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Abstract

This thesis makes a number of new contributions to control and sensing for un-

manned vehicles. I begin by developing a non-linear simulation of a small unmanned

helicopter and then proceed to develop new algorithms for control and sensing us-

ing the simulation. The work is field-tested in successful flight trials of biologically

inspired vision and neural network control for an unstable rotorcraft. The tech-

niques are more robust and more easily implemented on a small flying vehicle than

previously attempted methods.

Experiments from biology suggest that the sensing of image motion or optic

flow in insects provides a means of determining the range to obstacles and terrain.

This biologically inspired approach is applied to control of height in a helicopter,

leading to the World’s first optic flow based terrain following controller for an un-

manned helicopter in forward flight. Another novel optic flow based controller is

developed for the control of velocity in hover. Using the measurements of height

from other sensors, optic flow is used to provide a measure of the helicopters lateral

and longitudinal velocities relative to the ground plane. Feedback of these velocity

measurements enables automated hover with a drift of only a few cm per second,

which is sufficient to allow a helicopter to land autonomously in gusty conditions

with no absolute measurement of position.

New techniques for sensor fusion using Extended Kalman Filtering are devel-

oped to estimate attitude and velocity from noisy inertial sensors and optic flow

measurements. However, such control and sensor fusion techniques can be compu-

tationally intensive, rendering them difficult or impossible to implement on a small

unmanned vehicle due to limitations on computing resources. Since neural networks

can perform these functions with minimal computing hardware, a new technique of

control using neural networks is presented. First a hybrid plant model consisting

of exactly known dynamics is combined with a black-box representation of the un-

known dynamics. Simulated trajectories are then calculated for the plant using an

optimal controller. Finally, a neural network is trained to mimic the optimal con-

troller. Flight test results of control of the heave dynamics of a helicopter confirm

the neural network controller’s ability to operate in high disturbance conditions and

suggest that the neural network outperforms a PD controller. Sensor fusion and

control of the lateral and longitudinal dynamics of the helicopter are also shown to

be easily achieved using computationally modest neural networks.
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Chapter 1

Introduction

1.1 Aim

The aim of this thesis is to investigate and develop an effective control system for a

flying vehicle using biologically inspired vision as the primary sensor. The underlying

motivation for this work is that it might make autonomy for Unmanned Aerial

Vehicles more practical in a real-world environment. This should be achievable

using cheaper and smaller vision based sensors to replace or augment sensors based

on Global Positioning Systems (GPS) and expensive Inertial Navigation Systems

(INS). In addition, vision potentially offers a better solution to the problem of

obstacle avoidance and terrain clearance than conventional techniques such as radar

or laser rangefinding.

Work in this thesis is confined to the control of helicopters in both hover and

forward flight. This is deliberately done as it increases the generality of the tech-

niques used, making them applicable to not just forward flight at high speed, but

also to vehicles attempting to operate in a confined region where motion may in-

volve occasionally stopping, flying sideways, vertically, turning on the spot or even

flying backwards. This makes the work more challenging owing to the additional

difficulties of controlling such a platform. Helicopters are dynamically unstable and

require constant external manipulation of the control inputs by a human or a ma-

chine pilot to prevent divergence from the desired flight path. Helicopter control is

highly non-linear due to the complex nature of the rotor aerodynamics. Helicopter

control channels are also highly coupled. For example, a commanded increase in

rotor thrust causes an increase in torque which must be compensated by application

of increased tail rotor pitch; this in turn requires a lateral tilt to the main rotor disk

to prevent sideways motion; this rotor tilt then needs to be offset by an increase in

thrust and a rotor longitudinal tilt to compensate for rotor flapping cross-coupling

effects.

1.2 Motivation

1.2.1 Unmanned Aerial Vehicles

Autonomous flying vehicles have many applications for operations in dangerous areas

where the risk to a human pilot would be unacceptable. Some examples include:

1
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mine detection and disposal, operations near a volcano and operations in radioactive

environments (e.g. dumping coolant on Chernobyl). They also have great potential

for applications such as search and rescue, exploration, crop dusting, interplanetary

exploration, survey, coastal patrol, pollution monitoring and atmospheric study.

Recent trends in modern warfare are showing an increased reliance on autonomous

flying vehicles to provide reconnaissance information and battlefield intelligence in

hostile environments. In April 2005, the New York Times [1] reported that the

number of UAVs in use in the skies over Iraq had exceeded 700. Such craft remove

humans from regions of potential danger and offer the hope of one day eliminating

humans from the battlefield.

1.2.2 Why vision sensing?

Laser Rangefinders (LRF) and radars both tend to be bulky which precludes them

from use on vehicles smaller than about 20kg. A typical LRF used for robotics is

the SICK LMS291 which weighs approximately 4.5kg [2]. The smallest Synthetic

Aperture Radar (SAR) planned for UAVs is likely to be the miniSAR from Sandia

Labs at 4-5kg [3]. By contrast, a self-contained device capable of measuring image

motion for terrain following has been produced by the Defence Science and Technol-

ogy Organisation (DSTO) which weighs less than 5 grams. The miniaturisation of

sensors will contribute to the practicality of Micro Air Vehicles (MAVs), classified as

aircraft with a wingspan of 15cm or less. MAVs could be used in a multitude of new

roles, benefiting from the low cost of manufacture and the difficulty of detection.

For military use, MAVs could be manufactured as a disposable item. The reduced

airworthiness regulatory requirements of MAVs makes them much easier to integrate

into the human environment since an MAV crash presents practically no risk to life

or property. The problem of fully integrating larger UAVs into civilian airspace is

still largely an unsolved problem and financial insurance for UAVs is hence difficult

to obtain for commercial operations.

The passive nature of a vision sensor provides many advantages over other forms

of ranging devices. Firstly, by not producing any electromagnetic emissions, a vision

sensor can be used in an operational environment where stealth is important, such

as on the battlefield or in a law enforcement situation. Secondly, there are health

risks associated with the use of radar and laser which need management. By using

a wide field of view, a camera also provides simultaneous ranging information over

a large area. Radars and laser rangefinders are essentially point sensors and need

to be scanned over the environment to build up a 3D map of the terrain. This

adds mechanical complexity or introduces the need for large antenna arrays to be

installed.

The most common navigation sensor used on UAVs is GPS. This is an appropri-

ate sensor for medium to high altitude aircraft flying away from terrain. However,

close to the ground, where terrain clearance must be maintained, GPS is only useful

when very detailed maps of the ground relief and other obstacles is held onboard.

In many cases this is not practical. In particular, when operating in urban environ-

ments, the obstacles to be avoided may be in motion such as cars and people. Vision
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provides an immediate observation of the environment and should be able to provide

a means of navigating through it which does not require a priori information about

the position of objects.

There is an increasing need for small UAVs to operate in urban cluttered envi-

ronments where GPS coverage cannot be guaranteed. Most accurate GPS imple-

mentations require at least 8 satellites to be observable in the sky. When flying

close to buildings, beneath underpasses and for indoor flight, this coverage will not

be achieved. One solution may be to augment GPS with visual sensing for parts

of the mission where GPS is not providing full accuracy. Alternatively, GPS would

be used to navigate a UAV into close proximity to a desired location before visual

guidance is activated to achieve high fidelity positioning near obstacles.

1.3 Approach

We learn from biology that it must be possible to build systems that are of small

size yet able to deal with complex environments. Many of the techniques used

by others in the related work section make use of feature matching and tracking

approaches which are difficult to achieve in repeated experiments due to changes in

environment such as varying lighting conditions. In this thesis, I have attempted

to search for ways to make the flight control system simple yet robust. Further I

have tried to apply biologically inspired vision to a more complicated and general

flight control problem than has been done before. Work by others on optic flow

sensing (see Chapter 2 for references) is mainly concerned with fixed wing aircraft,

ground robots and blimps which are either inherently stable or have such long time

constants in their motion that control stability becomes trivial.

As this thesis has progressed, the availability of new hardware has often su-

perceded work already completed. Initially, an off the shelf Hirobo Eagle helicopter

was adapted to autonomous operations by addition of sensors and a telemetry system

so that automated control could be executed from a ground-based computer. Later

developments in computer hardware and further competitive grant based funding,

permitted construction of an onboard processing system for another Eagle helicopter.

On these helicopters, all of the sensors were developed in-house including a series

of three-axis inertial measurement systems. The small payload capabilities of these

helicopters made miniaturisation of systems a primary concern. In 2004, through an

ARC Linkage grant, a Yamaha RMAX 90 kg helicopter became available. This he-

licopter had a much larger payload carrying capacity (30kg) and came with its own

inertial measurement system and convenient RS-232 based interfaces to controls and

telemetry. The longer endurance of the RMAX (1 hour compared to 15 minutes for

the Eagle) made the experimental side of the project much easier. For the purposes

of this thesis, the availability of the RMAX made much of the systems integration

work completed on the Eagle redundant. I have however persevered with the Eagle

architecture in parallel, to prove that the same concepts can be applied to a much

smaller rotorcraft with lower grade sensors.

Although the visual control in the thesis starts with fairly complex algorithms, I
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have been able to move to much simpler and less computationally intensive schemes

based on optic flow. The first visual guidance system used the more conventional

machine vision approach, involving the tracking of features on the ground with

detailed mathematics to resolve egomotion from the observed relative position of the

features. This method was found to be brittle and time consuming to implement.

The schemes based on optic flow were found to be much easier to demonstrate in the

field, owing to not having a reliance on feature tracking or complicated mathematical

processing.

1.4 Contributions

This thesis is primarily concerned with how to take processed visual sensor output

and use it in conjunction with the inertial sensors to control the flight path of a

helicopter. The thesis comprises the following key achievements:

• Development of a fully non-linear simulation of a small unmanned helicopter

and its sensors,

• A system for controlling a helicopter in hover using 3 visual landmarks on the

ground,

• Use of optic flow for controlling the longitudinal and lateral drift of a helicopter

attempting to hover over the ground without reference to any landmarks,

• The use of optic flow based ranging in forward flight to achieve terrain follow-

ing,

• The application of artificial neural networks to the control of a helicopter using

vision as the primary sensor, and

• An examination of new techniques for sensor fusion of inertial and visual in-

formation to produce estimates of attitude and velocity suitable for control of

the vehicle,

1.5 Layout of the Thesis

The thesis contains nine chapters. In Chapter 2, related work in the areas of visual

control of flight vehicles, calculation of optic flow and control techniques is presented.

Chapter 3 provides an overview of helicopter dynamics and details the implemen-

tation of a helicopter simulation for testing of control schemes and sensor fusion

used in the thesis. A detailed system description is provided for the helicopters

used in Chapter 4. Chapter 5 describes the experiments completed to control a he-

licopter in hover using vision as the primary sensor. The control of forward flight is

tackled in Chapter 6. Control schemes based on Artificial Neural Networks (ANN),

which reduce the mathematical complexity yet deal with the unmodelled helicopter
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dynamics are discussed in Chapter 7. In Chapter 8, advanced sensor fusion tech-

niques using Extended Kalman Filters are developed for combining the available

sensory inputs to provide useful variables for control. Finally, my conclusions and

recommendations for future work are provided in Chapter 9.





Chapter 2

Related Work

2.1 Introduction

This thesis project draws upon work from a number of diverse fields. I have struc-

tured my review of the related literature in terms of biologically inspired vision,

visual flight control, optic flow, sensor fusion and helicopter control.

2.2 Biologically Inspired Vision

This thesis was originally inspired by work done by Srinivasan et al [4–6] on the

mechanisms by which insects use optic flow to aid in navigation. Optic flow is the

motion of visual features across the field of view of the observer caused by translation

or rotation of the observer. Optic flow has various definitions in a machine vision

context, but is commonly described as the apparent motion of brightness patterns in

an image sequence [7]. Optic flow can be used to perceive relative range of objects

in the environment since close objects exhibit a higher angular motion in the visual

field than distant objects, when the observer is in motion.

A number of researchers e.g. [8–10] have suggested that insects in forward flight

perceive the range to objects in their field of view using optic flow. In [11], Srinivasan

theorises that insects use this process to maintain terrain and obstacle clearance by

effectively flying away from places in their field of view where angular motion is

high. This idea is at least 50 years old, and was put forward by Kennedy [12,13] as

early as 1939. Through a series of experiments, Srinivasan and colleagues gathered

evidence for this idea based on the notion that bees use optic flow to centre their

flight path through narrow gaps. In the experiment, bees were trained to fly down

a tunnel. One of the walls of the tunnel was able to be moved longitudinally in

either direction using a conveyor belt arrangement. Averaged over many flights, a

very clear trend was that bees flying in the same direction as the moving wall flew

closer to the wall while bees flying in the opposite direction to the moving wall flew

further away. Further experiments demonstrated that this effect was not influenced

by the spatial period, intensity profile or contrast of the patterns placed on the

tunnel walls. Together, these experiments demonstrate that bees must judge their

distance from objects using the apparent angular speed of the environment. This

makes sense since it will provide a means of measuring range which is independent

of the visual texture of the environment, provided flight speed or height is known.

7
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c.

b. e. f.a.

d.

Figure 2.1: The bee centring response. In Srinivasan’s experiments, bees fly down tunnels

that are adorned with vertical strips as depicted in the top image. Over hundreds of flights,

the flight path of the bees was recorded and exhibits the mean and standard deviation

shown by the shaded regions in [a-f]. These results show that bees use image motion

to determine range from obstacles. Reproduced with permission from Srinivasan and

Zhang [14].

Another observation of bee behaviour leads to a proposed scheme for landing a

UAV based on optic flow [15]. In experiments by Srinivasan et al [16], the 3D landing

trajectories of bees were filmed using a video camera. The bees were seen to hold

longitudinal optic flow constant whilst maintaining a constant glide angle of about

28o to the touchdown point. The glide angle could be maintained by keeping the

target touch down point at the same angular position in the retina, or by regulating

a constant ratio of descent speed to forward speed. The two conditions of constant

optic flow and constant glideslope are all that are needed to fly the insect down

to a landing. In addition, as the optic flow is inversely proportional to range, the

bee’s forward and descent speed will reduce as the landing points get closer, to both

reach zero at touchdown, providing a smooth landing. A major advantage of this

method is that the flight speed or height of the insect does not need to be measured,

eliminating the need for other sensing strategems such as stereo disparity until the

insect is about to flare for landing. In a fixed wing aircraft, the ever decreasing flight

speed would at some point would cause the aircraft to stall. However, one could

imagine this technique used to control the landing approach of a helicopter, which

has no limits on slow speed flight.

The fact that insects have such tiny brains, yet can operate so effectively in flight,

suggests that their mechanisms for visual control of flight must be efficient. Hence,

I have chosen to attempt to use optic flow sensing as one of the key elements in the

design of the control system for this thesis project.

Insects do not use vision alone for stabilisation [17–21]. Instead, they use a

combination of inertial, visual and other sensing modes. They also undoubtedly

have dynamics state models built into their nervous system which allow them to

anticipate, in feed-forward, the effect of their muscular actions on their flight path.

With this in mind, I have attempted to design a system that integrates basic inertial

sensors with visual sensing as the primary sensor.
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2.3 Application of Visual Control to Robots

Vision has been used to control robots since at least the early 1970s [22]. A number

of researchers have applied vision in control loops to ground-based robots using optic

flow [5, 23, 24] for collision avoidance. Other techniques that have been commonly

used in ground-based robots include stereo vision and target tracking.

During the life of this thesis project, visual control of UAVs has been a very

active area of research. Consequently, there have been a number of other groups

using similar approaches to mine which have published in the literature after I

completed the fundamental milestones of successful landmark tracking hover [25] in

2000 and optic flow controlled hover [26] in 2001. I have included the later work in

the following brief overview of progress in the field.

2.3.1 Biologically Inspired Visual Flight Control

For his PhD dissertation [27], Barrows developed a VLSI optic flow sensor for use

in a micro-UAV. The sensor consisted of a single chip sensor head containing photo

receptors and analog processing combined with a microcontroller that completed

the processing and output servo commands. The optic flow sensor was tested on a

small glider and used to avoid the floor and walls of an indoor hallway. The control

algorithm employed was ‘bang-bang’ in that if a certain threshold of optic flow was

exceeded, the aircraft elevator (or rudder) would be moved to a preset deflection.

In later work [28], optic flow sensors have been used outdoors by Barrows to control

the altitude of a small radio-controlled aircraft at altitudes ranging from 2 metres

to 10 metres.

In [29] a tethered 100 gram helicopter is described which used optic flow for ter-

rain following over an indoor circular track. The autopilot called OCTAVE (Optical

altitude Control sysTem for Autonomous VEhicles) was used to control a single

rotor mounted on a whirling arm. This arrangement constrained the rotorcraft to

flight in a circular path so that only one dimensional flow in the tangential direction

needed to be considered. The pitch of the rotor was adjusted by the operator to

set the desired speed of the helicopter. The height of the rotorcraft was controlled

by the autopilot by changing the speed, and hence thrust, of the rotor in response

to the perceived height over the terrain determined by optic flow. This technique

allowed the rotorcraft to maintain a relatively constant height over the terrain which

included a shallow ramp. In another experiment, the helicopter was able to land

by maintaining constant optic flow whilst the forward speed was reduced, a tech-

nique suggested by Srinivasan et al in [4]. For these experiments, the optic flow

was measured using a 1D Elementary Motion Detector (EMD) [30] inspired by the

physiological structure of a housefly’s visual system. The EMD circuit measured

the output of 20 photoreceptors arranged in a line and was implemented firstly on a

Field Programmable Gate Array (FPGA) [31] and later using a tiny microcontroller

to produce a sensor weighing less than one gram. In a related project, Zufferey [32]

used optic flow to control a number of robots. In Zufferey’s work, the output of

a 1D camera was processed by a PIC microcontroller to determine optical flow in
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one direction. The resulting optic flow computation was used to control a ground

vehicle and a small fixed wing aircraft. A number of behaviours were achieved:

• Steering control. Two 1D cameras, oriented at 45◦ from the forward axis,

were mounted on the fuselage of the fixed wing. The aircraft was flown inside a

large room and when optic flow on either camera exceeded a certain threshold,

the aircraft was turned by about 90◦ to avoid hitting a wall. The control was

achieved by smoothly applying rudder to full deflection and turning the aircraft

over a period of one second. Using this technique, the airplane was able to fly

four minutes without colliding with a wall.

• Simulated altitude control. A wheeled robot was used to maintain a con-

stant distance from a wall to simulate altitude control. By keeping optic flow

constant in a feedback loop, the robot maintained a relatively constant dis-

tance from the wall.

Reiser and Dickinson [33] describe object avoidance using optic flow in an insect-

inspired robotic control test bed comprising a 5 degree of freedom gantry. A vision

sensor comprising a 30 frame per second 115o x 95o field of view camera was placed

on the gantry and was free to move within a 92cm diameter cylindrical arena. A

PC attached to the sensor using a frame grabber was able to calculate optic flow

using an array of spatio-temporal correlation elements, using the method proposed

by Hassenstein and Reichardt [34]. For the experiments, the vertical position and

translational speed of the robot was kept constant and pitch and roll attitude was

kept fixed. Detectors for image expansion were used to trigger insect-like saccades,

such that the robot would rapidly change heading when approaching an obstacle.

The results showed that simple image loom detectors were enough to prevent the

robot from hitting the walls of the arena and obstacles placed inside the arena.

In [35,36] experiments were conducted on the AVATAR helicopter which suggest

that slow flying UAV may be able to avoid obstacles in an urban environment using

vision. For this experiment, the AVATAR was fitted with a forward looking stereo

camera and two cameras providing optic flow computation on the side. In forward

flight the sideways looking optic flow cameras determined range to objects in their

field of view. As the helicopter was flown towards obstacles on the side, such as

trees, the helicopter tended, in most instances, to turn away from those obstacles.

This technique might be extended to the point where a helicopter could safely pick

a path through an urban environment, such as flying down the middle of a street

autonomously.

Chahl tested a scheme for terrain following on a 1.2m wingspan delta-wing UAV

using optic flow [37]. For flight test, a downward looking camera with a field of

view of 100 degrees was used with a control-by-telemetry scheme implemented on a

500Mhz Pentium III ground computer. For each local optic flow vector calculated,

the scheme calculated the corresponding climb angle needed to clear the obstacle

represented by that flow vector. The maximum climb angle from the set of all

climb angles calculated was used as a reference input for the longitudinal controller.

Chahl noted that the rotational effect on the optic flow calculation dominates the
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raw results, so that it is critical to subtract off the effect of rotations using a rate

gyroscope before calculating the range to obstacles.

2.3.2 Non-Biological Examples of Visual Flight Control

One of the earliest successful uses of vision to control a helicopter was undertaken

by Amidi for his PhD dissertation [38], submitted in 1996. In Amidi’s work, carried

out at Carnegie Melon University (CMU), a pair of cameras was used to track

natural features on the ground using high-speed template matching. The initial

features were selected by picking a window of pixels at the centre of the image. By

locking on to ground objects as the helicopter moves, the vision system was able to

estimate the helicopter’s position and velocity. Stereo vision was used to determine

the range to the features. A series of PD controllers were used in a feedback loop to

control the position of the helicopter in hover and slow forward flight. For outdoor

experiments, the vision system was implemented on a 67kg Yamaha R-50 helicopter

and was shown to be able to control the helicopter with a position accuracy of

3-10cm in hover.

Saripalli et al, at the University of Southern California (USC), have landed their

AVATAR autonomous helicopter on a helipad using vision and inertial information

[39]. The AVATAR is a small radio controlled helicopter with a PC-104 based avionic

architecture. In their work, a pattern comprised of polygons painted on the helipad

was detected and tracked so that the helicopter could align itself with the pattern

and then use its relative pose to land. The image was first segmented with a fixed

intensity threshold and then the first, second and third invariant moments of the

thresholded pixels were calculated and compared against a template descriptor of

the moments from the known target geometry (see [40] for an explanation of this

technique). The advantage of this approach is that the invariant moments are not

affected by translation, rotation or scaling and that the target descriptor is stored

as a relatively small vector. The helicopter was able to track the pattern even when

the helipad was moving, however, the helipad motion was stopped for the actual

landing.

In [41], Mejias et al worked with members from the USC group to achieve visual

servoing of the AVATAR and a similar small autonomous helicopter designated the

COLIBRI from the Universidad Politécnica de Madrid. The visual servoing target

was a window from a building. In the case of the COLIBRI, template matching based

on the Lucas-Kanade tracker [42] was used to match the image of the window being

tracked to a stored reference template of the window. This provided the coordinates

of the corners of the window which were used to generate a set of velocity commands

to an inner loop controller, to move the helicopter into a position where the target

was centred in the field of view. The helicopter was flown to within about 4m of the

window and then the visual servoing loop was activated. The helicopter trajectory

successfully converged to a position where the target was centred in the image.

Researchers at the University of California Berekely used a Yamaha R-50 un-

manned helicopter to test a vision system for control of landing [43, 44]. In this

work, a target comprising a black and white pattern of small squares of different
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sizes was placed on the ground. A camera image was first thresholded by using

a histogram technique with the intensity cuttoff set by trial and error. Once the

landing target was segmented from the background, the corners of the squares were

detected and each square was identified based on the centres of gravity. A non-linear

optimisation technique was used to calculate the position and attitude of the UAV

relative to the target. In their flight tests, the output of the vision algorithm was

compared to the output of the onboard GPS/INS system. The results compared to

within 5cm in translation and 5◦ in attitude.

Amongst other UAV programs, Georgia Tech operate a Yamaha RMAX UAV

dubbed the GTMax. This helicopter has been fitted with a variety of sensors in-

cluding differential GPS, inertial, magnetometers, an ultrasonic height sensor and a

camera. In their experiment, a target on the ground comprising a dark square on

a light background was tracked from a camera on the GTMax. Given the position

and orientation of the target apriori, an Extended Kalman Filter (EKF) was used

to fuse inertial data with data from the visual system, to provide the attitude and

position of the helicopter without GPS [45]. Using an EKF output as a reference,

the GTMax was able to follow position commands from the ground [46].

Proctor et al [47] constructed a glider with a camera and onboard video trans-

mitter which responds to commands telemetered from a control computer on the

ground. The guidance and control system used a high-speed pattern matching tech-

nique [48, 49] to track the outline of an open window using only a nose mounted

camera on the glider, with the aim of getting the glider to fly through the window.

A discrete EKF was used to estimate the states of the glider from the observed

window geometry. The results of simulation and flight test of the glider provided

an indication that, under some conditions, it would be possible to guide an aircraft

using vision alone.

2.4 Methods for Calculating Optic Flow

In selecting a method for calculating optic flow for my outdoor experiments, at-

tention was directed towards methods that are computationally efficient and fast

enough to be implemented in real-time on hardware small enough to be flown on-

board the helicopter. The methods had to be deterministic so that the execution

time never takes longer than the allocated time for processing within the control

loop (20 milliseconds). Finally, the method chosen had to be robust to noise so

that artifacts resulting from vibration, radio interference, dust and outdoor lighting

effects did not cause the method to fail.

Considerable work has been completed over the last three decades on developing

techniques for calculating optic flow robustly. The main approaches are correlation,

gradient models, energy methods and phase methods. An explanation of the classical

techniques can be found at [50]. A quantitative comparison of some of the best-

known techniques for calculating optic flow is provided by Barron and Beauchemin

in [51]. I will provide an overview of the main techniques described in the literature

before describing the image-interpolation technique used in this thesis.
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2.4.1 Correlation

Correlation is probably the most obvious technique and involves matching image

regions or features between frames from different times. The objective is to find

the shift between two image regions, that correspond to the same features being

observed, which maximises some quantitative measure of similarity. The correlation

coefficient defined by the integral in Equation (2.1) is one such measure where f(x, y)

and g(x, y) are the intensities of the two frames being compared. Several types

of correlation measures are used including mean-normalised correlation, variance-

normalised correlation and sum of squared differences (SSD).∫ ∫
f (x+ δx, y + δy) g (x, y) dx dy (2.1)

Anandan developed a hierarchical framework and algorithm for matching over-

lapping patches in an image [52]. Groups of pixels are compared with the surround-

ing pixel blocks to find the best match in terms of SSD to whole integer values of

pixel location. A quadratic approximation to the SSD surface centred on this pixel

location is then used to do a sub-pixel match. The search is conducted using a coarse

grid first which is used to guide the match at finer levels. A smoothness constraint is

used at each level of coarseness with a finite-element based minimisation technique

to find a smooth displacement field that approximates the displacements found from

the matching process.

Singh describes another two stage framework for computing image flow [53].

The first stage comprises a search strategy to find the best match between adjacent

patches to find local measurements of optic flow. The second stage combines the

velocity measurements for the pixels in a given image neighborhood using a Gaussian

weighting function which weights measurements from the centre of the neighborhood

more than those further from the centre.

Other correlation techniques are described in the literature including those by

Bülthoff et al [54]; Dutta and Weems [55]; Little and Kahan [56]; Burt et al [57];

and Glazer et al [58]. According to Barron [51], matching techniques tend to have

poor sub-pixel accuracy compared to other techniques such as gradient based meth-

ods. The correlation techniques can be robust but also tend to be computationally

demanding [59].

2.4.2 Gradient Methods

Gradient methods exploit the spatiotemporal gradients of image intensity to calcu-

late optic flow [60]. Gradient methods begin by assuming that the image intensity

is constant, which is a reasonable assumption provided that lighting conditions are

uniform and do not change suddenly, that specular reflections are small, shadows

are not present and surfaces are not translucent. Note that this assumption is also

required by most other optic flow methods [50]. With this assumption in place, the

intensity of a given point in the image f(x, y, t) does not change with time, so that

we can write:
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Figure 2.2: The aperture problem. Only the component of the image velocity which

is perpendicular to a straight edge (b) can be determined when viewed through a small

aperture. The global velocity (V) of a feature can only be found by combining several

local velocity measurements or by making use of local curvature or texture if it exists.

df

dt
= 0 (2.2)

This can be expanded using the chain rule of differentiation to:

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂t
= 0 (2.3)

or

Fxu+ Fyv + Ft = 0 (2.4)

where Fx, Fy are spatial gradients and Ft is a temporal gradient. The terms u

and v are the image velocities in the x and y directions respectively. The spatial

gradients can be calculated from the image by comparing adjacent pixels and the

temporal gradient can be calculated from the difference between consecutive frames

arriving in the image sequence. This leaves two unknown variables u and v which

cannot be determined using Equation (2.4) alone. The inability to solve for both

u and v is known as the aperture problem [61]. The aperture problem can be un-

derstood in physical terms by imagining a straight edge translating within a small

image window as in Figure 2.2. Only components of motion perpendicular to the

edge can be determined without further information. A number of additional con-

straints have been proposed to solve Equation (2.4) and avoid the aperture problem.

These generally involve measuring the local velocity components along the direction

of the local intensity gradient and then combining them together to obtain the

global velocity [62]. Methods for doing this include simple averaging [63] and neural

networks [64].

Lucas and Kanade [42] proposed a solution to the aperture problem by assuming

that the unknown flow components are constant within some image window defined

by ψ. The values of flow are found by minimising the error function Ea defined in

Equation (2.5).

Ea =

∫ ∫
ψ · (Fxu+ Fyv + Ft)

2 dx dy (2.5)

Another popular way to combine the local velocities to get a global velocity
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field is with a smoothness constraint which assumes that the flow velocities vary

smoothly between adjacent points in the image. For example, Horn and Schunk [65]

use a smoothness constraint based on minimising the square of the magnitude of

the gradient of the optical flow velocity E2
c where:

E2
c =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

(2.6)

In Horn and Schunk’s method, the smoothness criterion and the sum of the errors

Eb in the image intensity equation are minimised simultaneously. A weighting factor

α is used to describe the relative weighting of these errors as in Equation (2.8). An

iterative scheme is then used to find the velocities which minimise the total error E .

Eb = fxu+ fyv + ft (2.7)

E2 =

∫ ∫ (
α2E2

c + E2
b

)
dx dy (2.8)

Nagel [66] also uses a smoothness constraint but uses second order derivatives

to orient the smoothness constraint so that it is not imposed across steep intensity

gradients. This enables real-world images containing edges and occlusions to be pro-

cessed. Numerous other smoothness constraints have been proposed. Incorporation

of smoothness constraints are computationally intensive [62] and do not always lead

to the correct global velocities [67].

Lucas and Kanade’s technique is classified as a local method whilst techniques

using smoothness constraints are classified as global methods. The major drawback

of the local methods are that they do not overcome the aperture problem in parts

of the image where the image gradient is small [68], leading to sparse flow fields.

Global methods on the other hand provide denser flow fields but are thought to be

more sensitive to noise [51, 69].

Srinivasan developed a generalised gradient based algorithm [70] which addresses

some of the problems with gradient algorithms, namely deriving the correct global

velocity without first getting the local velocities and requiring higher order deriva-

tives. Srinivasan’s technique uses six spatiotemporal filters applied to the same

image patch. The size of the patch determines how local or global the resulting ve-

locities are. In later work [71], however, Srinivasan develops the Image Interpolation

algorithm and shows that it has better robustness and accuracy with a negligible

increase in execution time [72].

2.4.3 Energy methods

It has been suggested that some image motion properties are more evident in the

frequency domain [73, 74]. There is biological evidence to support the use of such

elements in nature [75]. Energy methods work by finding the energy peaks in the

spatiotemporal spectrum from a sequence of images. The term energy tends to be

used rather than power to be compatible with the spectrum involving coordinates in
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both time and space. Energies are calculated by means such as summing and squar-

ing of the outputs from the applied filters. Various combinations of spatiotemporal

filters of different orientation sensitivities are used to span the spectrum adequately.

Adelson and Bergen [76] explain that image motion presents itself as orientation

in space-time. They propose a concept using a series of spatiotemporal filters to

extract the orientation and hence the flow from the image. Heeger [75] points out

that the power spectrum of a translating two dimensional texture occupies a tilted

plane in the frequency domain. Using Gabor filters, Heeger presents results for an

optic flow algorithm based on extracting orientation.

Watson and Ahumada [73] use a combination of delays, temporal and spatial

filters to form sensors which are tuned to particular spatial frequencies and direc-

tions. Multiple sensors at different orientations and centred at different locations

in the image are used to determine a complete flow field. For testing Watson and

Ahumada’s sensors, 16 consecutive frames were required. This type of approach is

therefore computationally intensive [71]. Energy models can also be quite suscepti-

ble to variations in the contrast of image components [73].

2.4.4 Phase-Based Techniques

Phase based methods use the phase behaviour of band-pass filter outputs to measure

optic flow. Phase methods have the advantage of being able to cope with several

different velocities occurring on the same spatial patch, which would occur in the

case of changing occlusion and transparency. They are also more robust to noise

[74] than the amplitude-based energy methods discussed previously, owing to the

independence of phase from amplitude variations resulting from changes in lighting

conditions.

The use of phase dates back to the work of Hildreth [77]; Buxton and Buxton [78];

and Duncan and Chou [79]. In this early work, binary edge maps were generated

using various filters such as the Laplacian of a Gaussian which can be seen as finding

phase zero-crossings. Fleet and Jepson have provided a generalised treatment of the

use of phase information for optic flow in reference [74] in which the local optic flow

is computed from the motion of contours of constant phase. Their method uses

the output from a series of linear velocity tuned filters similar to the ones used by

Heeger [75].

2.4.5 Image Interpolation Technique

I have chosen to use Srinivasan’s Image Interpolation Algorithm [71], abbreviated

I2A, to compute optic flow resulting from the motion of a plane perpendicular to the

camera. The technique is non-iterative, does not require identification or tracking of

individual features in the image, and does not require the calculation of high order

spatial or temporal derivatives. These features make it robust to noise and quick to

execute. Of all the techniques reviewed, these properties make I2A most suited to

use for flight control.

Srinivasan discusses versions of the algorithm for any combination of translations
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parallel to the plane with a rotation about an axis perpendicular to the plane. A

simplified version of the algorithm is also discussed which calculates the flow due to

pure lateral and longitudinal translation. For small rates of rotation, e.g. less than

about 10 degrees between consecutive frames, it is possible to accurately extract

translation signals at different parts of the image whilst neglecting the rotation

effects. For the work in this thesis, where optic flow is applied to the control of

hover and forward flight, the yaw rate of the helicopter is constrained by the tail

rotor control loop to be less than 0.1 degree per frame, hence, only the translatory

flow in various parts of the image needs to be considered. Furthermore, it is possible

to determine rotation from this flow field by looking at the distribution of translation

flow components in the image. This makes inclusion of the effects of rotation in the

algorithm of limited benefit, allowing us to dispense with the added computation

which is significant since the rotated reference images would need to be generated

using trigonometric functions. A simplified version of the algorithm is therefore used

which calculates the flow due to lateral and longitudinal translation only. A detailed

derivation of the I2A algorithm can be found in [71].

The algorithm compares the current image with a set of four reference images

which are translated from a previous frame. We define the pixel intensity functions

at times t0 and t as f0(x, y) and f(x, y) respectively where x and y are the image

coordinates measured in pixels. The reference images f1, f2, f3 and f4 are formed

from the first image by shifting them by reference shifts Δxref and Δyref pixels

along the x and y axes, so that Equation (2.9) applies.

f1(x, y) = f0(x+ Δxref , y)

f2(x, y) = f0(x− Δxref , y)

f3(x, y) = f0(x, y + Δyref)

f4(x, y) = f0(x, y − Δyref) (2.9)

The I2A algorithm relies on the assumption that the image at time t can be lin-

early interpolated from f0 and the reference images so that Equation (2.10) applies.

f̂ = f0 + 0.5

(
Δ̂x

Δxref

)
(f2 − f1) + 0.5

(
Δ̂y

Δyref

)
(f4 − f3) (2.10)

Our objective is to calculate the translations Δx and Δy which give the best

match between the actual image f and the interpolated approximation f̂ . We can

express this as a least square problem over an image patch defined by the window

function Ψ by minimising the error E where E is defined by Equation (2.12). The

two dimensional window function Ψ specifies the size and form of the patch. Gaus-

sian, triangular and boxcar kernels could be used, but the latter requires much less

computation time.
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E =

∫ ∫
Ψ · [f − f̂ ]2 dx dy (2.11)

=

∫ ∫
Ψ · [f − {f0 + 0.5

(
Δ̂x

Δxref

)
(f2 − f1) + 0.5

(
Δ̂y

Δyref

)
(f4 − f3)}]2 dx dy

The error may be minimised by taking the partial derivatives of E with respect

to Δx and Δy and setting them to zero. After simplification, the two resulting linear

equations are at (2.12-2.13) can be solved simultaneously for Δx and Δy.

(
Δ̂x

Δxref

)∫ ∫
Ψ · (f2 − f1)

2 dx dy +

(
Δ̂y

Δyref

)∫ ∫
Ψ · (f4 − f3) (f2 − f1) dx dy

= 2

∫ ∫
Ψ · (f − f0) (f2 − f1) dx dy

(2.12)

(
Δ̂x

Δxref

)∫ ∫
Ψ · (f2 − f1) (f4 − f3) dx dy +

(
Δ̂y

Δyref

)∫ ∫
Ψ · (f4 − f3)

2 dx dy

= 2

∫ ∫
Ψ · (f − f0) (f4 − f3) dx dy

(2.13)

2.5 Helicopter Control

The last decade has seen a plethora of control techniques applied to unmanned

helicopters appear in the literature. My aim in reviewing this literature has been to

determine the most simple yet practical control system for a helicopter that would

allow demonstration of visual control. I have examined both classical, modern and

black-box control techniques.

