, a RES is treated as an input source, the

ESS is both a power source and a load and the output is a load. Due to the bi-

directional feature of the ESS, the TPC can be further reconfigured as a single-input

single-output (SISO) converter, a dual-input single-output (DISO) converter and a

single-input dual-output (SIDO) converter according to the power conditions of the

three ports. For instance, when the PV has inadequate power to supply the load, the

battery will be discharged and provides power simultaneously. In addition, based

on the structure of the TPCs, they can be divided into three groups which are

non-isolated (NITPCs), partly-isolated (PITPCs) and isolated (ITPCs) TPCs, [20].
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Figure 2.3: Topology of the storage-to-PV stand-alone PV system [21].
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Figure 2.4: The general configuration of a renewable energy generation system using
a three-port converter [20].

The NITPCs refer to converters that have no galvanic isolation among all of the

ports whilst the ITPCs are just the opposite. PITPCs are the combination of the

non-isolated and isolated converters. In which, two of the three ports are connected

directly, and both these ports are isolated to the third port [20]. Some recently

published TPCs in these three groups are reviewed and discussed.

2.3.1 Non-Isolated Three-Port Converters (NITPCs)

A NITPC with a parallel connected MPPT system for a PV-battery standalone

application is proposed in [22], as shown in Figure 2.5. Normally, a PV-battery-load

system requires two converters to realize the MPPT function and output voltage

regulation. However, it results in a relatively higher loss due to the component

amounts and multi-stage power processing. This converter has less components

with only one inductor and two switches but allows most of the possible power flow

combinations among the three ports. Benefiting from the series connection of the

capacitor and the battery, a high efficiency is reported as when the PV is in maximum

power point (MPP), most of the power directly goes to the load or battery. Also it

is able to balance the battery voltage and PV MPP voltage. However, a problem

of this topology is that the PV can not charge the battery except if the load is

manually disconnected. In addition, the load voltage Vout can not be regulated and

has to be maintained at Vmpp in all the operational modes.
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Figure 2.5: A MPPT system with parallel connection for PV stand-alone applica-
tions proposed in [22].

Figure 2.6: A battery-integrated boost converter proposed in [23].

A battery-integrated boost converter module is proposed in [23], shown in Figure

2.6. It is designed for the PV distributed connection system, in which each PV has

its own integrated battery and power electronics module. The battery can work

either in charge, discharge or pass through mode, according to the PV power and

the demand. A particular benefit of this topology is that the MPPT function is

independent of load demand and PV power when the load demand is no more than

the PV power. In addition, less loss is reported when the converter works in the

MPPT operation.

A NITPC for a stand-alone PV-battery system is presented in [24] and shown

in Figure 2.7. The converter is an integrated buck and boost converter and it is

derived by splitting the conventional bidirectional power flow path into two uni-
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Figure 2.7: A NITPC for stand-alone renewable power system proposed in [24].

Figure 2.8: The NITPC proposed in [25].

directional ones. The output voltage regulation can always be satisfied while the

MPPT and battery charge control are alternately selected. A multi-regulator com-

petition control scheme is proposed. It includes: input voltage regulator (IVR) to

achieve MPPT function, output voltage regulator (OVR) to regulate the output

voltage and battery voltage/current regulator (BVR/BCR) to protect the battery

from overcharging. A high power conversion efficiency can be achieved as there are

less power processing stages. Moreover, the smooth transition waveforms and good

dynamic performance verifies the control scheme and indicates the high reliability

of the proposed converter.

In [25], a novel NITPC is proposed for a PV stand-alone system, shown in Figure

2.8. The converter is deduced from a SIDO boost converter, with a coupled inductor

is employed and is served for the battery bi-directional power flow purpose. As the

converter uses only three switches and a coupled inductor, it can be regarded as a

compact and low cost design.
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Figure 2.9: Novel TPC with high-voltage gain proposed in [26].

In [26], a NITPC with a high voltage gain is proposed, as shown in Figure 2.9.

The high gain is provided by the series connected capacitor and the coupled induc-

tor. This topology employs only three switches and two inductors which includes a

coupled inductor. A snubber circuit is added for recycling energy from leakage in-

ductance. The proposed converter has a less turns ratio and a wider duty cycle range

compared with conventional transformer isolated topologies and non-isolated topolo-

gies respectively. The associated control strategy is provided and the experimental

results show a high efficiency above 93%. However, this topology is not capable of

performing power flow control of PV to load and PV to battery individually.

2.3.2 Partly Isolated and Isolated Three-Port Converters

(PITPCs/ITPCs)

In [27], a PI full-bridge (FB) TPC is proposed, shown in Figure 2.10. It integrates

two buck-boost converters into the primary side of the full-bridge, thus high power

density and high efficiency can be achieved. The power flow from PV to load is a

typical full-bridge configuration. For controlling power from the PV to the battery, a

buck-boost converter is reconfigured using the magnetizing inductance of the trans-

former; it serves as a filter inductor for the buck-boost converter. For battery to

load power transfer, the converter structure is a forward-flyback converter. MPPT

and battery charging can be realized by changing the duty cycle of the buck-boost

converter while the output regulation is using phase-shift. A soft-switching tech-
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Figure 2.10: A full-bridge three-port converter for renewable energy application
proposed in [27].

Figure 2.11: A PITPC for photovoltaic systems with energy storage [28].

nique, such as zero-voltage-switching (ZVS) can be achieved for all primary side

switches. However, the ZVS condition is influenced by the magnetizing inductance

of two transformers.

In [28], a PITPC with minimum power switch count is introduced, shown in

Figure 2.11. This topology can be regarded as an integration of two parts, namely,

a single-switch LCL-resonant converter for a PV panel and a bi-directional buck

and boost converter for a battery. The soft switching of the main switch is achieved

through the LCL resonant circuit. Simultaneous power management is persevered

for scenarios: sufficient PV power, inadequate PV power and no PV power for load.

In [29], an ITPC with two series-resonant tanks and a three-winding transformer
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Figure 2.12: Three-port series-resonant DC/DC converter to interface renewable
energy sources with bidirectional load and energy storage ports proposed in [29].

is proposed, shown in Figure 2.12. Higher switching frequency can be achieved

through the resonant tanks. As three full-bridge configurations are employed in each

port, bi-directional power can be achieved. A soft-switching technique is adopted for

the reduction of the switching loss. Phase-shifting control has increased the voltage

gain.

In [30], an ITPC with a three-winding transformer coupled with three half-

bridge configuration is proposed. One of the half-bridge converters integrates with

a boost converter has further increased the input port operating range. Phase shift

and Pulse width modulation (PWM) are used in conjunction to control the power

flow, and the soft-switching technique is available for all switches. Compared with

the full-bridge converter, the half-bridge configuration reduces switch numbers and

simplifies the overall structure while the bi-directional power flow and single-stage

power processing can still be achieved.

2.4 Summary

In this chapter, traditional converters and TPCs that integrate RES and ESS with

load are reviewed, the summary is shown in Table 2.1. The features, merits and
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Figure 2.13: Three-port triple-half-bridge bi-directional converter with zero-voltage
switching [30]

demerits of the reviewed converters are summarized and listed as follows.

2.4.1 Traditional Converters

1. Two separate converters are employed. One is a unidirectional converter which

allows the PV to deliver power to the load. The other one is a bidirectional

converter for the ESS to absorb or release power [21].

2. The main drawback of this structure is the extra circuitry, which not only

increases the power processing stages when the battery powers the load (Figure

2.2(a)) or PV charges battery (Figure 2.2(b)), but also increases the converter

size and cost, while the power density is decreased.

2.4.2 Three-Port Converters

1. TPCs can be grouped as non-isolated, partly isolated and isolated converters,

based on the structure.

2. The key merit of the TPC is the single-stage power processing between any

two ports is achieved and which improves the converter overall efficiency.
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3. Due to the fact that the input power can either be larger or smaller than

the load, the converter can be reconfigured as either a SISO, DISO or SIDO

converter.

4. NITPCs use less components, hence are compact and cost-effective. Some

NITPCs which only use one inductor can further increase the converter power

density. However, most of the NITPCs have a limited voltage conversion ratio

due to the fact that they are derived from basic converters [22]-[26].

5. PITPCs which employ a transformer to isolate one port from the other two can

achieve a higher voltage gain. However, the ESS in these converters operating

continuously, which reduces the ESS life and degrades reliability of the system

[20]. In addition, the transformer increases the converter size and cost [27]-[28].

6. ITPCs can provide a high power rate, high voltage gain and galvanic isolation

by using the transformer. However, the three-winding transformer and many

switches increase the converter size, cost and control complexity [29]-[30].

7. In addition, most of the NI/PITPCs have not considered a current reversible

load while the ITPCs are capable of offering bi-directional power flow paths.

To sum up, conventional converters which use two separate converters have two-

stage power processing in certain operation modes which decreases the converter

efficiency. For PITPCs, they can provide a high voltage gain due to the transformer,

however, it sacrifice the battery lifespan and system reliability. It is due to most

of the PITPCs are connecting RES port and the battery port directly, therefore,

the battery is operating during all the operation period. For ITPCs, bi-directional

power flow between any two ports is possible at the expense of a three-winding

transformer and many switches, which increase the size, cost and control complexity

of the converter.

