569 research outputs found

    Management of Distributed Energy Storage Systems for Provisioning of Power Network Services

    Full text link
    Because of environmentally friendly reasons and advanced technological development, a significant number of renewable energy sources (RESs) have been integrated into existing power networks. The increase in penetration and the uneven allocation of the RESs and load demands can lead to power quality issues and system instability in the power networks. Moreover, high penetration of the RESs can also cause low inertia due to a lack of rotational machines, leading to frequency instability. Consequently, the resilience, stability, and power quality of the power networks become exacerbated. This thesis proposes and develops new strategies for energy storage (ES) systems distributed in power networks for compensating for unbalanced active powers and supply-demand mismatches and improving power quality while taking the constraints of the ES into consideration. The thesis is mainly divided into two parts. In the first part, unbalanced active powers and supply-demand mismatch, caused by uneven allocation and distribution of rooftop PV units and load demands, are compensated by employing the distributed ES systems using novel frameworks based on distributed control systems and deep reinforcement learning approaches. There have been limited studies using distributed battery ES systems to mitigate the unbalanced active powers in three-phase four-wire and grounded power networks. Distributed control strategies are proposed to compensate for the unbalanced conditions. To group households in the same phase into the same cluster, algorithms based on feature states and labelled phase data are applied. Within each cluster, distributed dynamic active power balancing strategies are developed to control phase active powers to be close to the reference average phase power. Thus, phase active powers become balanced. To alleviate the supply-demand mismatch caused by high PV generation, a distributed active power control system is developed. The strategy consists of supply-demand mismatch and battery SoC balancing. Control parameters are designed by considering Hurwitz matrices and Lyapunov theory. The distributed ES systems can minimise the total mismatch of power generation and consumption so that reverse power flowing back to the main is decreased. Thus, voltage rise and voltage fluctuation are reduced. Furthermore, as a model-free approach, new frameworks based on Markov decision processes and Markov games are developed to compensate for unbalanced active powers. The frameworks require only proper design of states, action and reward functions, training, and testing with real data of PV generations and load demands. Dynamic models and control parameter designs are no longer required. The developed frameworks are then solved using the DDPG and MADDPG algorithms. In the second part, the distributed ES systems are employed to improve frequency, inertia, voltage, and active power allocation in both islanded AC and DC microgrids by novel decentralized control strategies. In an islanded DC datacentre microgrid, a novel decentralized control of heterogeneous ES systems is proposed. High- and low frequency components of datacentre loads are shared by ultracapacitors and batteries using virtual capacitive and virtual resistance droop controllers, respectively. A decentralized SoC balancing control is proposed to balance battery SoCs to a common value. The stability model ensures the ES devices operate within predefined limits. In an isolated AC microgrid, decentralized frequency control of distributed battery ES systems is proposed. The strategy includes adaptive frequency droop control based on current battery SoCs, virtual inertia control to improve frequency nadir and frequency restoration control to restore system frequency to its nominal value without being dependent on communication infrastructure. A small-signal model of the proposed strategy is developed for calculating control parameters. The proposed strategies in this thesis are verified using MATLAB/Simulink with Reinforcement Learning and Deep Learning Toolboxes and RTDS Technologies' real-time digital simulator with accurate power networks, switching levels of power electronic converters, and a nonlinear battery model

    Optimized charging control method for plug-in electric vehicles in LV distribution networks