2.5.1 Classical Control

The essence of classical control is successive feedback loop closure using linear control

elements such as Proportional (P), Integral (I), Derivative (D) and combinations of

these (e.g. PI for Proportional and Integral feedback). The gain of these controllers

can be tuned by trial and error, with empirical techniques such as those employed

by Ziegler and Nichols [80] or, in the presence of an accurate system model, using

tools such as root-locus [81] or frequency analysis [82, 83].

In Amidi’s work [84] with a Yamaha R-50 helicopter, the helicopter controller

was implemented as a series of PD controllers with output saturation. Single PD

controllers were used with the collective and tail rotor pitch servos to control height

and yaw respectively. The control of horizontal position and velocity was achieved
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with a series of three nested loops with two PD controllers in each loop for separate

control of the lateral and longitudinal channels. In the outermost loop, position er-

rors were used to control two reference velocities. In the middle loop, the reference

velocities were used as the input to the PD controllers for pitch and roll attitude

reference values. Finally the reference pitch and attitude values were used as in-

puts to the PDs controlling lateral and longitudinal cyclic. This system effectively

controlled the helicopter in hover to within 15cm.

Saripalli et al [39] implement a very similar control scheme to Amidi except in

their system a PI controller is used instead of a PD controller for control of alti-

tude and a simple proportional controller is used to control the inner loop attitude.

Mettler points out in [85] that the derivative feedback for the attitude inner loop

does not provide any advantage since the Bell-Hiller stabiliser bar fitted to most un-

manned helicopters already provides attitude rate feedback. Similar systems have

also been used by Buskey et al [86]; Sanders [87]; and Mettler et al [85].

Small-scale helicopters have faster dynamics than full-size helicopters which

makes them harder to control [88]. Most small helicopters designed for human

piloted control are therefore fitted with a mechanical stabilizer bar that provides

lagged attitude rate feedback to the main rotor, to improve stability. However, the

presence of a stabilizer bar complicates automatic control as it decreases the stabil-

ity margin for the coupled dynamic mode between the rotor and the fuselage. This

prevents high gain controllers from being implemented. Mettler et al [85] describe

the use of a notch filter in combination with a series of PD controllers to develop

an attitude controller for a Yamaha R-50 helicopter. The notch filter was set to the

natural frequency of the fuselage-rotor mode allowing the roll angle feedback gain

to be increased more than fivefold.

2.5.2 Modern Control Methods

The design of controllers using classical methods such as root locus and Bode meth-

ods is essentially trial and error [89]. The two concepts defining modern control are

that: (a) the design is based directly on the state-variable model and (b) perfor-

mance specifications are expressed in terms of a mathematically precise performance

criterion [90]. All the gains are solved simultaneously and are directly solved from

the state space matrix algebra. Modern controllers offer the prospect for improved

performance and can, in some cases, adapt to changing conditions. The downside of

most modern controller methods is that they require unmeasured states which can

be hard to accurately estimate. Whilst many modern control techniques are shown

to be closed loop stable and function on real helicopters, improvements in perfor-

mance over equivalent classical controllers on the same plant are rarely confirmed or

quantified in the literature. Furthermore, they may require accurate system models

which, in the case of a highly non-linear helicopter, may be difficult to achieve. It

is often stated that the use of PID control requires laborious tuning to take place.

Whilst this is true to some extent, the systems identification step required to de-

velop a modern controller is no less laborious and opens up many opportunities for

numeric error during the controller design stage. I have included a brief overview
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of the application of modern control theory to helicopter control for the sake of

completeness.

Many of the modern control techniques are linear methods. As the helicopter

is non-linear, linearisation of the system model is necessary in order to design a

working controller. Koo and Sastry present approaches to this based on differen-

tial flatness [91] and approximate feedback linearisation [92]. In these techniques,

approximate models are developed which are minimum phase, whereas the actual

plant being modelled is in fact non-minimum phase [93]. Unfortunately their work

was conducted in simulation models which ignore the rotor and actuator dynamics,

so successful performance on a real system is not guaranteed.

Optimal control is a branch of control theory that aims to find control laws to

maximise some optimality criterion. A typical optimality criterion involves a linear

quadratic form which serves to simultaneously minimise the control energy and the

time it takes the system to reach steady-state. Noting that the model has to be

linearised, and is therefore only an approximation of the real plant, it can be argued

that the condition of optimality can become somewhat invalid. Furthermore, the

choice of weighting factors used in the optimality criterion can become somewhat

arbitrary. Optimal controllers for helicopters have been proposed by Morris [94];

Mettler et al [95] and Bogdanov et al [96]. Morris et al tested a Linear Quadratic

Gaussian (LQG) controller [97, 98] on a small electric helicopter constrained to

moving in only pitch, roll and yaw. Even with this simplified system, the system

performance was not good, owing to unmodelled dynamics and the lack of angular

rate sensors. Mettler et al developed a successful LQG controller for the lateral-

directional dynamics of a small helicopter by ignoring the flapping dynamics and

treating the helicopter as a rigid body. Using a notch filter to attenuate the fuselage-

rotor mode, the controller was shown to successfully control bank angle in flight,

however removal of the notch filter resulted in instability.

Bogdanov et al describe State-Dependant Riccati Equation (SDRE) control [99]

of an X-cell 8kg RC helicopter and the Yamaha RMAX helicopter. The approach

consists of approximating the non-linear model with a linear set of state update

equations at each time step based on the current state. Treating the state equations

as linear, the Ricatti equation is then solved and used to calculate optimal control

inputs based on a linear quadratic cost function. Bogdanov’s results for trajectory

control of an RMAX flying a 183m× 183m square racetrack pattern are good with

a position accuracy of 2m and an altitude accuracy of about 1.2m. However, the

computational power required to solve the Ricatti equation is demanding, requiring

14ms out of 20ms at 50Hz on a 300MHz Pentium CPU to compute. This level of

processing could not be achieved on either of the systems used for this project as it

would have required an additional CPU to be added.

One method of dealing with inaccurate systems identification is to apply the

principles of robust control. In robust control methods, such as H2 and H∞ [100], the

objective is to ensure sufficient stability remains in all scenarios that could arise from

the presence of noise, disturbances and bounded uncertainties in the plant model. A

number of researchers have applied robust controllers to small helicopters. Takahashi

applied a H2 controller to a control of hover in a full-size helicopter simulator.
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Bendotti and Morris discuss a H∞ controller for a model helicopter constrained to

3 degrees of freedom only and show that it out performs an LQG controller [101].

Hashimoto et al develop and flight test a third order H∞ velocity controller for a

full-scale unmanned helicopter which augments an existing stability augmentation

system [102]. Other examples of H∞ techniques applied to helicopter control are

La Civita et al [103] ; Shim et al [93] and Yang et al [104–107]. Recent results

from test of a H∞ loop shaping controller on a Yamaha R-50 helicopter at CMU

have shown tracking performance which is claimed to exceed the performance of any

other techniques in the published literature [108]. On the basis of this result, one

would expect that H∞ would be a good candidate for future unmanned helicopter

control designs. However, this work was only made possible by the presence of a high

fidelity simulation model [103], so I have not pursued the approach in this thesis.

A number of schemes for controlling a helicopter using backstepping [109] have

appeared in the literature. Backstepping is a recursive technique whereby the com-

plete system is built up in cascaded stages, starting with a simple system that can

be stabilised using a known Lyapounov function. As each system is stabilised, an

integrator is added to the input and then the same process is repeated to design

a Lypanov function and feedback law to stabilise the new system. The process

continues until the complete system is stabilised. The advantage of backstepping

is that it can be applied to nonlinear system without having to make linearising

approximations. It also guarantees stability and can be made to be adaptive [110].

Mahoney and Hamel present simulation results for a robust trajectory tracking con-

troller using backstepping [111] which can enable a priori bounds on the tracking

performance to be set. A very similar approach is taken by Frazzoli et al [112] who

also develop a backstepping trajectory control in simulation. The disdavantage of

backstepping is that, even for simple systems, the algebra can become very compli-

cated and unwieldy. Hence, the currently published applications of backstepping to

helicopters tend to make a number of assumptions to simplify the models that are

unrealistic [113], such as assuming that the rotor can be manipulated to provided

instantaneous control forces and moments. For example the backstepping algorithm

by Mahoney et al [114] assumes that the flapping angles are directly measurable and

controllable, neither of which is practical. Whilst backstepping does show promise,

the complexity is not consistent with my stated aim of keeping the control systems

as simple and practical as possible.

2.5.3 Black-box Approaches to Control

The complexities and mathematical tedium of developing high-fidelity systems iden-

tification models of a plant can be avoided by using a black-box approach where no

assumptions are made about the internal structure of the plant. The two dominant

approaches for achieving this are fuzzy logic and Artificial Neural Networks (ANN).

Of these two, I have only pursued neural control because it has the greatest simi-

larity to the neural foundation of insect flight control, which is the inspiration for

this thesis. In addition, most of the work on fuzzy logic for helicopter control has

been tested in simulation only, whereas there are some encouraging results using
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ANNs that have been demonstrated on real helicopters. In some situations neural

networks and fuzzy logic can be shown to be equivalent.

Control based on fuzzy logic uses the concept of simultaneous membership in

various fuzzy sets. For example, if temperature feedback was being used in a control

system, the controlled variable might have a membership in both hot and warm

sets. As the temperature varies towards a state of being hot, the membership in

the hot set would increase whilst decreasing in the warm set. This approach allows

for smooth changes in parameters rather than the abrupt changes that would result

from using a simple threshold with binary logic. The advantage of fuzzy control

is that it can be built up from rules of logic that have physical meaning to the

designer, unlike neural networks for which the internal mechanisms can be difficult

or impossible to conceptualise.

The work on fuzzy logic control for helicopters dates back to the early 1990s

and has continued until present day. In 1995, Sugeno et al [115, 116] implemented

a set of 57 if-then type control rules for control of hover and slow speed flight on

a Yamaha R-50 helicopter. Jiang et al [117] designed a fuzzy logic controller to

adaptively cancel the errors in another controller which was based on approximate

inversion of a helicopter plant model. The controller was then tested on an AH-

64 Apache helicopter simulation. Sasaki et al [118] applied a learning fuzzy logic

controller to a linearised simulation of an RC helicopter in hover and showed that

it provided stable hover control. Amaral et al [119, 120] showed in simulation that

a neuro-fuzzy inference controller based on a combination of ANN and fuzzy logic

controllers could be used to control a Sikorsky S-61 full-size helicopter in hover.

Kadmiry and Driankov tested the use of fuzzy logic to schedule the gain for an

unmanned helicopter in a non-linear simulation [121,122]. In a non-linear simulation

for an X-Cell RC helicopter, Sanchez et al tested a combination of PID controllers for

control of attitude and altitude and fuzzy logic controllers for controlling translation

movement [123]. Other fuzzy logic controllers for helicopters have been tested in

simulation by Cavalcante et al [124] ; Phillips et al [125]; and Hoffmann et al [126].

2.5.4 Artificial Neural Networks

A neural network is a computational system comprised of interconnected processing

elements called neurons or nodes. Neural networks from the basis of mental function

in the brains of animals. Artificial neural networks (ANN) are a biologically inspired

paradigm for computing, implemented either in software or hardware. The idea of

using an ANN to perform computation was first proposed by McCulloch and Pitts

in 1943 [127].

The computational requirements for executing ANN (once trained) are generally

small and can be readily implemented for real-time control, making them suited to

implementation on a small robot where only modest computing resources may be

available. ANN can also be trained to perform a task without having to explicitly

model or understand the underlying dynamics. This is good for complicated systems

which may be unweildy or analytically non-tractable. ANNs can act as excellent

function interpolators, but cannot be relied on to extrapolate into regions where
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they have not been trained. Care must therefore be exercised in their use.

The nodes in a neural network are connected to other nodes in such a way that

the nodes collectively produce some useful output in response to an input stimuli.

Owing to the interconnectivity of the nodes, processing in the network is done in

parallel, rather than in series as would be done in a conventional digital computer

program. For example, a single neuron in a human brain may be connected to up

to 10,000 other neurons. This parallelism enables fast processing. Networks may

be arranged into layers as in the example shown in Figure 2.4. The network shown

consists of an input layer, hidden layer and output layer. The hidden layer is so

named because the outputs of its neurons are not seen directly from outside the

system. This topology is by no means fixed and any number of layers may be used

and connected arbitrarily. For example in the Hopfield Network [128], every node is

connected to both inputs and outputs.

In an ANN, the connections to other neurons are usually represented as weights,

such that the input to one neuron is the sum of the products of the outputs of the

other neurons and the respective weighting terms Wij . The effect of each node is to

apply an activation function to the sum of the weighted inputs as shown in figure

2.3. Equations (2.14) and (2.15) define the neuron mathematically.

uk =

m∑
j=1

wkjxj (2.14)

yk = ϕ (uk + bk) (2.15)

The activation function can be linear or non-linear and combinations of different

activation functions can be used in the same network. One of the major break-

throughs in ANNs was the use of a sigmoidal transfer function which allowed the

network to approximate any non-linear function, given sufficient nodes. A sigmoidal

function is an s-shaped function that has an approximately linear middle region

with a graceful non-linear saturation. A common sigmoidal activation function is

the logistic function ϕlog (·) defined in Equation (2.16).

ϕlog (ν) =
1

1 + e(−aν)
(2.16)
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In the various training algorithms that have been developed for ANNs, the ob-

jective is to adaptively change the weights in the internodal connections so that the

performance of the network is optimised. The most common methods for training

neural networks are supervised learning, unsupervised learning, and reinforcement

learning techniques. In supervised learning the network is provided with example

pairs of input data x and output data y from which it can learn a mapping between

the two. In unsupervised learning, the ANN is given the input data x but instead of

providing the desired outputs y, a cost function is provided, which is to be optimised

in some way. The cost function can be any function of the inputs and outputs. Re-

inforcement learning is similar to Unsupervised learning, except that the input data

is not provided beforehand, but generated by the interaction of the network with its

environment. In reinforcement learning, the network must learn by trying various

policies to optimise a reward signal provided to the network as a consequence of its

actions (outputs) [130].

After a period of dormancy in the 1970’s [129], neural networks underwent a

resurgence of interest following the publication of a book edited by McClelland and

Rumelhart [131] which outlined a method for training multi-layer ANNs using the

back-propogation algorithm. Backpropogation [132, 133] is a gradient descent tech-

nique designed to minimise the least square error between the ANN outputs and

the desired outputs. The training proceeds with a series of forward and backward

passes through the network using a set of training data. In the first pass, the out-

puts of the neurons are propogated forwards using Equations (2.14-2.15), starting

from the input side of the network, working through each layer in turn, until the

output layer is reached. In the forward pass the network weights are fixed. In the

second pass, the output errors are propogated backwards through the network and

used to adjust the network weights using an error-correction learning rule. As the

cycle is repeated for different training inputs and desired outputs, the weights of the

network gradually adapt to improve the match to the desired outputs. Whilst back-

propogation is well-known and easy to implement, it can be very slow to converge.

Other algorithms have been proposed which have much faster convergence for most

problems. The Levenberg-Marquardt (LM) algorithm [134] is renowned as one of

the fastest techniques for training ANNs with up to several hundred weights [135].

The LM algorithm was used for the work on ANNs in this thesis.

Certain kinds of ANNs can achieve temporal processing by making use of delayed

inputs. This allows ANNs to perform functions such as differentiation, integration,

filtering and state space representation of plant. A number of mechanisms for tem-

poral processing can be used, such as placing tapped delays on some of the inputs

to provide the network with a time history. The outputs of any layer can also be

passed back to the input layer. For example, the outputs of the hidden layer could

be passed back to the input layer through a tapped delay to provide a state-space

representation of the dynamics being modeled. Networks that have at least one feed-

back loop in their structure are known as recurrent networks, whereas feed-forward

neural networks do not feedback the output of any neuron to a pathway which can

affect the input of the same neuron. In this thesis, use is made of recurrent ANNs

to perform numerical integration for state-space propogation.
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2.5.5 Flight Control using Neural Networks

Teaching by Showing control for the attitude control of a small helicopter was demon-

strated in simulation by Montogomery and Bekey [136]. Their approach was to

augment a fuzzy logic controller with a neural network. The fuzzy logic controller

was implemented using a set of fuzzy rules relating angles and rate errors to roll

and pitch control inputs. The number and type of membership functions making up

the structure of the fuzzy controller were decided upon by a competent human pilot

based on their perceptions of how they flew a helicopter. A fuzzy learning algorithm

devised by Wang [137] was used to tune the fuzzy rule set as a teacher flew the heli-

copter. In practise, the teacher could be a human pilot, but in this case a non-linear

controller described in reference [138] was used. Once trained satisfactorily, the

fuzzy logic controller was activated and the teacher relinquished control. Whenever

the control performance fell below some criterion, due to changes in the system for

example, the trainer would take over control again and then a neural net would be

trained to predict the difference between the fuzzy controller and the trainer. Once

trained, the neural net output would then be used to augment the fuzzy controller

so as to better mimic the teacher. The combined fuzzy/ANN controller was found

to outperform the standalone fuzzy controller and provide stable control of attitude.

Buskey et al trained a simple feed-forward ANN with 10 hidden units to mimic

the actions of a human pilot [139]. The network inputs were accelerometer and rate

gyroscope outputs. For flight test, only the aileron servo was driven by the ANN

whilst the other servos were controlled by the pilot. The helicopter hovered for 15

seconds in this fashion until a wind gust necessitated the pilot taking over control.

The authors of this work attempted to use recurrent neural networks at first but

abandoned the attempt as no advantage was achieved from doing this with their

simple approach.

In 2001, Bagnell and Schneider demonstrated a reinforcement learning policy for

an autonomous helicopter [140]. In their scheme, a pair of very simple feed-forward

networks were used, comprising 5 weighted connections for each of the pitch and

roll control channels. The inputs to the roll channel network were lateral position,

lateral velocity and roll angle. Equivalent inputs were used for the pitch channel

which was treated as decoupled from the roll axis. A single hidden layer node was

used between the position input and the control output. The network functioned in

a similar fashion to a linear PD controller but the sigmoidal nature of the hidden

unit provided the ability to deal with large changes in the position set point. The

network weights were optimised using the amoeba technique outlined in [141] based

on various trajectories calculated in simulation. Cost functions which minimised the

velocities, position errors and control inputs were used. After proving the stability of

the resulting controller in simulation, the controller was tested on a R-50 helicopter

belonging to CMU. The helicopter was able to track moving position set points in

the presence of strong wind gusts.

In 2004, Ng et al published the results for a simple neural network controller

for a Yamaha R-50 helicopter using another reinforcement learning technique [142].

The approach was to first identify a non-linear 12 state model of the helicopter
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dynamics in hover. Next the PEGASUS reinforcement learning algorithm of [143]

was used to teach the ANN a policy for hovering in place. The inputs to the ANN

were the difference between the actual and desired helicopter state. The outputs

of the net were the cyclic pitch, collective pitch and tail rotor controls. The ANN

was structured so such that the lateral, longitudinal and vertical channels were

separated. For trajectory following, feed-forward between the yaw channel and the

other channels was also added. A quadratic cost function based on the control input

energy, velocities, orientation and the errors in position was used to optimise the

ANN weights. This technique was successful in not only hovering the helicopter, but

also in allowing it to follow trajectories, including a nose in circle and a rectangle

in the vertical plane. In later work [144], autonomous control of inverted hover was

successfully demonstrated using the same techniques.

Extensive work has been progressed at Georgia Tech to use neural networks to

augment other controllers. The aim of this approach is to reduce the reliance on

high-fidelity mathematical models when designing high-bandwidth controllers and to

allow the controller to adapt to changing environmental conditions. In 1994, Calise

et al published a scheme for adaptively correcting the inversion errors for an attitude

controller based on an inverted model of the helicopter attitude dynamics [145]. The

inverse controller known as the Rotational Dynamics Inversion Processor (RDIP)

takes as inputs the desired angular accelerations φ̈, θ̈ and ψ̈ and outputs the control

signals which it predicts should approximately accomplish these accelerations. The

desired angular accelerations were the output of PD controllers for roll, pitch and

yaw channels which were in turn driven by the output of a second order command

filter. Pilot commands were passed through the command filter to provide desired

outputs θd, θ̇d,θ̈d. The outputs used to generate a commanded angular acceleration

Uc using Uc = Kp(θc−θ)+Kd(θ̇c− θ̇)+ θ̈c where Kp and Kd are the gains of the PD

controller. The inversion model was a linear function of collective pitch angle, linear

velocities, angular rates and Uc. As the RDIP was based on a simple linear model

of the dynamics it contained errors owing to model uncertainty and the unmodelled

non-linearities. The ANN outputs were added to the desired angular accelerations

coming from the PD controllers to correct the inversion errors. A training scheme

based on the notion of Lyapunov stability and described in reference was used to

train the network online so that it could adapt to the inversion errors in flight [146].

When tested in a high fidelity Apache helicopter simulation, the controller was found

to track attitude commands much more precisely with the neural augmentation than

without it.

The work by Calise et al was extended by Leitner et al in 1998 to include a second

controller based on inversion which controlled the translational dynamics [147]. A

trajectory outer loop was built around the attitude inner loop and tested in simula-

tion. The outer loop uses an inverse dynamics block to calculate attitude commands

for the attitude controller. The inputs to the translational inverse dynamics block

were the desired linear accelerations which were calculated from the position/velocity

commands in a similar fashion to that used in the attitude command filter. The

translational inverse was a very simple analytic expression derived from considera-

tion of the desired tilt of the platform to obtain the desired accelerations. In 1999,
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Prasad et al published another application of this technique tested on an R-50 heli-

copter which implemented a rate control attitude hold (RCAH) function, by adding

an integrator to the commanded rate system [148].

In [149], Calise et al simulated R-50 pitch attitude control using the same neural

augmentation techniques with the addition of Pseudocontrol Hedging (PCH). PCH

was used to adjust the output of the command filter (i.e. the pseudocontrol) so

that the ANN did not see the actuator characteristics as model tracking error.

Actuators suffer from saturation and add high order dynamics and a pure delay

effect. The inverse model neglected the actuators and the neural network could not

adequately cope with effects such as saturation, so that the PCH was found to be

necessary to allow the ANN to adapt correctly. The 2nd order command filter was

also replaced by a 3rd order command filter as it better matched the dynamics of

the underlying system, dominated by the actuators. The new command filter and

the PCH gave much better results than previously attained. Other variations of this

approach were tested by Hovakimyan et al [150] who added a state space observer

to estimate the inversion errors and Corban et al [151] who added tapped delay lines

to the network inputs. In [152], Corban et al added an outer loop velocity controller

around the attitude loop already described and used a first order velocity filter to

convert the velocity commands from the pilot to pseudocontrol accelerations. PCH

was used to protect outer loop from adapting to inner loop dynamics. Using the

same control structure as Corban et al, Johnson and Kannan have obtained excellent

tracking results on the GTMAX unmanned helicopter [153]. These have included

precise tracking of racetrack, circular and square patterns in forward flight as well

as following a complex 3D trajectory previously flown by a human pilot and logged.

The ANN structure used in the neural augmentation work predominantly consisted

of two layers with five nodes in the hidden layer. The inputs to the ANN were the

full state and pseudocontrol error.

2.5.6 Controller Selection

Based on the literature, I have chosen to initially apply a classical helicopter con-

troller based on PID controllers and an attitude inner loop. This approach has been

shown to work on other small-scale helicopters and has a number of advantages over

other methods for experimentation. One such advantage is that the inner-loop can

be used as a stability augmentation system in the event of the outer loops being

deactivated or malfunctioning. The controller can be built up in stages with the

inner loop being designed and tested first. The inner loop also provides a bound on

the reference attitude used so that if the outer loop were to malfunction, the effect

on the helicopter can be constrained.

PID controllers are preferred because they are easily implemented and debugged,

can be readily tuned by trial and error and analysed without having a detailed plant

model. Whilst using the wrong gains can result in instability during tuning, this

can be overcome experimentally with a safety pilot. If the pilot is simultaneously

able to provide control inputs to augment the controller, gains can be gradually

ramped up until instability is reached and then backed off to provide desirable
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control performance.

Noting the biological parallels, I also intend to pursue the use of neural networks

for sensor fusion and control. There are many examples in the literature that show

that ANN can be used for flight control. ANN are computationaly efficient and can

easily be implemented with the hardware on the helicopter.

2.6 Summary

I have identified that visual control of an unstable rotorcraft is feasible. Based on

the biological observations, the use of optic flow would appear to be a very useful

sensing technique for control of flight, and I will aim to make use of this approach.

Noting its reported robustness and ability to be computed in real-time, I will use

the optic flow image interpolation algorithm (I2A) to calculate optic flow.
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Helicopter Simulation and Control

3.1 Introduction

The testing of new control and sensor algorithms is made practical for this thesis by

using a time domain simulation in SIMULINKR© of the helicopter dynamics, sensors

and controller. This allows the practicality of algorithms to be tested rapidly without

putting the helicopter at risk. The aim of the simulation is not to develop controllers

that can be copied directly from the simulation to the helicopter without further

tuning of control gains. Rather, the aim of the simulation is to determine what

style of controller can be used on the helicopter, taking into account the types of

sensors proposed. The simulation is also an excellent tool for developing sensor

fusion algorithms as in most cases the code can be transferred directly from the

simulation as a C file to the helicopter autopilot. For this thesis, a simulation of the

Eagle helicopter is used for all of the development work.

A number of other researchers have constructed simulations for small unmanned

helicopters. Munzinger [154] created a real-time hardware-in-the-loop (HIL) simula-

tion running on a Single Board Computer for a Yamaha R-50 unmanned helicopter.

The output of the simulation could be used to mimic the sensor data passed to the

actual onboard control system. Cunha and Silvestre [155] have developed a generic

helicopter dynamic simulation model and used this model to demonstrate an LQ

state feedback hover controller. Gavrilets et al developed and validated [156,157] a

HIL simulation under the QNXR© real-time operating system for their X-Cell 60size

helicopter. The Gavrilets simulation incorporated servo dynamics and sensor char-

acteristics and provided a good match with experimental data for a wide range of

conditions. Kowalchuk et al [158] created a 3 degree of freedom longitudinal dy-

namics model of their Raptor 50 sized helicopter, created within MATLAB R© with

a good match to flight data for pitch rate and pitch angle.

Mathematical models for small-scale helicopters have been extensively docu-

mented in the literature in recent years [94, 102, 159–161]. The general approach

is to combine a linearised rotor aerodynamic model with the non-linear rigid body

equations. Sometimes a non-linear thrust and rotor inflow model is incorporated,

usually involving an iterative scheme to simultaneously solve for the induced velocity

through the rotor and the thrust. The non-linear fuselage and tailplane aerodynam-

ics forces are only usually added when forward flight is considered. An underlying

theme in simulating small helicopters has been the realisation that owing to the

29
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complexity of the helicopter, minimum complexity simulations tends to be most

practical, so most researchers have chosen to use the minimum level of detail re-

quired to capture the key system dynamics. This approach was championed by

Heffley who published a report for NASA in 1988 on a minimum complexity heli-

copter model [162] that is regularly cited in the field. Heffley maintains that adding

higher order effects such as the off-axis moments due to blade flapping does not

automatically lead to a better match with flight data.

While hardware-in-the-loop models are very useful for specific platforms, a va-

riety of different platforms and sensor combinations have been used in this thesis,

so that the time spent writing interface code to mimic the data output protocols of

certain kinds of sensors would be prohibitive. SIMULINKR© was chosen as a devel-

opment environment for convenience as the graphical drag and drop building block

approach speeds up the development cycle and allows the simulation to be quickly

adapted to other helicopters. Balancing simulation fidelity against practicality, a

simulation has been created that is capable of simulating the following effects:

• Exact non-linear rigid body equations of motion;

• Wind gusts and turbulence;

• First order main rotor flapping dynamics;

• Hover, rearwards, sideways and forward flight;

• Dynamic effects of the Bell-Hiller stabiliser bar;

• Fuselage and tailplane aerodynamic forces;

• Approximate servo dynamics; and

• Sensor lags, filtering, offsets and noise.

The simulation does not model ground effect, interaction of rotor downwash with

the fuselage and rotor lead-lag mechanisms. Higher order flapping modes are only

really of interest when studying vibration and aeroelastic problems [163] so they

have also been ignored. Only low rates of descent are allowed on the helicopter so

that momentum theory can still be applied. This seems reasonable noting that all

of the experiments conducted for the thesis involve flight close to the ground so that

high descent rates cannot be achieved.

To simplify debugging, the simulation is divided into a number of blocks and

subsystems. On the highest level, the simulation consists of an aerodynamics sub-

system, sensor subsystem, sensor fusion block and controller subsystem as shown

in Figure 3.1. Diagrams of the internal structure of each subsystem are provided

in Appendix B. Most of the computational blocks have been implemented as C

code S-functions. In all, the base simulation consists of 19 C-files not including the

variety of blocks used later for testing sensor fusion algorithms and artificial neural

networks.
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3.2 Helicopter Dynamics

Having discussed the motivation for the simulation, a brief overview of the under-

lying theory is now provided.

3.2.1 Aircraft Conventions

The body axes system of the helicopter is fixed to the aircraft centre of gravity and

rotates as the aircraft’s attitude changes as shown in Figure 3.2. This set of axes is

particularly useful as the sensors are fixed with respect to the body axes. Another

set of axes, known as the inertial axes, are required for navigation and defined with

respect to the surface of the earth. The inertial axes are aligned so that the x-axis is

horizontal and points North, the y-axis is horizontal and points East and the z-axis

is positive down towards the centre of the earth. A precise mapping between the

inertial and body axes can be made based on the attitude of the helicopter.

Using standard aircraft nomenclature, the velocity components of the helicopter

along the body axes x,y and z are given the designations u,v and w respectively.

Likewise, the body axes rotation rates of the helicopter are p, q and r. The sense of

the rotations are defined in accordance with a right hand axes system.
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3.2.2 Attitude Representation

In order to properly define the orientation of an aircraft it is not only necessary

to define a coordinate system about which to apply rotations, but also the order

in which they are applied. Perhaps the easiest way to visualise attitude is using

Euler angles. In aviation three Euler angles are used to describe the orientation

of an aircraft with respect to an axes system fixed to the earth. These angles use

the familiar designations roll, pitch and yaw. They are also commonly attributed

the Greek names and symbols: φ, θ and ψ, respectively. In aviation, the order of

the rotations is yaw, pitch, then roll. Hence an attitude of (45◦, 20◦, 15◦) would

mean that you would start with a horizontal line aligned with heading North-East.

Inclining this line by an angle of 20◦ to horizontal would form the longitudinal axis of

the aircraft (ie pitched up at 20◦). The specified attitude would then be completed

by rolling the aircraft to the right 15◦ around the inclined line.

Although, physically meaningful, Euler angles suffer from some major draw-

backs. At pitch angles of ±90◦, the mathematical description of attitude becomes a

singularity so that yaw ceases to have any meaning. At angles close to ±90◦, signifi-

cant computational errors may arise when using equations based on Euler angles to

simulate or track aircraft attitude. There is also a problem with wraparound such

that integrated values of Euler angles may exceed ±90◦ in pitch or ±90◦ in roll,

which may make determination of a unique attitude difficult. Finally, the equations

which propagate the attitude of a vehicle in Euler angles are highly non-linear and

involve many trigonometric terms. For simulation and control, this makes them

computationally expensive and less robust than alternative representations.

Other forms of attitude representation do exist. The most widely used of these,

involves four variables instead of three, and gets past the problem of the singularity

at high pitch angles. The four variables qi used are called quaternion parameters and

are related to the Euler angles as shown below. The quaternions are more difficult to

understand conceptually but do not suffer from wraparound or singularities and can

be propagated with simple linear matrix algebra. However, it is usual to convert the

quaternion attitude back to Euler angles when it is necessary to display the attitude

or use it for control.
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3.2.3 Rigid Body Dynamics

The helicopter airframe is much more rigid than the rotor system, and can be treated

as a rigid body for the purposes of control analysis. Newton’s second law of motion
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Table 3.1: Eagle helicopter inertia properties

Parameter Meaning Units Value
m mass kg 8.2
Ix Mass Moment about x-axis kgm2 0.30
Iy Mass Moment about y-axis kgm2 0.82
Iz Mass Moment about z-axis kgm2 0.40
Ixz Product of Inertia kgm2 -0.01

can be used to derive the relationships between the forces and moments acting on the

helicopter and the linear and angular accelerations. Assuming that the helicopter

is of a conventional mass distribution, it is usual that the xz plane is a plane of

symmetry, so that the cross product moments of inertia Iyz = Ixy = 0. In this case

the equations of motion are those in Equation (3.2). A good derivation of these

equations can be found in the flight mechanics text by Nelson [89].

Fx = m(u̇+ qw − rv)

Fy = m(v̇ + ru− pw)

Fz = m(ẇ + pv − qu)

L = Ixṗ− Ixzṙ + qr(Iz − Iy) − Ixzpq

M = Iyq̇ + rp(Ix − Iz) + Ixz(p
2 − r2)

N = −Ixzṗ+ Iz ṙ + pq(Iy − Ix) + Ixzqr (3.2)

where

Ix =

∫ ∫ ∫
(y2 + z2) dm

Iy =

∫ ∫ ∫
(x2 + z2) dm

Iz =

∫ ∫ ∫
(x2 + y2) dm

Ixy =

∫ ∫ ∫
xy dm

Ixz =

∫ ∫ ∫
xz dm

Iyz =

∫ ∫ ∫
yz dm

(3.3)

The mass m and mass moments of inertia Ix, Iy, Iz and Ixz of the helicopters

are given in table 3.1. The mass for each helicopter was found simply by weighing

them on a set of digital scales. The moments of inertia were calculated in an ExcelR©

spreadsheet by weighing individual components and treating them as lumped or

distributed masses at various distances from a datum position.

For robustness, the attitude of the helicopter is stored as a quaternion and up-

dated using the following equations provided by Stevens and Lewis in [90]. The

quaternion attitude update also removes the need to use trigonometric functions

which would be required if integrating the Euler angle differential equations.
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⎡⎢⎢⎣
q̇0
q̇1
q̇2
q̇3

⎤⎥⎥⎦ = −1
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⎡⎢⎢⎣
0 p q r

−p 0 −r q

−q r 0 −p
−r −q p 0

⎤⎥⎥⎦
⎡⎢⎢⎣
q0
q1
q2
q3

⎤⎥⎥⎦ (3.4)

The final step in updating the rigid body states is to update the position of

the helicopter in global coordinates relative to an earth-based axes system. The

local velocities u,v and w are first converted to global velocities Ẋ, Ẏ and Ż by

multiplying the local velocities by the rotation matrix B as in Equation (3.5). The

rotation matrix can be determined directly from the quaternions using Equation

(3.6). These velocities are then integrated to obtain the global position [X, Y, Z]⎡⎣ Ẋ

Ẏ

Ż

⎤⎦ = B

⎡⎣ u

v

w

⎤⎦ (3.5)

where

B =

⎡⎣ q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 + q0q3) 2 (q1q2 + q0q3)

2 (q1q2 − q0q3) q2
0 + q2

1 − q2
2 − q2

3 2 (q2q3 + q0q1)

2 (q1q3 + q1q2) 2 (q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤⎦ (3.6)

Equations (3.2) have been implemented as a C code SIMULINKR© S-function in

the simulation. An S-function is a block diagram component in SIMULINKR© that

provides access to user defined functions written in either C, Ada or MATLABR© m-

file format. The SIMULINKR© software calls the S-functions when the outputs and

state derivatives corresponding to the S-function need to be updated. The states

for the dynamics block are position, local velocity components in the helicopter

axes system, rotation rates and quaternion attitude. Inputs to the block are the

forces and moments acting on the helicopter while the outputs are accelerations,

local velocities, position, body angular rates and attitude. A simple trapezoidal

integration scheme executing at 2000 updates per second is used to update the

states. A graphical mask for the dynamics block allows the user to change the mass,

moments of inertia and initial states by double clicking on the block icon.

3.3 The Aerodynamics of a Helicopter

Unlike an aeroplane, where the wing is fixed with respect to the fuselage, a rotary

wing vehicle has rotor blades that are free to flap. This allows the plane of the rotor

disc to tilt in relation to the shaft, depending on the balance of aerodynamic and

centrifugal forces acting on each blade. In turn, the amount of tilt of the rotor disc

determines the forces and moments acting at the rotor hub. The flapping motion of

the blades creates a relationship between the control inputs, helicopter motion and

the forces and moments acting at the hub which is much more complex than similar

relationships between control deflections and the forces and moments acting upon a

fixed wing aircraft.
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The controls of the helicopters used in this thesis are the same as a conventional

helicopter and consist of 5 control channels: collective pitch, lateral cyclic pitch, lon-

gitudinal cyclic pitch, tail rotor pitch and throttle. Observations of the RMAX and

Eagle helicopters with an optical tachometer have shown that the RPM does not

vary more than 1 percent during flight owing to onboard governors controlling the

throttle channel. For this reason the throttle channel has been ignored and a con-

stant RPM assumed. This simplification may not be appropriate during aggressive

manoeuvring.

The main rotor forces and moments are controlled by the collective and cyclic

pitch channels. The collective pitch control varies the average blade incidence of all

of the blades. Increasing the collective pitch control results in an increased angle of

attack of each blade and a subsequent increase in main rotor thrust. Decreasing the

collective pitch has the opposite effect. The vertical motion of the helicopter is thus

controlled by varying the collective pitch.