Although the NITPCs have limited conversion ratios, they provide low cost,

high efficiency with compact design and without sacrificing the battery lifespan.
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In addition, the limited voltage gain can be solved by stacking the PV panels and

battery banks to rise the two port voltage levels. Hence, NITPCs are investigated

in this thesis.
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Chapter 3

Three-Port Converters with

Flexible Power Flow for

Integrating Solar PV and Energy

Storage into a DC Bus

3.1 Introduction

Recently, a number of power converter topologies have been introduced to integrate

renewable energies (e.g. solar, wind), energy storage systems (e.g. battery, super-

capacitor), and load [31]-[36]. In the majority of the aforementioned topologies, the

battery is designed as the only bidirectional port, which is suitable for applications

such as the PV-battery powered stand-alone system. However, there also exist some

applications where the DC-DC converter needs to handle an additional bi-directional

port. In other words, the power system would require one unidirectional port and

two bi-directional ports. In [29], a three-port series-resonant converter is presented

to interface with renewable sources and storage systems, along with a regenerative

load port such as in a vehicle braking system. In [37], a three phase PV-battery-DC

bus system that provides a reversible power flow path is proposed. It is capable
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of charging a battery without PV cells. In [38], a galvanic TPC for fuel cells, a

battery system and a bi-directional load is presented. In [39], a control strategy

for the bi-directional converter which is applied in the electric vehicles (EVs) or

HEVs is proposed. Energy can be further recycled from the braking system and

the life of battery is also improved with the help of the supercapacitor. For the

bidirectional TPCs [29], [37]-[39], isolated transformers are used to achieve the bi-

directional power flow function. The conventional rectifier diodes in the secondary

side are replaced by the switches, in such a way that a bi-directional power flow is

allowed. Although the transformer-based TPCs offer electrical isolation and make

it easier to achieve higher voltage gain, as compared with NITPCs, they require

more power switches to operate which increases the number of components and

control circuits. Based on this concern, research has been directed to non-isolated

three-port converters with flexible power flow. In [40], a family of DC-link inductors

(DLIs) based multiport converters (MPCs) are illustrated with bi-directional power

flow capability among all ports. In [41], a systematic approach to deriving both

dual-input and dual-output converters for NITPCs is discussed.

Although there is much work on TPCs, most work focuses on the consuming

load. Solutions for integrating a regenerative load in TPCs are still limited. The

most common TPCs for a regenerative load employ a three-winding transformer

associated with a full bridge configuration in each port. It can fulfill the purpose of

bi-directional power flow between any two ports. However, bulkiness of transformers

and more switches require an increase in the converter volume and cost. NITPCs

offer a compact solution while they are capable of driving a regenerative load. Some

reported topologies have good potential for regenerative load or DC bus. However,

there is a lack of comprehensive studies based on commonly known power converters

that can form NITPCs for integrating a renewable energy source, an energy storage

system and a regenerative load/bus.

The main purpose and contribution of this thesis is to derive, analyse and de-

velop a new family of NITPCs particularly for the PV, storage system and a DC bus
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(or regenerative load) in a systemic manner. This family of converters maintains

the merits of the conventional TPCs which feature a single power conversion stage

between any two ports for better conversion efficiency. To achieve a more flexible

power flow, the proposed converter family integrates an extra power flow path into

the traditional TPCs, instead of adding a separate DC/DC converter, which there-

fore further compacts the power design. The derivation method is simple, and many

basic power converters can be used as bidirectional ports. Different combinations of

converters can be derived to meet different specifications.

3.2 Topology Analysis and Derivation

This section discusses the characteristics and commonalities of the NITPCs in this

converter family.

Firstly, this converter family consists of one unidirectional power port for irre-

versible renewable energy sources such as PV and wind and two bi-directional power

ports for an energy storage device and a bi-directional terminal/load such as DC

grid or motor load respectively.

Secondly, the NITPC family allows possible combinations of the basic converters

(e.g. buck, boost, buck-boost) according to the voltage level and polarity of each

port. To provide a more complete picture, higher-order converters such as single-

ended primary-inductance converter (SEPIC) and ZETA converters, are also taken

into consideration. To clarify the explanation, this family can be divided into several

groups. In each of them, a specific converter is used as a base converter to combine

other different converters to form a converter group.

Thirdly, this family should be capable of operating in seven different modes

according to the PV panel power generation capability, battery state of charge (SOC)

and DC bus requirements. The detailed operation modes include:

1. Mode 1 (PV to battery).

2. Mode 2 (PV to battery and DC bus).
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Figure 3.1: (a) Dual-output branches. (b) Bi-directional boost/buck converter.
(c) Bi-directional buck/boost converter. (d) Bi-directional Non-inverting buck-
boost/buck-boost converter (e) Bi-directional SEPIC/ZETA converter.

3. Mode 3 (PV and battery to DC bus).

4. Mode 4 (PV to DC bus).

5. Mode 5 (Battery to DC bus).

6. Mode 6 (DC bus to battery).

7. Mode 7 (PV and DC bus to battery).

Fourthly, although there are seven operation modes, the system only selects one

mode to operate at any time. Thus, all NITPCs in this family can work as either

a single-input single-output (SISO) converter, a dual-input single-output (DISO)

converter or a single-input dual-output (SIDO) converter.

Fifthly, for the purpose of simplifying the configurations whilst efficiently us-

ing circuitry components, redundant elements are removed or functionally merged.

Therefore, a compact design can be achieved.

To classify the combinations, this section introduces boost, buck, non-inverting

buck-boost (NIBB), SEPIC and ZETA converter based configurations. The base

converters are derived from the conventional structure of the aforementioned topolo-

gies, and are modified by adding an additional output branch, to serve as a SIDO
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Table 3.1: Possible combinations of based converters with bi-directional converters
and the corresponding voltage constraints.

Based Possible V oltage
Converter Bi− directional Constraint

Converter
Boost Buck Vpv < Vdc < Vb

Boost Vpv < Vb < Vdc
NIBB Vpv < Vb, Vpv < Vdc, Vb 6= Vdc

Buck Buck Vpv > Vb > Vdc
Boost Vpv > Vdc > Vb
NIBB Vpv > Vb, Vpv > Vdc, Vb 6= Vdc

NIBB Buck Vpv 6= Vb 6= Vdc, Vb > Vdc
Boost Vpv 6= Vb 6= Vdc, Vb < Vdc
NIBB Vpv 6= Vb 6= Vdc

SEPIC Buck Vpv 6= Vb 6= Vdc, Vb > Vdc
Boost Vpv 6= Vb 6= Vdc, Vb < Vdc
SEPIC Vpv 6= Vb 6= Vdc

ZETA Buck Vpv 6= Vb 6= Vdc, Vb > Vdc
Boost Vpv 6= Vb 6= Vdc, Vb < Vdc
ZETA Vpv 6= Vb 6= Vdc

converter. In [41], a family of dual-output converters are proposed by adding an

extra output branch. Either one of the two output branches should employ a switch

to fully control the two outputs. A similar solution is proposed here, but, each one

of them includes a switch and a diode. The switches control the power flow while

the diodes are used not only to prevent power flow back to the unidirectional input

sources, but also to function as a rectifier in the boost converter. In addition, it

is worthwhile to note that a switch can be further saved if the battery voltage Vb

and DC bus voltage Vdc are regulated at all conditions. In other words, the output

branches of the buck or boost based converters would still need two diodes but only

one switch.as shown in Figure 3.1(a). And if a specific base converter type is chosen,

the voltage relationship between the input and outputs is confirmed. Apart from

the base converters, basic bi-directional converters are introduced to realize the re-

versible power flow between the two bi-directional ports. In Figure 3.1(b), (c), (d)

and (e) are shown the boost converter, buck converter, NIBB converter (NIBBC)

and SEPIC respectively from V1 to V2, while the converters become buck converter,

boost converter, NIBBC and ZETA converter if power is flow from V2 to V1. These
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bi-directional converters are ready to use and easy to be combined.

The possible composites of the base converter with a bi-directional converter are

shown in Table 3.1.

3.2.1 Boost Converter Based Three-Port Converter

The boost converter based configurations are designed with the rule that PV voltage

Vpv is smaller than both battery voltage Vb and DC bus voltage Vdc, while there is

no certain relationship between Vb and Vdc. Some examples of the boost converter

based TPCs are provided in Figure 3.2(b), (c) and (d). They are built by combining

the base configuration, as shown in Figure 3.2(a) with a bi-directional boost/buck

converter, buck/boost converter and NIBBC/NIBBC respectively.

3.2.2 Buck Converter Based Three-Port Converter

An alternative to the boost converter based configuration, is the buck converter

which requires that Vpv>Vb and Vpv>Vdc, but Vdc can either be larger or smaller

than Vb. Some examples of the buck converter based TPCs are provided in Figure

3.3(b), (c) and (d). Similarly, the composites are constructed by integrating the base

configuration, as shown in Figure 3.3(a) with a bi-directional boost/buck converter,

buck/boost converter and NIBBC/NIBBC respectively.

3.2.3 Non-Inverting Buck-Boost Converter Based Three-Port

Converter

The buck-boost converter is flexible as it can either step up or down the input volt-

age to the required output voltage within the same configuration. It is an effective

solution to those TPCs which have similar voltage levels among ports. The struc-

ture of the inverting buck-boost converter is simpler than the non-inverting one,

however, it has an inverted output polarity of the input. This causes difficulties

in trying to design the three-port converter and hence a non-inverting buck-boost
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Figure 3.2: A boost converter based TPCs: (a) Boost converter base structure.
(b) Boost converter based with a bi-directional boost/buck converter. (c) Boost
converter based with a bi-directional buck/boost converter. (d) Boost converter
based with a bi-directional NIBBC/NIBBC converter.
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Figure 3.3: A buck converter based TPCs: (a) Buck converter base structure. (b)
Buck converter based with a bi-directional boost/buck converter. (c) Buck converter
based with a bi-directional buck/boost converter. (d) Buck converter based with a
bi-directional NIBBC/NIBBC converter.
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converter (NIBBC) is used as a base, as shown in Figure 3.4(a). Some examples

of the NIBBC based TPCs are given by interfacing the base configuration with a

bi-directional boost/buck converter, buck/boost converter and NIBBC/NIBBC re-

spectively, shown in Figure 3.4(b), (c) and (d). Although it is a useful topology, it

requires extra switches to satisfy the step up or down than required by the conven-

tional buck or boost converter. The configuration is even more complicated when

it combines with another NIBBC as shown in Figure 3.4(c). In addition, more than

one switch is needed to be turned on simultaneously in specific operation. An obvi-

ous example is when PV needs to charge either battery or DC bus, switches S1 and

S2 need to operate together which increases switching losses. And the rest of the

NIBBC based TPCs are shown in Figure 3.8.