    Get PDF
    207 p.Title: Optimized charging control method for plug-in electric vehicles in low voltage distributionnetworksKeywords: plug-in electric vehicles, smart charging, V2G, distribution networks, smart grids, multiobjectiveoptimization, demand side management, voltage unbalances, DIgSILENT PowerFactory[EN] This thesis proposes a new methodology to integrate plug-in electric vehicles in low voltagedistribution networks. Charging a significant number of plug-in electric vehicles will lead to severalimpacts in low voltage distribution networks such as increase of energy losses, overloads of linesand distribution transformers, voltage drops and unbalances, etc. These impacts will dependlargely on the charging control method used. Furthermore, there can be a conflict of interestsbetween electric vehicle users and electric utilities. In this context, this thesis proposes a newmethodology to efficiently integrate plug-in electric vehicles and, at the same time, it reducescharging costs for electric vehicle users. This new methodology is based on a multi-objectiveoptimization which objective functions are minimizing load variance and charging costs. Inaddition, an improvement has been proposed to coordinate the charging of multiple PEVs in orderto reduce voltage drops and unbalances. Furthermore, the proposed solution has beenimplemented in a decentralized architecture which provides several advantages. Aspects such asusers¿ privacy, reliability and scalability are improved compared to centralized controlarchitectures. A real distribution network located in Borup (Denmark) has been used as model totest the effectiveness of the proposed methodology. Simulation results show that the newmethodology improves load factor, limits energy losses, reduces charging costs and limits voltagedrops and unbalances. Considering all these aspects, the proposed methodology improves theintegration of plug-in electric vehicles in low voltage distribution networks.[SP] La presente tesis doctoral propone una nueva metodología para integrar los vehículoseléctricos enchufables en las redes de baja tensión. La carga de un número significativo devehículos eléctricos producirá varios impactos en las redes de baja tensión como son el aumentode pérdidas, la sobrecarga de líneas y transformadores, caídas de tensión, desequilibrios detensión, etc. Estos impactos dependerán en gran medida del método de control de carga utilizado.Además, puede existir un conflicto de intereses entre los usuarios de vehículos eléctricos y lascompañías distribuidores de electricidad. En este contexto, la presente tesis propone una nuevametodología para integrar eficientemente los vehículos eléctricos enchufables y, al mismo tiempo,reducir los costes de carga. Esta metodología está basada en una optimización multiobjetivo cuyasfunciones objetivo son la minimización de la varianza de la carga y de los costes de carga.Asimismo, se introduce una mejora para coordinar la carga de los vehículos eléctricos enchufablescon el objeto de reducir los desequilibrios y las caídas de tensión. Igualmente, la soluciónpropuesta ha sido implementada en una arquitectura descentralizada que proporciona una seriede mejoras adicionales. Aspectos como la privacidad de los usuarios, la fiabilidad y la modularidadson mejorados respecto a soluciones con arquitecturas centralizadas. Un modelo de una red dedistribución real, localizada en el municipio de Borup (Dinamarca), ha sido utilizado paracomprobar la eficacia de la metodología propuesta. Los resultados obtenidos en las simulacionesdemuestran que la nueva metodología mejora el factor de carga, limita las pérdidas de energía,reduce los costes de carga y limita los desequilibrios y caídas de tensión. Teniendo en cuenta todosestos aspectos, la metodología propuesta mejora la integración de los vehículos eléctricosenchufables en las redes de distribución de baja tensión

    You are what you measure! But are we measuring it right? An empiric analysis of energy access metrics based on a multi-tier approach in Bangladesh

    Get PDF
    Measuring energy access through binary indicators is insufficient, and often, even misleading. In this work, the SE4ALL global tracking framework, and the recently introduced ESMAP multi-tier approach, is critically discussed analyzing questionnaire based primary data from rural Bangladesh. The performance of different energy interventions is evaluated using the new tier framework. The challenges in its application lie in reliable data collection, adequate gradation of indicators, and an effective algorithm for the tier assignment based on the specified set of attributes. The study showcases very high sensitivities to parameter changes, different algorithms, and data requirements. The results reveal a clear trade-off between capturing the multi-dimensionality of energy access and the simplicity of an easy to use global framework. Suggestions to improve the measuring approach are made and conclusions are drawn for possible implications of the tier framework for different energy service offers in the market. Strengths and weaknesses of the present measurement scheme are discussed and country specific results interpreted through targeted gap analysis for future policy advice

    Managing Flexible Loads in Residential Areas

    Get PDF
    Load flexibility in households is a promising option for efficient and reliable operation of future power systems. Due to the distributed nature of residential demand, coordination mechanisms have to cope with a large number of flexible units. This thesis provides a model for demand response analysis and proposes different mechanisms for coordinating flexible loads. In particular, the potential to match intermittent output of renewable generators with electricity demand is investigated

    Analysis of peer-to-peer electricity trading models in a microgrid

    Get PDF
    La tesi propone uno indagine nel campo degli scambi di energia peer-to-peer a livello locale. nella prima parte viene fornito uno stato dell'arte della tecnologia, con una revisione bibliografica dei vari progetti svolti e delle tecnologie utilizzate. Successivamente viene presentato il caso di studio considerato nel progetto, l'implementazione e applicazione di due specifici algoritmi di trading e la discussione di risultati ottenuti e prospettive future

    Decision support for participation in electricity markets considering the transaction of services and electricity at the local level