In order to achieve pitching and rolling moments, the orientation or tilt of the

rotor disk is changed by applying pitch that varies cyclically, once per revolution.

Increasing the blade pitch on one side of the rotor disk and decreasing it on the

opposite side causes the path of the blade tips, known as the Tip Path Plane (TPP)

to be tilted. Since the thrust vector acts essentially perpendicular to the TPP [164],

this can be used to change the trim of the helicopter. In addition to tilting the

thrust vector, moments acting at the rotor hub are generated by the effect of cyclic

pitch on the blade aerodynamic forces. Cyclic pitch is applied through a swashplate

comprising one fixed and one rotating plate joined by bearings. The servos are

connected to the fixed part of the swashplate as shown in Figure 3.6. The pitch

change links controlling the main rotor blade pitch are connected to the rotating

part of the swashplate so that tilting the swashplate causes the blade pitch to be

varied once per revolution in a sinusoidal fashion. Collective pitch can be achieved by

raising or lowering the swashplate to increase or decrease the blade pitch collectively.

The blade pitch θ can be described as the first three terms in a Fourier series as per

Equation (3.7) where ψ represents the azimuth angle of the rotor blade measured

anti-clockwise when viewed from above and starting with ψ = 0◦ at the tail. Note

that, as a general rule, blades may be twisted along their length, in which case the

blade pitch is also a function of radius. However for the Eagle, this is not the case.

In accordance with standard conventions [165], I will use the symbol θ0 for collective

pitch at the root of the blade and A1 and B1 for cyclic pitch.

θ = θ0 + A1 cosψ +B1 sinψ (3.7)

The variable A1 is known as lateral cyclic as it predominantly causes a rolling

moment while B1 is known as longitudinal cyclic as it results in predominantly a

pitching moment. The rotor control inputs are stimulated by three angular servos on

the Eagle which receive commands at 50Hz using Pulse Width Modulation (PWM).

Horns fitted to the shaft of each servo move to an angular position which is linearly

proportional to the width of the PWM pulse, with neutral servo angle being defined

as when the pulse width is 1.5 milliseconds. The angular displacements of the
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Figure 3.3: Actuator disk theory of vertical flight

servo horns are transmitted to the rotor blade through a number of mechanical

mixing systems including the swashplate. For pitch and roll, I will denote the servo

commands in terms of the difference between the trimmed pulse width for hover

and the actual pulse width in microseconds as (δlat) and (δlon) respectively. The

collective pitch angle (δcol) represents the raw PWM signal to the collective pitch

servo.

3.3.1 Momentum Theory

Now that the control inputs to the main rotor are defined, we need to simulate how

the forces and moments acting on the rotor hub are manipulated by these controls.

To develop this, we must first understand the basic aerodynamics of a rotor. The

flow through a rotor is shown in Figure 3.3 for the case of hover. The simplest

analysis we can perform is momentum theory in which we treat the rotor disk as an

infinitely thin discontinuity across which the pressure changes an amount ΔP due to

the energy imparted by the rotor blades. We further assume that the flow velocity is

uniform in the slipstream in a direction parallel to the disk, and that the conditions

outside the slipstream are not perturbed by the rotor. This approach is known as

actuator disk theory [164]. The velocity Vi is the induced velocity through the rotor

disk. Applying conservation of energy and conservation of momentum together, we

can show that, in hover, the relationship between the induced velocity and thrust

(T ) is given by Equation (3.8) where A is the rotor disc area and ρ is the density of

the air.

T = 2ρAV 2
i (3.8)

Non-dimensional coefficients are often used in helicopter aerodynamics as these

simplify the equations. Table 3.2 summarises the coefficients that I will use in

this thesis. Using non-dimensional form, Equation (3.8) can be expressed in non-

dimensional form as per Equation (3.9).
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Symbol Description Formulae Symbol Description Formulae

CL Lift Coefficient L
0.5ρV 2S

CD Drag Coefficient L
0.5ρV 2S

CT Thrust Coefficient T

ρA(ΩR)2
μ Advance Ratio V

(ΩR)2

λi Inflow Coefficient Vi

(ΩR)
CP Power Coefficient Power

ρA(ΩR)3

γ Lock Number ρacR4

Ib
CQ Torque Coefficient Torque

ρA(ΩR)2R

Table 3.2: Rotorcraft non-dimensional coefficients

CT =
T

ρA (ΩR)2 = 2λ2
i (3.9)

The constant γ in Table 3.2 is known as the Lock number which is a non-

dimensional parameter, representing the ratio of aerodynamic to centrifugal forces.

The Lock number becomes important when studying the flapping of the rotor blades

and will be used later in the chapter. The constant Ib is the blade 2nd mass moment

of inertia about its flapping hinge.

3.3.2 Blade Element Theory

Momentum theory does not provide us with any guidance on what collective pitch

is required to achieve a given thrust, or how cyclic pitch affects the rotor forces and

moments. To determine these relationships, we need to use Blade Element Theory,

in which the rotor blade is treated as an infinite series of discrete aerofoil sections.

Each section of rotor blade of span dr experiences lift and drag forces defined as the

forces acting normal and parallel to the local wind vector at each radial location

on the rotor blade. Because the flow conditions can change both radially and with

blade azimuth, it is necessary to consider the elemental forces dD and dL shown at

Figure 3.4 for each radial location and azimuth angle.

As for any aerofoil, the elemental forces can be defined from the fundamental

lift and drag Equations (3.12). The subscripts 0 and i on the drag term refer to the

profile drag and induced drag respectively.

dL =
1

2
ρV 2

Raαc dr (3.10)

dD0 =
1

2
ρV 2

RCd0c dr (3.11)

dDi = dL sinφ (3.12)

Referring to Figure 3.4, the angle of attack of the blade is α = (θ − φ). The lift

curve slope a defines the linear relationship between lift coefficient CL and α for the

2D blade section, such that CL = aα. Air density has the symbol ρ. The constant
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CD0
represents the profile drag of the blade which is the drag of the blade due to

viscous effects in the air. For flight at moderate angles of attack, it is reasonable

to treat CD0
as a constant [163]. Based on indicative values for similar size rotors

provided at [166], a value of 0.012 is choosen for CD0
. The induced drag results from

the component of the lift vector which acts perpendicular to the shaft and this adds

to the total torque requirement of the rotor.

The total thrust of the rotor can be calculated by integrating the lift and drag

components which act in a direction normal to the rotor disc (dLcos(φ) + dDsin(φ))

with a double integral with respect to r and ψ. Similarly, the total torque of the

rotor can be found by integrating the term (r(dDcos(φ) +DLsin(φ))). Expressions

for pitching and rolling moments, side force and horizontal force can also be derived

by integrating the elemental forces. Unfortunately, these expressions tend to be

unwieldy and require some assumptions to be made to solve them analytically. One

such problem is that the induced flow through the rotor, Vi is an unknown which

needs to be calculated by some other means. Usually this is done by first calculating

an approximate value of the induced velocity from momentum theory and then

applying blade element theory using this value of Vi. In forward flight, the induced

velocity varies with azimuth due to the asymmetry of the conditions on the advancing

and retreating side of the rotor disk. Predominantly this manifests itself as an

upwash at the front of the disk and a downwash at the rear of the disk. For accurate

performance work, it is common to incorporate an assumed distribution of induced

velocity based on experiment to account for these variations. However for minimum

complexity simulations, a uniform induced flow is generally assumed.

In general flight, the helicopter experiences a relative freestream velocity due to

its own motion of V∞ given by Equation (3.13) and shown at Figure 3.5. The Figure

has much similarity to the momentum theory diagram used in vertical flight. The

airstream is deflected through the actuator disc by speed Vi at the disc and can be

shown to change the downstream flow by 2Vi. This flow is made up of components

Vn and Vt perpendicular and tangential to the TPP respectively.
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V 2
∞ = u2 + v2 + w2 = V 2

n + V 2
t (3.13)

Making small angle approximation for the flapping angles is justified since the

flapping angles rarely exceed 10o in normal flight [164]. Hence the expressions for

Vn and Vt are:

Vn = (a1 + is)u− b1v − w (3.14)

V 2
t = u2 + v2 (3.15)

The most basic inflow assumption that can be made is to assume uniform inflow,

which is to say that the inflow Vi does not change with radius or azimuth. In this

case, we can integrate the elemental forces to achieve a closed form solution for

thrust in terms of collective pitch, inflow relative to the TPP (λ′) and advance ratio

(μ) as per Equation (3.16) (see [167] for a detailed derivation).

T =
ρa (ΩR)2Ab

2

[
1

3
θ0

(
1 +

3

2
μ2

)
− 1

2
λ′
]

(3.16)

where

λ′ =
Vi + Vn

ΩR
and μ =

Vt
ΩR

(3.17)

3.3.3 Rotor Thrust

In order to calculate the inflow and hence thrust, use is made of Glauert’s induced

flow model [168] which likens a rotor in forward flight to an elliptically loaded fixed

wing of circular planform. This approach has been taken by several others [154,157,

162]. Based on the downwash for the equivalent wing, Glauert suggested that the

mean induced velocity Vi can be expressed as in Equation (3.18).

Vi =
T

2ρAV̂
where V̂ =

√
V 2
T + (Vn + Vi)

2 (3.18)

Note that no theoretical basis exists for using the assumed flow pattern of Figure

3.5, other than: (a) in hover, Equation (3.18) reduces to Vi =
√

T
2ρA

which is the

momentum equation derived for axial flight; and (b) in fast forward flight V̂ ≈ V∞
and the formula becomes the same as that predicted for an elliptically loaded wing.

However there does appear to be a good match between this model and experiment

[167]. After some manipulation [165] of Equation (3.18) we can write:

V 2
i =

√√√√( V̂
2

)2

+

(
T

2ρA

)2

− V̂ 2

2
(3.19)

The combination of momentum theory and blade element theory using Glauert’s

simple inflow model results in two coupled non-linear Equations (3.16) and (3.19)
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which must be solved numerically. Heffley [162] uses an iterative scheme based on

a converging guess of induced velocity. In certain situations, I have found that this

does not always converge, being sensitive to both the initial guess of Vi and the

flight condition. Leishman and Padfield [163, 169] have suggested schemes based

on Newton-Raphson techniques, but these schemes are also not guaranteed to con-

verge. For this thesis, a new method has therefore been developed using a simple

binary search algorithm to find Vi, making use of the fact that the thrust varies

monotonically with Vi. Whilst taking roughly double the number of iterations, the

technique always converges provided the upper and lower bounds of the search are

set correctly.

In the binary search algorithm, the difference in the thrust ΔT predicted by

Equations (3.16) and (3.19) is calculated based on a guess of Vi. The objective of

the algorithm is to find a value of Vi which makes ΔT as close to zero as possible.

The algorithm starts by assuming a lower bound (Vi = 0) and an upper bound of

Vi. ΔT is then calculated for Vi halfway between the upper and lower bounds and

also for the value of Vi at the lower bound. If this ΔT is of opposite sign to a ΔT

calculated at the lower bound, then the solution must lie between the lower bound

and the midpoint guess. Hence for the next iteration, the new upper bound becomes

the old midpoint guess. Conversely, if ΔT is of the same sign as a ΔT calculated

at the lower bound, then the solution must lie between the upper bound and the

midpoint guess. In this case, the lower bound is set to the old midpoint guess. This

continues until ΔT falls below a prescribed convergence criterion. Typically ΔT

converged to within a tolerance of 10−6N after no more than 25 iterations. The

algorithm for calculating Vi and thrust is embedded in a C code S-function block.

3.3.4 Flapping Dynamics

Rotor blade flapping takes place under conditions of dynamic equilibrium, about

the hinge, between the aerodynamic lift, the centrifugal force and the blade inertia.

Since, in any steady state of the rotor, the flapping motion is periodic, the flapping

angle can be expressed in the form of an infinite Fourier series:
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β = β0 + a1 cosψ + b1 sinψ + a2 cos 2ψ + b2 sin 2ψ + . . . (3.20)

For most work, only the constant term and the two first harmonic terms are used.

The constant term represents the coning angle. The magnitude of the coefficients

dies off by approximately an order of magnitude for each harmonic, so that the

sin 2ψ and cos 2ψ terms are usually about 1/10th as significant as the sinψ and

cosψ terms. When only the first order terms are considered, the flapping angle β is

defined in terms of the coning angle a0, longitudinal flapping a1 and lateral flapping

b1 as per Equation (3.21).

β = a0 + a1 cosψ + b1 sinψ (3.21)

The flapping is affected by the cyclic pitch and also by the pitching and rolling

rates. Gyroscopic effects on the blade hinge moments result in coupling with the

rotation rates, which causes the TPP to lag behind the shaft when the aircraft is

pitching and rolling. For a typical helicopter, a pure pitch rate will generate a longi-

tudinal flapping effect which is about double the magnitude of the lateral flapping.

This is a source of cross-coupling known as rate cross coupling. However, Heffley

suggests that the rate cross-coupling be ignored, as it does not necessarily produce

a good match to flight data. Prouty [165] derives a rather complex expression for

the effect of the rotation rates in terms of the hinge offset, advance ratio and other

constants. For low speed and zero hinge offset, this simplifies to Equations (3.22-

3.23).

a1 = −16

γ

( q
Ω

)
+
( p

Ω

)
(3.22)

b1 = −16

γ

( p
Ω

)
−
( q

Ω

)
(3.23)

Tischler and Remple [170] show that the main flapping of the main rotor, which

is a second order systems, can be accurately represented as two coupled first order

equations. If the cross-coupling terms are initially ignored as suggested by Heffley

[162], these equations become those in Equations (3.24-3.25).

ȧ1 = −q − 1

τf

(
a1 +

da1

dB1

B1

)
(3.24)

ḃ1 = −p− 1

τf

(
b1 +

db1
dA1

A1

)
(3.25)

For a teetering rotor, consisting of a rotor blade hinged on the axis of the shaft,

it can be shown that the natural frequency of the flapping is equal to the angular

velocity of the rotor Ω. As the system is therefore in resonance, the phase lag

between the excitation (the once per revolution cyclic pitch) and the flapping is

exactly 90◦. The Eagle main rotor hub consists of a pivot on the shaft axis about
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which the blades can flap and an elastomeric element that allows moments, as well

as forces, to be transferred from the rotor blade to the hub. The arrangement can

be conceptualised as the combination of a moment from a centre spring and a tilted

TPP [157] as shown in Figure 3.7. A consequence of the centre spring is that the

natural frequency of the rotor blade flapping is no longer in resonance with the

rotational excitation, leading to a reduced phase shift between flapping and cyclic

pitch and a decreased flapping time constant. Prouty [165] derives the time constant

for flapping of a hinged rotor blade to arrive at Equation (3.26) in terms of the hinge

offset from the shaft. The time constant is typically between one-quarter and one

half of a rotor revolution, depending on the effective hinge offset and spring constant.

τf =
16 (1 − e/R)

γΩ (1 − e/R)4 (1 + e/3R)
(3.26)

Cooke [171] shows that the effect of a spring on the rotor blade hinge is equivalent

to the effect of hinge offset and goes on to derive equations for the effect of the spring

on the natural frequency and damping ratio. Re-arranging Cooke’s equations which

deal with both hinge offset and spring constant, provides Equation (3.27) which

allows the effective hinge offset eeff to be calculated.

eeff =
Kβ

mbrgR2Ω2
(3.27)

where Kβ is the spring stiffness, mb is the mass of the blade and rg is the radial

location of the centre of gravity of the blade. Substitution of the effective hinge

offset back into Equation (3.26) provides a means to calculate the time constant.

For the case of the Eagle, this results in an effective hinge offset of e = 0.12 and a

flapping time constant of approximately 6 milliseconds.

One other important effect on flapping needs to be considered. A helicopter rotor

responds to changes in sideslip through an effect well-known for fixed wing, dihedral

effect. The effect of dihedral is for the helicopter to roll away from sideslip. This is

a stabilising influence which acts to maintain wings level, since a bank to one side

results in the aircraft sideslipping towards the low wing. The resulting sideslip and

dihedral effect then causes the aircraft to roll away from the low wing. Consider

a hovering helicopter with blades rotating anti-clockwise. If a helicopter were to

suddenly experience a gust from the right, the rear of the disk would be advancing

into the flow and generate increased lift. Blades at the front of the disk would be

retreating from the relative wind and receive a net decrease in lift. Due to phase lag,

the TPP would be tilted to the left and the helicopter would get a rolling moment to

the left, rolling the helicopter away from the gust. I make use of Heffley’s equation

for dihedral effect (3.28) which is provided at [162]. Since the thrust coefficient does

not change greatly between hover and forward flight, its value is calculated once at

the start of the simulation based on the thrust coefficient for steady hover.

db1
dv

=
da1

du
=

2

ΩR

(
8CT
aσ

+

√
CT
2

)
(3.28)
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Figure 3.6: Flybar arrangement with Bell-Hiller stabilisation system

The main rotor flapping is implemented as a discrete S-function block in SIMULINKR©.

The inputs to the block are the velocities (for dihedral effect), the rotation rates for

calculation of gyroscopic effects and the cyclic pitch. The outputs of the block are

the longitudinal and lateral flapping angles, a1 and b1.

3.3.5 Flybar Dynamics

A feature of practically all small unmanned helicopters is a control rotor, known

as a flybar, which augments the stability of the main rotor. The flybar is a hybrid

of stabilising arrangements patented by Bell and Hiller. The primary effect of the

flybar is to provide feedback from the helicopter pitch and roll rates to the cyclic

pitch of the blades. The time constant of the flybar is much lower than for the main

rotor which slows down the dynamics of the helicopter, making it easier for a human

pilot to fly. A number of groups have provided an analysis of the flybar with varying

degrees of complexity [172]. All of the UAV platforms utilised for this thesis project

employ a flybar arrangement consisting of a teetering rotor rotated 90 degrees out

of phase with the main rotor. The flybar blades comprise small paddles which are

connected to the main rotor pitch change horns through a Bell-Hiller mixing lever

as shown in Figure 3.6. The incidence of the paddles is controlled by linkages to the

swashplate (not shown in the figure).

Unlike the Hiller stabiliser bar, the flapping angle of the flybar is used to control

the main rotor blade pitch. Application of cyclic pitch causes the flybar pitch to

change, resulting in flapping of the flybar. The flapping of the flybar is fed through

mechanical linkages to adjust the main rotor blade cyclic pitch, resulting in the

TPP tilting as desired. This scheme introduces significant lag into the control loop,

which would be problematic for the pilot, so that some cyclic pitch is fed through a

mechanical mixing system directly into the main rotor to provide some faster control.

The flybar is hinged at the shaft so that the time constant Equation (3.26) simplifies

to Equation (3.29). For the Eagle, the time constant of the flybar is approximately

0.23 seconds which is significantly slower than that for the main rotor.
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τs =
16

γsΩ
(3.29)

The flapping (βs) of the flybar is defined by the longitudinal flapping c and the

lateral flapping d such that βs = c cosψ + d sinψ. A set of first order Equations

(3.30) defines the flapping dynamics. The constants Dlat and Dlon represent the

gearing ratio between the servo commands δlat and δlon and the corresponding pitch

change of the flybar paddles.

τsḋ = −d− τsp+Dlatδlat

τsċ = −c− τsq + Clonδlon (3.30)

The linearised relationship between the cyclic pitch fed to the main rotor blades,

the flybar flapping and the servo commands are presented in Equation (3.32). The

constants Alat, Blon and Ks represent the combined gain of the servos and the

mechanical mixing ratios of the linkages. The values of the constants Alat and

Blon were found by measuring the variation in pitch with variation in the control

signal sent to the servos. The value of the constant Ks was estimated based on the

kinematics of the linkage geometry. For the purposes of simulation, the mechanical

mixing equation was treated as linear, although some non-linearity does exist. The

flybar dynamics are implemented in their own S-function block. Inputs are the

rotation rates and cyclic pitch. Outputs are the flapping which is fed to the input

of the main rotor flapping block.

A1 = Alatδlat +Ksd (3.31)

B1 = Blonδlon −Ksc (3.32)

3.3.6 Main Rotor Control Forces and Moments

The longitudinal and lateral forces and moments acting on the main rotor hub are

a result of tilting the TPP. Referring to Figure 3.7, it can be seen that the effect

of the centre spring is to create a moment to be transferred to the rotor hub which

is linearly proportional to the flapping angle β. The stiffness of the centre spring

acting on the Eagle rotor hub, was measured in a force deflection test and found to

be Kβ = 270 Nm/radian. The TPP tilt also causes the thrust vector to act on a

line of action which is offset by Zmrβ from the centre of gravity, creating additional

moments. The combined effect is to generate main rotor pitching and rolling moment

contributions as per Equation (3.33).

Lmr = Kβb1 + Tzmrb1 and Mmr = Kβa1 + Tzmra1 (3.33)

The forces acting on the main rotor are commonly approximated as acting per-

pendicular to the TPP [169]. Making small angle approximations, we can write the

forces acting at the rotor hub as per equation (3.34).
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Figure 3.7: Centre spring representation of rotor forces and moments

Fmr
x = −Tmra1 Fmr

y = Tmrb1 Fmr
z = −Tmr (3.34)

The lateral and longitudinal rotor forces and moments are simulated by an S-

function block which takes thrust and flapping as its inputs.

3.3.7 Main Rotor Torque

The yawing torque Nmr generated by the main rotor results from the drag of the

rotor blades through the air. This torque must be balanced by the tail rotor thrust

to stop the helicopter yawing. The main rotor torque can be calculated by dividing

the main rotor power Pmr by the angular velocity as in Equation (3.35).

Nmr =
Pmr

Ω
(3.35)

The power of the main rotor is due to a number of sources: the induced power

(Pind) which is the power required to create the induced velocity Vi; the profile

power (P0) which is the power to overcome the profile drag of the blades; parasite

power (Pfus) which is the power required to overcome the drag of the fuselage in

forward flight; and climb power (Pclimb) which is the rate of change of gravitational

potential energy due to climbing. The power equation may be written compactly in

non-dimensional form as in Equation (3.40):

CPtot
= CPind

+ CP0
+ CPfus

+ CPclimb
(3.36)

where

CPind
= kindCTλi (3.37)

CP0
=

σCD0

8

(
1 + κμ2

)
(3.38)

CPfus
= |Xfusu| + |Y fusv| + |Zfus (w − Vi) | (3.39)

CPclimb
=

mgḢ

ρA (ΩR)3 (3.40)
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The constant kind is a correction factor to compensate for tip losses and for the

inflow not being uniform. The constant κ compensates the profile drag power for

the effects of the reverse flow region and the spanwise flow over the rotor blade

in forward flight. Values of kind = 1.2 and κ = 4.7 have been assumed based on

suggestions by Leishman [163].

3.3.8 Tail Rotor

The calculation of tail rotor thrust is treated in the same way as the main rotor,

except the orientation is changed and flapping effects are not included. Another

S-function block was created to calculate the tail rotor thrust T tr and the tail rotor

power. The yawing moment from the tail rotor is calculated from the tail rotor

thrust using N tr = T trdtr where dtr is the distance from the centre of the tail rotor

to the centre of gravity.

3.3.9 Tailplane Forces and Moments

The Eagle helicopter is fitted with a vertical fin on the tailplane which helps to

stabilise the helicopter directionally in forward flight. The fin is treated like a wing

which creates lift when exposed to an angle of attack. The equations for the force

and moment contributions of the stabiliser are provided in Equation (3.44). The

drag force of the tailplane is lumped in with the drag force of the fuselage as a whole.

V vt
R =

(
u2 + w2

)
(3.41)

αvt =
v + rdvt

u
(3.42)

F vt
y =

1

2
ρV vt

R avtαvt (3.43)

Nvt = F v
y d

vt (3.44)

3.3.10 Fuselage Forces

The fuselage drag forces are calculated along each body axis using the formulae in

Equation (3.47). The values Sx, Sy and Sz are the equivalent flat plate areas of the

fuselage in the respective directions.

F fus
x =

ρ

2
Sfusx u2 (3.45)

F fus
Y =

ρ

2
Sfusy v2 (3.46)

F fus
Z =

ρ

2
Sfusz (w + Vi)

2 (3.47)
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3.3.11 Dynamics Subsystem

The helicopter dynamics are combined into a SIMULINKR© subsystem containing

all of the aerodynamic effects and rigid body dynamics as shown in Figure 3.8.
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The inputs to the subsystem are the collective pitch, tail rotor pitch and cyclic

pitch angles produced by the servos. The outputs are the state vector comprised of

position, local velocities, quaternion attitude, angular rates and accelerations. The

parameters used in the dynamics simulation are summarised in Appendix A.

3.4 Servo Dynamics

The Eagle helicopter has been fitted with DS8411 fast-response digital RC servos

manufactured by the Japan Radio Control Company (JR). Each servo contains an

integral PID controller that positions the servo in response to a Pulse Width Mod-

ulated control signal (PWM). The controller receives updates every 20 milliseconds

from the PWM stream. Various representations of RC servo dynamics have been

used ranging from first order to third order systems [157,173]. Gavrillets et al [157]

used a first order representation of the servo dynamics based on an identified band-

width for a typical RC servo of 6Hz, defined as being the frequency at which the

output lags the input with a 90 degree phase lag.

Brennan [174] conducted a detailed analysis of high-end digital servos and notes

that the frequency response of the servos is not in fact linear, being dependent on

amplitude. This agrees with observations made by driving a servo with sinewaves

ranging in frequency from 0.125Hz to 6.5Hz and measuring the servo horn position

with a sampled potentiometer output. My tests show that the magnitude response

begins to fall below unity at a speed of 1Hz for maximum deflection and 4Hz for

5 percent of full travel. At amplitudes below this, the servo Bode plot exhibits a

corner frequency of between 3.5Hz-4.0Hz. By comparing the frequency at which the

magnitude begins to drop, Ωcr, and the commanded amplitude θs, it is possible to

calculate the rate limit θ̇max using Equation (3.48) which is derived from consid-

ering when the derivative of the commanded sine wave exceeds the rate limit. At

amplitudes of 60◦, 48◦ and 36◦, the indicated rate limits were 314◦/sec, 301◦/sec

and 302◦/sec respectively. This agrees well with the 300◦/sec maximum angular

rate specification for the servo, provided by the manufacturer.

θ̇max = Ωcrθs (3.48)

Brennan achieved a good match to experimental data in his work by modeling

the servo as a second order dynamic with a rate limiter. Increased fidelity can be

achieved by including a small deadband of about 1 degree of servo horn travel that

is incorporated into COTS servos to reduce their power consumption. I have used

a similar approach to Brennan except I have used the simpler first order transfer

function Fs(s) in Equation (3.49) combined with a rate limiter of 300◦/sec, as the

measuring equipment was not accurate enough to determine the damping ratio of

the servo dynamics from the resonant peak and hence characterise the second or-

der dynamics properly. Noting that most other researchers use only a first order

representation this is not expected to be a significant source of error.

Fs(s) =
1

1 + 0.05s
(3.49)
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3.5 Atmospheric Disturbances

The aim of including turbulence into the simulation is to ensure that the sensing

and control system can cope with a real-world environment where wind effects can

be a significant challenge to station keeping. Only linear velocities are considered as

the small size of the helicopter means that gradient effects which might cause local

rotational flow are negligible [173]. The velocities corresponding to turbulence are

added to the body axis velocities provided by the rigid body dynamics block and

these velocities are fed as the freestream velocity input to the aerodynamic blocks.

The dominant techniques for simulating the effects of atmospheric turbulence

on flying vehicles are based on the Dryden and von Karman spectral models of

atmospheric turbulence. The Dryden spectra has been used for this simulation as it

can be most readily generated, simply by passing white noise through appropriate

linear filters [175]. The filters used to generate the Dryden spectra are described by

the transfer functions at Equations (3.50-3.51), reproduced from [176], where the

constant lengths Lu, Lv and Lw refer to the scale of turbulence. The output of the

velocities will be the relative wind velocities on all three axes. The parameter V

in the transfer functions is the relative speed of the aircraft to the airmass. The

equations are aimed at aircraft in forward flight where the longitudinal velocity is

dominant, hence the longitudinal filter is different to the lateral and vertical filters

which are the same. Whilst, in the case of a hovering helicopter, the wind can be

from any direction, for most work, the helicopter is flown with its nose into wind, so

that the speed V can be approximated by the mean wind speed. The scale lengths

can be found from a number of empirical sources such as ESDU [177] and MIL-F-

8785C [178]. The latter states that, at heights below 6m, which is representative of

the conditions that the experiments for this thesis were conducted, constant values

of Lu = Lv = 722.5m and Lw = 3m may be used. The turbulence intensity factors

σu, σv and σw depend on the mean speed of the relative wind and the altitude H .

They are described by Equations (3.52-3.53) which are reproduced from [178]. The

scale lengths and mean wind speed are entered in a graphical mask of the turbulence

block by the user before starting the simulation.

Fu(s) = σu

√
2V

πLu

(
1

s+ V
Lu

)
(3.50)

Fv(s) = σv,w

√
3V

πLv,w

⎛⎜⎝ s+ V√
3Lv,w(

s+ V
Lv,w

)2

⎞⎟⎠ (3.51)

σw = 0.1umean (3.52)
σu
σw

=
σv
σw

=
1

(0.177 + 0.000823H)0.4
(3.53)
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3.6 Sensor Models

The sensor block functions to simulate the characteristics of the sensors fitted to

the helicopter. The input to the block are the state variables from the helicopter

dynamics block comprising position, velocity, acceleration and atttitude. It consists

of the following subsytems:

• Inertial Measurement Unit. This block simulates the accelerometers, mag-

netometers and gyroscopes. A graphical mask allows offsets, gains and random

noise to be changed for each sensor. A two pole butterworth filter is imple-

mented for each sensor with the same corner frequencies as the actual sensors.

The accelerometers and gyroscopes have a 20Hz corner frequency with a 400Hz

sample rate whilst the magnetometers have a 10Hz corner frequency. All of

the inertial sensors are sampled at a 400Hz sample rate.

• Optic Flow. The optic flow sensor subsystem calculates the flow that would

be seen by a downwards looking camera. The inputs to the sensor are the

local velocities and the height above ground. Gaussian white noise is added

to the flows with the same variance as that measured from experiment.

• GPS. The position from the dynamics block is converted into global X, Y and

Z coordinates with an adjustable sample rate and added position white noise.

For the experiments in this thesis, a 20Hz sample rate was used to simulate

the NovAtel DGPS sensor fitted to the Eagle helicopter.

• Rangefinder. This block simulates a generic rangefinder for determining

height above ground such as a laser rangefinder or stereo camera. A graphical

mask allows sensor offset, scale error and random noise to be set.

• Beacon Position. This block generates a set of three azimuth and elevation

angles to simulated visual landmarks. The block simulates a camera sensor

with a 50 Hz frame rate and a single pixel quantisation. Angles are calculated

relative to the aircraft body axes.

3.7 State Estimator

To control a helicopter in hover, the following states are required: position, velocity,

attitude and rotation rates. These states must be deduced from the sensor outputs

using a state estimator. An S-function block was implemented to do this. The

block is capable of accepting input from a variety of different types of sensors. The

sensory inputs are grouped into inertial, GPS, optic flow, height and visual position

measurements. The outputs of the block are output with an update rate of 50Hz to

match the controller sample rate.

The estimator executes in a predict and correct cycle. The predict cycle occurs

at the sample rate of the incoming inertial data which is 400Hz. At each time

step the state equations are propagated based on the measured accelerations and
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rotation rates. The same equations used for the rigid body dynamics block are used

in the estimator with the exception of attitude which is propagated as two separate

reference vectors.

Position and velocity are corrected when measurements of these state variables

are taken. The GPS measurements arrive at 20Hz, the visual data arrive at the

speed of the frame grabber which is 50Hz and the height data arrive at the speed of

the sonar which is 25Hz. The corrections to each state x̂ are made using Equation

(3.54) where k is an appropriate weighting factor and z is an observation of the

state. The correction term k for each sensor measurement is able to be modified by

the user by modifying the variables in the S-function GUI mask. The performance

of the estimator is generally not that sensitive to the values of k and these values

can be quickly set by trial and error to an appropriate value for the sensor noise

being simulated.

x̂∗ = x̂+ k (z − x̂) (3.54)

Attitude is stored and propagated inside the estimator as two vectors correspond-

ing to the gravity or downwards vector and a vector corresponding to the direction of

the local magnetic field. The gravity and magnetic field vectors are converted into a

rotation matrix and quaternion attitude representation as required. The vectors are

corrected at 50Hz using the measured magnetic vector from the magnetometers and

the gravitational vector measured by the accelerometers. It is assumed that over

a long time period, the accelerometer vector averages to that due to gravitational

acceleration. Hence the gravitational correction is based on the simple correction

cycle at Equation (3.54) with the observations being the measured accelerations.

During periods of rapid acceleration, this assumption causes errors in the pitch and

roll angles but I have found this does not upset the control of the helicopter in hover

or steady forward flight. For future work, it needs to be borne in mind that, if the

helicopter were to enter a banked turn, the attitude from the state estimator would

erect to a false horizon after a few seconds.

3.8 Simulation Validation

Initial adjustments of the simulation were made to match the trim control settings

of the simulation to the helicopter. The trim collective, aileron and elevator PWM

settings of the simulation were matched to values observed from flight test. The

simulation was validated against actual flight test data using frequency response

techniques. Time domain data were not used for validation since the helicopter is

dynamically unstable and requires constant attention by the pilot or control system

to keep in a stable hover. Due to small differences between the simulation and

plant, attempts to feed open loop control inputs recorded from flight test into the

simulation (or vice versa) result in rapid divergence from stable flight.

A chirp signal was used to stimulate the control inputs in both the simulation and

the actual plant (see Figure 3.9b), to generate a frequency response spectrum. The

chirp signal is made up of a sinusoidal signal of constant amplitude with a frequency
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Figure 3.9: Test signals used to determine frequency response

that increases linearly with time. In the simulation, the chirp signal was generated

continuously at the update rate of the simulation. The chirp was varied in frequency

from 0.1Hz to 10Hz over 120 seconds. Separate simulation runs were completed for

aileron, elevator and collective frequency sweeps. A low-gain control system was

implemented to maintain the helicopter in a hover with zero mean velocity. The

control inputs from the control system were added to the chirp signal. The control

inputs and the simulation state data were sampled at 50Hz and recorded to file.

For flight test, the chirp signal was generated offline using MATLABR© with unity

amplitude and a 50Hz sample rate to match the 50Hz PWM update rate. The same

chirp used in the simulation was used in the flight test experiments. As the test

signal is implemented with a discrete sample rate of 50Hz, it is not practical to use

a chirp to stimulate frequencies greater than about 5Hz, due to aliasing effects. To

achieve higher frequency stimulation for the flight test, a series of doublet waveforms

was appended to the chirp signal. A doublet consists of consecutive square wave

pulses of opposite sign, as shown in Figure 3.9a. The pulse width of the doublet is

matched to the frequency of interest. Doublets tuned to 3Hz, 5Hz, 7Hz and 10Hz

and consisting of 4 pulses each were used with a spacing of 3 seconds between them.

The test signal data were incorporated into the helicopter control system so that

a switch on the pilot’s transmitter could be used to initiate the start of the test

signal sequence. The amplitude of the test signal could be scaled to any desired

setting by the ground control operator using the command and control telemetry

system. The aileron and elevator test signals were given an amplitude of 20μsec

each and the collective channel was stimulated with an amplitude of 30μsec.

The systems identification flight tests were carried out on one axis at a time. For

each axis, the chirp/doublet signal was superimposed on top of the pilot’s control

inputs. During the tests, the pilot attempted to use as few control inputs as possible

whilst keeping the helicopter in a steady hover. Each test signal was executed for at

least two complete cycles of the test signal, so that each run was between 3 and 4

minutes. Figure 3.10 shows the collective input after the test signal has been applied

and the resulting vertical (heave) acceleration measured by the accelerometers. As

the test signal was superimposed on the pilot inputs, there are, at times, large
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Figure 3.10: Test signals applied to the helicopter and simulation

excursions from the trim collective due to the pilot’s effort at keeping the helicopter

at a safe and relatively constant altitude.

A software package called CIFERR© (Comprehensive Identification from FrEquency

Responses) [179] was used to analyse the data and produce Bode plots [82] repre-

senting the frequency response of the helicopter. CIFERR© was developed by the

US Army/NASA Rotorcraft Division (Ames Research Centre) to perform systems

identification using frequency response methods. The program uses Fast Fourier

Transforms (FFT) applied to overlapping windows of time domain data to generate

smooth spectral estimates. The frequency curve is found by averaging the local re-

sponse estimates over adjacent windows to provide a smooth curve. For the work in

this thesis, multiple FFT windows of 24 sec, 20 sec, 15 sec, 10 sec and 6 sec duration

were used and the results averaged.

The CIFER R© package outputs a classical Bode plot from sets of input data

X(jω) and output data Y (jω). The Bode plots consist of: (a) the logarithm of

magnitude ratio (20 log10 (|Y |/|X|) (in Decibels) versus log10 ω; and (b) the phase

shift φ between input excitation and response versus log10 ω plot. The software

also generates a third plot for the correlation factor versus log10 ω. The correlation

factor γ2 is a measure of the reliability of the frequency response curves which can

be defined as the fraction of the output spectrum that is linearly attributable to the

input spectrum [170]. The correlation factor can range between zero and unity with

1.0 being the ideal case for a system with zero noise and perfect linearity. Reduced

γ2 can arise from system non-linearities, measurement noise, cross-coupling and
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secondary inputs arising from unmeasured system disturbances. A general guideline

provided by the authors of the software is that provided γ2 > 0.6 and not oscillating,

the frequency spectrum is reliable [170].