3.2.4 SEPIC Based Three-Port Converter

To reduce the number of switches of the NIBBC, SEPIC based configurations are

analyzed. The SEPIC has the advantage of stepping up or down the input volt-

age without changing the input voltage polarity. In addition, although it employs

two inductors, it needs only one switch, therefore the control strategy is simplified.

Instead of using two separate inductors in the SEPIC, the advantages of using a

coupled-inductor which include fewer component numbers, a more compact design

and smaller inductance, are mentioned in [42]. In [43], the authors proposed a

bi-directional SEPIC-ZETA shown in Figure 3.1(e) by replacing the diode with a

switch. It reduces output voltage ripple and has lower switch stress. Based on this

finding, coupled inductors are used for both base converter part and bi-directional

ports. For the purpose of achieving a simplified structure and control strategy, the

proposed topology in [43] is adopted, shown in Figure 3.5(a). Examples of the SEPIC

based TPCs are provided in Figure 3.5(b), (c) and (d). They are built by combin-

ing the base configuration with a bi-directional boost/buck converter, buck/boost

converter and SEPIC/ZETA respectively.
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Figure 3.4: A NIBBC based TPCs: (a) NIBBC base structure. (b) NIBBC based
with a bi-directional boost/buck converter. (c) NIBBC converter based with a bi-
directional buck/boost converter. (d) NIBBC converter based with a bi-directional
NIBBC/NIBBC converter.
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3.2.5 ZETA Converter Based Three-Port Converter

ZETA converter based topologies are explained for further illustration. The ZETA

converter has the same benefits as the SEPIC, and the coupled-inductor is also

employed for the aforementioned benefits. The bi-directional converter shown in

Figure 3.1(e) becomes a ZETA converter if power flows from V2 to V1. Similarly,

a ZETA converter base (Figure 3.6(a)) merged with bi-directional boost/buck con-

verter, buck/boost converter and ZETA/SEPIC converter are shown in Figure 3.6

(b), (c) and (d) respectively.

3.3 Design Example of A Boost Converter Based

Three-Port Converter

3.3.1 Detailed Operation Modes Principle

To further facilitate the derivation and explanation of the converter, a boost con-

verter based TPC which integrates with a buck converter is used as an example.

This configuration was firstly introduced in [44], but only served as a single-phase

power factor correction (PFC) converter with an sinusoidal input current and wide

DC output voltage range, which is suitable for plug-in HEV charging systems. The

main advantage of this topology is the compact design due to a simplified converter

structure with a lower component count. However, the load terminal was operated

in a unidirectional manner. We propose in this thesis that the load (or DC bus)

terminal is replaced by a bi-directional interface, making it a fully flexible converter

with seven different power flow patterns. The circuit diagram is shown in Figure

3.7(a) with current Representatives. The normal operation of the converter is based

on the following voltage constraint: Vpv < Vdc < Vb where Vdc is a constant value.

This is different from [7] where the input is AC and output voltage varies.

A PV panel, which is connected in series with the input inductor L1, is an

intermittent power source and the only unidirectional port. Hence, it can supply
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Figure 3.5: SEPIC based TPCs: (a) SEPIC base structure. (b) SEPIC based
with a bi-directional boost/buck converter. (c) SEPIC based with a bi-directional
buck/boost converter. (d) SEPIC based with a bi-directional SEPIC/ZETA con-
verter.
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Figure 3.6: ZETA converter based TPCs: (a) ZETA converter base structure. (b)
ZETA converter based with a bi-directional boost/buck converter. (c) ZETA con-
verter based with a bi-directional buck/boost converter. (d) ZETA converter based
with a bi-directional ZETA/SEPIC converter.
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power either to the battery or to DC bus or to both. Inductors L1 and L2 are the

essential energy storage elements to step up or step down the input voltage. There

are four MOSFETs in the converter, namely, S1, S2, S3 and S4. The switch S1 is

responsible for managing the amount of the energy stored in L1 as well as achieving

MPPT. The switch S2, is used to control the power flow from PV due to the voltage

difference and different power requirements between the battery and DC bus. The

diode D2 not only works as a rectifier of the boost converter, but also contributes to

blocking the power from either the DC bus or battery to flow back to the PV cells

through the body diode of S2. The free-wheeling diode in the conventional buck

converter is replaced by switch S4. It is necessary as when battery charges the DC

bus, a buck converter is formed, and in return, when DC bus charges the battery, a

boost converter is also formed with the exactly same components. This maximizes

the usage of the components. The duty cycles are determined as d1, d2, d3, d4 and

d5, which are the switches turn on ratios of S1, S2, D1, S3 and S4 respectively.

3.3.2 Mode 1 (PV to Battery)

This mode happens when the solar irradiance is weak while the battery SOC is not

full due to the self-discharge. The DC bus is powered by the utility grid. Therefore

only the SISO boost converter is in operation. When S1 turns on, L1 is charging,

and when it is off, D1 is conducting. The circuit diagram is shown in Figure 3.7(b).

3.3.3 Mode 2 (PV to Battery and DC bus)

This mode happens when PV has sufficient power to charge the battery and the

remaining energy will feed the DC bus. The converter works as a SIDO boost

converter. The relationship among the three ports follows the power conservation

equation (3.1), which is the PV power Ppv equals the sum of the battery power Pb

and DC bus power Pdc. When S1 turns on, L1 is storing energy. When S1 is off, S2

and D1 dispatch the power to the two loads in turns. The duty cycles d1, d2, and d3

of S1, S2, and D1 respectively form a switching period when the converter operates
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Figure 3.7: (a) Topology with current representatives. (b) Mode 1 (PV to battery).
(c) Mode 2 (PV to battery and DC bus). (d) Mode 3 (PV and battery to DC bus).

39



in continuous conduction mode (CCM) (Equation 3.2). Power management of the

two loads is achieved by the different switching ratios of d2 and d3 which are decided

by the current ratio (Equation 3.3). Specially in this case, L1 and S1 are functionally

shared by the two loads. The circuit diagram is shown in Fig. 3(b).

Vpv · Ipv = Vb · Ib + Vdc · Idc (3.1)

d1 · Ts + d2 · Ts + d3 · Ts = Ts (3.2)

Idc
Ib

=
d2
d3

(3.3)

3.3.4 Mode 3 (PV and Battery to DC bus)

This mode happens when DC bus requires more power than PV can generate, hence

the backup battery needs to provide the extra power. This mode happens when

the DC microgrid operates in the islanded mode, which the DC bus connects only

with the local consuming loads. The ideal power conservation equation is (Equation

3.4). The converter operates as a DISO converter with PV input Ppv from the boost

converter and battery input Pb from the buck converter. They work independently,

such that when S1 and S3 are turned on, L1 and L2 are storing energy respectively.

When S1 is off, both PV and inductor L1 release power to the DC bus. S2 turns

on during the whole switching period to reduce switching loss. When S3 is off, the

inductor L2 releases its power through the body diode of S4 to the DC bus. In the

boost converter, S1 and D2 work in a complementary manner, and d1 is regulated

to achieve the MPPT of the PV panel. Similarly, in the buck converter, S3 and

body diode of S4 also work in tandem, d3 is responsible for maintaining the DC bus

voltage. The circuit diagram is shown in Figure 3.7(d).

Vpv · Ipv + Vb · Ib = Vdc · Idc (3.4)
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Figure 3.8: (a) Mode 4 (PV to DC bus). (b) Mode 5 (Battery to DC bus). (c) Mode
6 (DC bus to battery). (d) Mode 7 (PV and DC bus to battery).
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3.3.5 Mode 4 (PV to DC bus)

This mode happens when the battery is in a high SOC situation and the PV panel

provides power to the DC bus. In this mode, the battery is idle, no energy is being

absorbed or released. The converter operates as a SISO boost converter, and S1 and

D2 works in complementary manner. Since the battery voltage is higher than the

DC bus voltage level, both the body diode of S3 and rectifier D1 will not conduct.

S2 turns on for the whole switching period to reduce the switching loss. Since the

battery voltage is higher than the DC bus voltage level, both the body diode of S3

and rectifier D1 will not conduct. The circuit diagram is shown in Figure 3.8(a).

3.3.6 Mode 5 (Battery to DC bus)

This mode happens when the TPC works in the islanded mode and there is an

absence of PV panel power, for example, during the night time. Since only the

battery offers power, the converter operates as a SISO buck converter with S3 and

S4 turning on and off complementarily. Duty cycle S3 is simply decided by the

output and input voltage ratio. The circuit diagram is shown in Figure 3.8(b).

3.3.7 Mode 6 (DC bus to Battery)

This mode happens also when there is no PV power, and the battery is in low

SOC. For example, the battery has a deep discharge when the converter operates in

islanded mode, due to it is the main power source to supply the DC bus particular

in the nighttime. Hence, after the DC bus connects with the utility grid, it will

charge the battery for reserve and also protect the battery from over-charging. A

SISO boost is in use when S4 turns on first to power L2. When it is off, the power

from the DC bus and L2 will be released though the body diode of S3 and then to

the battery. S4 and the body diode of S3 work in a complementary manner. The

circuit diagram is shown in Figure 3.8(c).
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3.3.8 Mode 7 (PV and DC bus to Battery)

Similar to mode 6, this mode happens when the PV still supplies power and the

battery is in low SOC. The PV panel works in MPPT mode by adjusting S1 and

the remaining energy will be supplied from the DC bus. In this case, the converter

operates as a DISO converter since two boost converters are in use. S2 and D2 are

the only two elements which are not in operation. The duty cycle of S1 and S4 can

be obtained by the MPPT function and the battery voltage regulation respectively.

The circuit diagram is shown in Figure 3.8(d).

3.4 Mode Selection Flow Chart

In Figure 3.9, an algorithm for operation mode selection is presented. As mentioned

before, the selection procedure is based on the power conditions of both the PV and

DC bus port along with the battery voltage. To achieve such power management,

a continuous monitoring of current and voltage of the each port is needed. Due to

the close relationship between SOC and battery voltage and ease of implementation,

battery voltage Vb is used to determine the charging or discharging state instead of

state of charge. There are two occasions where the battery port is bypassed for the

purpose of protection. One occurs in the battery charging stage. If Vb reaches the

battery preset maximum voltage VMax, which means the battery is over-charged, the

battery port is idle or trickle-charged. The other occasion happens in the battery

discharging stage. If Vb is less than the battery cut-off voltage Vmin, the port is also

idle to prevent over discharge. Other battery relating factors, such as the battery

maximum charging or discharging rate, is considered in the battery management

system. Apart from the seven modes, the system can shut down if none of the

selections meets the requirements. Table 3.2 summarizes the operations selection.

