144 research outputs found

    MEDUSA: Scalable Biometric Sensing in the Wild through Distributed MIMO Radars

    Full text link
    Radar-based techniques for detecting vital signs have shown promise for continuous contactless vital sign sensing and healthcare applications. However, real-world indoor environments face significant challenges for existing vital sign monitoring systems. These include signal blockage in non-line-of-sight (NLOS) situations, movement of human subjects, and alterations in location and orientation. Additionally, these existing systems failed to address the challenge of tracking multiple targets simultaneously. To overcome these challenges, we present MEDUSA, a novel coherent ultra-wideband (UWB) based distributed multiple-input multiple-output (MIMO) radar system, especially it allows users to customize and disperse the 16Ă—1616 \times 16 into sub-arrays. MEDUSA takes advantage of the diversity benefits of distributed yet wirelessly synchronized MIMO arrays to enable robust vital sign monitoring in real-world and daily living environments where human targets are moving and surrounded by obstacles. We've developed a scalable, self-supervised contrastive learning model which integrates seamlessly with our hardware platform. Each attention weight within the model corresponds to a specific antenna pair of Tx and Rx. The model proficiently recovers accurate vital sign waveforms by decomposing and correlating the mixed received signals, including comprising human motion, mobility, noise, and vital signs. Through extensive evaluations involving 21 participants and over 200 hours of collected data (3.75 TB in total, with 1.89 TB for static subjects and 1.86 TB for moving subjects), MEDUSA's performance has been validated, showing an average gain of 20% compared to existing systems employing COTS radar sensors. This demonstrates MEDUSA's spatial diversity gain for real-world vital sign monitoring, encompassing target and environmental dynamics in familiar and unfamiliar indoor environments.Comment: Preprint. Under Revie

    NON-CONTACT TECHNIQUES FOR HUMAN VITAL SIGN DETECTION AND GAIT ANALYSIS

    Get PDF
    Human vital signs including respiratory rate, heart rate, oxygen saturation, blood pressure, and body temperature are important physiological parameters that are used to track and monitor human health condition. Another important biological parameter of human health is human gait. Human vital sign detection and gait investigations have been attracted many scientists and practitioners in various fields such as sport medicine, geriatric medicine, bio-mechanic and bio-medical engineering and has many biological and medical applications such as diagnosis of health issues and abnormalities, elderly care and health monitoring, athlete performance analysis, and treatment of joint problems. Thoroughly tracking and understanding the normal motion of human limb joints can help to accurately monitor human subjects or patients over time to provide early flags of possible complications in order to aid in a proper diagnosis and development of future comprehensive treatment plans. With the spread of COVID-19 around the world, it has been getting more important than ever to employ technology that enables us to detect human vital signs in a non-contact way and helps protect both patients and healthcare providers from potentially life-threatening viruses, and have the potential to also provide a convenient way to monitor people health condition, remotely. A popular technique to extract biological parameters from a distance is to use cameras. Radar systems are another attractive solution for non-contact human vital signs monitoring and gait investigation that track and monitor these biological parameters without invading people privacy. The goal of this research is to develop non-contact methods that is capable of extracting human vital sign parameters and gait features accurately. To do that, in this work, optical systems including cameras and proper filters have been developed to extract human respiratory rate, heart rate, and oxygen saturation. Feasibility of blood pressure extraction using the developed optical technique has been investigated, too. Moreover, a wideband and low-cost radar system has been implemented to detect single or multiple human subject’s respiration and heart rate in dark or from behind the wall. The performance of the implemented radar system has been enhanced and it has been utilized for non-contact human gait analysis. Along with the hardware, advanced signal processing schemes have been enhanced and applied to the data collected using the aforementioned radar system. The data processing algorithms have been extended for multi-subject scenarios with high accuracy for both human vital sign detection and gait analysis. In addition, different configurations of this and high-performance radar system including mono-static and MIMO have been designed and implemented with great success. Many sets of exhaustive experiments have been conducted using different human subjects and various situations and accurate reference sensors have been used to validate the performance of the developed systems and algorithms

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Vital Signs Estimation Using a 26 GHz Multi-Beam Communication Testbed

    Get PDF
    This paper presents a novel pipeline for vital sign monitoring using a 26 GHz multi-beam communication testbed. In context of Joint Communication and Sensing (JCAS), the advanced communication capability at millimeter-wave bands is comparable to the radio resource of radars and is promising to sense the surrounding environment. Being able to communicate and sense the vital sign of humans present in the environment will enable new vertical services of telecommunication, i.e., remote health monitoring. The proposed processing pipeline leverages spatially orthogonal beams to estimate the vital sign - breath rate and heart rate - of single and multiple persons in static scenarios from the raw Channel State Information samples. We consider both monostatic and bistatic sensing scenarios. For monostatic scenario, we employ the phase time-frequency calibration and Discrete Wavelet Transform to improve the performance compared to the conventional Fast Fourier Transform based methods. For bistatic scenario, we use K-means clustering algorithm to extract multi-person vital signs due to the distinct frequency-domain signal feature between single and multi-person scenarios. The results show that the estimated breath rate and heart rate reach below 2 beats per minute (bpm) error compared to the reference captured by on-body sensor for the single-person monostatic sensing scenario with body-transceiver distance up to 2 m, and the two-person bistatic sensing scenario with BS-UE distance up to 4 m. The presented work does not optimize the OFDM waveform parameters for sensing; it demonstrates a promising JCAS proof-of-concept in contact-free vital sign monitoring using mmWave multi-beam communication systems

