43 research outputs found

    Teaching Memory Circuit Elements via Experiment-Based Learning

    Full text link
    The class of memory circuit elements which comprises memristive, memcapacitive, and meminductive systems, is gaining considerable attention in a broad range of disciplines. This is due to the enormous flexibility these elements provide in solving diverse problems in analog/neuromorphic and digital/quantum computation; the possibility to use them in an integrated computing-memory paradigm, massively-parallel solution of different optimization problems, learning, neural networks, etc. The time is therefore ripe to introduce these elements to the next generation of physicists and engineers with appropriate teaching tools that can be easily implemented in undergraduate teaching laboratories. In this paper, we suggest the use of easy-to-build emulators to provide a hands-on experience for the students to learn the fundamental properties and realize several applications of these memelements. We provide explicit examples of problems that could be tackled with these emulators that range in difficulty from the demonstration of the basic properties of memristive, memcapacitive, and meminductive systems to logic/computation and cross-bar memory. The emulators can be built from off-the-shelf components, with a total cost of a few tens of dollars, thus providing a relatively inexpensive platform for the implementation of these exercises in the classroom. We anticipate that this experiment-based learning can be easily adopted and expanded by the instructors with many more case studies.Comment: IEEE Circuits and Systems Magazine (in press

    On the development of memristive devices for electroforming-free and analog memristive crossbar arrays

    Get PDF
    Memristive devices can reversibly change their resistance by applying an electrical voltage or current. These thin-film devices have the potential to serve as central components in novel neuromorphic circuits, similar to synapses in the human brain. Unlike traditional neuromorphic systems, they enable a state-based and non-volatile weight between two neurons. This comes very close to the natural model of the human brain, where information is stored and processed together. The aim of this thesis was the development of novel memristive devices and the integration into crossbar arrays. An essential requirement was an analogous resistance change, which allows continuous changes in resistance. It was found, that devices with a combination of tunnel and Schottky barriers are best suited for this purpose. These double barrier devices show an analogous and homogeneous resistance change. As a reference system, filament-based memristive devices have been developed that alter their resistance due the migration of silver. Since the formation of filaments is almost random, they have a significantly higher device variability and very few states between the off- and on-state. Only the high quality of the double barrier component allowed the circuit integration without the need to individually adjust circuit parameters for each memristive device. Due to the non-linear switching characteristics and the advantageous I-V characteristics, the devices were integrated into a space-saving crossbar architecture, which increased the packing density tenfold. Due to the simultaneously simplified electrical connection, it was possible to realize a circuit for pattern classification with 180 memristive devices. The construction of an automated measuring system enabled the characterization of a large number of devices. The development of database-supported measurement and evaluation programs facilitated the analysis of the device and switching properties

    Memristors : a journey from material engineering to beyond Von-Neumann computing

    Get PDF
    Memristors are a promising building block to the next generation of computing systems. Since 2008, when the physical implementation of a memristor was first postulated, the scientific community has shown a growing interest in this emerging technology. Thus, many other memristive devices have been studied, exploring a large variety of materials and properties. Furthermore, in order to support the design of prac-tical applications, models in different abstract levels have been developed. In fact, a substantial effort has been devoted to the development of memristive based applications, which includes high-density nonvolatile memories, digital and analog circuits, as well as bio-inspired computing. In this context, this paper presents a survey, in hopes of summarizing the highlights of the literature in the last decade

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    On the application of a diffusive memristor compact model to neuromorphic circuits

    Get PDF
    Memristive devices have found application in both random access memory and neuromorphic circuits. In particular, it is known that their behavior resembles that of neuronal synapses. However, it is not simple to come by samples of memristors and adjusting their parameters to change their response requires a laborious fabrication process. Moreover, sample to sample variability makes experimentation with memristor-based synapses even harder. The usual alternatives are to either simulate or emulate the memristive systems under study. Both methodologies require the use of accurate modeling equations. In this paper, we present a diffusive compact model of memristive behavior that has already been experimentally validated. Furthermore, we implement an emulation architecture that enables us to freely explore the synapse-like characteristics of memristors. The main advantage of emulation over simulation is that the former allows us to work with real-world circuits. Our results can give some insight into the desirable characteristics of the memristors for neuromorphic applications

    Women in Science 2016

    Get PDF
    Women in Science 2016 summarizes research done by Smith College’s Summer Research Fellowship (SURF) Program participants. Ever since its 1967 start, SURF has been a cornerstone of Smith’s science education. In 2016, 150 students participated in SURF (144 hosted on campus and nearby eld sites), supervised by 56 faculty mentor-advisors drawn from the Clark Science Center and connected to its eighteen science, mathematics, and engineering departments and programs and associated centers and units. At summer’s end, SURF participants were asked to summarize their research experiences for this publication.https://scholarworks.smith.edu/clark_womeninscience/1005/thumbnail.jp

    Applications of memristors in conventional analogue electronics

    Get PDF
    This dissertation presents the steps employed to activate and utilise analogue memristive devices in conventional analogue circuits and beyond. TiO2 memristors are mainly utilised in this study, and their large variability in operation in between similar devices is identified. A specialised memristor characterisation instrument is designed and built to mitigate this issue and to allow access to large numbers of devices at a time. Its performance is quantified against linear resistors, crossbars of linear resistors, stand-alone memristive elements and crossbars of memristors. This platform allows for a wide range of different pulsing algorithms to be applied on individual devices, or on crossbars of memristive elements, and is used throughout this dissertation. Different ways of achieving analogue resistive switching from any device state are presented. Results of these are used to devise a state-of-art biasing parameter finder which automatically extracts pulsing parameters that induce repeatable analogue resistive switching. IV measurements taken during analogue resistive switching are then utilised to model the internal atomic structure of two devices, via fittings by the Simmons tunnelling barrier model. These reveal that voltage pulses modulate a nano-tunnelling gap along a conical shape. Further retention measurements are performed which reveal that under certain conditions, TiO2 memristors become volatile at short time scales. This volatile behaviour is then implemented into a novel SPICE volatile memristor model. These characterisation methods of solid-state devices allowed for inclusion of TiO2 memristors in practical electronic circuits. Firstly, in the context of large analogue resistive crossbars, a crosspoint reading method is analysed and improved via a 3-step technique. Its scaling performance is then quantified via SPICE simulations. Next, the observed volatile dynamics of memristors are exploited in two separate sequence detectors, with applications in neuromorphic engineering. Finally, the memristor as a programmable resistive weight is exploited to synthesise a memristive programmable gain amplifier and a practical memristive automatic gain control circuit.Open Acces

    Biologically Inspired Vision and Control for an Autonomous Flying Vehicle

    Get PDF
    This thesis makes a number of new contributions to control and sensing for unmanned vehicles. I begin by developing a non-linear simulation of a small unmanned helicopter and then proceed to develop new algorithms for control and sensing using the simulation. The work is field-tested in successful flight trials of biologically inspired vision and neural network control for an unstable rotorcraft. The techniques are more robust and more easily implemented on a small flying vehicle than previously attempted methods. ¶ ..
    corecore