For the purposes of simulation validation, the effects of cross-coupling between

control inputs was ignored. Three different control channels were analysed: aileron,

elevator and collective. The rudder channel was not treated as it was considered

too dangerous to excite the rudder servo at high frequency, owing to warnings from

the manufacturer about tail rotor servo failure in such conditions. The simulation

and flight test results were plotted on the same Bode plots for each of the three

control inputs. The following frequency response were examined: aileron excitation

of roll rate; elevator excitation of pitch rate; and collective excitation of vertical

acceleration.

The correlation factor for the plots is satisfactory in most parts of the spectrum.

At high frequencies, the correlation factor drops off and begins to oscillate due to the

aliasing effects of the sample rate. At low frequencies, the correlation factor is seen

to deteriorate because of the lack of low-frequency stimulation. For the aileron and

elevator channels, stimulation of less than about 0.15Hz is not very effective due to

unavoidable low bandwidth feedback from the pilot or control system which tends

to cancel out most of the motion. This feedback cannot be prevented, otherwise,

the low bandwidth oscillations in roll and pitch would result in excessive attitudes

developing. Other sources of reduced correlation factor would include the presence

of wind gusts, neglecting cross-coupling effects, vibration and the non-linearities

introduced by the servo linkages.

The lateral and longitudinal response both exhibit a lightly damped second order

response which agrees with results for other small-scale helicopters found in the

literature [85,102,180]. The attenuation of the control inputs at high frequency can

be attributed to the servo transfer function and the first order flapping lag for the

flybar/main rotor.

The simulation and flight test magnitude responses matched relatively well with

some small discrepancies in the resonant peak for the lateral and longitudinal cases.

Differences in phase response are most likely due to the variable fixed lag present in

the real helicopter due to the 50Hz servo and telemetry update rates. This fixed lag

can vary between 0ms and 40ms, depending on the non-deterministic synchronisa-

tion between the PC104 logging system and the MPC555 autopilot. The resonant

peaks represent the coupling between the fuselage rigid body mode, rotor flapping

and the flybar [85]. The resonant frequency in simulation was adjusted to bet-

ter match the flight test results by changing the lateral and longitudinal moments

of inertia by about 10%. The longitudinal case also had a slightly different low-

frequency gain which was corrected by changing the scale of the longitudinal cyclic

to flybar pitch Clon. After making these adjustments, the improved results were

checked and the simulation was deemed to be a satisfactory representation of the

Eagle helicopter. The final results are shown in Figures 3.11 - 3.12.
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Figure 3.11: Lateral frequency response: This chart shows the roll rate response (p) of

the helicopter to lateral cyclic pitch input.
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Figure 3.12: Longitudinal frequency response: This chart shows the pitch rate response

(q) of the helicopter to longitudinal cyclic pitch input.
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Figure 3.13: Vertical frequency response: This chart shows the vertical acceleration

response (az) of the helicopter to collective pitch input.

3.9 Closed Loop Simulation

In chapter 2, I examined the control approaches of other groups working on au-

tonomous helicopter control. A review of previous work suggests that a relatively

simple yet practical scheme for controlling a helicopter would be the use of an at-

titude feedback inner loop combined with a PID based position and velocity outer

loop. To prove this scheme would work with the quality of sensors, data rates,

control lags that would exist in the real-system, I first tested it in simulation. In

later chapters, the simulation will be used to demonstrate the practicality of various

vision-based control modes in hover and forward flight. For an initial test of the

control paradigm, I used simulated GPS and inertial sensor models to provide state

measurements to the state estimator.

The controller consists of a number of PID control loops. Each PID controller

is implemented as a discrete S-function with a time step equal to the 50Hz servo

update found on the actual helicopter. Equation (3.55) defines the PID control

function based on the error signal e and its derivative. The constants are the gains of

the control block. Rather than calculating the error signal and derivative inside the

block, the derivative is brought in separately from an external source. Calculating

the derivative inside the block leads to unacceptable noise since the error signal may

be noisy. Also, the derivatives are already available, being either measured directly,

such as angular rates, or available from the state estimator.

y = Kpe+Kdė+KI

∫
e (3.55)

The tail rotor PID is fed the error in heading angle and the yaw rate as its
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inputs. The inputs to the collective pitch PID are the error in altitude and the

vertical velocity. The lateral and longitudinal control scheme consists of an outer

and inner loop as proposed in Chapter 2.

The gains were tuned systematically using trial and error to converge on an

acceptable solution. In the first instance, the attitude control loop was tuned in-

dependently by turning off the outer loop and stopping the integration of velocity

and position in the dynamics block. Once satisfactory stability was demonstrated,

the outer loop was re-activated and the position and velocity gains were then tuned.

By disconnecting selected force and moment signals it was possible to tune pitch

and roll independently at first. Based on the approach of Ziegler and Nichols [80],

proportional gains on all loops were steadily increased to an ultimate gain Ku for

which the helicopter was marginally stable. The gains were then reduced to about

60% of Ku and then small adjustments were made to obtain a good compromise

between stability and speed of response.

Figure 3.14 shows the results of simulation of hover using the PID control scheme.

The desired reference position for the hover is X = 0m, Y = 0m, Z = 0m and

ψ = 0o. Turbulence corresponding to 5m/s mean wind speed is applied to the

relative air velocities. Sensor noise equivalent to that recorded from the actual

sensors is applied to the inertial and DGPS sensor blocks. The results show that

the helicopter is able to hold position and remains stable throughout the test. The

helicopter height wanders no more than 20cm from its datum position due to the

effect of the turbulence.

3.10 Summary

A closed-loop simulation of the Eagle helicopter has been developed using SIMULINKR©.

The model incorporates realistic sensor models, state estimation and control. In sim-

ulation, a position control loop scheme using PID control with an attitude feedback

inner loop has been shown to be a practical means of controlling the helicopter. The

simulation will be used in the following chapters to demonstrate the feasibility of

various sensing and control schemes.



§3.10 Summary 59

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

X
 P

os
 (

m
)

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

Y
 P

os
 (

m
)

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

Z
 P

os
 (

m
)

Time (sec)

0 20 40
2.5

3

3.5

Time (sec)

A
tti

tu
de

 (
de

g)

Roll

0 20 40
−0.5

0

0.5

Time (sec)

Pitch

0 20 40
−5

0

5

Time (sec)

Yaw

Figure 3.14: Simulation of closed loop hover





Chapter 4

System Overview

4.1 Introduction

This chapter provides an overview of the platforms and systems used to conduct the

various flight experiments. This includes a discussion of the extensive embedded

systems development carried out by the author to field the avionics, telemetry and

sensors required to perform close loop flight experiments.

4.2 Helicopter Platforms

Experiments for this thesis were conducted on two separate helicopter types, both

comprising a conventional helicopter design with a single main rotor and a single

tail-rotor for anti-torque compensation. The first of these were built from kits man-

ufactured by the Japanese hobby company Hirobo. These kits are all based on

variants of the Eagle 60 size radio-controlled helicopter used by radio-control en-

thusiasts. The competition grade Eagles were selected on the basis of the perceived

quality of construction. Being of all carbon fibre construction, the airframe weight

is reduced, providing more capacity for avionics to be carried. Also, the Eagles

had all metal control linkages and high quality rotor parts, reducing concerns re-

lating to control slop and wear. In all, four Eagle helicopters were constructed and

instrumented for visual control research. A gasoline powered Eagle was also built

and tested but was abandoned due to low payload capability and high vibration.

Three of the helicopters were powered by internal combustion engines running on

methanol based fuel. A fourth helicopter was converted to electric power in 2005

using a brushless DC motor. This modification reduces vibration, eliminates fuel

spills on to avionics, eliminates problems with exhaust smoke obscuring the camera

and means that it is no longer necessary to account for fuel burnoff changing the

helicopter weight and balance in flight. I made a decision to transition all exper-

iments to the electric helicopter owing to these advantages. Unfortunately, it has

only been in the last two years that advances in battery technology have made an

electrical autonomous helicopter practical.

The second platform is an RMAX unmanned helicopter manufactured by Yamaha.

The RMAX helicopter used for this thesis is designated as a model L-50 by the

manufacturer and is designed for agricultural work. This RMAX has no inherent

autonomy other than a Yamaha Attitude Control System (YACS) which provides

61
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Figure 4.1: UNSW@ADFA RMAX in flight

stability augmentation to assist the pilot when flying with a remote control system.

4.3 Autopilot Systems

Two schemes are devised for conducting closed loop experiments. In the first scheme,

a control by telemetry approach is taken, such that the sensor information is sent to

a ground computer using a radio link. The ground computer processes the sensor

information, calculates corresponding control inputs and sends these back to the

helicopter via another radio link. The second scheme involves a fully embedded

control system such that all of the processing is done on the helicopter in real-time.

Different systems are used on the Eagle and RMAX but both make use of PC104

computers based on the Pentium III chipset for vision processing.

4.3.1 Control by Telemetry

In the control by telemetry scheme, most of the processing for vision, sensor fusion

and control is completed on a standard PC on the ground. This provides ample

processing power for the vision calculations. This scheme also has the advantage

that software can be rapidly modified on the ground control computer without re-

programming the helicopter systems. The disadvantage of the system is the reliance

on telemetry links which add lag to the control loop, restrict sensor bandwidth and

introduce occasional random losses of data. This is more of a problem with the

video data where the quality of the imagery is, at times, degraded.

A flight computer, based on an 8 bit 8051 microcontroller architecture, samples

the onboard sensors sequentially and organises the telemetry information for trans-

mission to the ground. The sensor data is sent to the ground digitally using the

part of the video signal normally reserved for teletext called the Vertical Blanking

Interval (VBI). The flight computer’s other functions are to interrogate a GPS unit

for position and velocity once per second, perform sensor self-test functions and to
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Figure 4.2: Eagle with control by telemetry

determine the magnetometer offsets on start-up.

A UHF video transmitter is fitted to the side of the helicopter and used to

transmit video and telemetry data to the ground. Various types of cameras can be

bolted onto the helicopter front end. The video and telemetry signal generated by

the helicopter is received by a purpose built UHF aerial and down-converter. The

resulting video signal is then fed into a BT848 frame grabber fitted to a standard

PC PCI slot. For the initial visual landmark based hover test phase, the video

signal was also passed to a second PC so that parallel processing could take place.

In this case, the first PC completes vision processing whilst the second PC decodes

the telemetry stream, propagates the state estimate and communicates with the

radio control interface. The two computers communicate using a parallel port cable

between them. Later tests have been conducted on a single computer. The single

computer was found to have sufficient speed to complete the optic flow computation

and run the control system on one CPU at an update rate of 50 Hz.

A Graphical User Interface (GUI) for the control system was written by the au-

thor to allow update of control parameters in real time. Again, this made the process

of tuning control gains much more efficient as changes could be made even when the

helicopter is airborne. The GUI also serves as a monitoring tool, providing graphical

display of navigation and state information. A particularly useful component of the

GUI is a stripchart display that plots a moving history of selected variables to the

screen in real-time. Some parts of the control GUI are shown in Figure 4.3. These

include the main control panel, attitude indicator, horizontal situation indicator,

control position dials and a map display with position of beacon landmarks shown.

The PC running the control system is interfaced to a microcontroller that in turn

is interfaced to a hand held Radio Control (RC) model transmitter. A switch on the

transmitter allows control to be passed between the computer control system and

the human pilot. This enables the pilot to launch the helicopter manually and then
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Figure 4.3: Control by telemetry GUI components

hand over control to the computer at an appropriate moment. This is an invaluable

capability as it also allows the pilot to regain control of the helicopter instantly in

the event of a control system failure. It also allows the pilot to pass control to the

helicopter for a short period even when the control system is unstable, so that the

closed loop behaviour can be observed.

4.3.2 Eagle Embedded Control

A Motorola MPC555 microcontroller was selected as the main processor for the em-

bedded autopilot on the Eagle. The MPC555 is a 32-bit device based on a 40Mhz

PowerPC core. It has a large array of peripheral equipment, which makes it suitable

for embedded applications that require intensive computation, high integration, and

expandability. Various single board computers (SBC) based on the MPC555 are

available. A Phycore-MPC555 SBC was chosen due its small credit-card size and

the abundance of onboard storage, including 4MB of RAM and 4MB of Flash ROM

memory. The final autopilot design consists of three printed circuit boards surround-

ing the SBC. The additional circuit boards are stacked in line with the SBC and

provide interfacing to the radio control system, servos, I2C bus, CAN-Bus, IMU and

RS-232 devices such as the RF modem used for telemetry. The boards also contain

power supply circuitry including a facility to monitor the battery and bus voltages.

For experimental purposes and safety, a mechanism is necessary to allow the

helicopter to be switched between manual and automatic control. Some of the

experiments conducted were of a high risk nature and required repeated attempts

to achieve successful closed loop behavior, so special care had to be taken to ensure
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Figure 4.4: Eagle with onboard embedded control

that pilot control could be regained rapidly in event of excursions from stable flight.

A robust scheme for Hand Over Take Over (HOTO) is therefore implemented on the

helicopter, allowing switching between these two modes. In manual mode, a human

pilot flies the helicopter with a hand held radio control transmitter. In automatic

mode, the helicopter controls are set by the autopilot. The 7th receiver channel has

been assigned for controlling the HOTO function and the autopilot sets automatic

mode when this channels lie within a certain range of values. A switch on the pilot’s

transmitter is used to set the value of the 7th channel to one of two possible values

corresponding to automatic or manual.

The current set of servo actuators consists of five servo channels: collective,

throttle, aileron, elevator and tail rotor pitch. To simplify testing, it is desirable

to be able to choose which channels the pilot controls and which channels are con-

trolled by the autopilot at any instance. This enables each control loop to be tuned

individually, which is much easier to cope with experimentally. To facilitate this,

a pass-thru parameter can be changed from the ground, which controls the source

of each channel. The pass-thru parameter only applies in automatic mode and is

implemented in software. The control channels to be set by the pilot are decoded by

the autopilot and passed through to the servos as a Pulse Width Modulated (PWM)

signal unchanged. In manual mode, all of the servo channels are driven directly from

the receiver through a hardware switch.

In addition to the above HOTO system, a failsafe mechanism is present which

de-activates automatic control when a watchdog circuit is not reset periodically by

the main control loop. In the event of a software failure stopping the program from

running, the main control loop is unable to toggle a designated data output from

the MPC555. After a period of 0.1 seconds, the failure to toggle results in control

being passed back to the radio control receiver.

Servo channels are controlled using pulse width modulation at an update rate
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of 50Hz. The MPC555 autopilot generates the PWM servo signals for up to eight

channels. Currently only five channels are required to control the helicopter. The

servo channel PWM outputs are sent in the order aileron, elevator, throttle, rudder,

collective with 2.5 milliseconds (ms) spacing between each pulse. Every 20 ms the

sequence repeats. In order to minimise control lag and therefore increase controlla-

bility, the leading edge of the PWM pulse for each channel is activated immediately

after the control value for that channel has been calculated. As the range of PWM

pulse widths is 1-2ms, this infers that the maximum control lag due to the PWM

transmission is only 2ms. Without this immediate update, the PWM lag would

vary from 1-22ms depending on what part of the PWM cycle the control update

was made.

The current control loop executes at 400Hz. At the start of each control loop

iteration, sensor data is read in from the various sampling buffers on the MPC555

microcontroller. The sensor data is then processed to remove errors found in cali-

bration and filter out unwanted noise. The corrected data is then used to update

the onboard state estimate. As each control channel is only updated at 50Hz, only

one channel is calculated and updated per control loop. Based on this sequence of

events, the maximum delay between a sensor being sampled and a control signal ar-

riving at the servo is approximately 5ms. Additional effective lags of about 5-10ms

are also present due to analog pre-filtering of the inertial data.

4.3.3 PC104 Implementation

Whilst the current MPC555 microcontroller based autopilot is satisfactory for em-

bedding a basic attitude control system and position controller, its processing power

is limited. This prevents onboard high-end processing such as image processing or

sophisticated state estimation algorithms. A PC104 based flight computer was there-

fore developed. In the case of the RMAX helicopter, the MPC555 microcontroller

system was not required as all of the interfacing to sensors and servos could be

achieved using a single PC104 computer.

A Toronto Micro Electronics Incorporated (TME) PC104 board [181] was se-

lected for the RMAX and Eagle after bench-testing its performance and confirming

its ability to boot from an onboard compact flash card. A modified version of the

Slackware R© Linux operating system [182] was developed by the author for this

board. The Kernel for the operating system is patched using RTLinux [183] version

3.1 source code to make it a Real Time Operating System (RTOS). This provides a

real-time capability which runs entirely from the onboard compact flash card. The

operating system includes X-windows and a full set of development tools, so that

a keyboard and monitor can be connected to the PC104 and the system used as a

hardware in the loop development system. For flight tests, the RTOS boots from the

solid state compact flash disk on startup and automatically loads the flight control

software.

A convenient feature of the PC104 architecture is a native USB interface. This

allows a data logging feature using COTS memory stick devices. This means that

high bandwidth flight test data can be recorded in flight and then transferred to
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a PC workstation immediately after landing for analysis. Memory sticks are now

available with 4GB capacity enabling practically unlimited amounts of flight test

data to be recorded at the fastest sensor sampling rates (1600Hz).

The integration of the PC104 into the Eagle avionics system is shown in Figure

4.5. An RS-232 communications link between the PC104 system and the autopilot

allows data to be passed between the two systems. Attitude, rotation rate and

control data will be passed from the autopilot to the PC104. High-level control

information and commands are passed from the PC104 to the autopilot. The inner

loop control function to control attitude is performed on the autopilot whilst the

high-level vision processing functions are performed by the PC104 computer.

A Parvus Incorporated FG104TM frame grabber module based on the Coxenant

FusionTM 878A chipset is interfaced to the Eagle PC104 and the RMAX vision

processing PC104. Using the PCI bus (also known as PC104Plus), the frame grabber

writes the captured frames directly into the RAM of the host PC104 at 50 frames

per second. As the video is interlaced, odd and even frames are written to separate

parts of memory. Each captured frame consists of 288x384 pixels and for each pixel

an 8-bit grey-level intensity is stored.

4.3.4 RMAX Systems

Some of the experiments for this research were conducted on the 80kg Yamaha

RMAX helicopter shown in Figure 4.1. This platform has been used for autonomous

helicopter research at a number of other institutions including Georgia Tech [184],

University of California (Berkeley) [185], Linköping University [186], Carnegie Mel-

lon University [187] and NASA [188]. The Yamaha RMAX platform is predomi-
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nantly used for agricultural work in Japan, although a fully autonomous version has

been marketed for airborne surveillance. A number of variants have been produced

but the underlying systems are similar in each model. The UNSW@ADFA RMAX

provides a 30kg payload with an endurance of approximately one hour. The perfor-

mance of the RMAX makes it an ideal platform for research. The Yamaha control

system is known as the Yamaha Attitude Control System (YACS). The YACS on

the UNSW@ADFA RMAX has been configured to output inertial information to

the PC-104 flight computer via an RS-232 link which includes the output of three

fibre optic rate gyroscopes and three accelerometers. A Microstrain 3DM-GX1R©

attitude sensor [189], incorporating a 3-axis magnetometer, is fitted to the RMAX

to provide heading information to the flight computer.

The RMAX came with a stability augmentation system based on an attitude

control inner loop. The YACS provides attitude stabilisation using a simple pro-

portional feedback scheme shown in Figure 4.7. The RMAX servos are driven by

Pulse Width Modulated (PWM) signals such that the width of the PWM pulse

corresponds to the desired servo position. The PC-104 flight computer sends servo

commands to the YACS as 2 byte unsigned integer values corresponding to the de-

sired PWM pulse width in microseconds. The YACS applies attitude feedback to

these commands as shown in Figure 4.7.

The flight computer is interfaced to a Laser Rangefinder (LRF), a radio modem,

a Novatel RT2 DGPS, YACS and a vision processing computer. The flight computer

performs sensor fusion and generates the control inputs to drive the collective, cyclic

and tail rotor servos. An 8-port PC104 serial card is necessary to connect the flight

computer to all of the RMAX systems and the sensors. The image processing

computer runs a free version of the RTLinux RTOS. For the flight computer the

more heavily tested RTLinuxPro RTOS commercial variant is used. Whilst two

PC104 computers are used for mission flexibility, both the control software and

image processing software could run on one computer. Both PC104 computers are

based on 800MHz Pentium 3 CPUs with 256MB RAM. Figure 4.6 shows the avionics

system architecture for the UNSW@ADFA RMAX.

The PC104 flight computers communicate with each other over a bi-directional

RS-232 connection. The vision computer sends 27 byte packets containing optic

flow and other visual information, PC104 status data and a checksum. The control

computer is able to send commands to the vision computer over the same RS-232

link in order to change the mode that the flight computer operates in, for example

to switch to a stereo vision computation.

4.4 Telemetry Systems

Bluetooth modem pairs operating at 2.4GHz were installed on the Eagle and RMAX

helicopters. The Eagles use a modem with a range of 100m and a weight of 18 grams.

The RMAX, with its larger payload capacity, has a different brand of modem with

an external aerial that has a range of 500m and a weight of 30 grams. The Bluetooth

equipment permit full-duplex communications and baud rates up to 115Kbaud. A
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Figure 4.8: Eagle control GUI. Various parameters can be changed in flight. The page

shown in the diagram is used to adjust the controller gains remotely.

communications protocol was developed which intersperses 50Hz telemetry from the

helicopters with bi-directional command and control data between a ground station

and the helicopters. The protocol used by the Eagles and the RMAX is the same

except some platform specific packets apply to only one helicopter type.

The ground station comprises a personal computer running RTLinux with a serial

port connected to the Bluetooth modem. Both desktops and a laptop computer have

been used as the ground station for field work. The author has developed a real-time

communications stack for the ground station which encodes and decodes telemetry

packets between the helicopters and ground station. A GUI shown in figure 4.8 has

also been developed to allow the operator to easily interact with the communications

stack and send commands. This allows the type of telemetry being sent from the

helicopter to be changed by the press of a button. Graphical utilities have been

implemented to display all of the variables that can be sent from the helicopters.

Commands are sent to the helicopters in a set format depicted in Table 4.1. A

header character and checksum allows the helicopter to decode command packets of

variable length. The second character in the command data packet establishes the

length of the packet being received. Depending on the type of the command being

sent, the amount of command data being transmitted varies. Some commands such

as ‘start logging’ have no option data while some commands such as an instruction

to change a control gain may contain several bytes of option data. Every time a

command is sent, the command identifier field is incremented to define a unique

command. Upon successful receipt of a command packet, the autopilot sends an

acknowledgement packet containing the command identifier embedded in the orig-

inal message. The ground computer waits for a number of seconds after sending a

command to see if an acknowledgment has been sent by the autopilot. A record of

all commands sent to the helicopter is stored on the ground control computer. If

an acknowledgement is not received within a set time (usually about 5 seconds) for
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Table 4.1: Telemetry packet structure

Byte Index Description
0 Header character 0x55
1 Command character
2 Length of packet in bytes (n)
3 Command identifier MSB
4 Command identifier LSB

5..n Data Options
n+ 1 8 bit checksum

any of the commands sent, the command is resent. Fields within the control GUI

corresponding to transmitted commands are highlighted in a bright red colour until

an acknowledgement has been received. At present, 35 different types of command

packets have been implemented to perform tasks such as zeroing of sensors, changing

gains for PID controllers, changing flight modes and controlling logging of data.

Telemetry from the helicopters uses a similar scheme for transmitting sensor,

state and control data so that it may be displayed on the ground station GUI or

logged to a file. The type of telemetry being sent to the ground may be varied by

sending a command from the ground station.

4.5 Sensors

4.5.1 Vision Sensors

The RMAX and Eagle helicopter are fitted with a compatible camera mounting

bracket so that the cameras can be swapped between helicopters when required.

The mount allows the camera to be pointed to any tilt angle from straight down to

pointing forward along the helicopter longitudinal axis. For most of the experiments

discussed in this thesis, an analog Sony CCD image sensor is used. The camera

outputs a PAL standard composite video signal which is captured by the frame

grabber. The camera is housed in a 3cm x 3cm x 2.5cm enclosure with a lug to

attach to the mounting bracket on the nose of each helicopter.

4.5.2 Inertial Measurement Unit

Whilst the RMAX comes fitted with gyroscopes and accelerometers, the Eagle heli-

copters had to be fitted with inertial sensors. When the project commenced, funding

was not available for a satisfactory COTS Inertial Measurement Unit (IMU), forcing

the construction of an in-house system. Three different IMU designs have been con-

structed, calibrated and test flown on the Eagle helicopters during the evolution of

this project. The first of these comprises a sensor cluster with three accelerometers

and three Murata ENV-05D gyroscopes in the same case. A separate box with a

three-axis magnetometer system is used in conjunction with this system to provide
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all the sensors needed for a complete Attitude Heading Reference System (AHRS).

A 16bit Analog to Digital Converter (ADC) is installed in each box and interfaced

to a remote microcontroller.

The other two IMU designs comprise three accelerometers, three magnetometers

and three rate gyroscopes with ADC circuity and an integrated microcontroller in

the same housing. The primary difference between these two IMUs is that the latest

device uses smaller Analog Devices ADXRS-150ABG [190] gyroscopes rather than

the Murata gyroscopes.

The axes of each set of sensors are arranged in an orthogonal fashion so that

the orientation and motion of the helicopter along all three axes can be determined.

The sensors rotate with the body axes system of the helicopter, which is fixed to the

aircraft centre of gravity and rotates as the aircraft’s attitude changes. The faces of

the metal IMU case are deliberately machined to be square to within 0.1 degrees.

The IMU x,y and z reference axes are defined in a direction normal to the faces of

the IMU case. The naming of the IMU x,y and z reference axes were selected so

that when the IMU is installed in the helicopter, the axes would then be coincident

with the helicopter body axes. The sensors used in the Inertial Measurement Units

are as follows:

a. Accelerometers. The accelerometers measure the sum of gravitational accel-

eration and the velocity derivatives of the IMU. If the assumption is made that the

motion derivatives average out to zero over a long enough time period, then the

mean values of the accelerometers can be assumed to represent the gravity vector.

As the axes of the accelerometers are aligned with the helicopter axes, the gravity

vector is measured relative to the helicopter. In effect, the accelerometers act like

a pendulum hanging from beneath the helicopter. Such a pendulum would tend to

hang vertically downwards but would swing from side to side in response to hori-

zontal accelerations. As well as providing a noisy estimate of the vertical direction,

the accelerometers provide motion derivatives, which can be integrated to provide

velocity.

b. Magnetometers. Each magnetometer provides a voltage output in proportion

to the degree of alignment with the local magnetic field. Using three orthogonal

magnetometers it is possible to measure the relative orientation of the earth’s mag-

netic vector to the helicopter. The horizontal component of the earth’s magnetic

field points towards the magnetic North pole. When combined with the gravity vec-

tor measured by the accelerometers, the helicopter is able to determine its complete

orientation including pitch, roll and yaw.

c. Gyroscopes. Three piezoelectric gyroscopes provide a voltage output propor-

tional to measured rotation rate around the aircraft body axes. By integrating the

gyroscopic rates, the attitude of the helicopter can be updated. The Murata gyro-

scopes used have a range of−90◦/sec to +90◦/sec and the Analog Devices gyroscopes

have a range of −150◦/sec to +150◦/sec.
In designing the IMUs for the MPC555 autopilot, the aim is to achieve the

highest sampling rate possible without interrupting the processor continuously. This

is achieved by having a separate processor to carry out the low-level sampling,

leaving the MPC555 to run the state estimation algorithm without interruption.
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A Microchip PIC18F6720 microcontroller [191] was selected on the basis of its low

power and high speed to do the low level sampling of sensors. Figure 4.9 is a block-

diagram of the hardware components relating to the attitude state estimator.

The estimation cycle on the MPC555 executes at 400Hz. The cycle is initiated by

a timing pulse, which is sent from the MPC555 to the PIC. On receipt of the timing

pulse, the PIC begins a set sequence of sampling and data transmission. The order

of sampling and transmission is shown in the timing diagram at Figure 4.10. Each

frame of data consists of 4 sets of accelerometer samples, 2 sets of gyroscope rate

samples, 1 set of multiplexed accelerometer temperatures and 1 set of magnetometer

values. All sensors are sampled at 1600Hz, however, some averaging takes place

onboard the PIC to reduce the bandwidth of the magnetometer, temperature and

gyroscope data transferred to the MPC555.

All data from the PIC is sent as a synchronous serial stream transmitted at

approximately 1Mbits/sec. A 64-byte hardware buffer on the MPC555 receives the

data. At the start of each cycle, the data from the previous 2.5ms frame is read

from the buffer and converted to raw sensor values with 16-bit precision. The large

hardware buffer on the MPC555 allows the entire frame of data from the PIC to be

received without any software interrupts being required. Hence minimal overhead

is associated with inter-processor communication.

To allow calibration, the PIC can be switched to a mode where sensor data is

transmitted at 50Hz using the RS-232 protocol. This protocol is compatible with

standard PC serial port hardware and allows the IMU to be connected directly to a

PC. Calibration software running in RTLinux on a host PC enables calibration data

to be generated for the IMU. This data is in the form of alignment matrices, scale

factors, offsets and thermal correction curves. After calibration, the calibration data

is hard-coded into the Phycore-MPC555 using on-board non-volatile memory.

4.5.3 Vibration Issues

In the initial stages of this project, a major problem was the vibration due to

the internal combustion engine and harmonics of the rotor aerodynamic excitation.

The first attempt at installing accelerometers on an Eagle helicopter quickly showed
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Figure 4.11: Eagle avionics vibration isolation system. Four elastomeric isolators protect

the PC104, GPS and IMU from vibration. Another four isolators protect the MPC555

autopilot.

that, without mechanical isolation, the accelerations due to vibration exceeded the

5g dynamic range of the accelerometers used. Furthermore, the Murata gyroscopes

used were based on a mechanical vibrating tuning fork arrangement which would

fail from vibration fatigue after less than a minute of flight time. Many of the

other groups working on autonomous helicopters have experienced similar problems

with vibration and have used ad-hoc techniques such as rubber and foam mountings

selected by trial and error. Dunabin et al [192], provide a good narrative of their

attempts to isolate vibration on an X-cell 60 size helicopter, starting from wrapping

components in foam, to designing an elaborate spring-mass damper system. A

similar route was followed for the Eagle helicopters, beginning with rubber bushes

and ending with an isolation housing consisting of 12 springs and damper pairs.

This system was used for 5 years but required the foam dampers to be replaced

regularly as they were subject to wear and degradation from the oil sprayed on

them by the motor exhaust. In 2004, a much better commercially available set of

vibration isolators was found. This design, shown in Figure 4.11, has proven to be

very reliable and does not require maintenance. The inertial sensors for the RMAX

were pre-fitted with an isolation system so that further isolation design was not

required.

Even with mechanical isolation, the vibration of the helicopter imparts significant

synchronous noise on the acceleration sensors. This vibration is predominantly at

the rotor speed of 25Hz with other high frequency components due to the engine and

tail rotor. The accelerometer raw output can vary from 0 to 65536 corresponding

approximately to a sensor analog value of -5g to +5g. To deal with vibration, a

low pass filter with a 10Hz cutoff frequency has been implemented digitally. A

255th order Finite Impulse Response digital filter is used to provide satisfactory

attenuation of unwanted high frequency components (40dB above 15Hz) whilst not

exceeding the computational capacity of the MPC555 microcontroller.

An advantage of the filter type chosen is a linear phase response so that all

frequencies are lagged by a constant amount, in this case 80ms. The filtered output
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Figure 4.12: Laser scanning system

from the accelerometers is used in conjunction with gyroscopic rates to calculate

the vertical orientation of the helicopter. To eliminate the lag associated with the

filtering process, the attitude estimate is corrected with filtered accelerometer data

and then propagated forward using gyroscope rate date to cancel the 80ms phase

lag created by the filtering.

4.5.4 Differential GPS

For the purposes of this experiment, highly accurate carrier phase DGPS measure-

ments were available to provide a monitoring system to record the helicopter motion

during closed loop. Novatel OEM4-G2L GPS [193] cards are mounted adjacent to

the Eagle and RMAX flight computers. The OEM4 cards are used with differential

corrections from a nearby base station fitted with another Novatel OEM4 card. The

card operates in a Real-Time Kinematic (RTK) positioning mode, to provide 20Hz

position and velocity with an accuracy of 1-2cm Circular Error Probability (CEP).

4.5.5 Laser Rangefinder

A Laser Rangefinder (LRF) with a novel rotating mirror was integrated with the

RMAX helicopter by the author as shown in Figure 4.12. Owing to the orientation

of the axis of the mirror and the angle of the mirror to the axis, the laser traces an

elliptical cone shape on the ground below. As the laser traces out a locus of points

on the ground, an array of 3D coordinates is assembled that defines the intersection

of the laser scan pattern and the ground. Each scan takes place in less than 40

milliseconds and typically comprises 100 points. As the range accuracy of each

point on the ground is better than 2cm in practice, the error in the ground position

is small and suitable for guiding the vertical trajectory of the helicopter in close

proximity to the ground. A plane fitted through these points using an appropriate

technique such as least squares defines the relative distance and orientation of the

ground with respect to the helicopter.

An AccuRange 4000 Laser Rangefinder from Acuity [194] is used for this project.

This rangefinder uses a modulated beam to measure range using a time-of-flight

method. The 20 milliwatt beam is transmitted by a laser diode at a wavelength of
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Figure 4.13: Rotating mirror assembly

780nm. The manufacturer claims a stated range of a few cm up to 16.5m with an

accuracy of 2.5mm. Although Acuity provide a linecaster system of their own, this

system is replaced to obtain the conical scan pattern peculiar to this application. A

mirror is machined out of a block of aluminium with a reflecting face cut at 86.5◦ to

the axis of the motor. This provides a distorted cone with an average included angle

of approximately 7.0◦ as the mirror spins. The mirror is hand polished and then

electroplated with gold to provide a reflectivity to the laser light of 95%. Figure

4.13 shows the mirror assembled on the drive motor.

To obtain a sufficiently fast scan rate, the mirror is spun at least 1500RPM or 25

cycles per second. As the mirror is not symmetrical about the axis, the imbalance of

the mirror needed to be addressed to operate at these speeds. A balancing collar was

therefore designed out of stainless steel to offset the static and dynamic imbalance

of the mirror. The collar is of constant thickness but the end profile is machined to

maintain the centre of gravity of each longitudinal slice of the combined collar/mirror

assembly on the axis of the shaft. Once assembled, the balance of the assembly is

finely adjusted by adding tiny weights and removing material where required. The

entire assembly with LRF and mirror is mounted under the belly of the RMAX

using 4 cable mounts for vibration isolation. The mounts were tuned to attenuate

vibrations at the main rotor frequency and above.

The mirror is mounted directly onto the shaft of a small DC motor, which is itself

mounted at 45◦ to the beam of the laser rangefinder. The speed of the motor can

be adjusted by changing the input voltage using a multi-position switch. An optical

encoder is fitted on the shaft of the motor. The encoder outputs a quadrature pulse

train with a precision of 4096 pulses per revolution. An index pulse is triggered

once per revolution for synchronisation purposes. The pulse train from the encoder

is monitored by an analogue safety interlock system that automatically disrupts

power to the laser in case of the mirror speed falling below 1000rpm. This stops the

laser from being concentrated on to a single spot for too long and causing a hazard

to observers.

The rangefinder and encoder signals are read into a PC104 form factor High
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Speed InterFace (HSIF) manufactured by Acuity. The HSIF uses an ISA bus in-

terface to communicate with the CPU and enables a sample rate of up to 50,000

samples per second. For this application, a sample rate of 2KHz is adequate to

provide the accuracy required without overloading the processing capability of the

PC104. The HSIF comes standard with a 2K hardware buffer. A half-full interrupt

on the HSIF triggers a real-time driver program on the PC104 to download the next

series of samples and load them into RAM. As each sample comprises 8 bytes includ-

ing amplitude, range, encoder and intensity fields, the buffer becomes half-full after

128 samples are received. A control thread running on the PC104 executes at 100Hz

and checks for the latest data in RAM each time it is woken up. With a sample

rate of 2KHz, the interrupt is triggered about every 64ms and takes about 1ms to

execute. The processing takes place after the full data set for each rotation of the

mirror is received which occurs about every 40ms. Combining all of the latencies

together results in a maximum latency of approximately 10 + 64 + 1 + 40 = 124ms.

For each scanned sample, a distance measurement and encoder output are taken

from the laser apparatus. The range measurement is corrected for known errors

due to changes in temperature, ambient light and reflectivity. The range measure-

ment is scaled into meters using a look up table based on calibration data. The

encoder measurement is converted to an azimuth angle measured from a reference

point designated as the nose of the vehicle. Each pair of range and azimuth angle

measurements can be converted in to the coordinates of a point in 3D relative to the

laser sensor. In other work by the author [195], a system is described for fitting a

plane to the points in a complete revolution of the spinning mirror. The orientation

and position of the plane can then be used to determine the slope of the ground

and its proximity. For the purposes of this thesis, the average range calculated from

one revolution of the mirror is used to calculate the helicopter’s height above the

ground.