43



Figure 3.9: Flow chart of operation modes selection.
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Table 3.2: The criteria of TPC operation modes selection.
Modes Power Condition(W ) Battery V oltage(V )
Mode 1 Ppv = Pb, Pdc = 0 Vb < Vmax

Mode 2 Ppv = Pdc +Pb Vb < Vmax

Mode 3 Ppv + Pb = Pdc Vb > Vcut−off

Mode 4 Ppv = Pdc Vb ≥ 0
Ppv > Pdc Vb > Vmax

Ppv < Pdc Vb < Vcut−off

Mode 5 Pb = Pdc , Ppv = 0 Vb > Vcut−off

Mode 6 Pb = Pdc , Ppv = 0 Vb < Vmax

Mode 7 Pb = Ppv + Pdc Vb < Vmax

3.5 Design Considerations

3.5.1 Inductor Design

To have a smaller output ripple, both inductor L1 and L2 are designed to operate in

continuous conduction mode (CCM). However, if the load is too small, the current

will naturally go into discontinuous conduction mode (DCM). The design point is

at the boundary between the CCM and DCM where the output current is 50%

of the rated value. There are also some variants, such as power, duty cycle, and

load resistance, etc. which need to be taken into consideration due to the different

scenarios. In the general case, the boost converter inductor L is chosen according

to the equation (3.5)

L =
VL ·∆ton

∆IL
(3.5)

Where, the ∆ton is the main switch turn on period and ∆IL is the inductor

current ripple.

3.5.2 Capacitor Design

Capacitor design is following the principle that the capacitance should be selected so

that the worst case can be covered. For C2, the maximum capacitance is required in

the boost converter mode, which only happens in mode 1. It is because the output

of the boost converter is pulsating as compared with that of CCM buck converter.
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Hence capacitor C1, C2 and C3 follow the equations (3.5) and (3.6) below

C =
∆Q

∆V
=
Io · d · Ts

∆V
(3.6)

Io =
V

L
· (1− d) · Ts (3.7)

Where ∆V is the peak-peak voltage ripple of the output voltage, V is the output

voltage, Io, d and Ts are the output current, the duty cycle and the switching period

respectively. Values of C1, C2 and C3 depend on the PV, load and battery voltage

respectively.

3.6 Experimental Verifications

3.6.1 Operation Modes Waveforms

For further verification, the experimental results of the aforementioned design ex-

ample are given. For ease of explanation, we use a DC source to mimic the solar

panel. Detailed information of components used in the experiment is shown in Table

3.3. The setup of the experiment is show in Figure 3.10.

1. Figure 3.11(a) depicts the operation waveforms of Mode 1 (PV to battery),

which follows the operation of conventional SISO boost converter. When S1

Table 3.3: Specification of the components used in the experiment of a boost con-
verter based TPC (Figure 3.7 (a)).

Parameter V alue
PV Panel DC Source (17V )
Battery DiaMecDM12V − 7.2A ∗ 3(36V )
DCBus DiaMecDM12V − 7.2A ∗ 2(24V )
Batterycut−off voltage 10.5V
Inductor L1 and L2 58uH/48uH
Capacitor C1 and C2 100uF
Diodes MUR460
MOSFETs IRF540N
Controller TMS320f28035
Switching Frequency 100kHz
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Figure 3.10: Experimental setup of the boost converter based NITPC.

turns on, L1 is charging, and when it is off, D1 is conducting. Vgs1 refers to

the turn on signal of S1 while Ch2 and Ch3 are the inductor current L1 and

diode D1 current respectively. Ch4 indicates the battery voltage Vb at around

36V.

2. Figure 3.11(b) shows the SIDO operation which is Mode 2 (PV to battery and

DC bus). When S1 turns on, L1 is storing energy, while S1 is off, D2 and D1

dispatching the power to the two loads in turns. The inductor slope changes

during discharge phase. This shows the current flowing to output load iD2 and

battery iD1 at different times according to Equation (3.2)-(3.3).

3. Figure 3.11(c) indicates the key waveforms of Mode 3 (PV and battery to

DC bus). To prove the feasibility of the reconfigured DISO converter, the

independent buck and boost converter operation can be illustrated through

the difference of the inductor current iD2 and diode current iL2.

4. Figure 3.11(d) represents operation waveforms of Mode 4 (PV to DC bus).

Mode 4 is a SISO boost converter which is similar to the conventional ones,
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however, it has an extra switch S2 in the output branch. S2 can either work

in a complementary manner with S1 or it can turn on during whole switching

period. It is suggested to adopt the latter method to reduce the MOSFET

switching loss. The switching pattern is similar to the Mode 1.

5. Figure 3.11(e) shows the key waveforms of Mode 5 (Battery to DC bus). It

is a simple buck converter with S3 and body diode of S4 turning on and off

complementarily.

6. Figure 3.11(f) shows the Mode 6 (DC bus to battery) operation waveforms. A

SISO boost is in use with the S4 turns on first to power L2 and when it is off,

the power form DC bus and L2 will be released though the body diode of S3

and then to the battery. iC2 shows the battery capacitor C2 current.

7. Figure 3.11(g) presents the key waveforms of Mode 7 (PV and DC bus to

battery). The switching pattern is similar to the Mode 3 which is also recon-

figured as a DISO converter, the mode 7 can be proved by the waveform of iL2

and iD1.

3.6.2 Transition Response in Mode Switching

Figure 3.12 shows the transition waveforms of shifting the operation modes. Four

practical scenarios are given as examples which are:

1. Battery charges DC bus with the bus suddenly starting to supply power to

the battery (Mode 5 and Mode 6).

2. DC bus charging battery with PV power changes (Mode 6 to Mode 7).

3. PV alters charging loads (Mode 1 to Mode 4).

4. PV cells partial shading (Mode 2 to Mode 4).
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Figure 3.11: Operation mode experimental Results. (a) Mode 1 (PV to battery).
(b) Mode 2 (PV to battery and DC bus). (c) Mode 3 (PV and battery to DC bus).
(d) Mode 4 (PV to DC bus). (e) Mode 5 (Battery to DC bus). (f) Mode 6 (DC bus
to battery). (g) Mode 7 (PV and DC bus to battery).
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Case (1), one main focus of this thesis is to show the practicability of the bi-

directional operations of the storage system and the regenerative load. Hence, the ex-

perimental results of bi-directional, transient operation are shown in Figure 3.12(a).

The DC bus current idc, the battery current ib, and the inductor iL2 illustrate that

power flow directions are reversed as the system switch from battery charging DC

bus to DC bus charging battery. It shows that iL2 needs to fully release its stored

energy before it can reverse. Likewise ib and idc follows the same behavior. In case

(2), Figure 3.12(b) illustrates that the battery is charged by the DC bus with the

PV beginning to supply power. iL1 shows the PV starts to generate power and iL2

decreases as the system sets the priority to consume more renewable energy. Both

the battery voltage Vb and the current ib are increased. Case (3) is realized in Figure

3.12(c) where the load is turned off and the energy is switched to charging the bat-

tery. Note that Figure. 12(c) shows only an extreme working condition (Mode 1 to

Mode 4). In fact depending on the demand and supply, the converter can operation

in other modes such as Mode 2 to supply power to both battery and load if the load

power is smaller than the PV power. Case (4), PV partial shading is a common

phenomenon and is realized in Figure. 3.12(d), namely, Mode 2 to Mode 4. When

PV power is sufficient, both battery and DC bus get charged, ib and iD2 respectively.

When the PV power reduces but is just enough to supply the load, the battery will

no longer get charged, and PV fully supplies the bus. If the demand is large, the

system can also switch from Mode 2 to Mode 3 rather than Mode 4, in which both

the PV and the battery will supply power to load.

3.7 Simulation Results of Other Topologies

In this section, simulation results of a buck/NIBBC/SEPIC/ZETA converter based

NITPC are given to prove the feasibility of the proposed converter family. For a buck

converter based, a bi-directional boost/buck converter is selected and integrated

as an example. The voltage constraint among the three ports therefore can be

ascertained, and the detailed reconfigured seven operation modes together with some
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Figure 3.12: Transient waveforms. (a) Mode 5 to Mode 6. (b) Mode 6 to Mode 7.
(c) Mode 1 to Mode 4. (d) Mode 2 to Mode 4.
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operation modes waveforms are given. However, for the NIBBC based, SEPIC based

and ZETA converter based, they all have a flexible voltage relationship among the

three ports. Hence, transition scenarios for the three converters are given. As the

converter family is designed especially for the PV-battery DC microgrid system, the

DC bus voltage Vdc is fixed and the battery voltage Vb is fluctuated. However, the

PV voltage Vpv varies according to the solar irradiance. Hence, the transition cases

focus primarily on the changes of the Vpv. In the simulation, a DC source in series

with a 2 − 4Ω resistor to mimic the PV source and both the battery and the DC

bus are imitated by a DC source in series with a 0.2− 0.3Ω resistor.

3.7.1 Buck Converter Based with a Bi-Directional Boost/Buck

Converter

The buck converter based TPC structure is shown in Figure 3.13(a), and it can

be further simplified as conventional SISO buck or boost converters (Figure 3.13(b),

(d), (f)), SIDO buck converter (Figure 3.13(c)) and DISO converters (Figure 3.13(e)

and (g)). The circuit follows the voltage constrain Vpv > Vdc > Vb. As most of them

are basic converters, hence only simulation results of SIDO and DISO converters are

given, shown in Figure 3.13 and Figure 3.14 respectively.