    Vital Signs Estimation Using a 26 GHz Multi-Beam Communication Testbed

    Full text link
    This paper presents a novel pipeline for vital sign monitoring using a 26 GHz multi-beam communication testbed. In context of Joint Communication and Sensing (JCAS), the advanced communication capability at millimeter-wave bands is comparable to the radio resource of radars and is promising to sense the surrounding environment. Being able to communicate and sense the vital sign of humans present in the environment will enable new vertical services of telecommunication, i.e., remote health monitoring. The proposed processing pipeline leverages spatially orthogonal beams to estimate the vital sign - breath rate and heart rate - of single and multiple persons in static scenarios from the raw Channel State Information samples. We consider both monostatic and bistatic sensing scenarios. For monostatic scenario, we employ the phase time-frequency calibration and Discrete Wavelet Transform to improve the performance compared to the conventional Fast Fourier Transform based methods. For bistatic scenario, we use K-means clustering algorithm to extract multi-person vital signs due to the distinct frequency-domain signal feature between single and multi-person scenarios. The results show that the estimated breath rate and heart rate reach below 2 beats per minute (bpm) error compared to the reference captured by on-body sensor for the single-person monostatic sensing scenario with body-transceiver distance up to 2 m, and the two-person bistatic sensing scenario with BS-UE distance up to 4 m. The presented work does not optimize the OFDM waveform parameters for sensing; it demonstrates a promising JCAS proof-of-concept in contact-free vital sign monitoring using mmWave multi-beam communication systems

    Contactless WiFi Sensing and Monitoring for Future Healthcare:Emerging Trends, Challenges and Opportunities

    Get PDF
    WiFi sensing has recently received significant interest from academics, industry, healthcare professionals and other caregivers (including family members) as a potential mechanism to monitor our aging population at distance, without deploying devices on users bodies. In particular, these methods have gained significant interest to efficiently detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems stems from its practical deployments in indoor settings and compliance from monitored persons, unlike other sensors such as wearables, camera-based, and acoustic-based solutions. This paper reviews state-of-the-art research on collecting and analysing channel state information, extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, untapped areas, and related trends.This work aims to provide an overarching view in understanding the technology and discusses its uses-cases from a perspective that considers hardware, advanced signal processing, and data acquisition

    Remote Human Vital Sign Monitoring Using Multiple-Input Multiple-Output Radar at Millimeter-Wave Frequencies

    Get PDF
    Non-contact respiration rate (RR) and heart rate (HR) monitoring using millimeter-wave (mmWave) radars has gained lots of attention for medical, civilian, and military applications. These mmWave radars are small, light, and portable which can be deployed to various places. To increase the accuracy of RR and HR detection, distributed multi-input multi-output (MIMO) radar can be used to acquire non-redundant information of vital sign signals from different perspectives because each MIMO channel has different fields of view with respect to the subject under test (SUT). This dissertation investigates the use of a Frequency Modulated Continuous Wave (FMCW) radar operating at 77-81 GHz for this application. Vital sign signal is first reconstructed with Arctangent Demodulation (AD) method using phase change’s information collected by the radar due to chest wall displacement from respiration and heartbeat activities. Since the heartbeat signals can be corrupted and concealed by the third/fourth harmonics of the respiratory signals as well as random body motion (RBM) from the SUT, we have developed an automatic Heartbeat Template (HBT) extraction method based on Constellation Diagrams of the received signals. The extraction method will automatically spot and extract signals’ portions that carry good amount of heartbeat signals which are not corrupted by the RBM. The extracted HBT is then used as an adapted wavelet for Continuous Wavelet Transform (CWT) to reduce interferences from respiratory harmonics and RBM, as well as magnify the heartbeat signals. As the nature of RBM is unpredictable, the extracted HBT may not completely cancel the interferences from RBM. Therefore, to provide better HR detection’s accuracy, we have also developed a spectral-based HR selection method to gather frequency spectra of heartbeat signals from different MIMO channels. Based on this gathered spectral information, we can determine an accurate HR even if the heartbeat signals are significantly concealed by the RBM. To further improve the detection’s accuracy of RR and HR, two deep learning (DL) frameworks are also investigated. First, a Convolutional Neural Network (CNN) has been proposed to optimally select clean MIMO channels and eliminate MIMO channels with low SNR of heartbeat signals. After that, a Multi-layer Perceptron (MLP) neural network (NN) is utilized to reconstruct the heartbeat signals that will be used to assess and select the final HR with high confidence
    • …
    corecore