1,675 research outputs found

    Noise Tolerant Descriptor for Texture Classification

    No full text
    International audienceAmong many texture descriptors, the LBP-based representation emerged as an attractive approach thanks to its low complexity and effectiveness. Many variants have been proposed to deal with several limitations of the basic approach like the small spatial support or the noise sensitivity. This paper presents a new method to construct an effective texture descriptor addressing those limitations by combining three features: (1) a circular average filter is applied before calculating the Complemented Local Binary Pattern (CLBP), (2) the histogram of CLBPs is calculated by weighting the contribution of every local pattern according to the gradient magnitude, and (3) the image features are calculated at different scales using a pyramidal framework. An efficient calculation of the pyramid using integral images, together with a simple construction of the multi-scale histogram based on concatenation, make the proposed approach both fast and memory efficient. Experimental results on different texture classification databases show the good results of the method, and its excellent noise robustness, compared to recent LBP-based methods

    Robust Adaptive Median Binary Pattern for noisy texture classification and retrieval

    Full text link
    Texture is an important cue for different computer vision tasks and applications. Local Binary Pattern (LBP) is considered one of the best yet efficient texture descriptors. However, LBP has some notable limitations, mostly the sensitivity to noise. In this paper, we address these criteria by introducing a novel texture descriptor, Robust Adaptive Median Binary Pattern (RAMBP). RAMBP based on classification process of noisy pixels, adaptive analysis window, scale analysis and image regions median comparison. The proposed method handles images with high noisy textures, and increases the discriminative properties by capturing microstructure and macrostructure texture information. The proposed method has been evaluated on popular texture datasets for classification and retrieval tasks, and under different high noise conditions. Without any train or prior knowledge of noise type, RAMBP achieved the best classification compared to state-of-the-art techniques. It scored more than 90%90\% under 50%50\% impulse noise densities, more than 95%95\% under Gaussian noised textures with standard deviation σ=5\sigma = 5, and more than 99%99\% under Gaussian blurred textures with standard deviation σ=1.25\sigma = 1.25. The proposed method yielded competitive results and high performance as one of the best descriptors in noise-free texture classification. Furthermore, RAMBP showed also high performance for the problem of noisy texture retrieval providing high scores of recall and precision measures for textures with high levels of noise

    Provably scale-covariant networks from oriented quasi quadrature measures in cascade

    Full text link
    This article presents a continuous model for hierarchical networks based on a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed and it is shown that the resulting representation allows for provable scale and rotation covariance. A prototype application to texture analysis is developed and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.Comment: 12 pages, 3 figures, 1 tabl

    Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition and Remote Sensing Scene Classification

    Full text link
    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The d facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Binary Patterns encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Our final combination outperforms the state-of-the-art without employing fine-tuning or ensemble of RGB network architectures.Comment: To appear in ISPRS Journal of Photogrammetry and Remote Sensin

    A Structural Based Feature Extraction for Detecting the Relation of Hidden Substructures in Coral Reef Images

    Get PDF
    In this paper, we present an efficient approach to extract local structural color texture features for classifying coral reef images. Two local texture descriptors are derived from this approach. The first one, based on Median Robust Extended Local Binary Pattern (MRELBP), is called Color MRELBP (CMRELBP). CMRELBP is very accurate and can capture the structural information from color texture images. To reduce the dimensionality of the feature vector, the second descriptor, co-occurrence CMRELBP (CCMRELBP) is introduced. It is constructed by applying the Integrative Co-occurrence Matrix (ICM) on the Color MRELBP images. This way we can detect and extract the relative relations between structural texture patterns. Moreover, we propose a multiscale LBP based approach with these two schemes to capture microstructure and macrostructure texture information. The experimental results on coral reef (EILAT, EILAT2, RSMAS, and MLC) and four well-known texture datasets (OUTEX, KTH-TIPS, CURET, and UIUCTEX) show that the proposed scheme is quite effective in designing an accurate, robust to noise, rotation and illumination invariant texture classification system. Moreover, it makes an admissible tradeoff between accuracy and number of features

    Statistical binary patterns for rotational invariant texture classification

    No full text
    International audienceA new texture representation framework called statistical binary patterns (SBP) is presented. It consists in applying rotation invariant local binary pattern operators (LBP riu2) to a series of moment images, defined by local statistics uniformly computed using a given spatial support. It can be seen as a generalisation of the commonly used complementation approach (CLBP), since it extends the local description not only to local contrast information, but to higher order local variations. In short, SBPs aim at expanding LBP self-similarity operator from the local gray level to the regional distribution level. Thanks to a richer local description, the SBPs have better discrimination power than other LBP variants. Furthermore, thanks to the regularisation effect of the statistical moments, the SBP descriptors show better noise robustness than classical CLBPs. The interest of the approach is validated through a large experimental study performed on five texture databases: KTH-TIPS, KTH-TIPS 2b, CUReT, UIUC and DTD. The results show that, for the four first datasets, the SBPs are comparable or outperform the recent state-of-the-art methods, even using small support for the LBP operator, and using limited size spatial support for the computation of the local statistics
    corecore