Figure 3.14 indicates the SIDO converter operation (Figure 3.13(c)). The desired

two outputs voltages are Vb = 17V, Vdc = 24V with an input Vpv = 36V . As can be

seen, there are two charging slopes in the inductor L1, which indicates two outputs

have different voltage levels. iD1 refers to current of the buck free-wheeling diode

iD1, while iD2 and iD4 depict the currents of D2 and D3 respectively. When S1 is on,

the PV charges L1, battery and DC bus simultaneously. When S1 is off, the D1 is

in operation and the L1 discharges it energy to DC bus only. The D2 and D3 work

in a complementary manner.

Figure 3.15 describes the DISO converter operation (see also Figure 3.12(e)). The

two inductor currents which are iL1 and iL2, indicate the combined two converters

work independently when in steady state. The Vdc remains at the desired 24V . iD2
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Figure 3.13: (a) Buck converter based with a bi-directional boost/buck converter.
(b) Mode (PV to battery). (c) Mode (PV to battery and DC bus). (d) Mode (PV
to DC bus). (e) Mode (PV and battery to DC bus). (f) Bi-directional converter for
Mode (battery to DC bus) or Mode (DC bus to battery). (g) Mode (PV and DC
bus to battery).
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Figure 3.14: SIDO converter for Mode 2 (PV to Battery and DC bus, Figure 3.12
(c)).
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Figure 3.15: DISO converter for Mode (PV and battery to DC bus, Figure 3.12 (e)).

depicts the currents of D2, and the continuous waveform shows it works with a buck

converter. The iD4 indicates the current of the body diode of S3 which is regarded

as the rectifier in a basic boost converter. The two PWM pulses are generated for

the S1 and S4 by two analogue circuits.

3.7.2 NIBBC Based with a Bi-Directional NIBBC/NIBBC

The NIBBC based with a bi-directional NIBBC/NIBBC converter is shown in Figure

3.16(a). This converter is designed for applications where the voltage of each port

is close to others. And due to the flexible voltage relationship among the three

ports, this converter can be reconfigured considerably. Although this converter

55



Table 3.4: Switches lookup table for NIBBC based TPC operates in DISO converter
mode when Vin > Vdc to Vin < Vdc with Vb unchanged (Figure 3.15(b)).

Switches S1 S2 S3 S4 S5 S6 S7 S8
Vin > Vdc(Buck) PWM1 0 1 0 PWM2 0 0 0
Vin < Vdc(Boost) 1 PWM1 1 0 PWM2 0 0 0

employs many switches, some of the them can be either idled or they turn on during

the whole switching period when a certain voltage constraint is chosen. To verify

the feasibility of this converter, the transition waveforms of a reconfigured DISO

converter (PV and battery to DC bus) are given. The transition follows the change

of the voltage constraint from Vb > Vpv > Vdc to Vb > Vdc > Vpv. In other words,

from Vb to Vdc, the subsystem remains using a buck converter while from Vpv to

Vb, an alteration from a buck converter to a boost converter can be observed. For

ease of explanation, a simplified structure is given in Figure 3.16(b), in which, the

idled switches are removed, the always turned on switches are replaced by wires,

the power flow paths which employ the MOSFETs body diodes are represented by

normal diodes. A lookup table of the switch operations is shown in Table 3.4. The

transition waveforms are shown in Figure 3.17. A sudden voltage drop of vin which

represents the Vpv, from 28V to 20V is observed. The boost converter main switch

S2 starts operation accordingly, and S1 always turns on during this period to form

a conventional boost converter. As the PV source is implemented by a DC source

in series with a resistor, the power of the input is constant. When the PV voltage is

suddenly charging, the decrease in the voltage will cause an increases in the current.

To maintain the DC bus voltage Vdc at 24V , the iL2 is regulated according to the

change of the iL1. The overshoot of the Vdc is around 0.2% which is quite small and

satisfactory.

3.7.3 SEPIC Based with a Bi-Directional SEPIC/ZETA con-

verter

As both SEPIC and ZETA converters are capable of either stepping up or down

the voltage, the SEPIC based with a bi-directional SEPIC/ZETA converter works
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Figure 3.16: (a) NIBBC based with a bidirectional NIBBC/NIBBC. (b) A simplified
NIBBC based with a bi-directional NIBBC in DISO Mode.

similar to the NIBBC based with a bi-directional NIBBC/NIBBC. The configuration

is shown in Figure 3.18(a). To verify the feasibility of this converter, the transition

waveforms of a reconfigured SIDO converter (PV to battery and DC bus) are given.

The transition follows the change of the voltage constraint from Vpv > Vdc > Vb

to Vdc > Vb > Vpv. For ease of explanation, a simplified structure is given in

Figure 3.18(b), in which, the idled switches are removed, the always on switches are

replaced by wires. The control strategy uses the S1 to control the Vpv voltage and S2

to maintain the Vdc, and the remaining current flows to the battery. The transition

waveforms are shown in Figure 3.19. As mentioned before, due to constant PV

power, the increase of the voltage will decrease the current, hence, the iL1, iC1 iD2

and iD3 are smaller when the MPPT reference voltage is higher. As Vdc is already

maintained at 24V , hence, the reduced current affects more the battery voltage.

Unless the battery reaches the preset maximum voltage or charging current, it is

uncontrolled. Unlike the NIBBC, which needs different switches to regulate the

output voltage, the SEPIC can automatically adjust through the same switch. This
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Figure 3.17: Transition waveforms for a simplified NIBBC based with a bi-directional
NIBBC in DISO Mode.
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Figure 3.18: (a) SEPIC based converter with a bidirectional SEPIC/ZETA con-
verter. (b) A simplified SEPIC based with a bi-directional SEPIC/ZETA converter
in SIDO Mode.

feature can be observed by comparing the Figure 3.20 with Figure 3.21 which are

the details of when Vpv is higher and smaller than the Vdc respectively. The shapes

of the waveforms are similar but the diode conducting times which refer to duty

cycles are different. The peak current of the iL2 is around 14A, which is almost

doubled the steady state values during the transition, which relatively a worse case.

This problem can be solved by designing an accurate PI controller or adding an

extra current control loop. Although the current has a high oscillating value, the

overshoot of the Vdc at around 4%, which is acceptable. In addition, the instant of

the MOSFETs switching on and off may also cause the high ringing. To tackle this

problem, a ferrite bead for damping the high frequency noise can be added in the

practical circuits.
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Figure 3.19: Transition for SEPIC based with a bi-directional SEPIC/ZETA con-
verter in SIDO mode from Vpv > Vdc > Vb to Vdc > Vb > Vpv.

60



Figure 3.20: SEPIC based with a bi-directional SEPIC/ZETA converter in SIDO
mode with voltage constrain Vpv > Vdc > Vb.
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Figure 3.21: SEPIC based with a bi-directional SEPIC/ZETA converter in SIDO
mode with voltage constrain Vdc > Vb > Vpv.
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3.7.4 ZETA Converter Based with a Bi-Directional ZETA/SEPIC

Converter

Similar to the SEPIC based with a bi-directional SEPIC/ZETA converter, the ZETA

converter based with a bi-directional ZETA/SEPIC configuration is shown in Figure

3.22(a). To verify the feasibility of this converter, the transition waveforms from a

reconfigured SIDO converter (PV to battery and DC bus) to SISO (battery to DC

bus) are given. The transition considers the moments when PV power is too small

to supply the load and the system shut down the PV source. A simplified SIDO

structure is shown in Figure 3.22(b), in which, the idled switches are removed, the

always on switches are replaced by wires and the body diode of the MOSFETs are

replaced by the normal diodes. The control strategy is when the Vpv reaches the

preset minimum value, the S1 is turned off, and only the battery powers the DC bus.

The transition waveforms are shown in Figure 3.23. As can be seen, after S1 turns

off, Vb is decreased and iL4 is increased, it indicating that the battery is discharging

more energy to the DC bus. Vdc is regulated and remains at 24V , and one of the PV

input inductors iL2 stops delivering energy. During the transition, the overshoot of

the Vdc is around 0.85% which is good and acceptable.

3.8 Conclusion

A family of non-isolated three-port DC-DC converters which integrate with a renew-

able energy source, a battery and a bi-directional port into a simplified converter

structure is synthesized, simulated and experimentally verified. The bi-directional

interface is useful for connecting and controlling DC bus and regenerative load such

as HEV with dynamic braking. These converters are capable of working in seven

operation modes based on the different power conditions of the three ports. The

components in this converter can be selectively configured real-time to operate as

SISO, SIDO or DISO converters. Some components are functionally integrated, for

instance, in the SIDO converter mode a single inductor is used for transferring power
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Figure 3.22: (a) ZETA based converter with a bidirectional ZETA/SEPIC. (b) Sim-
plified ZETA based converter with a bi-directional ZETA/SEPIC in DISO Mode.

from the PV to both the battery and the DC bus. And the same converter is used

for power transfer between the DC bus and the battery. A detailed design exam-

ple of a boost converter based TPC with a bi-directional buck converter is given.

Experimental results are reported and discussed to verify the feasible and flexible

operations of the proposed converter family.
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Figure 3.23: ZETA based converter with a bidirectional ZETA/SEPIC TPC operates
from a reconfigured SIDO converter (PV to battery and DC bus) to a reconfigured
SISO converter (battery to DC bus).
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Chapter 4

Non-Isolated Single-Inductor

DC/DC Converter with Fully

Reconfigurable Structure for

Renewable Energy Applications

4.1 Introduction

Recently, three-port converters (TPCs) have been gaining popularity among appli-

cations which integrate renewable energies and energy storage with the load (e.g.

satellite systems, hybrid vehicles). A number of TPC topologies have been pro-

posed for the benefits of single-stage power conversion between any two ports and

the compact structure. In [19], the authors reviewed and compared recently pub-

lished non-isolated TPCs (NITPCs), partly-isolated TPCs (PITPCs) and isolated

TPCs (ITPCs). The authors indicate the single-inductor in NITPCs reduced the

converter size, cost and further improved power density. However, the voltage gain

of NITPC is limited as most of them are based on conventional buck, boost con-

verters. PITPCs and ITPCs topologies can achieve high voltage gain and provide

electric galvanic isolation. However, they are more costly as either a transformer or
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a coupled inductor has to be included. In [35] a boost converter combined with a

full-bridge LLC resonant circuit is proposed for a PV-battery-load system. In [45]

a NITPC which employs coupled inductors is presented similarly for a stand-alone

system with a high voltage step-up load. In the aforementioned topologies [19], [35]

and [45], the converters are designed for power consuming loads, as shown in Figure

4.1(a).