A flight test was conducted to check that the height output of the laser sen-

sors was reasonable and compared well with a second measurement of height. The

helicopter was placed in vertical flight with climbs and descents set up using pilot

collective. The output of the sensor was compared against the altitude output of

the Novatel DGPS system after subtracting the elevation of the ground under the

helicopter from the DGPS altitude. The results of this comparison, in Figure 4.14,

show a very close match between the two systems.

4.6 Sensor Calibration

4.6.1 Optic Flow Calibration

A special purpose calibration machine was constructed to enable calibration of the

optic flow sensing. This is required so that the constants cx and cy can be found in

the linear relationships Qx = cxvx and Qy = cxvy which relate the pixel shifts per

frame to the optic flow angular velocities in radians/sec. The two constants can be

approximately calculated from the field of view of the camera and the number of

pixels in the image. However, due to distortion from the optics and other errors, it
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Figure 4.14: Validation of laser rangefinder sensor height measurement

Figure 4.15: Optic flow calibration machine

is prudent to re-calibrate the system with each new camera that is installed. The

machine consists of two 42 cm rollers guiding a 30 cm wide belt as shown in Figure

4.15. Photographs of grass were taken with a digital camera and printed on to

the belt to provide a realistic textured environment. A DC electric motor is used

to drive one of the rollers through a set of gears. The belt is driven at various

speeds by changing the voltage to the motor, and the average optic flow measured

by the algorithm is recorded. A stopwatch is used to record the time taken for

the belt to travel around an integral number of revolutions, and the actual optic

flow in (rad/sec) is then calculated by dividing the belt velocity by the distance

of the camera from the belt. Figure 4.16 shows a graph of the known optic flow

generated by the belt at a number of different belt speeds versus the estimated flow

measured by the sensor after scaling based on the known camera specifications. The

calibration constants were determined from a simple linear fit to the data.
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Figure 4.16: Calibration of optic flow scale

4.6.2 IMU Calibration

One of the major problems facing attitude estimators is the effect of sensor error.

Various forms of sensor errors exist including misalignment, offset, gain and thermal

drift. With careful calibration, many of the fixed errors can be reduced significantly.

Specifically, calibration procedures have been devised for the following errors:

a. Sensor misalignment. The alignment of the axis of each sensor within its

package is generally only known to within a few degrees. Consequently, it is nec-

essary to determine the actual alignment of the sensors with respect to the IMU

housing. Misalignment of the sensors results in cross-coupling between the various

sensor axes. Misalignment is corrected by multiplying the sensor values by a 3x3

alignment matrix. This alignment matrix is determined in a set of separate calibra-

tion processes devised for each of the accelerometer, gyroscope and magnetometer

sensors.

b. Gain. Each sensor outputs a voltage between 0 and 5V which is proportional

to the variable being measured. The sensors have a linear relationship between input

and output and the gain of each sensor refers to the slope of the voltage versus input

variable. The gain is slightly different for each sensor and is determined during

calibration.

c. Offset. Each sensor has a nominal output of about 2.5v when the measured

variable is zero. For accelerometers and gyroscope, this applies to the case where

there is no acceleration or no rotation respectively. For the magnetometers, a zero

reading occurs when the magnetic field is perpendicular to the sensor. The null

position of each sensor is usually slightly offset from 2.5v due to variations during

the manufacturing process. This offset is measured during calibration and stored

for each sensor in non-volatile memory on the MPC555 autopilot.

d. Thermal Drift. Variations in temperature cause a shift in the offset of each

sensor. This shift can be measured during calibration by cycling the temperature of
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the IMU in a thermally controlled environment and measuring the change in sensor

reading. As the thermal drift is the only error that changes dynamically, it is the

only error that needs to be accounted for post-calibration.

I have developed my own methods and software for calibration, for which a

detailed description is provided in Appendix C.

4.7 Attitude Determination

Helicopters are dynamically unstable and require constant control inputs to prevent

them from diverging from a level-flying attitude. Accurate knowledge of attitude

(pitch, roll and yaw) is therefore vital to robust control. The RMAX helicopter

is fitted with an in-house sytem for attitude determination. However the Eagle

helicopter requires development of an attitude state estimator.

Determination of attitude using inertial sensors is made by measuring the di-

rection of two vectors: the gravity vector and the magnetic vector aligned with the

Earth’s local magnetic field. The global z-axis (vertical) is aligned with the gravity

vector. Knowledge of this vector alone is sufficient to determine pitch and roll angles.

Determination of yaw, however, requires at least one other orthogonal measurement

vector. The magnetic vector provides this information.

I have developed a simple but robust attitude estimation algorithm for determin-

ing attitude for the control by telemetry Eagle and on the MPC555 autopilot. This

algorithm does not attempt to estimate sensor errors during operation and uses a

fixed gain correction to the attitude estimate from observed attitude vectors at each

time step. The simple attitude algorithm has many advantages over a more complex

filtering algorithm. These include:

(a) Low computational overhead. The filter can therefore be run at much higher

speed than would otherwise be possible and will have much faster dynamic response.

This trait is essential for robust real-time control.

(b) Robustness. The filter is highly robust to initial conditions being inaccurate

and can withstand errors in attitude of 180 degrees. Acceleration noise levels due

to vibration which are several times larger than the acceleration due to gravity, do

not prevent the filter from functioning adequately. This is especially important for

operations on a small rotary wing vehicle, which will be subject to a high level of

vibration.

Attitude is stored in the autopilot as six state variables. The six states comprise

the estimate of the three components of the gravity vector and the three compo-

nents of the magnetic vector. Gyroscopic information is used to update the estimate

of the two vectors by rotating their orientation in accordance with measured rota-

tion rates. If the vectors were only updated by the gyroscopic rates, the attitude

would gradually diverge from the actual attitude because of sensor errors and nu-

merical rounding. This divergence is prevented by making a small correction to the

vector estimates based on measurements of the acceleration and magnetic vectors.

Equation (4.1) is used to correct the estimated vectors from the observed vectors.
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xk+1 = xk + λ (xobs − xk) (4.1)

where xk is the current estimate of the vector, xobs is the noisy measurement

of the vector and λ is the correction factor. Experiments have shown that a good

choice of value for λ is about 0.01.

Attitude is estimated by comparing the difference between the body and inertial

frames of reference. The first step is to express the orientation of each inertial axis as

a unit vector in body coordinates. Now, the inertial frame of reference is defined by a

set of axes x, y, z where x represents the horizontal North direction, y the horizontal

East direction and z represents vertically down. The unit vectors representing the

inertial axes in inertial coordinates are given by the trivial expressions in Equation

(4.2).

X̂g =
[

1 0 0
]T
, Ŷg =

[
0 1 0

]T
, Ẑg =

[
0 0 1

]T
(4.2)

The inertial axes unit vectors are transformed to body coordinate unit vectors

by multiplying by the rotation matrix B as follows,

X̂g =
[
X̂b Ŷb Ẑb

]T
= B

[
X̂g Ŷg Ẑg

]T
(4.3)

where each unit vector forms one column of a 3x3 square matrix. Since the

inertial unit vectors together form the identity matrix, the rotation matrix B is

simply equal to the 3x3 square matrix formed from the body coordinates of the

inertial axes unit vectors.

Unit vectors representing the inertial axes can be obtained in body coordinates

from the IMU state estimate. As the Ẑg unit vector represents vertically down,

its value in body coordinates is taken directly from the gravity estimate. The Ŷg

axis represents the horizontal East direction. The East direction is perpendicular

to the plane of the magnetic and gravity vectors. Hence the Ŷg unit vector in body

coordinates is found by taking the vector cross product of the magnetic and gravity

vector estimates. Finally, the X̂g axis represents the horizontal North direction.

It is perpendicular to the other two axes and is found by taking the vector cross

product of the body coordinates of the Ŷg and Ẑg axes.

Once the rotation matrix has been determined, the attitude can be calculated

from it. If B represents the complete transformation from inertial to body axes

for an attitude (φ, θ, ψ), then B is given by Equation (4.4). (Note the use of the

shorthand for the sin and cos functions e.g. cφ means cos(φ).)

B =

⎡⎣ cθcψ cθsψ −sθ
−cφsψ + sφsθcψ cφcψ + sφsθsψ −sφcθ
sφsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ

⎤⎦ (4.4)

The attitude angles can be readily found from elements in the first row and last

column of B. Thus, if bij is an element of B from row i and column j,

φ = atan2 (b23, b33) , θ = −asin (b13) , ψ = atan2 (b12, b11) (4.5)
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The attitude estimator implemented on the control by telemetry computer ex-

ecutes at 200Hz whilst that on the MPC555 updates at 400Hz. Trapezoidal inte-

gration is used to integrate the gyroscope rotation rates and update the estimated

gravity and magnetic vectors. The attitude is converted to Euler angles only when

required for control purposes. As the servo update rate is 50Hz, the conversion to

Euler angles is only made at 50Hz.

4.8 Summary

In this chapter, the development of autonomy systems needed to conduct the flight

experiments in this thesis have been described. The systems are well-suited to rapid

prototyping of algorithms, owing to the ability to change control parameters and

software quickly in the field.





Chapter 5

Control of Hover

5.1 Introduction

Various visual mechanisms for controlling hover on the RMAX and Eagle helicopters

have been field tested. Hover is the most difficult phase of flight to control as there is

no additional stability provided by the vertical tail and horizontal tail. Hence once

control of hover can be achieved, transition to more elaborate flight modes should

be possible.

The first means of controlling the helicopter was chosen to prove that the control

by telemetry system could be used with a vision sensor to control the helicopter. In

the first instance, mimicking biological sensing and control was not a high priority, so

a conventional visual servoing method was used where the position of the helicopter

was triangulated from known landmarks on the ground. Once the landmark or

beacon hover was completed, work then turned to achieving a biologically inspired

means of sensing.

5.2 Beacon Hover

The so-called beacon algorithm uses the known position of three visual landmarks

(beacons) placed on the ground to triangulate position and attitude. As well as ap-

plication to hover, the method could also provide a means for guiding the helicopter

during a landing approach to a prepared site, provided that the separation and size

of beacons is sufficient for the camera to resolve. The accuracy of the technique for

a conventional camera system is about 2cm in position and 1 degree in attitude for

a helicopter hovering in front of the beacons, when the beacons are spaced about

5m apart. The technique is therefore comparable to the most accurate implemen-

tations of differential carrier phase GPS, without the need for costly base station

infrastructure.

A single camera is used to track the elevation and azimuth angles of the beacons

with respect to the helicopter local axes. The visual segmentation software produces

six observations, consisting of three pairs of azimuth and elevation angles. The

conversion of these angles into 6 DOF position and attitude coordinates is non-

trivial and has no closed form solution [196].

The method chosen is a numerical procedure based on a search through angle

space to determine all possible solutions. For each set of 6 beacon bearings, there

85
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Figure 5.1: Beacon geometry

are between 1 and 4 possible solutions for position and attitude [197]. The cor-

rect solution from all possible solutions must be determined using some means to

eliminate invalid solutions.

The first step in solving the geometry is to express the problem in a 2D diagram.

Lines between the camera and the beacons can be thought of as the edges of a

triangular based pyramid. When folded out flat, the pyramid has the form shown

in Figure 5.1.

The distances d12, d23, d13 are known as they are determined directly by the

spacing used to separate the beacons on the ground. The distances r1, r2 and r3
between the camera and the beacons are not known and must be determined. In

order to solve for the helicopter position and attitude, all angles and lengths in the

diagram must be calculated. The beacon algorithm starts by guessing geometry for

the inner triangle such that r2 and r3 are defined. Assuming a value for α2 achieves

this. Using trigonometry it is then possible to come up with two solutions for r1 for

each of the two triangles. By intelligently searching through all possible values of α1

it is possible to find the cases where the values of r1 calculated in the left and right

outer triangles are equal. Such solutions fully define both the range and bearing to

all beacons which permits determination of position and attitude. The steps used

in the beacon algorithm are listed below:

Step 1 - Known geometry can be evaluated first. Distances between the beacons

are known from their separation along the ground. The included angles β1, β2 and

β3 can be solved analytically. The bearing to each beacon is then converted into a

unit vector Âi centred on the camera location using the coordinate transformation

given in Equation (5.1).

[
Âi

]
=
[

cos(Ψi) sin(Φi) sin(Ψi) sin(Φi) cos(Φi)
]T

(5.1)

where Ψ and Φ are the azimuth and elevation angle of the beacon as seen from

the helicopter camera. The included angle between each unit vector pair, denoted

by Âi and Âj, is then found using Equation (5.2).
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cos(β) =
〈Âi, Âj〉
‖Âi‖‖Âj‖

(5.2)

Step 2 - The range of possible values of α2 is 0◦ to (180◦ − β2). The objective

of the algorithm is to determine the values of α2 which make the difference Δr =

r1L− r1R equal to zero where r1L and r1R are the estimates of r1 from left and right

triangles respectively. A simple binary search through all possible values of α2 is not

satisfactory as there may be multiple solutions. Figure 5.2 shows how for a given

value of r2, there are two possible values of r1, denoted by r+
1 and r−1 that will fit

the geometrical constraints of the problem. As this happens in both left and right

triangles, there can be up to 4 different beacon ranges that satisfy the problem.

There will be values of α2 for which outer triangles cannot be constructed, as

the base of the triangles are too short to reach the side where r1 is measured. A

search is conducted to determine all of the intervals of α2 in which real solutions

for r1R and r1L are possible. There can be up to 4 intervals of α2 and each of these

intervals may contain a solution. A fixed depth binary search is carried out on each

of these intervals to places where Δr is zero.

Step 3 - Once solutions to the pyramid geometry are available, the coordinates

of each beacon are known by their elevation, azimuth and range relative to the

helicopter. These spherical coordinates are converted into Cartesian coordinates

in the helicopter local coordinate frame. To extract the helicopter position and

attitude from this information, the known orientations of the beacons are exploited.

Firstly the local coordinates of the centre of the beacons, which is the position

datum, is found by taking the average of the local coordinates of each beacon.

Each beacon local coordinate is then translated with respect to this datum. After

this step, the beacons are now in a coordinate frame such that they are arranged

equidistant from the datum and in a plane parallel to the helicopter reference frame.

The transformation between the beacon global coordinates and local coordinates is

completed using a 3x3 rotation matrix B as shown in Equation (5.3).
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⎡⎣ x1 x2 x3

y1 y2 y3

z1 z2 z3

⎤⎦
local

= B

⎡⎣ x1 x2 x3

y1 y2 y3

z1 z2 z3

⎤⎦
global

(5.3)

The positions of the beacons in global coordinates relative to the datum are

known from the constraints of the problem. The beacon positions in local coordi-

nates are the output of the beacon algorithm. Hence the equation above can be

re-arranged to solve for the rotation matrix in terms of the beacon observations and

their known positions as shown in Equation (5.4).

B =

⎡⎣ x1 x2 x3

y1 y2 y3

z1 z2 z3

⎤⎦−1

local

⎡⎣ x1 x2 x3

y1 y2 y3

z1 z2 z3

⎤⎦
global

(5.4)

With the rotation matrix defined, the aircraft attitude can be extracted. The

most robust method is to compare elements of the rotation matrix with the quater-

nion representation of B derived from first principles. It can be shown [198] that

the magnitude of each quaternion parameter qi can be expressed in terms of the

main diagonals of the rotation matrix as in Equation (5.5).

4q2
0 = 1 + b11 + b22 + b33

4q2
1 = 1 + b11 − b22 − b33

4q2
2 = 1 − b11 + b22 − b33

4q2
3 = 1 − b11 − b22 + b33

(5.5)

where bij are the elements of the rotation matrix B. The sign of each quaternion

parameter can be found from the off-diagonal terms in a similar fashion. As an

alternative, Euler angles can also be calculated directly from the rotation matrix,

however, Euler angles are an inferior method of storing attitude since they suffer

from singularities. With attitude determined, the position of the helicopter is found

by rotating the position of the datum point to global coordinates.

Step 4 - Corresponding to each unique set of beacon ranges, will be a helicopter

position and attitude which would produce the same three pairs of elevation and

azimuth angles to target. For example, the set of beacon bearings in table 5.1 gives

rise to the two 6DOF solutions in table 5.2. Clearly, only one solution can be correct

at any one time. The method used to determine which of the 1-4 beacon algorithm

solutions is valid is in two parts. Firstly, a comparison with the inertial attitude is

made. If the beacon attitude differs more than 15◦ from the inertial attitude, it is

discarded. This part is not sufficient by itself, as in some circumstances the beacon

attitude can be very close to the actual attitude, but still be the wrong solution.

Secondly, if more than one solution to the beacon algorithm exists at this point, the

current estimate of position is compared to the solutions. The solution closest to

the current position estimate is then assumed to be correct.
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Beacon Azimuth Elevation
Ψ Φ

1 95.81◦ 41.96◦

2 94.30◦ 50.51◦

3 80.17◦ 46.89◦

Table 5.1: Example set of bearings for a North facing helicopter hovering level 2m above

and to the left of the beacon datum

DOF Solution 1 Solution 2
x -0.4718 0.0000
y 1.9872 -2.0000
z -1.8166 -2.0000
roll 95.29◦ 0◦

pitch 9.43◦ 0◦

yaw 5.26◦ 0◦

r1 2.875 2.555
r2 2.425 2.988
r3 2.751 2.780

Table 5.2: Multiple solutions to the beacon problem: A pair of solutions for the given

beacon bearings. Solution 2 is valid but solution 1 is invalid. Note ranges to the beacons

(r1−3) are different for each solution
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5.2.1 Sensor Fusion

The obvious choice of algorithm for fusing sensor data and predicting the unmea-

sured state velocities would be an Extended Kalman Filter (EKF). For the practical

purposes of the experiment, however, gains had to be tuned in the field, so that

closed loop flights of only a few seconds each were achieved initially, before recovery

action had to be initiated by the pilot. This short time frame was not enough for

an EKF to properly converge. Consequently a fixed gain filter was chosen to correct

position and velocity estimates. The helicopter position and velocity is propagated

as a six state vector, consisting of three Cartesian position estimates and three veloc-

ities in local coordinates. The state vector is updated by prediction and correction

cycles:

Predict Cycle - The first step is a prediction based on the measured acceler-

ations, rotation rates and attitude. The state update equations were based on the

rigid body equations of motion at (5.6) and (5.7). These were integrated at 200Hz

using a trapezoidal integration scheme. The variables ax, ay and az are the mea-

sured accelerations from the IMU. The variables p,q and r represent the rotation

rates sensed by the IMU rate gyroscopes. The variable u,v and w are the velocities

of the helicopter in local body axes. The rotation matrix B is determined directly

from the attitude of the helicopter using Equation (3.6).

Position: ⎡⎣ ẋ

ẏ

ż

⎤⎦ = B

⎡⎣ u

v

w

⎤⎦ (5.6)

Velocity: ⎡⎣ u̇

v̇

ẇ

⎤⎦ = B

⎡⎣ 0

0

g

⎤⎦+

⎡⎣ ax
ay
az

⎤⎦+

⎡⎣ 0 r −q
−r 0 p

−p q 0

⎤⎦⎡⎣ u

v

w

⎤⎦ (5.7)

Correct Cycle - The second step is a correction based on measurements of

position and attitude. As position measurements are only available at a video frame

rate of 50Hz, there are 4 predict cycles for every correct cycle. A fixed gain correction

is used to correct position and velocity in accordance with Equations (5.8) and (5.9).

The - and + superscripts below represent the pre and post priori estimates of the

state variables respectively. The * superscript denotes an observation and the time

shift between values with subscript k and (k-1) is Δt = 0.02 seconds.

Position: ⎡⎣ x+
k

y+
k

z+
k

⎤⎦ =

⎡⎣ x−k
y−k
z−k

⎤⎦+K1

⎡⎣ x∗k − x−k
y∗k − y−k
z∗k − z−k

⎤⎦ (5.8)

Velocity: ⎡⎣ u+
k

v+
k

w+
k

⎤⎦ =

⎡⎣ u−k
v−k
w−
k

⎤⎦+
K2

Δt
B

⎡⎣ x∗k − x∗k−1

y∗k − y∗k−1

z∗k − z∗k−1

⎤⎦ (5.9)
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Figure 5.3: Beacon algorithm hover controller

5.2.2 Control Strategy

Simulation studies have shown that an effective strategy for the control of a model

helicopter is to use an inner loop to control attitude and an outer loop to control

velocity. Vertical velocity and height estimates were used to control collective pitch.

Attitude, gyro rates, horizontal position and velocity estimates were used to control

cyclic pitch. Finally yaw information from the attitude filter and yaw gyro rate was

used to control the tail rotor pitch. Figure 5.3 is a block diagram depicting the

control architecture.

PD controllers were selected in the attitude loop because of their simplicity

and robustness. PID controllers were selected for velocity and position for similar

reasons but with error integration enabled to prevent position offsets from taking

hold. Altitude and yaw are both controlled as independent channels using a PID

control scheme.

5.2.3 Simulation of Beacon Hover

Before attempting to use the beacon algorithm in a real-flight, a closed loop simula-

tion using the algorithm was performed. An S-function block was created to simulate

the process of obtaining elevation and azimuth to landmarks from a camera image.

Another S-function block was created to convert the elevations and azimuth into

attitude and position. The blocks were inserted into the SIMULINKR© subsystem

shown in figure 5.4 which was placed in the existing Eagle simulation.

Closed loop hover of the Eagle was simulated for 100 seconds using a desired



92 Control of Hover

Convert to 
Euler Angles

Convert to Beacon
Observations

Beacon Algorithm

2
Attitude

1
Position

Zero−Order
Hold

euler

vis_beacons

beaconise

Quantizer

Number of
Solutions

emu

2
Quaternion

1
Actual Position

spherical
coordinates

Figure 5.4: SIMULINK R© model of beacon sensor system

datum position of X=5m, Y=0m and Z=-2m relative to the center of the beacon

triangle. The helicopter position was set to an initial position that was 1m behind,

0.5 to the right and 0.25m above the datum position. This was to check the effect of

an initial error on the stability of the helicopter trajectory. This is important, noting

that the helicopter would not be exactly at the desired point on control handover

owing to the pilot’s inability to judge the exact location of the helicopter. Wind

turbulence corresponding to a 20km/hr mean wind speed was incorporated in to the

simulation.

The feedback scheme depicted in figure 5.3 was implemented in the controller

block of the simulation. Position and velocity estimates were produced by the fusion

of inertial and beacon algorithm data as described in section 5.2.1. Although attitude

information was produced by the beacon algorithm, the attitude inner loop was

instead driven by attitude information provided by the inertial attitude estimator.

This approach was taken in the field experiments also, noting the critical nature of

the attitude estimate and the devastating effect a large attitude error could have.

The observed beacon location was assumed to be able to be resolved down to 1

pixel resolution in the camera image. Based on a field of view of 120o and a 384x288

pixel camera image, one pixel corresponds to approximately 0.005 radians in the

horizontal. Being conservative, a quantisation of 0.01 radians was simulated in both

azimuth and elevation. Figure 5.5 shows the azimuth and elevation angles recorded

from the simulation.

The velocity estimates shown were produced by using Equation (5.9) in a 50Hz

correction cycle. Suitable values for the correction cycle gains K1 and K2 in Equa-

tions (5.8-5.9) were found by trial and error in simulation to be 0.1 and 0.025 respec-

tively. These values provided a good measure of robustness against sensor offsets

whilst smoothing out the data.

A comparison between the actual state and that estimated from the beacons is

shown in figure 5.6. The position and attitude estimates in the figure are the raw

output of the algorithm. There is a good match between the two sets of data, ex-

cept the effect of quantisation makes the signal appear noisier. Over the 100 second

simulation, the error in the beacon algorithm estimate has a standard deviation of

[σx, σy, σz, σφ, σθ, σφ] = [0.023m, 0.062m, 0.035m, 0.42o, 0.41o, 0.54o]. As a compari-

son, NovAtel Incorporated claim a CEP horizontal accuracy of 1cm [199] for the
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Figure 5.5: Azimuth and elevation angles to beacons

DGPS card used in this thesis. Using the conversion table of [200], this corresponds

to an RMS error of
√
σ2
x + σ2

y = 2.1cm horizontal position. The standard deviation

of the errors in the velocity estimates in the x,y and z directions were 0.03m/s,

0.077m/s and 0.044m/s respectively. This can be compared to a horizontal velocity

error of 0.03m/s RMS for the DGPS hardware [199]. The position accuracy from

the beacon compares reasonably well with the DGPS accuracy for the simulation

scenario, however, it must be noted that the accuracy will improve as the helicopter

flies closer to the beacons and degrade further away.

The initial error in position is restored in about 5 seconds. During the simulation,

the helicopter wanders less than 30cm horizontally and maintains its altitude to

within 50cm, despite the turbulence. The simulation demonstrates that the use of

the beacon algorithm to triangulate the position of the helicopter should be sufficient

to enable stable closed loop hover using inertial sensing and visual reference to

landmarks on the ground. Based on these results, an experiment was devised to test

the principle on the actual helicopter.

5.2.4 Beacon Image Processing

For the actual flight tests, the video images were processed using a video-interrupt

driven task under real time Linux. High pixel-count operations were undertaken

using Intel’s SIMD instruction set known as MMX, which speeds processing by a
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factor of four over the normal instruction set. The image size was 344x288 pixels.

The camera was an inexpensive security camera rated at 400 TV lines with a compa-

rable wide-angle lens giving a horizontal field of view of 120◦. Due to the inexpensive

nature of the optics, the image produced by the system was highly distorted and

unacceptable for this precision positioning application. In order to overcome these

issues, Tsai’s camera calibration algorithm [201,202] was applied. A non-linear op-

timisation of camera radial distortion parameters is performed based on comparing

ideal pixel locations to measured pixel positions. Using this technique, there was

no sign of visible distortion in the image. Rather than apply a look-up-table to the

entire image on every frame, all coordinates measured from the screen were trans-

formed by the camera calibration parameters prior to passing the data to the beacon

solution.

The images were initially pre-processed using a centre surround also known as

Mexican hat operator [203], which is essentially a bandpass filter on the image.

The effect of this operator was to remove regions of the image that did not contain

high contrast. The beacons were made from styrofoam, and were thus very bright.

Certain sites where testing was undertaken were very bright in the near infrared

wavelengths, as is typical of vegetation in sunlight. Short pass filters were placed

over the camera to accentuate the intensity of the beacons. The filters used did not

cut wavelengths longer than 700nm (Kodak Wratten filters), so only undesirable

visible wavelengths could be blocked.

After pre-processing to eliminate regions of no contrast, a threshold was applied

to segment the beacons from the background. Figure 5.7 shows a typical view of

the beacons from the helicopter during a hover trial and a view of the beacons after

a threshold has been applied. Due to the contamination with IR, thresholds of as

little as 16 out of 256 grey levels were used, rather than the expected 40 or 50. Since

the essential configuration of the beacons was known, it was possible for the tracking

system to search for the beacons from the bottom of the screen towards the top,

labelling the beacons in sequence. In order to qualify as being a beacon, a certain

threshold number of white pixels was required to be within a 60x60 pixel window.

The size of each beacon was measured based on the first moment of intensity (ie.

measuring only white pixels) within each tracking window.

The tracking system was a standard alpha, beta, gamma tracker, with online

adjustable tracking parameters [204]. Values of alpha, beta and gamma of 1, 0,

and 0.04 were found to be successful, and no modifications were made after early

tests. Essentially the tracking stage was not required. In addition to position, the

size of each window was also tracked while tracking, so as to reduce the effect of

additional ‘speckle’ (particularly dandelions) around the beacons. The window size

was adjusted by assuming that the beacon was elliptical, and thus that the first

moment in each major axis would define the shape. The size of the window was

adjusted to be 1.2 times the size of the moments of the beacon, on each major axis.

Track parameters for the window resizing operation were an alpha of 0.1 and the

other parameters all zero. Using this system, track was held for all beacons under

almost all situations until a beacon departed the 120◦ field of view of the camera.

The beacon tracking system converts the 2D Cartesian screen coordinates deter-
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Figure 5.7: Use of visual landmarks to control hover. View of targets from helicopter

(top), view of beacons after thresholding (middle), external view of helicopter hovering

over targets (bottom).
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mined for each beacon into an azimuth angle Ψ and elevation angle Φ. Elevation

angle is measured from the aircraft z axis such that a point directly underneath

the aircraft would have an elevation of 0◦. The azimuth angle of the helicopter is

measured by projecting the line between the beacon and camera into the aircraft

xy plane. The angle between this projection and a line through the nose of the

aircraft is the azimuth angle. Points on the right hand side of the helicopter range

in azimuth from 0◦ at the nose to 180◦ at the tail. Points on the left hand side of

the helicopter vary in azimuth from 0◦ to −180◦.
The beacons were arranged in an equilateral triangle such that each side of the

triangle was 5m. The base of the triangle was orientated with magnetic East-West

so that the heading calculated by the beacon algorithm could be easily compared

against the magnetic heading measured by the magnetometers. The position of the

helicopter in global coordinates was defined such that the origin was at the centre

of the beacons, the x-axis was aligned with North, the y-axis aligned with East and

the z-axis was vertically straight down.

Position information is fused with information from accelerometers, magnetome-

ters and gyroscopes to determine a complete state estimate suitable for use in control.

5.2.5 Beacon Experiment

The helicopter was fitted with a wide angle field of view camera, IMU and a 3-axis

magnetometer. All sensor information and video from the camera were telemetered

to the ground. A PC workstation on the ground was used to decode the sensor

telemetry and process the video in real-time. The same PC was also interfaced to

the pilot’s radio control transmitter so that control could be passed between the

pilot and PC control software as required. A fixed gain filter operating at video

frame rate, was used to estimate the height and velocity of the helicopter. These

estimates were then applied in the same closed loop feedback scheme depicted in

Figure 5.3. The helicopter was set up to hover closed loop at a desired position

of 7m behind the beacons and 3 above ground. The helicopter hovered stably for

approximately 90 seconds under closed loop control of all 6 DOF before the pilot

resumed control to land and refuel.

A logging system interfaced to the ground control PC recorded video and sensor

data. The position of the helicopter found by applying the beacon algorithm is shown

at Figure 5.8 for 15 seconds of flight. Figures 5.9 and 5.10 show the corresponding

elevation and azimuth angles of all 3 beacons. The helicopter mean position was

approximately 7m behind, 1m to the left and 3m above datum. The video data

records show that over the 15 second period, the helicopter moved less than 50 cm

from mean in all 3 axes.

Testing the beacon algorithm in flight was a difficult task. The human pilot was

required to position the helicopter so that the beacons were centred in the field of

view of the camera. However, the pilot could not simultaneously fly the helicopter

and examine the video data from the helicopter so that a second operator was

required to vocalise steering commands to the pilot. Also, due to the limited field

of view of the camera, beacon track is rapidly lost if the helicopter strays from its
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Figure 5.11: Panoramic camera: A polynomial mirror is used to map a large part of the

visual surroundings (best represented by a sphere) onto the camera plane

assigned station. During the initial stages of tuning control gains, station keeping

by the helicopter is poor, resulting in only very short closed loop runs. The brevity

of closed loop data hampers decisions on gain optimisation. Field of view problems

may be alleviated in future using a panoramic camera [205] similar to the one shown

in Figure 5.11 which has a field of view of 360◦ in azimuth and more than 160◦ in

elevation.
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5.3 Optic Flow Damped Hover

In this section, an optic flow based hover and landing system is presented which

provides a means to land in an unknown environment without a reliance on GPS or

other navigation aids. The sensor is used to reduce the lateral and longitudinal drift

of the helicopter to negligible rates so that a safe landing can take place without an

absolute position reference. An operational scenario could be envisaged where an

unmanned helicopter could first search for a suitable landing area using visual or

other means. During the search, terrain clearance could be maintained with sensing

based on visual, laser range finding or radar systems. As aprt of other research,

I have developed a novel laser ranging system [195] that determines the slope and

distance of the ground in one 40 millisecond scan using a conical scan pattern. This

sensor could be used to search for a piece of ground that was level enough to land

on, and then, in combination with the optic flow sensor, an automated landing

could be executed. The optic flow and inertial sensor compliment each other well.

The optic flow provides a noisy measurement of horizontal velocity which does not

suffer from offsets. When integrated, the accelerations match the velocity well but

due to slight offsets, the integrated velocity diverges quickly if not corrected by a

separate measure of velocity. Accelerometers suffer offsets due to thermal effects,

misalignment and calibration errors. By combining the integrated inertial data with

the vision sensing, the noise of the optic flow measurement can be smoothed whilst

simultaneously compensating for offsets in the measured accelerations.

Optic flow can result from translations and rotations. For a downwards looking

camera, like the one used here, the effect of positive (nose-up) pitch rate q is the same

as the effect of forward velocity. Likewise, the effect of positive roll rate p (right wing

down) is the same as lateral translation to the left. In these cases, for a relatively

planar surface under the helicopter, the entire image is translated by the motion.

The effect of yaw is to produce an image flow field consisting of vectors rotated

around the point in the image corresponding to the center of rotation. Without any

translation, the average of these vectors cancels out. Also, during hover, yaw rates

are kept relatively small by the heading control loop which is very effective. Yaw

can therefore be ignored in calculating the lateral and longitudinal drift. Likewise

the effect of vertical motion results in image loom, however, due to the collective

control loop, the vertical velocity are very small (3cm/sec for autoland) and can be

neglected. Using an inertial system, the effect of rotations can be removed simply

by subtracting the rotations rates measured by onboard rate gyroscopes. The net

remaining angular motion of the image is proportional to the horizontal velocity. In

terms of the components of motion, we can express the longitudinal u and lateral

v velocities in terms of the helicopter height above ground level H and the flow

components Qx and Qy as in Equation (5.10). In these equations, the flow is defined

to be positive when it corresponds to a positive translation along one of the helicopter

body axes.

u = (Qx − q)H v = (Qy + p)H (5.10)

The Yamaha attitude system (YAS) outputs pitch angle (θ), roll angle (φ), roll
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rate (p), pitch rate (q) and yaw rate (r). The YAS also outputs the net accelerations

[ax, ay, az] sensed in the body axes coordinates after the gravitational acceleration

vector has been subtracted. The offsets from these sensors are relatively small, less

than 0.05m/s2 in acceleration and 0.1 deg/sec in rotation rates. I have previously

described an Extended Kalman Filter [26] which enables the accelerometer offsets

to be estimated online. This was for a low grade IMU on a very small helicopter

which suffered from significant sensor offsets and drift. For the RMAX, this extra

complexity is not required and a simpler complimentary filter has been applied. This

is a similar approach to that taken by Corke in [206] to fuse optic flow data with

inertials on a small helicopter. The fusion of inertial and optic flow information

takes part in two parts consisting of a state update phase and then a correction

phase:

Predict Cycle - The first step is a prediction based on the measured accelerations,

rotation rates and attitude. The state update equations were based on the rigid

body motion Equations (5.11). These were integrated at 100Hz using a trapezoidal

integrations scheme. The variables ax, ay and az are the measured accelerations

from the IMU. The variables p,q and r represent the rotation rates sensed by the

IMU rate gyroscopes. The variable u,v and w are the velocities of the helicopter in

local body axes. ⎡⎣ u̇

v̇

ẇ

⎤⎦ =

⎡⎣ ax
ay
az

⎤⎦+

⎡⎣ 0 r −q
−r 0 p

−p q 0

⎤⎦⎡⎣ u

v

w

⎤⎦ (5.11)

Correct Cycle - The second step is a correction based on measurements of the

optic flow and height. As optic flow measurements are only available at a video

frame rate of 50Hz, there are 2 predict cycles for every correct cycle. A fixed gain

correction is used to correct velocity in accordance with Equation (5.12) . The -

and + superscripts below represent the pre and post priori estimates of the state

variables respectively. The * superscript denotes an observation and the time shift

between values with subscript k and (k-1) is t = 0.02 seconds. The vertical velocity

is corrected from the GPS vertical velocity output or from the derivative of the

laser-range finder height, depending on which sensor is being used at the time.[
u+
k

v+
k

]
=

[
u−k
v−k

]
+ α

[
Q∗
xH

∗ − u−k
Q∗
yH

∗ − v−k

]
(5.12)

A value of 0.25 was used for the gain α. This was thought to be an adequate

compromise between smoothing out noise in the sensor and minimising the effect of

accelerometer drift.

The helicopter was flown at a height of approximately 1m above a grass field

with no artificial texture in view of the camera. Once the helicopter was established

in a reasonably stable hover by the pilot on the ground, control was switched to

the flight computer. GPS altitude was used to control the height of the helicopter

by varying the collective pitch using a PI controller. The height of the helicopter

was regulated to within 10cm of the set height. The aileron and elevator inputs

were controlled by PI control loops using the lateral and longitudinal velocities
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Figure 5.12: Longitudinal velocity (Vx) calculated from optic flow versus Vx from DGPS

respectively from the optic flow calculation. Due to the integral feedback in the PI

loop, any short term excursions in the position of the helicopter due to wind gusts

tend to be compensated. The helicopter was flown for nearly four minutes using

the optic flow to control the hover. During the flight, the average wind velocity was

30km/hr with frequent gusts.

Figure 5.12 shows a comparison between the longitudinal velocity measured by

the GPS and the longitudinal velocity derived from optic flow and inertial sensing.