    Get PDF
    [EN] The growing concerns regarding the lack of fossil fuels, their costs, and their impact on the environment have led governmental institutions to launch energy policies that promote the increasing installation of technologies that use renewable energy sources to generate energy. The increasing penetration of renewable energy sources brings a great fluctuation on the generation side, which strongly affects the power and energy system management. The control of this system is moving from hierarchical and central to a smart and distributed approach. The system operators are nowadays starting to consider the final end users (consumers and prosumers) as a part of the solution in power system operation activities. In this sense, the end-users are changing their behavior from passive to active players. The role of aggregators is essential in order to empower the end-users, also contributing to those behavior changes. Although in several countries aggregators are legally recognized as an entity of the power and energy system, its role being mainly centered on representing end-users in wholesale market participation. This work contributes to the advancement of the state-of-the-art with models that enable the active involvement of the end-users in electricity markets in order to become key participants in the management of power and energy systems. Aggregators are expected to play an essential role in these models, making the connection between the residential end-users, electricity markets, and network operators. Thus, this work focuses on providing solutions to a wide variety of challenges faced by aggregators. The main results of this work include the developed models to enable consumers and prosumers participation in electricity markets and power and energy systems management. The proposed decision support models consider demand-side management applications, local electricity market models, electricity portfolio management, and local ancillary services. The proposed models are validated through case studies based on real data. The used scenarios allow a comprehensive validation of the models from different perspectives, namely end-users, aggregators, and network operators. The considered case studies were carefully selected to demonstrate the characteristics of each model, and to demonstrate how each of them contributes to answering the research questions defined to this work.[ES] La creciente preocupación por la escasez de combustibles fósiles, sus costos y su impacto en el medio ambiente ha llevado a las instituciones gubernamentales a lanzar políticas energéticas que promuevan la creciente instalación de tecnologías que utilizan fuentes de energía renovables para generar energía. La creciente penetración de las fuentes de energía renovable trae consigo una gran fluctuación en el lado de la generación, lo que afecta fuertemente la gestión del sistema de potencia y energía. El control de este sistema está pasando de un enfoque jerárquico y central a un enfoque inteligente y distribuido. Actualmente, los operadores del sistema están comenzando a considerar a los usuarios finales (consumidores y prosumidores) como parte de la solución en las actividades de operación del sistema eléctrico. En este sentido, los usuarios finales están cambiando su comportamiento de jugadores pasivos a jugadores activos. El papel de los agregadores es esencial para empoderar a los usuarios finales, contribuyendo también a esos cambios de comportamiento. Aunque en varios países los agregadores están legalmente reconocidos como una entidad del sistema eléctrico y energético, su papel se centra principalmente en representar a los usuarios finales en la participación del mercado mayorista. Este trabajo contribuye al avance del estado del arte con modelos que permiten la participación activa de los usuarios finales en los mercados eléctricos para convertirse en participantes clave en la gestión de los sistemas de potencia y energía. Se espera que los agregadores desempeñen un papel esencial en estos modelos, haciendo la conexión entre los usuarios finales residenciales, los mercados de electricidad y los operadores de red. Por lo tanto, este trabajo se enfoca en brindar soluciones a una amplia variedad de desafíos que enfrentan los agregadores. Los principales resultados de este trabajo incluyen los modelos desarrollados para permitir la participación de los consumidores y prosumidores en los mercados eléctricos y la gestión de los sistemas de potencia y energía. Los modelos de soporte de decisiones propuestos consideran aplicaciones de gestión del lado de la demanda, modelos de mercado eléctrico local, gestión de cartera de electricidad y servicios auxiliares locales. Los modelos propuestos son validan mediante estudios de casos basados en datos reales. Los escenarios utilizados permiten una validación integral de los modelos desde diferentes perspectivas, a saber, usuarios finales, agregadores y operadores de red. Los casos de estudio considerados fueron cuidadosamente seleccionados para demostrar las características de cada modelo y demostrar cómo cada uno de ellos contribuye a responder las preguntas de investigación definidas para este trabajo

    Continuous Multiagent Control using Collective Behavior Entropy for Large-Scale Home Energy Management

    Full text link
    With the increasing popularity of electric vehicles, distributed energy generation and storage facilities in smart grid systems, an efficient Demand-Side Management (DSM) is urgent for energy savings and peak loads reduction. Traditional DSM works focusing on optimizing the energy activities for a single household can not scale up to large-scale home energy management problems. Multi-agent Deep Reinforcement Learning (MA-DRL) shows a potential way to solve the problem of scalability, where modern homes interact together to reduce energy consumers consumption while striking a balance between energy cost and peak loads reduction. However, it is difficult to solve such an environment with the non-stationarity, and existing MA-DRL approaches cannot effectively give incentives for expected group behavior. In this paper, we propose a collective MA-DRL algorithm with continuous action space to provide fine-grained control on a large scale microgrid. To mitigate the non-stationarity of the microgrid environment, a novel predictive model is proposed to measure the collective market behavior. Besides, a collective behavior entropy is introduced to reduce the high peak loads incurred by the collective behaviors of all householders in the smart grid. Empirical results show that our approach significantly outperforms the state-of-the-art methods regarding power cost reduction and daily peak loads optimization
    corecore