However, there also exist some loads with power generating capability such as

dynamic braking in electric vehicles and DC microgrids. Most common solutions

to interfacing with a regenerative load can be divided into two groups. One is

to use an extra bi-directional DC/DC converter between the battery and the DC

bus as shown in Figure 4.1(b). A topology example of this solution is shown in

Figure 4.1(c), which is derived and developed from [46]. In [19], a soft-switched NI

bidirectional DC/DC converter is proposed for the battery to interface with the DC

microgrid with a high voltage gain. However, a two-stage power conversion can be

observed when the PV panel charges the battery, which increases power loss due

to repeated power processing. Isolated TPCs using the structure in Figure 4.1(d)

can fulfill bi-directional power flow purposes [20] at the expenses of circuitry and

control complexity. In [29], the authors introduce a series-resonant, three-winding

full-bridge bi-directional TPC to increase the voltage gain and achieve a wide soft-

switching range. In [30] and [38], galvanic TPCs which integrate fuel cells, a bi-

directional load with batteries/supercapacitors are presented using full- and half-

bridge converters respectively. As all ports of the converters have the capability of

bi-directional power flow [29],[38] and [30], they are well- suited to interface with a

regenerative load port. In [47], a virtual isolation control scheme is proposed for a

triple-independent full-bridge converter employing TPC. The main purpose of this

control method is to prevent the power flowing to an idling port when the other two

ports are active (e.g. in electric vehicles charging the battery only without powering

other loads).

To sum up, there are only a few NITPCs reported which can accommodate a
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Figure 4.1: (a) Three-port converter for stand-alone system. (b) DC microgrids
with two independent converters. (c) A topology example of (b). (d) Isolated TPC
and proposed NITPC structure for DC micro-grids.
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Figure 4.2: Proposed converter topology.

bi-directional load. ITPCs are usually adopted to serve the bi-directional power flow

purpose, as they achieve single-stage power conversion between any two ports. How-

ever, the three-winding transformer and many switches increase the converter size,

cost and control complexity. In order to maintain a single-stage power conversion

of the TPC while providing a simple structure for interfacing with a bi-directional

load, particularly for low power applications, a NITPC is proposed with the following

features:

1. The converter integrates and controls a current reversible load, hence, it can

be applied in wider range of practical applications.

2. Only one inductor and four switches are used; the converter is highly inte-

grated.

3. Single-stage power conversion between any two ports, which is a key feature

in conventional TPCs, is preserved.

4. Since in each mode the TPC reconfigures to basic buck converter and boost

converter operations, the control strategies are simple and straightforward.

5. The converter can be flexibly reconfigured into different modes, namely, single-

input single-output (SISO), dual-input single-output (DISO) and single-input

dual-output (SIDO), to fulfil all possible power flow combinations among the

three ports.

69



4.2 Circuitry Characteristics

The proposed converter can be explained in the context of a DC microgrid. The

circuit diagram of the proposed NITPC is shown in Figure 4.2. The representations

of the symbols are summarized as below. The three ports are denoted by voltage

sources Vpv, Vb and Vdc respectively. Among them, the PV panel is the input and is

the only unidirectional port, whereas, the other two are bi-directional ports. The DC

bus can either be treated as a power source or a power consuming load. The battery

port is responsible for balancing the power among the three ports. This topology

can be regarded as an integrated boost-buck converter, and it follows the voltage

settings i.e. Vpv < Vdc < Vb. Inductor L1 is an essential energy storage element for

the PV or DC bus to step up and for battery to step down its voltage to the desired

output voltage. S1, S2, S3 and S4 are power switches where MOSFETs are used. S1

is employed as the main switch of the boost converter as well as to realize maximum

power point tracking (MPPT) of the PV panel. S2 is mainly used to control the

current flow to the DC bus. S3 is for battery to discharge and it is the main switch

of the buck converter. S4 allows the DC bus to be an input source. Diode D1 is

the PV panel inner blocking diode, and it is used to block current from the DC bus

or the battery. Diodes D2 and D3 are the output rectifiers of the boost converter

for the DC bus and battery respectively. Diode D2 also disables the current flowing

back through body diode of S2, and to allow uni-directional current flow on that

branch. D4 is the free-wheeling diode to provide buck converter operation. D5 is

employed to block the battery current flowing to DC bus. C1, C2 and C3 are the

filter capacitors at the PV cells, battery and DC bus respectively. The duty cycles

are determined as d1, d2, d3, d4 and d5, which are the control variables of S1, S2, S3, S4

and D3 respectively.
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Figure 4.3: (a) Topology with current representatives. (b) All possible power con-
versions among the three ports. Each block (i.e. SISO, SIDO, and DISO) denotes
the power flow for which the corresponding power conversion is taken place. (c)
Mode 1 (PV to battery). (d) Mode 2 (PV to DC bus). (e) Mode 3 (PV to battery,
DC bus).
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Figure 4.4: (a) Mode 4 (DC bus to battery). (b) Mode 5 (PV and DC bus to
battery). (c) Mode 6 (PV and battery to DC bus). (d) Mode 7 (battery to DC
bus).
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4.3 Detail of Operational Modes

As the proposed NITPC has two bi-directional ports, namely, the battery port and

the DC bus port, it increases the combinations of different power flow patterns

among the three ports. Overall, the proposed converter is capable of operating

in seven different modes based on the power conditions of each port coupled with

the battery voltage level which is used to evaluate its state of charge. In DC mi-

crogrid applications, the aforementioned seven operation modes can be split into

grid-connected mode and islanded mode. In grid-connected mode, the DC bus is

treated as a current reversible load, which can either absorb or supply power. Modes

1 to 5 belong to this group. Islanded mode occurs when the DC bus is off-grid due

to scenarios such as a fault in the distribution system or the disconnection has oc-

curred due to regular maintenance. The DC bus therefore connects only with the

local consuming loads. Modes 6 and 7 belong to this group.

Figure 4.3(a) indicates the current representations of each component in this

converter. Figure 4.3(b) summaries the possible combinations of operation modes

among the three ports and the reconfigurable converter types, which can be repre-

sented by four SISO converters in black lines, one SIDO converter in blue lines and

two DISO converters in red lines.

4.3.1 Mode 1 (PV to battery; Figure 4.3(c))

This mode is designed for grid-connected mode where the DC bus is regulated by

the AC grid while the PV has just sufficient power to charge the battery. Therefore

the converter works like a conventional SISO boost converter. When S1 turns on,

PV stores energy in inductor L1. When S1 turns off, D3 conducts and both PV and

L1 release their energy to battery.
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4.3.2 Mode 2 (PV to DC bus; Figure 4.3(d))

The converter operates in this mode when the battery is fully charged and PV

power is available. Hence, the PV delivers its energy to DC bus only. The converter

operates as a SISO boost converter. S1 and D2 work in a complementary manner,

and S1 is used to implement the MPPT. To reduce switching loss, S2 is turned on

for the whole operation mode. D5 will not conduct since the body diode of S4 is

reverse biased.

4.3.3 Mode 3 (PV to battery and DC bus; Figure 4.3(e))

This mode happens when the PV current is higher than the rated charging current

of the battery. Hence, the configuration works as a SIDO boost converter. The

relationship among the three ports follows the energy conservation rule which is

PV power equals the sum of the battery power and DC bus power. The operation

is similar to the SISO boost converter. When S1 turns on, L1 is charged. When

S1 turns off, S2, D2 and D3 provide two current paths to dispatch power to DC

bus and battery respectively. Equation (4.1) indicates the current ratio of the two

outputs, in which d2 is controlled by S2 and is determined by the load demand. The

remaining current flows to the battery regardless of the amount when it is not in full

SOC. However, if the battery approaches its full SOC, the amount of the charging

current needs to be limited. As d5 is uncontrollable, the control of this current

can be realized through controlling S2 by utilizing the relationship of currents in

Equation (4.1).

Idc
Ib

=
d2
d5

(4.1)

4.3.4 Mode 4 (DC bus to Battery; Figure 4.4(a))

This mode is set to prevent the battery from over-discharging, and to store some

energy for backup when there is no PV power available. For instance, battery has a

deep discharging when the converter operates in the islanded mode. Hence, after the
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converter recovers to the grid-connected mode, from the battery protection point of

view, it needs to get recharged immediately, especially during the nighttime. Hence,

the DC bus needs to charge the battery. The same SISO boost converter in Mode

1 is used but with an extra switch S4 and a diode D5 added to the operation. S4

fully turns on to allow the DC bus to deliver power and to minimize switching loss.

Switch S1 turns on first to charge L1. When S1 is off, the power from DC bus and

L1 will be released through diode D3 to the battery. D1 is reverse biased, hence, no

power flows to the PV.

4.3.5 Mode 5 (PV and DC bus to Battery; Figure 4.4(b))

In this mode, to meet the battery charging demand, the PV and DC bus work

simultaneously. Hence, the converter operates as a DISO converter. The operation

includes three periods. Firstly, S1 turns on to store energy in L1 from the PV.

Secondly, S1 turns off and S4 turns on, the DC bus releases power to L1 and battery.

Thirdly, both S1 and S4 are off, the PV and L1 deliver energy to the battery.

4.3.6 Mode 6 (PV and Battery to DC bus; Figure 4.4(c))

This mode happens when the solar irradiation is insufficient to supply the DC bus

alone. The battery needs to feed the DC bus simultaneously especially when the

DC bus is off-grid. Hence this mode requires a DISO converter structure. There

are two switching sequences in this mode depending on the amount of PV power

available. In Mode 6A, the PV MPPT function is enabled by turning on S1. PV

charges the inductor L1 first. When S1 turns off, L1 is discharged together with

the battery and the PV respectively. In Mode 6B, the MPPT function is disabled,

as the PV power decreases and the system intends to switch to Mode 7 where the

battery alone powers the DC bus. However, since there is a small amount of PV

power, the converter turns on S3 first to let the battery charge L1 and power the

DC bus. After S3 is turned off, the PV then takes its turn to couple energy to L1

for the DC bus. The two modes are feasible because of the DISO converter which
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employs a boost converter structure, with one input Vb larger than the output Vdc.