The optic flow based velocity is clearly a noisier signal than the velocity measured

by the GPS. We anticipate vibration to be a significant source of noise. The camera

position for these experiments was not ideal as it was mounted to the vision com-

puter for which vibration was severe at times with both rotational and translational

components. For future work, I intend to design a vibration isolation system to

protect the camera.

Figure 5.13 shows the position of the helicopter over time and Figure 5.14 shows

the lateral and longitudinal velocities as measured by the GPS during 120 seconds

of flight. In this time, the aircraft drifted 68cm North and 2.57m in an Easterly

direction as measured by the GPS. This equates to an average drift velocity of

2.2cm/sec which is easily low enough to permit a safe and gentle landing to take

place. During strong gusts, there are peaks of velocity up to 20cm/sec which are

still within the bounds of landing.

For the experiment, the gains in the PI controllers were tuned manually with

only a few iterations and improved performance might well be achieved with further

tuning. Also, as shown in Figure 4.7, the YACS system includes a low pass filter

with 2.8Hz corner frequency on the aileron and elevator channels which restricts the

bandwidth of the controller. In future work, I aim to develop an in-house controller

to replace the YACS which will remove the prefiltering of the aileron and elevator

channels.
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Figure 5.13: Helicopter position during closed loop hover
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5.4 Summary

Visual sensing provides a cheap, lightweight and passive way of controlling hover or

low speed flight in an autonomous flying vehicle. A method using triangulation of

postion in three dimensions from visual bearings to landmarks was used succesfully

to control a helicopter in hover.



Chapter 6

Control of Forward Flight

6.1 Introduction

A number of researchers have suggested that insects use optic flow in forward flight

to control their terrain clearance [8–10]. The aim of this chapter is to show, in

simulation and experimentally, that calculation of range from optic flow can also

be used to avoid terrain by an inherently unstable rotorcraft. Experiments were

completed with both the Eagle helicopter and the RMAX helicopter. The concept

was first tested in closed loop on a relatively flat surface using the control by teleme-

try scheme on an Eagle helicopter. Later, the RMAX helicopter completed terrain

following experiments over a more irregular landscape using all onboard processing.

The tests in this chapter make use of a downwards looking camera that measures

the optic flow of the ground underneath the helicopter. If speed is known, the terrain

clearance (H) can be calculated from Equation (6.1) where V is the horizontal

speed of the helicopter and Q is the magnitude of the optic flow vector due to pure

translation. The basic assumption in this work is that the ground speed of the

vehicle is known approximately. In our case, the speed of the helicopter is known

from GPS measurements or from the observed open loop behaviour of the helicopter.

H = V/Q (6.1)

6.2 Sensor Fusion

Equation (6.1) can be used to measure height above terrain. This estimate tends

to be rather noisy owing to the vibration of the platform and the resulting noise in

the optic flow measurement. To reduce the effects of vibration, the optic flow and

velocity data are both smoothed using a moving average filter comprising 5 samples,

before the velocity is divided by the optic flow to get range. Figure 6.1 shows ground

speed and optic flow range versus time for the same period of flight for the RMAX

helicopter flying over a rough grass paddock. The output of the laser rangefinder

(LRF) is provided as a benchmark. The optic flow range is calculated by dividing

the longitudinal velocity by the longitudinal optic flow after applying the averaging

filter. The plot of standard deviation in figure 6.1 was calculated using a sliding

window of 50 samples (i.e. 1 second) width applied to the discrepancy between the

optic flow range and the LRF. At 5m/s the standard deviation of the noise is about

105
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Figure 6.1: Effect of velocity on optic flow ranging noise. The top diagram demon-

strates how the noise in optic flow ranging increases at low speed. Results for height are

benchmarked against the laser rangefinder (LRF).

5cm. At low speeds, this noise increases dramatically and can be seen to reach

approximately 0.6m standard deviation for a ground speed less than 1m/s.

A state prediction and correction cycle is used to estimate the terrain clearance

Z and relative vertical velocity W. First, at each inertial sensor sample time ΔT ,

the relative vertical velocity estimate is updated using the vertical accelerometer

measurement az as per Equation (6.2). A measurement of the relative speed between

the ground and the helicopter is determined by differentiating the range calculated

by optic flow, R. At low speeds this derivative is very noisy, so at speeds below 2m/s

in the RMAX, the vertical velocity was corrected using GPS vertical velocity instead.

The Eagle helicopter was not flown closed loop at low speed, so an alternative

means of correcting the vertical velocity was not required. The vertical velocity is

calculated using a first order approximation to the derivative of height as shown in

Equation (6.5). The terrain clearance estimate is updated using the relative vertical

velocity estimate and corrected using the range from optic flow. The prediction and

correction cycle is outlined below:

Predicting the relative vertical velocity estimate Ŵ, where φ and θ are the heli-

copter roll and pitch angles respectively and g is the acceleration due to gravity:

Ŵ−
k = Ŵ+

k−1 + (az + g cos φ cos θ)ΔT ; (6.2)

Updating the terrain clearance estimate Z from the velocity estimate Ŵ:

Ẑ−
k = Ẑ+

k−1 + Ŵ−
k−1ΔT (6.3)
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Calculating the optic flow range measurement R from the longitudinal velocity u

and the longitudinal optic flow Qx:

Rk = u/ (Qx − q) (6.4)

Conditioning the relative velocity estimate from the range measurements where

the constant α is a filtering parameter between 0 and 1:

Ŵ+
k = (1 − α) Ŵ−

k−1 + α (Rk −Rk−1) /ΔT (6.5)

Conditioning the terrain clearance estimate from the measured optic flow range

where the constant β is a filtering parameter between 0 and 1:

Ẑ+
k = (1 − β) Ẑ+

k−1 + βRk (6.6)

The equations outlined above are an approximation of the exact equations of

motion of the helicopter in that the pitching and rolling motions of the helicopter are

ignored. This eliminates the cross-product terms between angular velocity and linear

velocity. For this work, the camera is also assumed to be pointing straight down at

the ground, however, the optic flow due to rotations is eliminated by subtracting the

rotation rates measured by the gyroscopes from the measured optic flow. Whilst the

attitude of the helicopter will change as the helicopter manoeuvres, on average, the

vertical body axis of the helicopter will be closely aligned with the normal to the

ground plane, and the approximation will only introduce a small error. In an aircraft

that is pitching or rolling violently whilst terrain following, it would be neccessary

to use the full equations of motion of the helicopter and to stabilise the camera so

that it always pointed downwards.

The filter gains α and β were choosen as a compromise between correcting drift

in the velocity and position estimates, and smoothing out the noise introduced by

the optic flow range measurement. Values of 0.02 and 0.2 respectively were found

to be suitable in simulation.

The inertial sensors provide no information on the rate of change of terrain, only

the absolute height of the helicopter with respect to some fixed datum. Consequently

the terrain clearance will tend to lag behind the actual terrain clearance slightly,

particularly when abrupt changes in terrain clearance occur. Using filter gains of

α = 0.2, β = 0.02 and a forward speed of 5m/s, the time to adapt to a 1m step

change in terrain height would be approximately 0.2 seconds. Owing to the spike in

velocity estimate caused by the step change, the terrain clearance estimate tends to

overshoot the actual terrain clearance by about 5%.

6.3 Simulation

The Eagle simulation was used to test the ability of optic flow ranging to control

the height of the helicopter in forward flight. A simple ’P’ classical controller in

combination with the existing attitude inner loop was used to maintain a near

constant longitudinal velocity of 5m/s. Lateral velocity was kept close to zero using
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the same control arrangement. Heading of the helicopter was kept constant using

a PID controller. The collective pitch control was controlled using a PD controller

set to maintain a constant distance from terrain. Terrain clearance and vertical

velocity were calculated using the predict and correct cycle described in Equations

(6.2)-(6.6).

The Eagle simulation was modified to take terrain data as input from a file.

The relative height between the helicopter and the ground was then calculated by

subtracting the terrain height from the helicopter height, so that the simulated

optic flow could be computed using Equation (6.1). Gaussian noise was added to

the calculated flow with statistical properties based on the optic flow measured in

hover at approximately 1m above a level grass field. Comparison between flight

results and data from the camera when it is held in a fixed position above the

ground confirm that the optic flow on the flying helicopter is much noiser owing to

the vibration of the camera mount. The dominant source of the noise is the once

per rotor revolution vibration of the helicopter at a frequency of about 25-26Hz.

Higher frequency harmonics from the main rotor and tail rotor are also present. It

is neccessary to isolate the noise component of the flow from vibration from the

change in the flow due to the actual motion of the helicopter. This was achieved by

calculating the standard deviation of the optic flow about mean over short periods

and then averaging. Groups of 4 consecutive 50Hz optic flow samples, spanning

2 complete rotor revolutions, were used to calculate standard deviation. These

standard deviations were then averaged over 80 seconds. The resulting standard

deviations were 5.2 deg/sec for Qx and 9.5 deg/sec for Qy. Results for standard

deviation to within 20% of these values were achieved using 2,6,8 and 10 samples

before averaging. It should be noted that the translatory components of vibration

will produce less noise at heights above 1m, owing to the reduced angular effect of

the vibration induced displacements at long ranges. It should also be noted that

when the camera is in close proximity to the ground, such as when the helicopter is

about to take off or just before landing, that the vibrations can lead to significantly

increased noise in the optic flow measurements. For the simulation purposes here,

the helicopter is always higher than 1m above the ground, so the use of optic flow

noise statistics for a fixed height of 1m is is conservative.

The first test performed in simulation was to see if the helicopter could track a

simple vertical terrain feature consisting of sequence of rising and falling ramps and a

step. The desired terrain clearance was set to 3m, the desired forward speed was set

to 5m/s and the initial state of the helicopter at t = 0 was set to match these values.

The simulation was set to run for 100 seconds, producing the results shown in figure

6.2. The helicopter follows the terrain well, with a maximum error in desired height

of 0.48m up until the step in terrain occurs. As the helicopter cannot execute an

instantaneous change in height, the error in terrain height reaches a maximum as

the step is sensed which is equal to the height of the step plus the previous terrain

clearance. Within 3 seconds of the step occuring, the helicopter re-establishes a

close terrain following behaviour with a terrain clearance of 3± 0.1m. An overshoot

in height occurs which brings the helicopter to within 1m of the ground at 2.5

seconds after the step. Some overshoot to a step is expected from a properly tuned
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Figure 6.2: Simulated terrain following for ramp and step changes in terrain

PD controller, but the overshoot is clearly increased owing to the spike in velocity

created by using the derivative of relative height to correct the vertical velocity

estimate. The simulated optic flow data does not take in to account the field of

view of the camera, treating the camera as a point sensor which is only affected by

the point directly underneath the helicopter. If the real helicopter were to fly over

a step change in terrain, such as a cliff, the optic flow would not change instantly as

for a short time, the camera image would contain points from both the high and low

side. The algorithm used on the helicopter averages the optic flow vectors calculated

over the flow field, so that there would be a smooth transition from one optic flow

scale to another as the helicopter flew over the cliff. This would reduce the effect of

the velocity spike, and hence reduce the helicopter overshoot.

The next test was to see how well the helicopter could respond to features of

different spatial frequency. A chirp signal was used to create sinusoidally varying

terrain with an amplitude of ±3m and a frequency varying between 0.01Hz and

0.2Hz over 100 seconds. The results of the test are shown in figure 6.3. The

simulation was stopped after 65 seconds, because the helicopter could no longer

adjust its trajectory fast enough to keep up with the rate of change of the terrain,

resulting in a collision with the terrain. The estimate of the terrain height is seen

to closely match the real height above terrain. The velocity estimate from optic

flow ranging is attenuated by about 40% of the original values. This attenuation

is desirable as it smoothes out the effect of small duration variations in the terrain

which might cause the helicopter to overshoot the terrain.

Finally, terrain data from an actual experiment were used in the simulation. The

data collected by the RMAX helicopter’s LRF from the terrain following experiment

later in the chapter was used as an input to the simulation. The helicopter was set
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Figure 6.3: Simulated terrain following for sinusoidal terrain

to fly at the average speed of the RMAX during the test. The results are shown in

figure 6.4.

6.4 Terrain Following Experiments

6.4.1 Experimental Procedure

For the experimental work, a mechanism was required to allow the pilot to take over

control of the helicopter in event of a control or sensor failure. As the helicopter

quickly flies out of sight of the pilot in forward flight, a technique was used to chase

the helicopter at a relatively safe constant distance. The pilot was accomodated in

the back of a utility vehicle as shown in figure 6.5. The pilot crouched over the back

of the vehicle so that he had a clear view of the helicopter in flight. The driver of

the vehicle was instructed to maintain a constant distance from the helicopter.

6.4.2 Calculation of Optic Flow

For robustness, the optic flow calculation must be able to cope with flight at various

altitudes and speed. In forward flight, it must simultaneously measure small lateral

optic flow values whilst measuring large optic flows in the longitudinal direction.

When the optic flow shift exceeds the reference shift, the I2A ceases to function,

and its performance becomes unpredictable and degraded [71]. Ideally, reference

shifts would be choosen to be about double the expected optic flow so that there is

a sufficient margin over saturation whilst maintaining optimum measurement preci-

sion. Because of these considerations, an adaptive algorithm is required, otherwise
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Figure 6.4: Simulated terrain following for real terrain

Figure 6.5: Forward flight experimental procedure (Pilot: Matt Garratt)
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the optic flow measurement would be saturated at low altitude, too insensitive at

high altitude, and operable only in a very narrow range of height and speed.

To overcome the limited range of flow rates that can be measured using I2A, the

simple tracking estimator in Equation (6.7) was used to estimate the size of the next

image shift Sk+1 based on previous image shifts Sk and the measured optic flow Q.

The constant γ is a parameter between 0 and 1.0 adjusted to give stable tracking.

Sk+1 = γ (Sk +Q) + (1 − γ)Sk (6.7)

The expected shift is applied to the image before computation of optic flow, and

added to the result after computation, so that all measured shifts are less than 2

pixels. Despite the narrow range of the measurement, the adaptive feature of the

modified algorithm allows rates in excess of 10 pixels per frame to be measured

(over 700o/s with the camera used in the experiments). The adaptive version of the

I2A algorithm is known as the Iterative Image Interpolation Algorithm, abbreviated

I3A.

6.4.3 Terrain Following using Control by Telemetry

This test involved a control by telemetry scheme. All of the optic flow processing,

state estimation and control was executed on a real-time Linux PC in the chase

vehicle. A PC mounted in the chase vehicle was interfaced to the pilot’s transmitter

so that control could be switched between the pilot and the computer using a switch

on the transmitter.

The camera was oriented at 45o to the vertical axis of the helicopter to provide

some anticipation of terrain. For this test, DGPS information was not available.

As closed loop control of forward speed was not possible, the helicopter was instead

flown at a constant pitch attitude using a proportional feedback loop. The a priori

observed forward flight speed at this attitude was then used with Equation (6.1) to

provide a measurement of the height above ground using optic flow. Note that this

technique is only really applicable in low wind conditions as the open loop behaviour

of the helicopter can only be used to estimate air speed and not the ground speed

which is needed for accurate optic flow ranging. The height estimate was combined

with accelerometer information to provide an estimate of height and vertical velocity.

A PD controller was used to control collective pitch to maintain a datum height

of 2m above terrain. The pilot retained control of roll cyclic in order to keep the

helicopter on the desired ground track. Heading was controlled using a PID con-

troller.

The tests were performed on a flat, dry lake bed with the chase vehicle positioned

behind the helicopter. Before control was handed over to the computer system, the

helicopter was first established in forward flight under manual control. Once in

steady flight and telemetry confirmed, control was handed over to the computer.

After some initial tuning of gains, the helicopter was flown closed loop in a straight

line for over 2km with the optic flow ranging controlling height. The motion of the

helicopter was recorded by an external video camera but no provision was made for

recording the inertial data embedded in the telemetry stream. During the closed
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flow.

loop phase, the helicopter was observed to speed up and slow down, possibly due to

the presence of wind. In response to the fluctuations in speed, the controlled height

of the helicopter was observed to change, as would be expected from the error in

the constant speed assumption.

This experiment demonstrated the feasibility of using optic flow height control

for a rotorcraft in forward flight. Further testing of forward flight was put on hold

until the deficiencies in the experiment could be rectified. Specifically, these included

obtaining an accurate measurement of ground speed, providing a ground truth mea-

surement of height above terrain, and eliminating the dependency on the video and

control telemetry. These problems were overcome with the introduction of a PC104

based control system onboard the RMAX helicopter.

6.4.4 Terrain Following using Onboard Processing

Terrain following experiments using all onboard processing were conducted on the

RMAX helicopter. A sloping grass runway was used to provide the terrain for the

test. The helicopter was first flown up and down the airstrip to confirm that the

calculation of terrain height was sensible. Data from the optic flow ranging and the

onboard LRF were logged in flight as the helicopter was flown at speeds up to 30

km/hr. Figure 6.6 shows an extract of the validation flights, showing a clear match

between the two measures of terrain clearance.

For the test of closed loop control, a proportional controller was used to control

height with the same feedback gain used to control hover. Cyclic control and yaw

control were retained under pilot command. On handover of control of height, the

current terrain clearance was set as the new reference terrain clearance. This was

set to prevent a step change in height command at the moment of handover.

The pilot found the control of the helicopter close to the ground at speed quite

difficult as even slight changes in collective pitch resulted in rapid changes in height.

Handover of control in forward flight was therefore to be avoided in case a transient

caused by the handover resulted in the helicopter getting too close to the ground.
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Handover of control was, therefore, executed in hover and the speed gradually in-

creased to the desired forward speed. In hover, the terrain clearance was obtained

from the LRF. However, as the speed increased to above a certain threshold, the

terrain height measured from optic flow began to be used. At low speeds the terrain

height measured from optic flow is noisy and unreliable. As speed increases, the

height measurement becomes more reliable. The test consisted of flying the heli-

copter up and down a sloping grass airstrip. As the helicopter needed to slow down

at the end of the runway to turn around, an automatic transition from optic flow

to LRF height control was implemented. Whenever transitions between modes of

sensing terrain clearance were instigated by the autonomy software, a new datum

terrain clearance was recorded using the new sensing mode at the instant of transi-

tion. This prevented step changes in terrain height that might occur if a significant

mismatch between the two sensing modes existed. Hysteresis was used to prevent

constant twitching between sensing modes that might occur if speed was near the

switchover point between sensing modes. Specifically, as the helicopter accelerated

to 2.2m/s, control was switched from using LRF sensed height to optic flow sensed

height. As the helicopter decelerated below 1.8m/s, sensing from the LRF was again

selected.

The helicopter was flown up and down the runway in closed loop. The ground

track, groundspeed and terrain clearance results for one of the uphill runs is shown

in figure 6.7. The top graph in the figure shows the height of the helicopter and

the height of terrain on the same plot. The height of the terrain was calculated

by adding the height above ground measured by the LRF to the absolute height

measured by the differential GPS.

The helicopter can be seen to clearly respond to the terrain features in the run-

way. During the 100 second closed loop portion of the flight, shown in figure 6.7,

the helicopter maintains 1.27 ± 0.18(SD) m clearance from the ground. There is,

at times, a small lag evident between the helicopter response and flying over the

disturbance. From the figure, this can be seen to equate to roughly 0.4 seconds. For

this experiment, the height tracking accuracy would have been signficantly degraded

by having a human pilot in the control loop. During the test, the pilot was respon-

sible for controlling all axes except control of height. Owing to the chase vehicle

being jerked around over the uneven ground, the pilot found it difficult to hold the

aircraft at a steady speed and heading, causing cross-coupling disturbances to all of

the control channels. Also, it was only possible to maintain a constant velocity for

a few tens of seconds before it was neccessary to begin deccelerating the helicopter

in preparation for reaching the end of the runway.

Small discrepancies between the terrain clearance estimates from the LRF and

optic flow are present. This is not suprising since the ground was quite uneven in

places and there were parts of the flight where the helicopter flew over long grass and

tussocks. Also, the LRF beam was aimed at a slightly different part of the ground

to the camera owing to the wider field of view of the camera and the geometric offset

between the sensors. The pilot’s efforts to control the helicopter in gusty conditions

resulted in roll and pitch excursions from the datum value. The pitch and roll angles

of the helicopter vary from their mean values by up to 5o with a standard deviation
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Figure 6.7: Terrain following results for RMAX helicopter using optic flow ranging:

(a) Helicopter height measured by GPS versus the terrain height measured by GPS and

LRF; (b) a comparison between the height from the LRF and from optic flow; (c) vertical

velocity estimates derived from the GPS and from optic flow ranging; (d) PWM signal

sent to the collective pitch servo; (e-g) attitude of the helicopter; (h-i) ground track and

ground speed measured by GPS; (j) height difference between optic flow and LRF height

estimates.
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Figure 6.8: Use of lateral optic flow for control of drift. Left-hand diagram shows the

lateral and longitudinal velocities as measured from optic flow. Right-hand diagram shows

the ground track measured by GPS.

of 1.5o and 2.0o respectively. The attitude changes would introduce some errors in

the laser range measurements as the ranges were not corrected for the tilt of the

platform. The standard deviation of the error between the two sensors for the flight

data presented was 9.5cm.

6.4.5 Control of Lateral Motion using Optic Flow

The terrain following experiments described above were achieved using pilot control

of roll. As shown in simulation, it should be possible to control the lateral velocity of

the helicopter in addition to the terrain clearance using optic flow measurements. By

setting the desired lateral optic flow to zero in forward flight, the helicopter should fly

a path over the ground aligned with its longitudinal axis. Such a technique could be

used to compensate for the sideways drift caused by wind or an out of trim condition.

To test this theory, the RMAX helicopter was flown backwards and forwards over

a level grass playing field with the reference roll attitude for the YACS inner loop

controlled by proportional feedback from the lateral velocity derived from optic

flow. The height above terrain was controlled using the existing optic flow ranging

technique whilst the pilot controlled yaw and elevator manually. Unfortunately, less

than one hundred metres of space was available for this experiment, and no chase

vehicle could be used, so only a short burst of terrain following was possible. Figure

6.8 shows the lateral and longitudinal velocities versus time on the same graph for

a 35 second segment of closed loop flight.
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6.5 Discussion

The techniques presented in this chapter require an approximate measure of ground

speed. GPS velocity is one suitable means of velocity measurement. In the absence

of GPS, another measure of speed could be used such as airspeed from a pitot-

static air data system. However, airspeed needs to be corrected for the effect of

wind, otherwise the calculated range would have a scale error. Using airpseed would

result in a lower height above ground in a headwind and an increased height in a

tailwind.

The use of optic flow for height control is really most practical where an aircraft

is operating close to the ground. For example, a 747 cruising at Mach 0.86 and

40,000 feet generates an optic flow for a downwards looking camera of 1.5deg/sec.

Whilst this flow is certainly measurable, even a 1% error in ranging would result

in a 400ft error in height which would make it too inaccurate for traffic separation.

However, a 10% error in ranging for a terrain following aircraft flying at 400 ft would

be acceptable since this would generate an acceptable 40ft error, which is within the

existing error margin associated with flying over trees and uneven ground. The

scale, and hence accuracy, of the optic flow measurements could be optimised for

various applications by varying the frame rate. For a situation where the flow is

small, the frame rate could be reduced to increase the pixel shift and hence provide

a more easily measured signal. Digital processing hardware continues to increase in

speed, so it is concievable that it will soon, if not already, be possible to calculate

optic flow at several hundred frames per second, which would be fast enough for any

conceivable aircraft application.

As there is a lag between a change in terrain being sensed, and the response, some

a priori knowledge of the upcoming terrain could be used to improve performance.

The use of a downwards looking camera provides no anticipation of changes in

terrain ahead of the helicopter’s current position. By tilting the camera forward,

however, some anticipation of bumps could be applied. In [35], Hrabar proposes

that the optimum camera inclination for obstacle avoidance using optic flow is 45o.

This would introduce some inaccuracy in the range measurement if the simple range

equation (Eqn. (6.1)) was still used, since it assumes the camera axis is normal to

the ground. However, as the control by telemetry experiment demonstrated, the

method is sufficiently robust to cope with a 45o forward tilt of the camera without

any obvious side-effects, when using the average optic flow from the entire image.

In this work, the average optic flow over the whole image was used so that

the camera acts as a point sensor. In a more general situation, optic flow vectors

could be obtained and interpreted separately from different parts of the image. This

would provide not only the range, but also the azimuth and elevation of obstacles

that might be a threat to the vehicle. This would allow steering commands to

be generated in addition to height control. A limitation of this technique is that

objects in the direction of travel will not exhibit any translatory flow, so will not

be detected. Measurement of image expansion or loom could be used to detect

approaching obstacles at the front of an aircraft in forward flight, although this

signal tends to be weaker than the optic flow from motion parallel to a surface.
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Future work should investigate the use of complete flow fields for obstacle avoidance.

6.6 Summary

In this section, systems for maintaining terrain clearance in an unstable rotorcraft

have been demonstrated and benchmarked against a LRF sensor. The system con-

sists of a downwards looking or forward tilted camera and computational hardware

to compute optic flow using the I3A algorithm. When combined with speed mea-

surements from GPS, the approach was able to estimate terrain clearance to within

7.5% of the actual mean height at an average forward flight speed of 20km/hr.

Lateral optic flow was also shown to be able to be used in forward flight to correct

sideways drift for a helicopter.



Chapter 7

Control using Artificial Neural

Networks

7.1 Introduction

In keeping with a biological inspiration for the system architecture, a neural network

based control system has been implemented. This technique has been applied to the

case of altitude control and the control of lateral and longitudinal drift in hover.

The aim of this chapter is to show that simple computational models can perform

the task of sensor fusion and control without a detailed mathematical model of

the plant being known. In biological systems, flight control and sensory processing

systems are partly hardwired into the animal as a result of evolutionary adaption

passed genetically and partly learnt from interaction with the environment. In this

case, off-line neural computational models will be trained using recorded data from

the real plant. Later work, beyond this thesis, could investigate the use of on-line

adaption to adapt the neural controllers to changing conditions and to improve the

control response.

Whilst we can use simplified mathematical models for designing controllers that

will work on the helicopter, there are many unmodelled dynamics that a simple

model will not incorporate. If we consider the collective control channel, for example,

significant errors can arise from ignoring or simplifying any of the following: actuator

kinematic non-linearities; ground effect; fuselage download; servo dynamics; rotor

speed variation; sensor lag; and rotor inflow lag associated with the rate of change

of collective pitch. These effects are virtually impossible to model exactly. The

use of ANNs does not require an explicit analytical model of these effects, only raw

flight test data from which a black-box model can be learnt. This simplifies the

controller design significantly and allows the ANN controllers to be run on very

simple hardware.

The 7 state EKF prediction and correction cycle used for fusing inertial and visual

information discussed in Chapter 8 executes on PC104 hardware in approximately

1ms. By comparison, a single layer feedforward ANN with eight hidden nodes used

to fuse inertials and vision executes in about 10μs on the same hardware. An

ANN can be executed on much simpler processors than an EKF and may have

other advantages in terms of robustness to unforeseen variations in sensor noise

characteristics.

119
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7.2 ANN Training

To make training easier, all of the input and output data was normalised to a

Gaussian distribution of unit standard deviation and zero mean. Normalisation of

the training data is known to speed up training [207] as the network biases and scale

factors can be randomly chosen from an appropriate set of bounds when the network

is initialised before training. Using normalised output data also has the advantage

of providing a common scale to error metrics such as the mean square error (MSE)

relating the difference between the network output and the training output.

All of the ANNs described in this thesis are feed-forward networks. A log-

sigmoidal transfer function was used for the hidden layers as shown in Equation

(7.1). Linear output layers were used for the output layers.

logsig(n) =
1

1 + e−n
(7.1)

For the experiments described in this chapter, a neural network library was writ-

ten by the author in the c programming language for use on both the helicopter and

in SIMULINKR©. This library incorporates a dynamically allocated data structure

to store the network weights, biases, and connectivity. The library has functions

to load networks stored in files and to calculate the network outputs. Functions

to train the network using simple backpropogation and Backpropogation Through

Time (BPTT) were also written but found to be too slow to be practical and thus

were abandoned. The Levenberg-Marquardt (LM) algorithm [134] implemented in

the MATLABR© neural network toolbox was therefore used to train all of the net-

works discussed in this thesis. The LM algorithm was choosen specifically as it

appears to be the fastest method for training ANN with up to several hundred

weights [135]. A MATLABR© script was written that converts trained network ob-

jects in the MATLABR© workspace to an ASCII network definition file which stores

the network structure and weights.

In SIMULINK R© a user-defined S-function block was created to simulate each

ANN. The SIMULINK R© block calls subroutines in the neural network library file.

At the start of the simulation the software loads a network from file and dynamically

allocated memory to store the network parameters. A GUI dialogue box associated

with the SIMULINKR© block allows the user to set the filename for the network

definition file and the time step.

Network definition files are transferred from MATLABR©, once trained, using a

USB memory stick. On boot of the PC104 computer, software is started automati-

cally to load the network files into memory. The network data structure is accessed

by a real-time implementation of the same neural network library used in simula-

tion to run the networks as part of the main software thread running on the PC104.

The outputs of the networks are logged by the PC104 and also sent to the MPC555

autopilot using the RS-232 link.
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7.3 Control of Height using a Neural Network

In this section, the control of height using a neural network is first shown to be

feasible using a simplified simulation of the helicopter dynamics. The approach is

then shown to work on the real helicopter based on a plant model trained from real

flight data. For this thesis, the helicopter height has been measured by a number

of means including using a stereo camera, height from optic flow (only in forward

flight), laser range finding and DGPS. For the work in this chapter, which was

carried out on the Eagle helicopter, only DGPS height will be used, however the

methods apply equally well to any of the other sensing modes.

The strategy used for control of height is a three-step process aiming at achieving

an ANN implementation of an optimal controller. The process consists of training a

neural network to represent the plant, developing a controller off-line using compu-

tationally intensive, but optimal methods, and then training another neural network

to mimic the optimal controller. The technique has a number of advantages. Firstly,

an optimal controller can be designed and tested in simulation using full and noise-

free state data which may not be available in flight. The ANN can be trained to

mimic the optimal controller but using only the data which it has available to it,

which may be uncalibrated, corrupted by noise and affected by sensor lag. For

example, the optimal controller might be executed with noise-free vertical velocity

and height data but the ANN may only be given height data with no velocity infor-

mation. Secondly, the optimisation process is computationally intensive and could

not be achieved in real-time. The use of optimal control is of particular interest in

this work, as biological entities will have optimised their control pathways through

evolutionary process and also learned behavior during their individual lifetimes.

In order to develop an optimal controller for the helicopter, a means of captur-

ing the dynamics of the helicopter is required. Certain aspects of the dynamics are

known exactly. For example it is known from basic physics that the vertical accel-

eration can be integrated exactly to obtain vertical velocity and integrated again to

obtain height. Furthermore, the dynamics of the collective servo have been measured

directly and can be hard wired in to a model of the plant. The remaining dynamics

involve the relationship between the vertical acceleration and the collective pitch,

vertical velocity and ground effect. This relationship is affected by the kinematic

relationship between the servo input and the blade pitch, the vertical drag on the

fuselage caused by the downwash and rate of climb/descent and other effects. These

non-linear dynamics are more difficult to predict analytically and would require a

tedious experimental effort to model accurately. An ANN is therefore one means

of capturing this dynamic behavior in one step without a detailed mathematical

model.

The helicopter is fitted with a vertical accelerometer which allows the vertical

acceleration to be recorded from flight test and used to train the ANN plant model.

The accelerometer measures the local acceleration which is the sum of the component

of gravitational acceleration (g) and the rate of change of velocity of the platform.

The z-accelerometer output az is actually just equal to the net aerodynamic z-

axis force (T) acting on the helicopter divided by the helicopter mass (m), so that
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az = T/M . The force T is the net effect of the main rotor thrust and the vertical drag

caused by the rotor downwash. No compensation for pitch and roll tilt is required as

the accelerometer moves with the helicopter local axes. Although counter-intuitive

this can be understood by considering a simple helicopter of mass (m) with no tail

rotor side force so that it hovers perfectly level with thrust (T) equal to weight

(W). If the helicopter is in equilibrium hover, T = W and the accelerometer would

measure az = W/m = T/m. If the thrust of the helicopter suddenly changed to zero,

the helicopter would be in free-fall and the accelerometer would be zero, so that still

az = T/m = 0. If the helicopter suddenly rolls to 45◦ without changing its thrust,

the helicopter would begin to fly sideways and descend since the vertical component

of thrust is now less than the weight force. The accelerometer would measure the

sum of the z-axis component of gravity and the rate of change of z-axis velocity

which is −gcos45◦ + (mg cos 45◦ − T )/m = T/m. In each case, the accelerometer

still measures T/M regardless of the effect of gravity and tilt. The significance

of this is that all of the aerodynamic effects are encapsulated in the measurement

of az, so that training a neural network to represent az is the same as training a

neural network to represent the aerodynamics of vertical flight. The dynamics of the

vehicle, which is essentially integrating the acceleration to get velocity and position,

are known exactly and for these purposes do not need to be represented by an ANN

as they are very simply implemented. However, if desired, use of a recurrent neural

network would allow the integration of acceleration to be carried out by the ANN

also.

7.3.1 Simulation of Height Control using an ANN

The feasibility of using an ANN to control height was first tested in simulation

using SIMULINK R©. The first objective was to train a neural network to mimic

an analytical model of the helicopter and then see if this ANN could be used to

develop an optimal controller to control the plant. The second objective was to see

if another ANN could then be trained to mimic the optimal plant and to see how

well this ANN could do the job of the optimal controller.

The vertical dynamic components of the eagle simulation developed in Chapter

3 were isolated to generate simulated helicopter data. The rotor induced flow model

calculates thrust given collective pitch and vertical velocity as inputs. The weight

of the helicopter is subtracted from the thrust and divided by mass to calculate the

vertical acceleration. This acceleration is then integrated twice to get the velocity

and height. For the purposes of this test, ground effect was not included in the

vertical flight model. A servo model based on the measured dynamics was however

included.

The objective of the simulation is to provide training data to allow an ANN to

be trained to mimic the plant. A large training set was desired to adequately span

the possible combinations of vertical velocity and collective pitch. The plant model

was stimulated to provide this training set using a random step block in series with

a rate limiter to generate a reference set of desired vertical velocities to drive the

model. The random step block was set to output velocities using a step period
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Figure 7.1: Ideal plant SIMULINK R© model

ranging randomly from 0.2 sec to 2 sec and with amplitudes ranging randomly from

-2m/s to 2m/s. Higher rates of descent were not used as the induced flow model

does not take into account the complex aerodynamics of the vortex ring state which

occur when the rate of descent reaches about half of the induced velocity (2.1 m/s

for the Eagle). Furthermore, higher rates of climb and descent than about ±2m/s

are not desirable during actual flight tests due to the proximity to the ground and

the inability of the pilot to regain control in the event of a system failure. The rate

limiter was used to bound the maximum commanded acceleration of the plant to

±10m/s so as to keep the training output data to a reasonable set of values. The

use of random step lengths allows large collective pitch changes to be commanded

when the step is small and the system has not had a chance to reach equilibrium.

Conversely, when long steps occur, the system has the opportunity to reach near

steady state and small collective pitch changes occur. The use of normalised inputs

means that the fine-grain changes in collective used to accurately maintain height

are well represented, whilst still providing a good coverage of outlying extreme

collective values. A simple proportional feedback scheme was implemented in the

SIMULINK R© model to control the collective input in response to errors between the

desired reference velocity and the actual vertical velocity. The helicopter vertical

flight model and complete simulation are shown in figure 7.1. The simulation was

used to generate 1000 seconds of data with a 50Hz sample rate.

The match between the ideal plant data and the ANN representation had an

MSE of 2.6× 10−6 with only a four hidden unit single layer network. Increasing the

number of hidden units beyond four was found to have negligible benefit which would

not justify the additional computational burden. The effect of Vz and collective pitch

on az are compared for the ANN and the analytical plant models in figure 7.2. The

chart confirms the expectation from Blade Element theory that the thrust of the

main rotor is decreased by climb rate and increased by descent rate for the same

collective pitch. The results are virtually indistinguishable, except for high collective

values which are outside the range of training data provided to the network.

For this work, an optimal trajectory is defined in terms of a prescribed velocity

profile versus distance remaining to achieve the desired height. The objective of the

optimisation is to achieve the fastest correction of height errors whilst not exceeding
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safe limits. The use of a prescribed velocity profile is more stable than simply trying

to minimise the error in height as the velocity will naturally be damped out as the

helicopter approaches its target height.

The key factor in developing the optimal controller is the definition of what is

considered to be an optimal trajectory. In terms of minimum time to resolve an

error in height, the optimal trajectory is one where the body accelerates towards

the desired position at the maximum permissible acceleration for the first half of the

path and then decelerates at the same rate for the remaining half. This trajectory

requires the velocity (Vz) to be proportional to the square root of the error distance

(ΔZ). However use of Vz = k
√

ΔZ is problematic in that the gradient of the

trajectory
(
dVz/dΔZ = 0.5k/

√
ΔZ
)

approaches infinity for small errors leading to

limit cycle behavior. Initial attempts at using this trajectory equation confirmed

the limit cycle behavior. For this reason, a more stable trajectory was selected that

involves making the desired vertical velocity of the helicopter simply proportional

to the observed error in height Vz = kΔz. A value of k of 0.5 was chosen based on

observations of how experienced human pilots correct for errors in altitude.

Figures 7.3 and 7.4 show the SIMULINKR© model used to represent the helicopter

in vertical flight. Figure 7.3 shows the model used for optimisation. This model is

caused by a MATLABR© script used to optimise the collective pitch input. The

model is initialised by the script to the values from the previous time step. The

model outputs the various state variables which are written to a file. Figure 7.4

shows the ANN based rotor thrust model and the integrators used to update the

vertical flight state variables. The plant model appears as a single subsystem block

within the overall optimisation model shown in Figure 7.3. The SIMULINKR© model
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is updated with a fixed time step of 1millisecond using a fourth order Runge-Kutta

solver.

The projected trajectory was calculated for a look-ahead time of 0.5 seconds.

This time was chosen based on consideration of the time constant of the servo so

that adequate time was given for the system to respond to any changes in collective.

Smaller look-ahead times resulted in oscillations, whilst longer look-ahead times

reduced the effectiveness of the controller. A linear change in collective was projected

forward for the look-ahead time using a ramp input starting at the current value

of collective. A linearly changing collective was found to provide smoother control

inputs than trying to optimise a constant collective input over the look-ahead time.

The linearly changing collective was bounded during optimisation so that the natural

rate-limiting effect of the servo was never exceeded.

The SIMULINK R© optimisation model calculates the error between the desired

velocity profile and the actual velocity profile at each time step. The calling script

passes the vector of the error to the MATLABR© lsqnonlin optimisation function

which is part of the MATLABR© optimisation toolbox. The lsqnonlin algorithm is

used to adjust the collective pitch slope over the look-ahead period to obtain the

minimum sum of squares of the error. The algorithm uses an interior-reflective

Newton method described in [208] to minimise the error.
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Figure 7.5: ANN controller output after training to mimic optimal controller

Once the optimal collective slope is determined, the plant model is then run

using this slope for a time of 0.02 seconds, corresponding to the update rate of

the servo. The optimisation process is slow since to advance only 0.02 seconds the

simulation will be called multiple times by the optimisation program, and each time

the simulation is called, it will run for the look-ahead time of 0.5 seconds. After each

0.02 second epoch, the new collective pitch is calculated by propagating forward from

the old collective pitch using the optimal collective slope. Then the pitch and all of

the other state variables from the simulation, such as z, Vz are stored in a vector

to pass to the simulation to initialise the next run. The servo transfer function is

represented in a state space form so that the current state can be stored and used

to maintain continuity with the time history of the servo inputs.

The optimisation was run for 1000 seconds with data recorded at 0.02 second

intervals. A new neural network was then trained to mimic the optimal controller,

using this data set. The training inputs were the height error and Vz. The training

output was the collective pitch produced by the optimisation process. The neural

network was trained using 900 seconds of the optimisation data and the remaining

100 seconds of data was used for validation. Networks with up to 12 hidden nodes

and either one or two hidden layers were tested. Once again, little benefit was gained

by using more than four hidden nodes and a single hidden layer. Figure 7.5 shows

an extract of the controller performance versus the optimal control data for a single

hidden layer with four hidden nodes.

To test the optimal ANN, the SIMULINKR© model shown in Figure 7.6 was

created using the mimicking ANN as the controller and the ANN plant model as

the plant. A random step was used to set a changing reference height that the ANN

controller attempted to follow. The step parameters were changed to ensure that the

test data experienced by the model was different to the training set provided by the

actual optimal controller. To check the validity of the experiment, the ANN plant

model was replaced by the original induced flow model and the experiment was re-

run. No noticeable change in the results was observed. Figure 7.7 shows the response

of the helicopter model to changes in reference height. The helicopter can be seen
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to track the reference height accurately with minimal overshoot. The behavior of

the ANN controller is very similar to the behavior of the optimal controller, except

the ANN controller uses a trivial amount of processing and can be run in real-time

onboard the helicopter whereas the optimal controller cannot.

A number of sensor errors were introduced in to the model to test their effect

on the robustness of the controller. Firstly noise was added to the Vz and Z sensor

data. The noise was increased beyond the expected levels from the DGPS. Noise

with a standard deviation 10 times greater than that realised with the real sensor

was applied to the controller with little effect on the outcome.

Offsets in velocity estimates are commonly present where inertial sensing is com-

bined with another sensing mode such as GPS or vision. This is because of ac-

celerometer drift due to thermal effects. Such drift can be minimised in real-time

using an EKF as described in Chapter 8, however this incurs as significant pro-

cessing overhead. In this case, the accelerometer drifts were minimised by thermal

calibration of the accelerometers, but velocity offsets of up to ±0.05m/s have been

observed on the Eagle helicopter. To test the robustness of the controller to these

effects, offsets in velocity sensing of up to ±0.2m/s were simulated and the con-

troller was found to remain stable and to still track the reference height albeit with
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a tracking error in height. The effect of a 0.2m/s velocity offset was to cause a

height tracking error of about 40cm. Integral control could be added to the ANN

controller to correct the effect of a velocity sensor offset, either by explicitly adding

an integrator or by training the controller with data from an optimal controller

trained in the presence of sensor offsets. In the later case, the ANN would have

to be recurrent so that integrator state data could be retained within the network

structure.

The final robustness check was to vary the servo transfer function from the

value measured in the laboratory. This was important because variation in servo

parameters are to be expected under different loads and supply voltages. Also I

was mindful that a replacement servo part from a different manufacturer would

have different characteristics and it would be undesirable to have to retrain the

controller every time a servo was replaced. The servo was assumed to be able to

be approximated by a first order transfer function in series with a rate limiter. The

time constant of the transfer function was varied between 0.02 sec and 0.5 seconds.

At all times, the controller remained stable with less than 5% variation in height

error.

7.3.2 ANN Based Height Control on an Actual Helicopter

The helicopter was flown by the author for about 9 minutes in vertical flight to col-

lect data to train a plant model. During that time the helicopter was aggressively

maneouvered with the collective pitch control whilst the cyclic pitch and tail rotor

controls were used sparingly to keep the helicopter in vertical flight only. The ob-

jective of the control inputs was to collect training data with as many combinations

of Vz and collective as possible. During the maneuvering, a range of Vz between

−3.5m/s and 2.2m/s were achieved whilst the PWM control signals sent to the

collective pitch servo were varied between extremes of 974μs and 2124μs. The mean

of the collective inputs was 1356μs with a standard deviation of 164μs.

A SIMULINK R© model was created to process the flight test data and convert it

in to inputs that could be used to train the plant model ANN. The data obtained

from the flight test was refined so that data points in the region of ground effect were

ignored and points where full DGPS coverage was not present were ignored. Vertical

velocity was obtained by sensor fusion of the DGPS vertical speed (at 20Hz) and

accelerometer data using a simple complimentary filter. A side-effect of the onboard

digital filtering of the accelerometers is that the data is lagged by 80 milliseconds

at all frequencies owing to the linear phase response of the filter used. This time

shift was easily corrected by lagging all of the ANN training inputs by 80ms using

a transport delay block. The SIMULINKR© model saved the training inputs and

outputs to separate binary data files.

As discussed in Chapter 3, the servo is modelled as a rate limiter combined with

a first order transfer function. Initial attempts at modeling the ANN applied the

servo model to the control inputs before training the network. However, this was

found to produce slightly worse results than using no servo model at all, so the

raw control inputs were used instead. The importance of the servo model is not



§7.3 Control of Height using a Neural Network 129

0 10 20 30 40 50 60
−18

−16

−14

−12

−10

−8

−6

−4

Time (Seconds)

A
cc

el
er

at
io

n 
m

/s
^2

Flight Data
ANN

Figure 7.8: Validation of ANN vertical flight model

so significant under human control, as the pilot control inputs tend to be of a low

bandwidth, which is not significantly changed by the servo rate limit or transfer

function.

The best MSE obtained was approximately 0.1 and was not found to increase

significantly when the number of hidden nodes was increased past four or the number

of layers was increased beyond 1. Hence a single layer plant model of four hidden

nodes was used. 340 seconds of data was used to train the network and 60 seconds

of data were used for validation. Figure 7.8 shows the network output for the

validation data. There are a number of causes of discrepancies in the results. The

most significant of these is wind. Owing to the time of year that the flights were

conducted, it was impossible to carry out the tests in nil-wind conditions. The

helicopter experienced gusts of up to 30km/hr during the flight which caused a

ballooning effect as the rotor rapidly transitions from a hover to forward flight

regime. The wind speed fluctuations have significant spatial variation and it is not

practical to measure them at the instantaneous position of the helicopter. This

information is therefore unknown to the ANN plant model and it cannot learn the

relationship. Secondly, the pilot needed to use cyclic pitch and tail rotor inputs to

keep the helicopter stable. The cyclic pitch inputs tilt the TPP and cause the thrust

vector to change. Tail rotor pitch inputs change the power requirements on the motor

and cause excursions in rotor RPM and hence thrust for the same collective. The

inaccuracies in the ANN model are assumed to be acceptable because the remaining

dynamics of the system are known exactly.

Figure 7.9 is a chart showing the effect of collective and Vz on the network. The

chart clearly shows the non-linear nature of the relationship between collective, Vz
and az. For high climb rates and high collective values, the value of az does not

increase with increased collective and can actually decrease. The likely cause of this

is stall of parts of the rotor owing to high angle of attack. Failure of the motor

to maintain constant RPM in conditions of high blade drag may also contribute to

this effect. Blade stall is a pronounced condition for a rotor with untwisted blades

since stall is likely to occur at the tips of the blade first and the tips are where
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Figure 7.9: Variation of accelerometer output with varying collective and vertical velocity

for ANN trained from flight test data

most of the lift is produced for an untwisted blade. Based on blade element theory

and taking into account blade tip losses, the expected angle of attack to produce an

acceleration of −12m/s2 with a 2m/s climb rate would be 14 degrees near the tip.

This coincides closely with the stall angle of a typical aerofoil and would explain the

behavior at high climb rates.

The same method for generating optimal control training data was used with

the real plant model. During optimisation, bounds were set on Vz and collective

to prevent the helicopter entering into a stall or vortex ring regime. Furthermore,

the bounds were set to prevent the ANN plant model from having to extrapo-

late past the training envelope it has experienced. The bounds of Vz were set to

(Vz)max = ±1.5m/s and the maximum commanded acceleration was set to 1m/s2.

In order to saturate the commanded velocity smoothly without violating the max-

imum acceleration, a hyberbolic tangent sigmoid function was used to limit the

velocity to (Vz)limited as defined by Equation (7.2). Collective pitch PWM values

were bounded between 1120μs and 1680μs. Random steps in reference height of up

to ±3m for durations ranging randomly from 1 second to 15 seconds were applied.

The optimal controller was run for 3000 seconds and the data stored to file.

(Vz)limited = (Vz)max

(
2

1 + e−2n
− 1

)
(7.2)

ANNs with various numbers of hidden nodes were trained to mimic the optimal

controller. An ANN comprising 12 nodes with an MSE of 0.024 was deemed to be a

good compromise between the network complexity and the accuracy of the model.

In comparison, a 10 node ANN had an MSE of 0.033 and a 20 node ANN was only
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Figure 7.10: Tracking performance comparison between PID and ANN controllers for

step changes in reference height

slightly better with an MSE of 0.018. The 12 node network was saved to a file and

loaded on to the Eagle helicopter flash card.

7.3.3 Comparison with a PD controller

A PD controller was tested with the ANN plant model to compare with the ANN

optimal controller. Such a comparison is difficult to make objectively, since the gains

of the PD controller need to be matched in a subjective way to the design parameters

of the optimal controller. Gains for the PD controller were taken from a controller

tuned in flight on the actual helicopter using the Ziegler and Nichols method [80]

discussed in Chapter 3. As a further validation of the ANN plant model, the model

reacted stably and in the same fashion as the real plant when the same PD gains

were used as the actual helicopter.

A comparison of the controllers was conducted using the same random step

heights, servo dynamics model, plant model and sensor noise parameters. An offset

in collective trim pitch of 4μs was used on both models. Figure 7.10 shows the

response of the ANN and the PD controller on the same plot. The ANN exhibits a

much faster response than the PD controller whilst maintaining minimal overshoot.

The ANN also shows far less height offset error than the PD controller. Figure 7.11

shows the collective pitch from both controllers for the same test. Despite the better

tracking performance, the ANN model uses less collective pitch with lower peaks in

the collective pitch used. This places less stress on the servos, reducing mechanical

wear and reducing power consumption. On the basis of the simulation, the ANN

controller appears to be superior in all accounts to the PD controller.
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Figure 7.11: Collective pitch comparison between PID and ANN controllers for step

changes in reference height

7.3.4 Flight Test of Vertical Controller

Initial flight tests of the ANN were conducted in very gusty conditions and the

tracking error was not as good as hoped. After reviewing the data, it was realised

that the gain of the controller was actually quite low and that the acceleration

saturation built in to the optimal controller was significantly reducing the ability of

the controller to respond to gusts. Indeed, simulations of the induced flow model of

the helicopter rotor show that when gusts of even just 20 km/hr occur, the thrust

of the rotor will vary by almost 60N , corresponding to about 7m/s2, for the same

collective pitch setting. The controller needs to be able to create accelerations of a

comparative size to the gusts in order to compensate for their effect. The gain of the

controller, defined by the constant k, in the optimal feedback equation Vz = −kZ,

was therefore increased in stages up to 2.0. Each time the gain was increased,

a new set of optimal training data was produced and a new ANN controller was

trained. In order to accomodate the increased gain, the limit on vertical acceleration

was increased to ±3m/s2. At the highest gain, the helicopter was very stable and

indications are that the gain could have been increased further.

Figure 7.12 shows the results of an 90 second hover using the ANN to keep the

helicopter at a fixed height of about 1.8m above the ground. The ANN tracks the

height with a mean error of less than 8cm. This error is mainly in the form of a

fixed offset which can probably be attributed to the trim of the collective lever not

being trimmed out perfectly on handover and the presence of wind. Figure 7.13

shows the ANN responding to a reference height that is varying with a square wave

input of ±40cm with period 20 seconds. The ANN is seen to respond to the square

wave very rapidly with minimal overshoot. As a comparison, figure 7.14 shows a PD
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Figure 7.13: Response of ANN controller to steps in commanded height

height controller responding to the same square wave. The response of the PD to

the step inputs is similar to that of the ANN controller, however the PD controller

has a larger offset. Based on the comparison of the two controllers performed in

simulation, this offset can be expected to be more pronounced than for the ANN

controller.

Deviations from the set height can be attributed to a number of environmental

causes. Firstly, gusts of wind are responsible for rapidly changing the trim collective

to hover and hence creating excursions in height. Secondly, a human pilot was con-

trolling the aileron, elevator and rudder controls separately during the experiment

and was introducing disturbances through cross-coupling effects as he struggled to

keep the helicopter hovering over the same spot in wind.

7.4 Optic Flow Damped Hover using a Neural

Network

I now turn to the problem of controlling the lateral and longitudinal motion of the

helicopter using ANN. I have already demonstrated in Chapter 5 that the helicopter

can be hovered using optic flow to control the sideways drift. In this section, I aim
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Figure 7.14: Response of PID controller to steps in commanded height

to repeat the optic flow damped hover control experiment, except, this time the

sensor fusion and control will both be done using neural networks.

Sensor fusion using ANN has the advantage that it allows raw uncalibrated data

to be used by the network, eliminating the need for calibration, as the calibration

process is built in to the training of the net. This could be used to eliminate tedious

accelerometer, gyroscope, thermal drift and optic flow calibrations.

As the controller has already been implemented successfully, we have a good

starting point for designing the architecture of the controller. Rather than attempt-

ing optimal control, the controller will be based on the same sort of feedback struc-

ture as the conventional PI outer loop velocity controller combined with a simple

P type attitude inner loop. Combining the inner loop and outer loop, we arrive

at Equations (7.3) and (7.4) for the pitch and roll control channels, where Kd is

the feedback from velocity, KI is integral feedback from velocity error and Kp is

proportional feedback from attitude.

δlat = K lat
d Vy +K lat

I

∫
Vydt−K1at

p φ (7.3)

δlon = K lon
d Vx +K lon

I

∫
Vxdt−K lon

p θ (7.4)

A key aspect of the outer loop controller is an integral term to adjust the he-

licopter datum attitude to suit the environmental conditions. For example, in the

presence of steady wind, the drag on the helicopter fuselage requires an additional

tilt of the helicopter to maintain position. A recurrent neural network provides

the ability to feedback outputs or hidden layer values to the input stage, so that

temporal processing such as differentiation and integration can be achieved.
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7.4.1 Sensor Fusion using ANN

A means of combining visual and inertial information using ANN is proposed. For

the optic flow damped hover, velocities in the longitudinal and lateral directions

are required. The available measurements are optic flow, accelerations, rotation

rates and height. As outlined in Chapter 5, these inputs can be combined in a

complimentary filter arrangement where the inertial data is propagated using the

known state update equations. The resulting velocity data must then be corrected

using measurements of velocity calculated from the product of optic flow and height,

otherwise inertial sensor offsets will result in velocity drift. The correction and

prediction steps can be combined in one recurrent ANN using the structure depicted

in figure 7.15.

Whilst the eagle simulation developed in Chapter 3 could have been used to gen-

erate data for the sensor fusion ANNs, it is better to generate random combinations

of the data as this provides a better coverage of the possible set of combinations

of sensor values that could be expected. Uniform random number generator blocks

were used inside SIMULINK R© to generate the desired height, longitudinal velocity

and lateral velocity to stimulate a range of combinations of optic flow, height, pitch

rate and roll rate. The plant was used to generate 2000 seconds of data with a

50Hz sample rate. For training, the lateral sensor fusion ANN was provided with

five inputs: raw lateral optic flow; lateral acceleration (ay); roll rate (p); height

measurement (Z); and the previous lateral velocity. The longitudinal sensor fusion

ANN was provided with raw longitudinal optic flow; longitudinal acceleration (Vy);

pitch rate (p); height measurement (Z); and the previous longitudinal velocity. The

ANNs were trained to mimic the velocity estimates from the existing complimentary

filter described in section 5.3. A form of teaching forcing [129] was used to prevent

instability during training. This means that the previous state estimate used for

training was actually the real previous state rather than the ANN estimate of the

state. Without doing this, the ANN is unable to learn how to make use of the old

state estimate as before the network is trained, the ANN estimate of the state bears

no relation to the real state.

Networks with five hidden units were found to be suitable for both x and y

velocities and produced an MSE of less than 5×10−8 for both networks. The ANNs
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were validated in-flight to prove that the sensor fusion was working correctly. Figure

7.16 shows the Vx and Vy velocities estimated by the ANNs versus the corresponding

state estimate calculated onboard the helicopter using GPS and inertial data.

7.4.2 Plant Training for Cyclic Pitch Controller

The roll cyclic controller has the structure shown in figure 7.17. The pitch cyclic

controller has the same structure except the inputs are pitch attitude and longi-

tudinal velocity instead of the lateral variables. The ANN has two outputs. The

first output is the integrated velocity error which is fed back as an input through a

delay of one sample time. This feedback makes the ANN recurrent and allows the

network to integrate the velocity error. The second output is the cyclic pitch signal,

consisting of gains multiplied by the angular error, drift velocity and the integrated

velocity error.
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As the function of the ANN is to mimic a simple linear controller where the gains

have already been determined, the dynamics of the plant are not that relevant to the

training data. The inputs to the controller are the current velocity, the integrated

velocity error from the last time step and the current attitude. Random velocities in

the range −5m/s to +5m/s, random attitude angles ranging from −30◦ to +30◦ and

random integrated velocity errors in the range −10m to +10m were simultaneously

generated and collected for 2000 seconds. The cyclic pitch values produced by the

classical controller used on the actual helicopter were then calculated for the given

inputs and recorded. Two ANNs with five hidden nodes were trained separately

for the lateral and longitudinal axes using these inputs. The ANNs were trained to

mimic two outputs each: (a) the cyclic pitch value produced for the random inputs

by the classical controller implemented on the helicopter, and (b) the integrated

velocity error. An MSE of less than 1 × 10−9 was obtained for each ANN after

training.

7.4.3 Flight Test

The helicopter was flown with longitudinal and lateral velocity controlled by the two

ANNs. Height was controlled by the ANN collective pitch controller. Sensor fusion

of the optic flow with inertial information was carried out using the ANNs described

previously. Figure 7.18 shows the flight path of the helicopter over 170 seconds of

closed loop flight. During this time, the helicopter drifted 9m North, 0.1m East and

stayed within 5cm of the datum height set on handover. The performance of the

controller is very similar to the performance of the classical optic flow damped hover

controller introduced in Chapter 5.

7.5 Summary

In this chapter, we have seen that ANNs can be effectively used to control the flight

of a helicopter in hover. Furthermore, the ability of ANNs to perform sensor fusion

has been demonstrated using an in-flight experiment. Use of an ANN type struc-

ture has a number of advantages over more conventional control implementations.

These include the ability to do optimal non-linear control in real-time, the elimina-

tion of the requirement for a complex analytical model and modest computational

requirements that can be implemented on simple analog or digital hardware.

In vertical flight, a new technique has been explored for training a controller

using a hybrid ANN plant model with an exact dynamics model. This combines the

unknown relationship between acceleration and collective pitch to the exactly known

dynamics relating acceleration, velocity and position. Such a technique should also

be applicable to the lateral and longitudinal dynamics. In this case, an ANN could

be trained to learn the relationship between angular accelerations and cyclic pitch

inputs. A fully non-linear and exact set of motion equations could then be applied to

calculate the angular rates and attitude. An optimal controller could be constructed

in series with the hybrid plant model to generate data to train an ANN attitude

controller.
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Figure 7.18: Optic flow damped hover results using ANN for control of collective pitch,

aileron and elevator: (a) Position as measured by DGPS; (b) Velocity measured by DGPS;

(c) Attitude measured by inertial sensors; (d-f) Servo PWM values generated by ANN.
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In this work I have not tested the limits of stability for the optimal controller.

In future work, the gain k in the feedback equation Vz = −kz could be increased

in steps to determine at what point the control loop becomes unstable or the effect

of noise becomes too great. Increasing the gain will improve tracking performance.

Steady state offsets in height due to collective pitch trim errors might be reduced

further by introducing integral feedback in parallel with the ANN controller. The

effect of the integral control on the stability of the ANN should be investigated in

future work.





Chapter 8

Advanced Sensor Fusion

8.1 Introduction

The simple fusion techniques used so far in this thesis have been adequate for demon-

strating closed loop control of the helicopters, but have had some shortcomings re-

lated to ignoring sensor errors. The main problem experienced is that the inertial

sensors suffer drift, which arises because the sensor offsets change with temperature.

In this chapter, I attempt to address these problems by exploring online sensor error

estimation using Extended Kalman Filters (EKF).

8.1.1 Overview of the Discrete EKF Algorithm

A Kalman filter is a recursive filter that can provide an optimal estimate of the

states of a linear dynamical system given noisy measurements of the system. The

development of the Kalman filter is largely attributed to Rudolf Kalman [209] who

the filter is named after. An Extended Kalman Filter (EKF), first proposed by

Schmidt [210], is an extension of the Kalman filter where the state update equations

and relationship between the measurements and the states is not linear. The EKF

is an ad-hoc technique [211] which is not optimal owing to the linearisation that is

used to propagate the filter. Both Kalman filters and EKF can be used to estimate

states that are not directly measured. For example, in the case of vertical flight, an

EKF could be used to estimate vertical velocity given only acceleration and height,

but no direct measure of w. The downside of using an EKF is that it requires a

higher level of computational overhead than a simple filter and in some cases may

diverge or fail numerically.

A discrete EKF assumes a non-linear dynamic model defined by:

xk = f (xk−1, k − 1) + wk (8.1)

where xk is the kth estimate of the state variables and wk is process noise. The

non-linear measurement model for the EKF is defined by:

zk = h (xk, k) + vk (8.2)

The measurement and plant noise vk and wk are assumed to be zero-mean

Gaussian sequences. The EKF algorithm is implemented by solving the following

set of equations recursively:

141
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Computing the predicted state estimate:

x̂−
k = f

(
x̂+
k−1, k − 1

)
(8.3)

Computing the predicted measurement:

ẑk = h(x̂−
k , k) (8.4)

Linear approximation equation:

Φk−1 ≈ ∂f (x, k − 1)

∂x

∣∣∣∣
x=x̂

−

k

(8.5)

Conditioning the predicted estimate on the measurement:

x̂+
k = x̂−

k + Kk(zk − ẑk) (8.6)

Hk ≈ ∂h(x, k)

∂x

∣∣∣∣
z=x̂

−

k

(8.7)

Computing the a priori covariance matrix:

P−
k = Φk−1P k−1Φ

T
k−1 + Qk−1 (8.8)

Computing the Kalman gain:

Kk = P−
k HT

k [HkP
−
k HT

k + Rk]
−1 (8.9)

Computing the a posteriori covariance matrix:

P +
k = (I − KkHk) P−

k (8.10)

The Q and R matrices represent the process and measurement noise respectively.

They are approximately represented by diagonal matrices having the diagonal terms

set equal to the statistical variance of the noise.

In the EKFs described in this chapter, only first order approximations to the

fundamental matrix Φ will be used, since use of higher order approximations do not

generally lead to an improvement in the performance of the EKF [212].

8.2 Attitude Estimation

The gyroscopes used on the Eagle helicopter are subject to thermal drift, which

requires either: (a) constant zeroing in the field to eliminate the offsets, or (b)

switching the avionics on and then waiting for up to an hour for the gyroscope

temperatures to stabilise before use. A system that could estimate the gyroscope

offset errors in real-time to provide a corrected gyroscope rate output would therefore



§8.2 Attitude Estimation 143

be very useful. Two methods of achieving this using EKF were devised and simulated

for comparison. The aim of each EKF algorithm was to determine the gyroscope

offsets dynamically, but not to estimate the gyroscope scale and misalignment errors

as they could be removed by calibration as described in Appendix C and were not

able to change appreciably post-calibration. Each EKF algorithm was tested using

simulated sensor data for the helicopter in hover. The algorithm and results are

described separately below.

8.2.1 EKF Algorithm One

This algorithm propogates a nine element state vector consisting of a unit vector

(ĝ) representing the direction of gravity, a unit vector (b̂) representing the earth’s

magnetic field and the three gyroscope offsets. The unit vectors define the direc-

tions relative to the helicopter body axes. The observations for this algorithm are

the measured acceleration and magnetic vectors. Because both the observations of

attitude and the representation of attitude are in vector form, the correction of the

state estimate is already linear, and does not need to be linearised. This means that

observations with large deviations from mean do not violate linearity assumptions

and therefore very noisy observations can be tolerated. Also, because the magnetic

and accelerometer vectors are independently stored, the algorithm can continue in

a degraded mode when one sensor fails. The state vector for this algorithm is:

x =
[
gx gy gz bx by bz δx δy δz

]T
(8.11)

where g = [gx gy gz]
T , b = [bx by bz]

T and δ = [δx δy δz]
T are the gravity direction

unit vector, magnetic direction unit vector and gyroscope offset vectors respectively.

The vectors are subject to body axis rotation rates defined by the symbols P,Q and

R which are equal to the sum of the measured gyroscope rates (p, q and r) and the

gyroscope offsets δx, δy and δz as in Equation (8.12).

P = p + δp, Q = q + δq, R = r + δr (8.12)

The change in the vectors due to P,Q and R over a time step ΔT can be expressed

as a rotation matrix. To determine this rotation matrix, first consider Equation

(8.13) which describes the effect of these rotation rates on the attitude quaternion:⎡⎢⎢⎣
q̇0
q̇1
q̇2
q̇3

⎤⎥⎥⎦ = −1

2

⎡⎢⎢⎣
0 P Q R

−P 0 −R Q

−Q R 0 −P
−R −Q P 0

⎤⎥⎥⎦
T ⎡⎢⎢⎣

q0
q1
q2
q3

⎤⎥⎥⎦ (8.13)

or in more compact form

dq

dt
= −1

2
Ωq (8.14)

where q is the vector of quaternion paramaters [q0 q1 q2 q3]
T and Ω is the angular

velocity tensor. For sufficiently small ΔT , this can be approximated with the first
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order expression in Equation (8.15).

Δq ≈ −1

2
ΩqΔT (8.15)

As we are only interested in the change of the vectors relative to the existing

body axes then we can set the quaternion on the right hand side of Equation (8.15)

to q = [1 0 0 0]T corresponding to a datum attitude. The change in attitude over the

time step is then given by Equation (8.16).⎡⎢⎢⎣
Δq0
Δq1
Δq2
Δq3

⎤⎥⎥⎦ =
1

2

⎡⎢⎢⎣
0

P

Q

R

⎤⎥⎥⎦ΔT (8.16)

Hence the change in attitude over the time-step relative to the body axes is:⎡⎢⎢⎣
q0
q1
q2
q3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1

PΔT/2

QΔT/2

RΔT/2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1

P̄

Q̄

R̄

⎤⎥⎥⎦ (8.17)

where the definitions below have been used to simplify the expression:

P̄ = P
ΔT

2
, Q̄ = Q

ΔT

2
, R̄ = R

ΔT

2
(8.18)

The effect of this change in attitude on the g and b vectors can be determined

by a 3 × 3 rotation matrix B. The complete state transition matrix is given below

where Bij are the elements of B.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gx
gy
gz
bx
by
bz
δp
δq
δr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k+1

= F (x̂, k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 0 0 0 0 0 0

B21 B22 B23 0 0 0 0 0 0

B31 B32 B33 0 0 0 0 0 0

0 0 0 B11 B12 B13 0 0 0

0 0 0 B21 B22 B23 0 0 0

0 0 0 B31 B32 B13 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gx
gy
gz
bx
by
bz
δp
δq
δr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

(8.19)

The rotation matrix B is defined in terms of quaternion parameters as:

B =

⎡⎣ q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 + q0q3) 2 (q1q2 + q0q3)

2 (q1q2 − q0q3) q2
0 + q2

1 − q2
2 − q2

3 2 (q2q3 + q0q1)

2 (q1q3 + q1q2) 2 (q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤⎦ (8.20)

Using the quaternion attitude change in Equation (8.17), this becomes:
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B =

⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦+

⎡⎣ P̄ 2 − Q̄2 − R̄2 2
(
P̄ Q̄+ R̄

)
2
(
P̄ R̄ + Q̄

)
2
(
P̄ Q̄+ R̄

) −P̄ 2 + Q̄2 − R̄2 2
(
Q̄R̄+ P̄

)
2
(
P̄ R̄ + Q̄

)
2
(
Q̄R̄− P̄

) −P̄ 2 − Q̄2 + R̄2

⎤⎦ (8.21)

For the sake of brevity, only the state-update for the x-gravity component will be

shown. In scalar form, the state update for gx can be found from Equation (8.19):

gk+1
x = gkx +

ΔT 2

4

(
(p+ δp)2 − (q + δq)2 − (r + δr)2 −) gkx

+

(
ΔT 2

2
(p+ δp) (q + δq) + ΔT (r + δr)

)
gky

+

(
ΔT 2

2
(p+ δp) (r + δr) − ΔT (q + δq)

)
gkz (8.22)

In order to derive the fundamental matrix, Φ, this equation is differentiated

with respect to each state variable resulting in Equations (8.23-8.28). Each partial

derivative of gx forms a unique column of the first row of Φ.

∂gk+1
x

∂gkx
= 1 +

ΔT 2

4

(
(p+ δp)2 − (q + δq)2 − (r + δr)2) (8.23)

∂gk+1
x

∂gky
=

ΔT 2

2

(
ΔT 2

2
(p+ δp) (q + δq) + ΔT (r + δr)

)
(8.24)

∂gk+1
x

∂gkz
=

ΔT 2

2

(
ΔT 2

2
(p+ δp) (r + δr) − ΔT (q + δq)

)
(8.25)

∂gk+1
x

∂δkp
=

ΔT 2

2
(p+ δp) gkx +

ΔT 2

2
(q + δq) gky +

ΔT 2

2
(r + δr) gkz (8.26)

∂gk+1
x

∂δkq
= −ΔT 2

2
(q + δq) gkx +

ΔT 2

2
(p+ δp) gky − ΔTgkz (8.27)

∂gk+1
x

∂δkr
= −ΔT 2

2
(r + δr) gkx + ΔTgky +

ΔT 2

2
(p+ δp) gkz (8.28)

Similarly, the scalar equation of gy is differentiated with respect to each state

variable to form the second row of Φ. A row is created for each state variable to

create the entire Φ matrix.

The observations are the six normalised vector components so that the measure-

ment matrix is linear and time invariant. Hence:
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Roll Pitch Yaw δp δq δr
(deg) (deg) (deg) (deg/sec) (deg/sec) (deg/sec)
0.2250 0.2768 0.2640 0.005134 0.002363 0.007834

Table 8.1: Attitude EKF algorithm 1 results. Standard deviation of errors in attitude

and rate offset estimates.

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.29)

Attitude EKF Algorithm One Results

The algorithm was implemented as an S-function block in the Eagle simulation.

The inertial inputs were simulated with the same lag and filtering present in the

actual Eagle IMU. Constant gyroscope offsets of δp = −0.2o/sec, δq = 0.5o/sec

and δr = 1.2o/sec were applied. Gaussian noise of standard deviations 0.1m/s2,

0.05 o/sec was added to the accelerometers and gyroscope rates respectively. The

EKF was updated at 50Hz.

The simulation was run for 100 seconds. The reference position was changed

by a 2m amplitude square wave of period 20 seconds and 50% duty cycle in both

x and y axes. The results for algorithm 1 are shown in Figure 8.1. Convergence

can be seen to take place in about 30 seconds. The estimates of attitude show an

offset initially which results from the error in the gyroscope offset estimates. As the

gyroscope offsets converge, the error in estimated attitude approaches zero-mean.

Noting that the EKF would normally have been allowed to settle before use,

the section of data corresponding to the offsets converging was not included in

calculating the performance of the algorithm. Instead, the last 50 seconds were

used. The error standard deviation for each axis and offset is summarised in table

8.2.1.

8.2.2 EKF Algorithm Two

A practical solution often used in Inertial Navigation Systems is to combine the

best features of both approaches: a fast attitude algorithm for computing attitude

combined with an EKF for predicting the error model [211]. If the EKF fails for

some reason, the fast attitude alogorithm can continue to function with zero or frozen

error estimates, to provide a still functioning attitude system albeit in a degraded

mode. This approach is tested in the second algorithm, which uses a seven element
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Figure 8.1: EKF algorithm one results



148 Advanced Sensor Fusion

[q0 q1 q2 q3]

Low Pass 

Filter

Σ

Measured 

Gyro Rates 

p,q,r

Observed 
Quaternion

Gyro Offsets

δx δy δz

+

-

Simple 

Attitude Filter EKFΣ

Figure 8.2: Complimentary filter architecture

state vector consisting of a four-variable quaternion and the three gyroscope offsets.

The observations for this algorithm are the quaternion produced by the fast

attitude algorithm. Because the observation and representation of attitude are in

quaternion form, the correction is non-linear. This means that noisy quaternion

observations would result in erroneous corrections due to the linearity assumption

being violated. To prevent this from happening, the quaternion observations are

taken from another simple filter arrangement as shown in Figure 8.2. The simple

filter used in this chapter, was the same one used on the Eagle and described in

Section 4.7.

The purpose of the low-pass filter is two fold. Firstly, the filter acts to smooth

out noise in the offset values. Secondly, the filter acts to reduce system hunting.

As the EKF changes its estimate of the gyroscope offsets, the attitude error of the

simple filter changes. This causes a perceived rotation at the EKF input, which is

not correlated to a change in gyroscope rate, causing the EKF to change its estimate

of gyroscope offset. In turn, the change in offset estimate again causes the attitude

error in the simple filter to change and the cycle repeats. The feedback between

gyroscope offsets and observed attitude can cause oscillatory behavior if the rate of

change is not limited. The state vector for this algorithm is:

x =
[
q0 q1 q2 q3 δp δq δr

]T
(8.30)

The state update equation for this algorithm is based on the following first order

approximation to Equation (8.13):

qk+1
0 = qk0 − ΔT

2
(p+ δp) q

k
1 − ΔT

2
(q + δq) q

k
2 −

ΔT

2
(r + δr) q

k
3

qk+1
1 = qk1 − ΔT

2
(p+ δp) q

k
0 +

ΔT

2
(q + δq) q

k
3 − ΔT

2
(r + δr) q

k
2

qk+1
2 = qk2 − ΔT

2
(p+ δp) q

k
3 − ΔT

2
(q + δq) q

k
0 −

ΔT

2
(r + δr) q

k
1

qk+1
3 = qk3 +

ΔT

2
(p+ δp) q

k
4 −

ΔT

2
(q + δq) q

k
4 − ΔT

2
(r + δr) q

k
4

δk+1
p = δkp , δ

k+1
q = δkq , δ

k+1
r = δkr , (8.31)
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δp δq δr
Raw 0.01657o/sec 0.02123o/sec 0.01755o/sec

Filtered 0.007746o/sec 0.006431o/sec 0.006557o/sec

Table 8.2: EKF algorithm 2 - standard deviation of errors in raw and filtered rate offset

estimates.

Roll Pitch Yaw
0.3221o 0.4053o 0.3745o

Table 8.3: EKF algorithm 2 - standard deviation of errors in attitude.