4.3.7 Mode 7 (battery to DC bus; Figure 4.4(d))

This mode happens when there is an absence of PV power and the DC bus requires

power (e.g. during night time) in islanded mode. The battery powers the load

alone and the converter operates as a SISO buck converter. When S3 turns on, L1

is charged. The free wheeling diode D4 conducts when the S3 is off. Switch S2 is

always on in this mode. Similar to Mode 6, d3 is responsible for regulating the DC

bus voltage.

The mode selection criteria and duty cycle of each power switch are summarized

in Table 4.1. Vmax and Vmin refer to the maximum and minimum preset values to

prevent battery from over-charging or discharging. A comparison between the pro-

posed NITPC and conventional two-stage design (Figure. 4.1(c)) is given in Table

4.1. Some assumptions are made: 1) As most of the PV panels have inner block-

ing diodes, the loss of D1 is not considered. 2) In Figure 4.1(c), the conversion

efficiencies of the boost and buck/boost converters are η1 and η2 respectively with

η1 = η2 = 90%. 3) The proposed converter and the converter in Figure 4.1(c) use

the same components. 4) Equal power sharing for DISO and SIDO structures. In

Mode 3, a indicates the percentage of Ppv transferred to the battery. Based on the

assumptions above, the efficiencies of the two converters are estimated. The calcu-

lation considers η1 and η2 and the extra diodes PDn and MOSFETs PSn conduction

and switching losses. n indicates the number of switch or diode. The voltage of each

port is Vpv = 17V, Vb = 36V, Vdc = 24V. MOSFETs – IRFP4110PbF and Diodes

– PMEG6030EVP(3A) and STTH3002G(30A) are used to calculate the efficiencies

at 50W and 500W respectively. The results show that the proposed NITPC has a

higher overall efficiency than the topology Figure 4.1(c) in most of the modes, due

to the single-stage power processing. However, it has a lower efficiency in some SISO

configurations, mainly due to the additional diode conduction loss. There are four

strategies to control the duty cycles. These include: the input voltage regulation
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Table 4.1: Operation modes selection and switches operation lookup table for each
operation mode and comparison with Figure 4.1(c).
Modes Power (W ) Vb(V ) d1
Mode 1 PV to battery Ppv = Pb Vb < Vmax PWM(IV R/BV R/BCR)

Mode 2 PV to DC bus Ppv ≥ Pdc Vb ≥ Vmax PWM(IV R)

Mode 3 PV to battery Ppv = Pdc +Pb Vb < Vmax PWM1(IV R)

and DC bus to battery
Mode 4 DC bus to battery Pdc = Pb , Ppv = 0 Vb < Vmax PWM(BV R/BCR)

Mode 5 PV and DC bus Pb = Ppv + Pdc Vb < Vmax PWM(IV R)

Mode 6 PV and battery Ppv + Pb = Pdc Vb > Vmin PWM1(IV R)

0
Mode 7 battery to DC bus Pb = Pdc , Ppv = 0 Vb > Vmin 0
Modes d2 d3 d4 d5
Mode 1 0 0 0 1− d1
Mode 2 1 0 0 0
Mode 3 PWM2BV R/BCR 0 1− d1 − d2 0
Mode 4 0 0 1 1− d1
Mode 5 0 0 d1 1− d1
Mode 6 1 PWM2(OV R) 0 0

1 PWM1(OV R) 0 0
Mode 7 1 PWM(OV R) 0 0
Modes F ig1.(c) Active Proposed Active F ig1.(c) out Proposed NITPC

Components Components −put Power output Power
Mode 1 2L+ 2S + 2D 1L+ 1S + 1D Ppv · η1 · η2 Ppv · η1
Mode 2 1L+ 1S + 1D 1L+ 2S + 1D Ppv · η1 Ppv · η1 −PS2

Mode 3 2L+ 2S + 2D 1L+ 2S + 2D a · Ppv · η1 · η2+ a · Ppv · η1 − PS2+
(1− a) · Ppv · η1 (1− a) · Ppv · η1 − PD2

Mode 4 1L+ 1S + 1D 1L+ 2S + 2D Pdc · η2 Pdc · η2 − PD5 − PS4

Mode 5 2L+ 2S + 2D 1L+ 2S + 2D Ppv · η1 · η2+ Ppv · η1 + Pdc−
Pdc · η2 PS4 − PD5 − PD3

Mode 6 2L+ 2S + 2D 1L+ 3S + 1D Ppv · η1+ Ppv · η1 + Pb−
2L+ 2S + 2D 1L+ 2S + 1D Pb · η2 PS3 − PS2 − PD2

Mode 7 1L+ 1S + 1D 1L+ 2S + 2D Pb · η2 Pb · η2 − PD2 − PS2

Modes F ig.1(c) η1 = η2 = 90% Proposed NITPC η1 = η2 = 90%
50W 500W 50W 500W

Mode 1 81% 81% 90% 90%
Mode 2 90% 90% 89.9% 89.6%
Mode 3 85.5% 85.5% 89.9% 89.9%
Mode 4 90% 90% 87.8% 85%
Mode 5 85.5% 85.5% 93% 92%
Mode 6 90% 90% 92% 90%
Mode 7 90% 90% 87.8% 85%
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(IVR) for MPPT operation, output voltage regulation (OVR) for obtaining desired

output voltages, battery current regulation (BCR) for protecting battery from over-

charging or discharging and battery voltage regulation (BVR) for battery charging.

In the grid-connected mode, the DC bus voltage is constant and can either supply

or absorb as much power as it can. Hence, the duty cycle control emphasizes the

maximization of the PV power (IVR) and battery charging or discharging protection

(BVR/BCR). When in islanded mode, the control is focused on regulating the DC

bus voltage regardless of the MPPT function, hence, OVR is adopted.

4.4 Controller Design

In this section, two simulation examples with feedback control are given to model

the switching of operation modes. The controller combines both digital and analog

control. The digital controller is used to set the analogy circuit references and

determine the operation modes. The analog circuit is responsible for the MPPT

function and for generating the PWM for the MOSFETs. Experimental results,

shown in Figure 4.10 are given to further validate the controller design.

Figure 4.5 shows the operation mode switching from Mode 2 (PV to DC bus) to

Mode 1 (PV to battery). The switching is simply achieved by giving a 15V to 0V

pulse to S2 in simulation. In the experiment, the 0V is from the digital converter,

and the pulse is generated by the analog circuit, they are combined by an AND logic

gate, and generates the final pulses to the S2.

Figure 4.6 shows the operation mode switching from Mode 4 (DC bus to battery)

to Mode 7 (battery to DC bus). The switching is achieved by giving a 15V to 0V

pulse to S2, and an opposite pulse is generated by a NOT gate for S4. Both the

battery and DC bus voltage are sensed, and the control strategy here is based on

the voltage. Similarly, the signal pulse is generated from the digital controller, and

in the experiment, a soft-start is enabled when the signal turns to 0V .
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Figure 4.5: Simulation structure for modeling mode switching, from Mode 2 (PV to
DC bus) to Mode 1 (PV to battery).
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Figure 4.6: Simulation structure for modeling mode switching, from Mode 4 (DC
bus to battery) to Mode 7 (Battery to DC bus).
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4.5 Experimental Verifications

The theoretical analysis of the proposed converter are validated experimentally in

this section. A downsized hardware prototype is built and tested. However, it is

possible to scale up the system by stacking more PV panels and batteries. As the

main focus of this paper is to verify the flexible power flow among the three ports,

we use a DC source in series with a 5.5Ω resistor to emulate the PV panel. Two

battery tanks are used to implement the storage element (36V ) and the DC bus

(24V ) respectively. Since the battery voltage is related closely with its SOC [48],

the battery voltage is used to evaluate the battery capacity for the sake of simplicity.

The drivers for PWM of the MOSFETs are generated by analog circuits while the

monitoring and operation mode selection are implemented by the microcontroller

(MCU) TMS320F28035 from Texas Instruments. The feedback loop is formed by

the following process. Firstly, the MCU senses the present voltages and currents of

the three ports. Secondly, it determines the operation mode which therefore enables

or disables certain switches and sets the references for the analog circuits. Lastly,

the analog circuits coupled with the MCU signals generate PWM signals to drive the

four MOSFETs. The loop then repeats. The design considerations of the inductors

and capacitors in the proposed converter can refer to the section 3.5.2. The detailed

component parameters of the setup is shown in Table 4.2, the experimental setup is

shown in Figure 4.7, and the control structure is shown in Figure 4.8. The measured

efficiencies of the experimental setup have shown a similar trend as predicted, with

measured efficiencies at 88% and 93% in Modes 4 and 5 respectively at 50W.

4.5.1 Verification of the Operation Modes

Among the seven possible operation modes, four are either basic SISO buck or boost

converters, which are Mode 1 (PV to battery), Mode 2 (PV to DC bus), Mode 4

(DC bus to battery) and Mode 7 (battery to DC bus). They follow the performances

of the conventional buck or boost converters and the detailed experimental results

and explanations can refer to the Section 3.5.1 and the Figure 3.11 (a), (d), (f) and
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Table 4.2: Components specification used in the experiment.
Parameter V alue
PV Panel DC Source + 5.5Ω Resistor 17V
Battery DiaMecDM12V − 7.2A ∗ 3(36V )
DC Bus DiaMecDM12V − 7.2A ∗ 2(24V )
Inductor L1 170uH
Capacitor C1, C2, C3 100uF
Diodes PMEG6030EV P
MOSFETs IRF540N
Controller TMS320f28035
Switching Frequency 20kHz

Figure 4.7: Experimental setup for proposed single-inductor NITPC.
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Figure 4.8: Control structure of the proposed NITPC.