Using the same process used for algorithm one the Φ matrix can be derived. The

measurement matrix H is:

H =

⎡⎢⎢⎣
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

⎤⎥⎥⎦ (8.32)

Attitude EKF Algorithm Two Results

The second algorithm was tested using the same sensor errors and helicopter mo-

tions as for algorithm one. The results for algorithm two are shown in Figure 8.3.

Convergence can be seen to have taken place in about 50 seconds, but the raw

prediction of offsets is very noisy and not useable without filtering. As the rate of

change of the gyroscope offsets is known to be very slow, heavy low pass filtering is

possible. The black lines in Figure 8.3 show the filtered values of gyroscope offset

after passing through a 2-pole Butterworth filter with a time constant of 50 seconds.

8.3 Attitude EKF Discussion

Both EKFs tested showed an initial spike in the offset estimations of up to 5o/sec.

This spike occurs as the EKF is poorly converged after initialisation. This spike

would not be so marked in normal operation because the gyroscope offsets would be

zeroed prior to starting the EKF algorithm.

In both algorithms, the assumption is made that the average observation of the

gravity vector is pointing straight down. This assumption is not true in the general

case, as the vehicle is subject to g-force when maneovering and the accelerometers

actually measure the sum of the earth’s gravity and the vehicle acceleration. Hence,

if the helicopter was placed in a sustained banked turn, the gravity vector measured

by the accelerometers would, in fact, be tilted away from the direction of turn. Using

either algorithm would result in a level attitude estimate despite the angle of bank.
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Figure 8.3: EKF algorithm two results
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The same errors will arise whenever the helicopter accelerates along one of its axes.

For example, if the helicopter was to accelerate forwards and stay level, the pitch

attitude estimate would indicate a nose-up attitude that did not exist. One solution

to this problem would be to make use of GPS to determine the absolute accelerations,

so that the GPS acceleration could be subtracted from the accelerometer reading

before it was used as an observation [213–215].

The best performing filter in terms of estimate accuracy is algorithm one. This

nine state algorithm uses a linear correction step, which gives it the greatest advan-

tage in terms of robustness. This algorithm is the recommended choice for embedded

application in the autopilot.

8.4 Velocity and Height Estimation

Optic flow provides the helicopter with observations of longitudinal and lateral ve-

locity, u and v. A measurement of height above terrain (Z) may be obtained from

a laser rangefinder, a downwards looking stereo camera, or by comparing GPS al-

titude with a known terrain height. Additional inertial data from accelerometers

and gyroscopes can be used to update the velocity estimates. In order for stable

control of height to be achieved, one unmeasured state, vertical velocity w, is re-

quired. The obvious choice of algorithm for fusing these sensor data and predicting

the unmeasured state is the Extended Kalman Filter.

The accelerometer offset in the Eagle IMU can be mostly eliminated using accu-

rate thermal calibration as each accelerometer is fitted with an on-chip temperature

sensor. However, this may not be the case with all other IMU implementations. In

addition, offset errors may still arise from errors in attitude due to IMU misalignment

during installation. The effect of neglecting these errors is a biased velocity estimate.

In the case of the optic flow damped hover controller, such a bias would cause the

helicopter to continually drift in one direction. The solution to this problem may

be to use an EKF to predict the biases in x, y and z acceleration measurements.

The seven state representation chosen for the EKF, provided at Equation (8.33),

includes the velocity estimates, acceleration offsets and height.

x =
[
u v w δx δy δz Z ] (8.33)

For a small enough time step, the state update equations can be written directly

from the rigid body equations of motion using a first order approximation as:
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uk+1 = uk + (ax + δx + gB11 − qw + rv)ΔT

vk+1 = vk + (ay + δy + gB12 − ru+ pw)ΔT

wk+1 = wk + (az + δz + gB13 − pv + qu)ΔT

Zk+1 = Zk + (B31u+B32v +B33w)ΔT

δx
k+1 = δx

k

δy
k+1 = δy

k

δz
k+1 = δz

k

(8.34)

The state transition matrix is defined by taking derivatives of the state update

equations with respect to each state. The resulting state transition matrix is given

by Equation (8.35).

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 rΔT −qΔT ΔT 0 0 0

−rΔT 1 pΔT 0 ΔT 0 0

qΔT −pΔT 1 0 0 ΔT 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

B31ΔT B32ΔT B33ΔT 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.35)

The observations are the height Z and the optic flows Qx and Qy in the longitu-

dinal and lateral directions respectively. For a downwards looking camera, the optic

flow is approximated by Qx = u/Z and Qy = v/Z so that the observation matrix

H can be written as in Equation (8.36).

H =

⎡⎣ 1
Z 0 0 0 0 0 − u

Z2

0 1
Z

0 0 0 0 − v
Z2

0 0 0 0 0 0 1.0

⎤⎦ (8.36)

Velocity and Height Estimation EKF Results

The EKF was run as an S-function block inside the Eagle simulation. Gaussian noise

was used to simulate errors in the sensors. Noise with standard deviations of 5.2o/sec

for Qx and 9.5o/sec for Qy were assumed (see Section 6.3 for an explanation). The

height error measured by DGPS was assumed to have a standard deviation of 4

cm. The noise in the accelerometers due to vibration were based on the observed

variance in accelerometers during hover after digital filtering. A conservative value

of 0.2m/s2 standard deviation in acceleration noise was used for each axes. The

diagonal of the measurement noise matrix R was set equal to the variances of the

corresponding optic flow and height noise. Process noise was adjusted by trial and

error in simulation to obtain a good compromise between the speed of convergence

and filter stability.



§8.4 Velocity and Height Estimation 153

0 10 20 30 40 50
−1

0

1

2
V

x (
m

s−
1 ) Actual Velocity

EKF Estimate

0 10 20 30 40 50
−0.5

0

0.5

1

V
y (

m
s−

1 )

0 10 20 30 40 50
−5

0

5

V
z (

m
s−

1 )

0 10 20 30 40 50
0

5

10

H
ei

gh
t (

m
)

Actual Height
EKF Estimate

0 10 20 30 40 50
−1

−0.5

0

0.5

1

A
cc

el
 B

ia
s 

(m
s−

2 )

a
x

a
y

a
z

0 10 20 30 40 50
−0.5

0

0.5

1

V
el

oc
ity

 E
rr

or
 (

m
/s

)

Time (sec)

V
x

V
y

V
z

Figure 8.4: Optic Flow and inertial EKF sensor fusion results. Note: The dotted lines

on the bias chart represent the actual accelerometer biases.
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Vx Vy Vz Z δx δy δz
(m/s) (m/s) (m/s) (m) (m/s2) (m/s2) (m/s2)
0.0023 0.0032 0.0037 0.0160 0.012 0.012 0.018

Table 8.4: Standard deviations of attitude error and accelerometer bias estimates

The simulated accelerometer biases were set to δx = 0.3m/s2,δy = −0.4m/s2

and δz = −0.8m/s2. The simulated helicopter was subjected to a step in desired

position of 5m in x and y position, and 2m in height at 20 seconds after the simulation

was started. The results for 50 seconds are shown in Figure 8.4. Convergence of the

biases takes place in less than 10 seconds.

Table 8.4 shows the standard deviations of the attitude errors and accelerometer

bias estimates, calculated from the period of flight after the first 10 seconds when

convergence is occuring. The errors in velocity and height, after convergence, are

negligible and would be suitable for use in precision control of the helicopter in

hover. The accelerometer biases are found to within 0.02m/s2 of their true values.

8.5 Summary

In this chapter, a number of means for estimating sensor offsets have been described.

These techniques are not biologically inspired but could be used to augment an oth-

erwise biologically inspired sensing and control system. Unfortunately, due to time

constraints, flight testing of these EKF algorithms was not achieved but indications

are that they would have worked on a real platform.

In future work, it may be possible to estimate the sensor error offsets using

artificial neural networks instead of EKF, which would reduce computation time

and may help to ensure stability. Future work on sensor fusion should include

combining the attitude and velocity estimates into a single EKF. This would allow

the errors determined from one sensing mode to be used to improve the estimates

of the other. For example, the accelerometer biases found from optic flow could be

used to reduce offset errors in the attitude.



Chapter 9

Conclusions and

Recommendations

9.1 Summary of Achievements

In this thesis, techniques have been demonstrated for sensing and control for an au-

tonomous helicopter in hover and forward flight using techniques inspired by biology.

Optic flow combined with some measure of attitude from basic MEMS inertials was

shown to be sufficient to contain the drift of a helicopter in hover, and to control

the height of a helicopter in forward flight.

The use of the I2A algorithm for computing optic flow is robust in an outdoor

environment and has been shown to work sufficiently well for precision flight control

over unprepared surfaces such as tarmac, concrete and grass. The I2A algorithm

appears to be more robust than classical machine vision techniques that involve

feature tracking, owing to its ability to match over complete image patches rather

than relying on identifying and correlating specific features.

I have presented a new technique for control using neural networks. Flight tests

have confirmed that a neural network control system can achieve similar results to

an optimal trajectory controller with orders of magnitude greater computational

requirement. This makes a platform with complex open loop dynamics controllable

using simple computational hardware. I have also shown that sensor fusion of visual

and inertial information can be achieved using simple neural networks.

9.2 Areas for Future Study

9.2.1 Control of Flight using Optic Flow

Throughout the thesis other sensing modes have been combined with optic flow to

determine either range given speed or speed given range. The problem of how vision

might be used in a standalone mode without a secondary sensing mode has not been

tackled. For example, is it possible to use optic flow to determine height above ter-

rain when there is no available measure of ground speed? Preliminary experimental

work by Baird and Boeddeker [216] at the Australian National University suggest

that bees deliberately impart a lateral sinusoidal displacement of known amplitude

upon their flight path in order to generate optic flow in a defined way (a notion

155
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suggested on theoretical grounds in 1993 by Srinivasan et al [217]). As the veloc-

ities corresponding to the lateral wiggle are a function of the amplitude, the bees

would be able to deduce range from the lateral optic flow signal and thereby control

their height. Apparently, bees can also regulate their flight speed based on the lon-

gitudinal optic flow signal [218], which explains why bees can maintain a constant

flight speed regardless of headwinds and tailwinds which may reach 50% of the bee’s

forward flight speed [219]. With range known from lateral optic flow and forward

speed known from longitudinal optic flow, the bees are able to regulate both speed

and height using the one sensory system.

One could imagine such an optic flow sensing scheme being implemented on a

helicopter. An open loop oscillation in attitude could be applied about the trim

roll reference attitude. Optic flow ranging from the assumed open loop lateral

velocity would be used to control height. Sideways drift due to wind could be

estimated and corrected based on the mean lateral optic flow over a complete lateral

oscillation. This scheme could be used equally to control hover and forward flight

of the helicopter. In the case of hover, the controller would simply act to maintain

zero longitudinal optic flow. In forward flight, the controller would aim to achieve

constant longitudinal optic flow, corresponding to the desired ground speed.

9.2.2 Computation of Optic Flow

In this thesis, optic flow was calculated with PC hardware implemented either on the

ground using telemetry or using onboard PC104 flight computers. The control by

telemetry approaches suffer problems in that telemetry degrades the quality of the

imagery and may fail completely when line of sight is lost. Considerable research

is underway towards developing autonomy for Micro Air Vehicles (MAV), which

are defined by DARPA as flight vehicles with a maximum dimension of less than

15cm [220]. PC104 hardware is comparatively heavy and much too heavy and power

consuming for implementation on an MAV. A number of researchers have proposed

using custom made integrated circuits as autopilot devices with optic flow sensing

built in [221–224]. Ultimately, this approach would lead to a lightweight system,

but the expense and long turn-around time is prohibitive in the short term.

Recent unpublished research at UNSW@ADFA has shown that use of the I2A

on an FPGA can result in data at up to 50 frames per second, which is fast enough

for flight control. FPGAs are integrated circuits containing millions of logic gates,

which can be reconfigured through software to form any desired digital processing

network. Due to their internal architecture, FPGA chips can process data in a

massively parallel way rather than the sequential fashion normally present in com-

puters, enabling real-time processing of high-bandwidth visual information. Some

other groups [225,226] have attempted optic flow on FPGA, but so far this has been

done using slower algorithms than I2A and heavier electronics implementations, not

suited for real-time control of a MAV. Research into development of an FPGA based

optic flow system using I2A may result in a combined vision sensor and autopilot

on a single chip which be suited to installation on an MAV payload.
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9.2.3 Control of Position using Vision

One of the major problems of using optic flow for stabilisation in hover is that a

near perfect hover will result in a very weak optic flow signal because motions are

small. Further, optic flow does not provide for identification of landmark features

that can be used to maintain station. There is some evidence that bees make use of

a stored 2D snapshot to locate themselves [227, 228]. Cartwright and Collett [227]

suggest that the direction in which the bees move at any moment is governed by the

discrepancy between the snapshot and its current retinal image. A new algorithm is

therefore proposed that uses a stored image of the ground, a snapshot, so to speak,

taken of the ground directly under the helicopter. This snapshot would form a visual

anchor point for the helicopter. By comparing subsequent frames with this snapshot

using the I2A algorithm, it should be possible to calculate absolute translation from

the datum.

For a practical implementation, sufficient overlap between the snapshot and the

current image is neccessary. This means that the helicopter could not stray more

than about 20 percent of the helicopter height away from where the snapshot was

taken. Whenever the original image moves outside the image catchment area, a new

snapshot would have to be taken. New snapshots might also be taken from time

to time to compensate for long term environmental changes. To compensate for

perspective distortion of the image as the craft moves, it may be necessary to trans-

form the snapshot image according to the estimated position shift since the image

was captured, prior to applying the interpolation. This should provide for greater

accuracy and stability of the algorithm, although it is much more computationally

demanding. A system using a stored snapshot may also need to compensate for

changes in the lighting conditions that occur naturely, such as when the sun be-

comes occluded by a cloud. Work by Stürzl and Zeil [229], suggests that contrast

normalisation may achieve this aim. A 2D version of the snapshot algorithm would

need to make use of a secondary means of determining height above the ground,

such as stereo vision. A 3D version of the snapshot hover might also be possible

based on calculating the expansion and contraction of the image as the helicopter

climbed and descended.

9.2.4 Control of Flight using ANN

In this thesis, sensor fusion using ANNs was demonstrated for the lateral and lon-

gitudinal velocities. The approach could easily be extended to the vertical motion

of the helicopter and to the estimation of position. Future work might also yield

methods for computing the sensor errors using ANN. For example, given optic flow

and inertial data, the ANN might be able to be trained to predict the accelerometer

offsets as well as the velocities. The estimates might also be improved by combin-

ing a feed-forward estimate of the vehicle motion, based on an ANN plant model

provided with the control input history.

The use of ANN could be extended to flight regimes other than vertical flight.

The dynamics of a helicopter change significantly at moderate to high forward flight
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speeds. Having an additional forward flight speed input to the ANN controller would

allow it to account for the effect of forward flight speed. An alternative strategem

would be to allow the ANN to adapt to changes in flight conditions online.

9.3 Concluding Remarks

Vision provides a low-cost option for navigation and control of small vehicles which

has many advantages over competing technologies such as GPS and laser-rangefinding.

Visual sensing clearly plays a dominant part in the flight control of flying insects

providing a strong suggestion for artificial flying machines to garner inspiration from

biology. There are still issues of robustness to be tackled to make visually guided

platforms practical in cluttered outdoor environments but there is certainly much

promise that this is achievable.
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Appendix A

Summary of Simulation Model

Parameters

Parameter Description Value

amr Main rotor blade 2D lift curve slope 5.7

atr Tail rotor blade 2D lift curve slope 4.0

Alat Lateral cyclic to main rotor pitch ratio −0.17 rad/ms

Blon Longitudinal cyclic to main rotor pitch ratio −0.19 rad/ms

Clon Longitudinal cyclic to flybar pitch ratio −1.58 rad/ms

Dlat Lateral cyclic to flybar pitch ratio −1.02 rad/ms

cmr Main rotor blade chord 0.058m

ctr Tail rotor blade chord 0.026m

Cmr
D0

Profile Drag Coefficient 0.012

Ix 2nd Moment of Inertia about x-axis 0.30 kgm2

Iy 2nd Moment of Inertia about y-axis 0.82 kgm2

Iz 2nd Moment of Inertia about z-axis 0.40 kgm2

Ixz Product of Inertia −0.01 kgm2

kind Induced power correction factor 1.2

Ks Flybar to main rotor pitch mixing ratio 0.8

Kβ Rotor Spring 270N/m

m All up weight of helicopter 8.2kg

N Number of blades 2

R Rotor diameter 0.76m

Sxfus Fuselage equivalent flat plate area in x-direction 0.025m2

Syfus Fuselage equivalent flat plate area in y-direction 0.084m2

Szfus Fuselage equivalent flat plate area in z-direction 0.027m2

κ Profile drag power correction factor 4.7

Ωmr Main rotor angular velocity 157.1 rad/sec

Ωtr Tail rotor angular velocity 829.0 rad/sec
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Eagle Simulation Subsytems
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Appendix C

Calibration Procedures

C.0.1 Accelerometer Calibration

A scheme was devised to find the accelerometer offset, gain and alignment using

the known acceleration of gravity. As the acceleration due to gravity has a known

magnitude and direction, it provides a convenient reference load for calibration

purposes. The scheme involves placing the IMU in six different orientations and

measuring the accelerometer outputs in each orientation. Each orientation scenario

involves making one of the IMU axes parallel to vertical. This is acheived using a flat

reference surface which is levelled accurately using a precision spirit level with an

accuracy of 0.1◦. The reference plane used is a granite workbench with a precision

ground surface. A special mechanical adaptor was made so that the IMU could be

placed with each of its six faces parallel to the reference plane, including the face

on which the connecting fittings were protruding. The six scenarios are numbered

from (1) to (6) as follows:

• case 1 : IMU resting on on its front face - gravity vector aligned with IMU

positive x-axis.

• case 2 : IMU resting on its back face - gravity vector aligned with IMU negative

x-axis.

• case 3 : IMU resting on its right hand face - gravity vector aligned with IMU

positive y-axis.

• case 4 : IMU resting on its left hand face - gravity vector aligned with IMU

negative y-axis.

• case 5 : IMU resting in its normal orientation - gravity vector aligned with

IMU positive z-axis.

• case 6 : IMU resting upside down on its top face - gravity vector aligned with

IMU negative z-axis.

For each scenario, the output of each accelerometer is recorded after averaging

for a few seconds. The output of each accelerometer depends on the gain, alignment

and offset of the sensor. If the sensor is stationary, the only acceleration being

measured is the local gravity vector. If the ith accelerometer is aligned with the unit

183
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vector ζ̂i = ζixî+ ζiy ĵ+ ζizk̂, then the output Uij of the ith accelerometer for the jth

scenario can be expressed by Equation (C.1).

Uij = kiζi · g
= |g|(ζixgjx + ζiygjy + ζizgjz) + Υi (C.1)

where g is the acceleration due to gravity, ki is the accelerometer sensor gain

and Υi is the accelerometer offset.

Since the IMU is placed on a flat surface which is normal to gravity, for each

scenario, only one of gjx, gjy and gjz will be non-zero and equal to unity. This

provides a means of finding the offset for each accelerometer, assuming that the

offset does not change significantly during the calibration. The latter condition can

be enforced by performing the calibration in a constant temperature environment

and allowing the IMU to reach thermal equilibrium from internal heating before the

calibration takes place. Consider the ith accelerometer subject to placement on each

face:

Ui1 = kiζ1x|g| + Υi (C.2)

Ui2 = −kiζ1x|g| + Υi (C.3)

Ui3 = kiζ1y|g| + Υi (C.4)

Ui4 = −kiζ1y|g| + Υi (C.5)

Ui5 = kiζ1z|g| + Υi (C.6)

Ui6 = −kiζ1z|g| + Υi (C.7)

By adding consecutive equations above (e.g. adding Equation (C.2) to (C.3)),

the offset Υi can be found. For better accuracy, the offset can be found from making

use of all of the data as in Equation (C.8).

Υi = (Ui1 + Ui2 + Ui3 + Ui4 + Ui5 + Ui6) /6 (C.8)

The offsets for all accelerometers can be found by repeating the process for each

accelerometer. The gains of each accelerometer can be found next by subtracting

consecutive equations, resulting in Equations (C.2-C.4). For example, subtracting

Equation (C.3) from equation (C.2) eliminates the offset, resulting in Equation

(C.9).

kiζix =
Ui1 − Ui2

2|g| (C.9)

kiζiy =
Ui3 − Ui4

2|g| (C.10)

kiζiz =
Ui5 − Ui6

2|g| (C.11)
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By squaring both sides of Equations (C.9 - C.11) and then adding the resultant

terms, we arrive at Equation (C.12).

k2
i

(
a2
ix + a2

iy + a2
iz

)
=

(
Ui1 − Ui2

2|g|
)2

+

(
Ui3 − Ui4

2|g|
)2

+

(
Ui5 − Ui6

2|g|
)2

(C.12)

But since the aij terms are unit vectors, a2
ix+a2

iy +a2
iz = 1 and thus the gain can

be found from Equation C.13.

ki =

√(
Ui1 − Ui2

2|g|
)2

+

(
Ui3 − Ui4

2|g|
)2

+

(
Ui5 − Ui6

2|g|
)2

(C.13)

Finally the alignment of the accelerometers can be found from Equations (C.9 -

C.11), simply by dividing by the appropriate gains. This leads to the following set

of equations:

ζix =
Ui1 − Ui2

2ki|g| (C.14)

ζiy =
Ui3 − Ui4

2ki|g| (C.15)

ζiz =
Ui5 − Ui6

2ki|g| (C.16)

Once the offset, gain and alignment of the accelerometers have been determined,

the data must be converted into a form that can be used to provide the actual

accelerations from the sensor outputs. In general use, the accelerometer outputs

Ui for the ith accelerometer can be expressed in terms of the actual accelerations

[ax ay az] in matrix form:⎡⎣ U1

U2

U3

⎤⎦ =

⎡⎣ k1ζ1x k1ζ1y k1ζ1z
k2ζ2x k2ζ2y k2ζ3z
k3ζ3x k3ζ3y k3ζ3z

⎤⎦⎡⎣ ax
ay
az

⎤⎦+

⎡⎣ Υ1

Υ2

Υ3

⎤⎦ (C.17)

Equation (C.17) can be re-arranged to give Equation (C.18) which is imple-

mented on the helicopter to calculate the accelerations. The matrix inversion is

calculated offline as part of the calibration process. Software was written by the

author to prompt the operator through the calibration process and gather the Uij
values. This software then determines the inverted alignment matrix, offsets (Υi)

and the reciprocal of the gains (1/ki) in a form which can be readily transferred into

non-volatile memory on the helicopter.

⎡⎣ ax
ay
az

⎤⎦ =

⎡⎣ ζ1x ζ1y ζ1z
ζ2x ζ2y ζ3z
ζ3x ζ3y ζ3z

⎤⎦−1 ⎡⎣ (U1 − Υ1) /k1

(U2 − Υ2) /k2

(U3 − Υ3) /k3

⎤⎦ (C.18)
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C.0.2 Gyroscope Calibration

A system was developed by the author for calibrating gyroscopes using an accurate

rotating turntable. A precision rate-of-turn table manufactured by Genisco Tech-

nology Corporation was acquired which is capable of rotation rates between 1o/sec

and 3, 200o/sec with a rate accuracy of 0.1% or 0.05o/sec, whichever is greater. The

calibration procedure determines the gain and alignments of the gyroscopes. The

offset of the gyroscopes is found from a zeroing process on startup, based on the

assumption that the helicopter is not moving when the IMU is first turned on. Dy-

namic estimation of the gyroscope offsets using an EKF is also described in Chapter

8.

The procedure involves fixing the IMU on the turntable and rotating at a number

of known speeds within the range of the sensor. For each speed, several thousand

gyroscope rate samples are recorded and averaged. This process is repeated for each

axis by placing each of three orthogonal faces of the IMU flush with the turntable

plate. Three scenarios are executed:

• case 1 : IMU resting on on its front face - axis of rotation aligned with IMU

positive x-axis.

• case 2 : IMU resting on its right hand face - axis of rotation aligned with IMU

positive y-axis.

• case 3 : IMU resting in its normal orientation - axis of rotation aligned with

IMU positive z-axis.

A line of best fit is made for each gyroscope for the sensor output versus speed.

The slope of the line is the derivative Kij = dUij/d|Ω|. Figure C.1 shows the data

for one axis of the IMU.

The output of each gyroscope depends on the gain and alignment. The gyros are

zeroed before each calibration run to ensure that no offset is present due to thermal

drift. If the ith gyroscope is aligned with the unit vector ζi = ζixî+ ζiyĵ+ ζizk̂, then

the slope Kij of the ith gyroscope for the jth scenario can be expressed by Equation

(C.19).

Kij = ki (ζixΩx + ζiyΩy + ζizΩz) (C.19)

where ki is the gain of the gyroscope. Since each IMU face is placed normal to

the axis of rotation, for each scenario, only one of Ωx, Ωy and Ωz will be non-zero

and equal to unity. The slopes for all three gyroscopes for all three scenarios can be

expressed in matrix form as shown in Equation (C.20).⎡⎣ K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤⎦ =

⎡⎣ k1ζ1x k1ζ1y k1ζ1z
k2ζ2x k2ζ2y k2ζ2z
k3ζ3x k3ζ3y k1ζ3z

⎤⎦ (C.20)

Noting that ζ2
ix+ζ

2
iy+ζ

2
iz = 1, we can now derive the gains from Equation (C.20):
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Figure C.1: Results of rotating IMU about the x-axis. Solid lines represent the lines of

best fit to the data.

k1 =
√

K2
11 + K2

12 + K2
13 (C.21)

k2 =
√

K2
21 + K2

22 + K2
23 (C.22)

k3 =
√

K2
31 + K2

32 + K2
33 (C.23)

And once the gains are known, the alignment coefficients can be found from:

⎡⎣ ζ1x ζ1y ζ1z
ζ2x ζ2y ζ2z
ζ3x ζ3y ζ3z

⎤⎦ =

⎡⎣ K11/k1 K12/k1 K13/k1

K21/k2 K22/k2 K23/k2

K31/k3 K32/k3 K33/k3

⎤⎦ (C.24)

Now, the output of the ith gyroscope, Ui can be written in terms of the actual

rotation rate [p q r] and sensor parameters in matrix form:

⎡⎣ U1

U2

U3

⎤⎦ =

⎡⎣ k1ζ1x k1ζ1y k1ζ1z
k2ζ2x k2ζ2y k2ζ2z
k3ζ3x k3ζ3y k3ζ3z

⎤⎦⎡⎣ p

q

r

⎤⎦ (C.25)

Finally, Equation (C.25) can be re-arranged to give the equations implemented

on the helicopter to find the rotation rates [p q r] from the gyroscope measurements:
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⎡⎣ p

q

r

⎤⎦ =

⎡⎣ ζ1x ζ1y ζ1z
ζ2x ζ2y ζ2z
ζ3x ζ3y ζ3z

⎤⎦−1 ⎡⎣ U1/k1

U2/k2

U3/k3

⎤⎦ (C.26)

C.0.3 Magnetometer Calibration

The magnetometer parameters to be determined by calibration are offset, sensor gain

and alignment. Unlike gravity, the variation of the magnetic field over the earth’s

surface is significant. Indeed, the earth’s magnetic field vector has a horizontal

and vertical component. The angle between the field vector and vertical is known

as magnetic dip and varies from 0o at the equator to 90o at the North and South

magnetic poles. In the Canberra region, the local magnetic dip is approximately 65◦

such that the magnetic field vector actually has a stronger vertical component than

horizontal component. A primary objective when designing the calibration process

was to develop an algorithm that could be executed without apriori knowledge of the

local magnetic field strength, direction or dip angle. This would simplify the process

and make it less susceptible to unexpected variations in the local field properties.

The procedure developed involves rotating the IMU about each of its three axes

and recording the outputs from each magnetometer for each of the three cases.

The resulting data is in the form of three sine waves for each magnetometer. By

considering the magnitude and DC offset of each sine wave, it is possible to determine

the alignment and gain of each sensor. The calibration apparatus constructed for

magnetometer calibration is shown in Figure C.2. The apparatus consists of a

stepper motor with 400 steps per revolution which drives a mounting pedestal for

the IMU via a long shaft. The stepper motor is controlled through the parallel port

of a PC. The same PC is interfaced to the IMU via an RS232 cable connected to a

spare serial port. The shaft is rotated in steps of 0.9◦ at a time. After each step, a

delay is enforced by the calibration software to allow transients due to the analog

filters to settle. A number of samples are taken at each step for each magnetometer,

averaged and then recorded on the PC. Once data for one complete revolution is

recorded a least squares method is used to fit a sine wave to the data. The amplitude

and DC offset for each sine wave is stored.

The shaft and mounting bracket is made of non-ferrous metals to preserve the

earth’s natural magnetic field properties. Figure C.3 is a graph showing the typical

variation of a single magnetometer as it is rotated about each axis of the IMU.

Calibration is conducted outdoors away from large metal objects, power conductors

and at a minimum height above soil.

We begin our analysis by defining unit vectors î, ĵ, k̂ aligned with the calibration

apparatus rotational axis, such that î is parallel to the axes of the machine, ĵ

is horizontal to the right when looking from the motor side of the device and k̂

is pointing vertically down in accordance with the right hand rule. The earth’s

magnetic field can then be expressed in terms of components λx, λy and λz along

these unit vector directions:
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Figure C.2: Magnetometer calibration apparatus

Figure C.3: Magnetometer calibration data
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b = |b|(λxî+ λy ĵ + λzk̂) (C.27)

The output of each magnetometer depends on the alignment of the sensor with

the earth’s local magnetic field and the gain of the sensor. If the ith magnetometer

is aligned with the unit vector m̂i = mix î+miy ĵ +mizk̂, then the output Ui of the

ith magnetometer can be expressed by the dot product:

Ui = kimi · b
= |b|(mixλx +miyλy +mizλz) (C.28)

The orientation unit vectors for the magnetometer mix, miy, miz are numerically

equal to the cosine of the included angles between the ith magnetometer and the

IMU x, y and z reference axes.

Now consider the IMU oriented so that its reference x-axis is aligned with the

shaft axis whilst the other axes lie in an arbitrary orientation. To aid the determina-

tion of the sense of the magnetometer axes, the λx axes of the calibration rig can be

pointed roughly North. By pointing the rig somewhere between, say NE and NW,

we can then safely assume that the value of λx is positive and not a small number.

This only requires a very rudimentary knowledge of the local geography. If the IMU

is now rotated an angle ψ about the shaft, the orientation of the magnetometer axes

will be transformed to the new unit vector m̂′
i according to Equation (C.29).

m̂′
i = [Rψ] m̂i (C.29)

where

[Rψ] =

⎡⎣ 1 0 0

0 cos(ψ) − sin(ψ)

0 sin(ψ) cos(ψ)

⎤⎦ (C.30)

The output of the ith magnetometer is therefore:

Ui = ki|b|
[
mixλx + cos(ψ)miyλy − sin(ψ)mizλy +

sin(ψ)miyλz + cos(ψ)mizλz
]

= ki|b|
[
mixλx + cos(ψ) (miyλy +mizλz) +

sin(ψ) (miyλz −mizλy)
]

= ki|b|
[
mixλx + Aix cos(ψ + φ)

]
(C.31)

where Aix and φ are constants. Clearly as the shaft is rotated the output of the

sensor traces out a sinusoidal path with a mean value of Ūix = ki|b| (mixλx) and a

magnitude of A. The mean value is equal to the product of the î component of the

magnetometer and the î component of the earth’s magnetic field. Through a similar

process, it can be shown that the same will hold true for rotating the magnetometer
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about any of the axes making up the box. Hence for the ith sensor, rotated about

each axis of the box,

Ūix = ki|b|mixλx

Ūiy = ki|b|miyλx

Ūiz = ki|b|mizλx (C.32)

Note that only the component of the magnetic field aligned with the shaft affects

the average value of the output. The shaft axis should therefore be selected to lie

in an orientation which is more parallel than perpendicular to the magnetic field, so

that the magnitude of the results is optimised.

Rearranging components of Equation (C.32),

ki|b|λx =
Ūix
mix

=
Ūiy
miy

=
Ūiz
miz

(C.33)

Inverting,

mix

Ūix
=
miy

Ūiy
=
miz

Ūiz
(C.34)

Since mix
2 +miy

2 +miz
2 = 1,

1

mix

=

√
1 +

(
Ūiy
Ūix

)2

+

(
Ūiz
Ūix

)2

1

miy

=

√
1 +

(
Ūix
Ūiy

)2

+

(
Ūiz
Ūiy

)2

1

miz

=

√
1 +

(
Ūix
Ūiz

)2

+

(
Ūiy
Ūiz

)2

(C.35)

The equations in (C.35) can be used to determine the magnitude of the magne-

tometer unit vectors, but not the sense. Also, numeric difficulties can be experienced

if either Ūix, Ūiy or Ūiz are small numbers. Thus a more robust strategy is to choose

the equation from (C.35) with the largest denominator and use this to find one of

the unit vector magnitudes. Equation (C.33) is then used to find the remaining unit

vectors. The sense of the magnitude can also be found from Equation (C.33) based

on the convention that ki|b|λx is a positive number.

The IMU can be oriented with any of its three axes aligned with the axis of

rotation of the calibration apparatus. The pedestal of the rig has a face which is

normal to the shaft, so that by clamping one of the faces of the IMU flush to the

pedestal, one of the IMU axes can be aligned with the rotational axes. We denote

the magnitude of the varying part of the sine wave as Aix, Aiy, Aiz, for rotations

about the IMU x,y and z axes respectively. The magnitude of the varying part of

Equation (C.31), resulting from rotating the IMU about its x-axis is:



192 Calibration Procedures

A2
ix = k2

i |b|2 (miyλy +mizλz)
2 + (miyλz −mizλy)

2

= k2
i |b|2

(
m2
iy +m2

iz

) (
λ2
y + λ2

z

)
= ki|b|2

(
1 −m2

ix

) (
λ2
y + λ2

z

)
(C.36)

The same derivation applied to each axis in turn results in the following set of

three equations:

A2
ix = k2

i |b|2
(
1 −m2

ix

) (
λ2
y + λ2

z

)
A2
iy = k2

i |b|2
(
1 −m2

iy

) (
λ2
y + λ2

z

)
A2
iz = k2

i |b|2
(
1 −m2

iz

) (
λ2
y + λ2

z

)
(C.37)

The gain ki for each magnetometer may now be calculated by combining Equa-

tions (C.32) and (C.37). Consider first the Equation (C.36) for rotation about the

IMU x-axis:

k2
i |b|2

(
λ2
y + λ2

z

)
=

A2
ix

1 −m2
ix

(C.38)

And from equation C.32:

k2
i |b|2λ2

x =

(
Ūix
mix

)2

(C.39)

Adding Equations (C.38) and (C.39),

k2
i |b|2

(
λ2
x + λ2

y + λ2
z

)
=

(
Ūix
mix

)2

+

(
A2
ix

1 −m2
ix

)
(C.40)

Since λ2
x + λ2

y + λ2
z = 1

ki =
1

|b|

√(
Ūix
mix

)2

+

(
A2
ix

1 −m2
ix

)
(C.41)

Alternately the gain of each magnetometer can be found from the IMU rotations

about the IMU y and z axes. The resulting Equations are:

ki =
1

|b|

√(
Ūix
mix

)2

+

(
A2
iy

1 −m2
iy

)
(C.42)

ki =
1

|b|

√(
Ūix
mix

)2

+

(
A2
iz

1 −m2
iz

)
(C.43)

The final step in the calibration process is to develop a calibration matrix to

convert the raw output of the magnetometers into components of the relative field

vector which are properly aligned with the helicopter body axes. This matrix is
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found by inverting the matrix of unit vectors and gains. Since the output Ui of the

3 magnetometers is given by,

⎡⎣ U1

U2

U3

⎤⎦ =
[
k1 k2 k3

] ⎡⎣ m1x m1y m1z

m2x m2y m2z

m3x m3y m3z

⎤⎦⎡⎣ Bx

By

Bz

⎤⎦ = [K]T [M ] b (C.44)

Then the magnetic field vector can be determined from Equation (C.45).⎡⎣ Bx

By

Bz

⎤⎦ =
[

1
k1

1
k2

1
k3

] ⎡⎣ m1x m1y m1z

m2x m2y m2z

m3x m3y m3z

⎤⎦−1 ⎡⎣ U1

U2

U3

⎤⎦ (C.45)
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C.0.4 Thermal Calibration

All of the sensors in the IMU were found to drift with temperature. The accelerom-

eters and the Analog Devices gyroscopes have on-chip temperature sensors. The

Murata gyroscopes do not have built-in temperature sensors and hence are subject

to unchecked thermal drift. Initially, it was hoped to use the temperature sensors

built into the accelerometers. Unfortunately, experiments have shown that, dur-

ing even moderate rates of temperature change, significant variation in temperature

between adjacent sensors can occur. For this reason, the on-chip accelerometer

temperature sensors are only really useful for calibrating the accelerometers.

Calibration of the sensors is carried out by cooling the sensors down to approx-

imately 0oC and then warming them to about 50oC over a period of one hour.

The variation in sensor output while at rest during these temperature changes was

recorded and a second order polynomial fit was made to the data using a least

squares approximation. The resulting polynomials were incorporated into the heli-

copter control software to dynamically correct for temperature variations in flight.

A second order correction polynomial for one of the accelerometers is shown as a fit

to thermal drift samples at Figure C.4.
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Figure C.4: Accelerometer thermal calibration