(e) respectively.

Waveforms of the SIDO converter in Mode 2 (PV to battery and DC bus), are

shown in Figure 4.9(a). As can be observed, the inductor discharging slope is no

longer linear compared to that of a single output converter. Two slope rates are

adopted due to the different output voltage levels. iD2 or iD3 indicate the alternation

of power dispatched to the two loads during one switching period.

Both Mode 5 (PV and battery to DC bus) and Mode 6 (PV and DC bus to

battery) are DISO converters. As Mode 5 and Mode 6A work in similar manner,

only waveforms of Mode 6A are provided as illustrated in Figure 4.9(b). d1 and

d3 represent the duty cycles of switches S1 and S3 respectively while iD1 and iD2

indicate the PV current and diode D2 current respectively. As can be seen, when

S1 is on, iD1 increases. Inductor L1 is charged while D2 is reverse biased. When

S3 is on, the PV does not supply any power as D1 is reverse biased. The battery

charges both L1 and the DC bus, as the L1 current keeps on increasing and D2 is

conducting. When both S1 and S3 are off, PV and L1 release their energy to the

DC bus as D1 is conducted and inductor current is decreasing. The waveforms of

Mode 6B can be observed in Figure 4.10(c).
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Figure 4.9: (a) Mode 3 (PV to battery, DC bus). (b) Mode 6 (PV and battery to
DC bus), principle one.

4.5.2 Verification of the Operation Mode Switching

Apart from the operation waveforms, the current and voltage responses are illus-

trated in Figure 4.9 to show the transition between the operation modes. Three

practical scenarios are given as examples which are:

4.5.2.1 Load Switching for PV (Mode 2 to Mode 1)

Figure 4.10(a) shows the change in consuming loads and the input PV power remains

unchanged. This scenario happens when the PV power is limited (e.g. at dusk) to

supply the DC bus while the battery is not in full SOC (e.g. battery self-discharge).

It will therefore dispatch power to the battery. As can be observed, Vpv and ipv are

preserved whilst idc and ib indicate the current flow switches from the DC bus to

the battery. Moreover, the change between these two modes can be easily achieved

by switching S2.

4.5.2.2 DC bus Charges Battery When the Bus Suddenly Starts To

Require Power (Mode 4 to Mode 7)

This scenario happens when the DC microgrid changes from grid-connected mode to

islanded mode (for instance with a power cut at night time). In order to verify the

practicability of the bi-directional operations between the two ports, the transient
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Figure 4.10: Transition waveforms of shifting the operation modes. (a) Load switch-
ing for PV (Mode 2 to Mode 1). (b) DC bus charges battery when the bus suddenly
starts to require power (Mode 4 to Mode 7). (c) PV and battery charge DC bus
then PV stops to supply power (Mode 6 to Mode 7).

85



response of the TPC is shown in Figure 4.10(b). Duty cycles d1 and d3 set the

on-time for switches S1 and S3 respectively. This indicates a change of operation

from Mode 4 to Mode 7. The battery current ib and the DC bus current idc show the

opposite current directions when toggled between the two modes. During transition,

the gap between the two pulses is caused by a soft-start function to prevent a large

overshoot, and ib and idc gradually decrease to zero.

4.5.2.3 PV and battery charge DC bus then PV stops to supply power

(Mode 6 to Mode 7)

Figure 4.10(c) shows the switching between the islanded modes. This case considers

the situation when the solar irradiation decreases to zero and the battery needs

to supply the load alone. The converter reconfigures from a DISO converter to a

SISO buck converter. In Mode 6A, S1 is in operation for MPPT, while in Mode

6B, it is idled when Vpv decreases to the preset minimum value. The PV supplies

power with the battery until the PV supply decreases to zero. After the PV reaches

zero output, the operation switches to Mode 7. iD4 represents the current of the

free-wheeling diode D4, showing the buck converter in action. Vdc remains constant

during the mode switching because in islanded mode, the critical control objective

is to maintain the DC bus voltage.

4.6 Extra simulation results

In section 4.5.2, some experimental results of switching the operation mode are

already given. To further verify the mode switching, an extra simulation results is

given, which is switching from Mode 3 (PV to batteyr and DC bus) to Mode 2 (PV

to DC bus). The transition is shown in Figure 4.11. The converter first operates

in Mode 3, and the basic principle is to keep the boost converter main switch S1

operating in MPP, and to use the S2 to control the battery voltage Vb. The rest

PV power flows to the DC bus. The Vref refers to the battery upper charging limit,

which is set as one tenth of the battery voltage Vb. It indicates that when the battery
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charges to 38V, the battery is in full SOC status. Hence, PV should stop charging

the battery and switching to charge the DC bus only. The S1 still responsible to

maintain the PV panel voltage Vpv at the maximum voltage at 17V during the

transition. As can be observed, the Vb is gradually growing to 38V, and when it

reaches, the S2 no longer to regulate the Vb, and it turns on during whole switching

period. As the Vdc is smaller than Vb, hence, all the power from the PV panel flows

to the DC bus. The iD4, which is the current of the rectifier diode D4 to charges the

battery, becomes to 0A. As the simulation uses two voltage sources in series with

the resistors to mimic the battery and DC bus respectively. Hence, when there is

no current flow to the battery, Vb drops. Or when the current is too large, the Vdc

can not maintain in 24 as it supposed to be. However, in real scenario, the Vb and

Vdc will remain at 38V and 24V respectively. During the transition, the Vpv drops

to around 12.5V, and causes a big overshoot, and the iL1 has an acceptable peak

value at 18A. This problem can be solve by designing a more accurate PI controller

and also by adding a ferrite bead which is explained in section 3.7.3.

4.7 Conclusion

A novel NITPC is proposed for a PV-battery-DC microgrid. A more flexible power

flow can be achieved as two of the three ports are capable of handling reversible cur-

rents as compared to one bi-directional port in existing NITPCs. Moreover, a more

compact design is realized without using the transformers and full-bridge converters

in ITPCs which are the common solutions to integrate a bi-directional load. The

proposed NITPC can work and transit smoothly between DC grid-connected mode

and islanded mode. Detailed operation principles, modes selection requirements and

control strategies are explained. The converter can be reconfigured as SISO, SIDO

or DISO converter according to the selected mode. Due to a simplified structure

with only four switches and one inductor, the converter presents a low cost but

highly integrated solution. The experimental results verified the flexible operation

of the converter.
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Figure 4.11: Simulation results of the transition waveforms from Mode 3 (PV to
battery and DC bus) to Mode 2 (PV to DC bus).
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Chapter 5

Conclusion and Future Work

5.1 Conclusions and Contribution

The motivation of this research work was to derive DC/DC converters which inte-

grate the RES and ESS with a regenerative load for applications like PV-battery

powered DC microgrid or HEV braking systems. Conventional methods to achieve

this objective, use either two separate converters or isolated TPCs. For two sepa-

rate converters, a two-stage power processing can be observed in certain operational

modes which decreases the converter efficiency. For isolated TPCs, bi-directional

power flow is allowed and single-stage power processing can be satisfied between any

two ports. However, they employ a three-winding transformer and many switches

which increase the converter size, cost and control complexity. Hence, in this thesis,

NITPCs are recommended and elaborated.

A family of NITPCs with flexible power flow for integrating solar PV and energy

storage into a DC bus are introduced in Chapter 3. A systematic approach to de-

riving the converter family through considering the voltage polarity, voltage levels

among the ports and overall voltage conversion ratio is discussed. Five converter

based configurations which are boost, buck, NIBB, SEPIC and ZETA are presented.

A detailed design example of a boost converter based NITPC is given. To further

reduce the converter size and simplify the structure of the design example in Chap-

ter 3, a single-inductor NITPC with fully reconfigurable structure is introduced in
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Chapter 4.

A summary of the common features of the proposed NITPCs in Chapters 3 and

4 are listed as follows:

1. They consider a current reversible load, hence, they can be applied in a wider

range of practical applications.

2. They preserve the singe-stage power processing between any two ports from

the conventional TPCs for better conversion efficiency.

3. Since they are derived from basic converters (e.g. buck, boost converter), the

control strategies are simple and straightforward.

4. They can be flexibly reconfigured into different modes, namely, SISO, DISO

and SIDO, to fulfil all possible power flow combinations among the three ports.

5. They are able to allow seven different modes of operation among the sources

and load.

6. They are highly integrated, compact and cost-effective due to the reduced

component numbers.

The detailed circuitry analysis, derivation approach, operation principle, simu-

lation and experimental results of the proposed NITPCs are given.

5.2 Future Work

The future study of this research work includes a range of measures to improve

efficiency, scalability and design.

5.2.1 Efficiency and Loss Calculation

The purpose of this research work was to provide efficient, compact and cost-effective

solutions for the PV-DC microgrid application by using NITPCs, and the experi-

ments have verified the feasibilities. However, the components used in the exper-
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iments have not been carefully optimized, hence, the efficiency and loss have not

been investigated yet. Hence this is a topic requiring further research.

5.2.2 Soft-switched Topologies

Soft switching techniques which include ZVS and zero-current-switching (ZCS) are

widely adopted due to their ability to decrease losses due to the switching. Therefore,

the use of the proposed topologies in conjunction with soft-switching techniques are

an area of interest for further research.

5.2.3 Increasing the Voltage Gain of the Proposed NITPCs

As the proposed NITPCs are derived from basic converters (e.g. buck, boost con-

verters), the resultant converters have limited conversion ratios. Although the volt-

ages and powers of the proposed NITPCs are able to be scaled up by stacking the

PV panels and batteries, the power of such series connected PV panels is seriously

affected by the partial shading effect. Parallel connection of PV panels is widely

adopted, however, the voltage level is relatively low. Improving the conversion ratio

between the PV panels and the DC bus while providing the flexible power flow is

an attractive topic of research on NITPCs.

5.2.4 Power Management of the Proposed NITPCs

As the proposed NITPCs are possible to handle a more flexible power flow among

the three ports, namely, seven modes of operation, the power management strategies

can be further optimized for more complex scenarios and conditions that involving

constantly switching between states.
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