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Abstract 

In this paper, we present an efficient approach to extract local structural color texture features for classifying 

coral reef images. Two local texture descriptors are derived from this approach. The first one, based on 

Median Robust Extended Local Binary Pattern (MRELBP), is called Color MRELBP (CMRELBP). 

CMRELBP is very accurate and can capture the structural information from color texture images. To reduce 

the dimensionality of the feature vector, the second descriptor, co-occurrence CMRELBP (CCMRELBP) 

is introduced. It is constructed by applying the Integrative Co-occurrence Matrix (ICM) on the Color 

MRELBP images. This way we can detect and extract the relative relations between structural texture 

patterns. Moreover, we propose a multiscale LBP based approach with these two schemes to capture 

microstructure and macrostructure texture information. The experimental results on coral reef (EILAT, 

EILAT2, RSMAS, and MLC) and four well-known texture datasets (OUTEX, KTH-TIPS, CURET, and 

UIUCTEX) show that the proposed scheme is quite effective in designing an accurate, robust to noise, 

rotation and illumination invariant texture classification system. Moreover, it makes an admissible tradeoff 

between accuracy and number of features. 

 

Keywords: Color texture descriptors; Coral reef images; Integrative Co-occurrence Matrix (ICM); Local 

Binary Pattern (LBP); Feature extraction; macrostructure texture information.  

 

 

1. Introduction 

     In the past decades, remote sensing techniques have been frequently utilized in different applications. 

These techniques process real-time data acquired from the natural environment to provide valuable 

information for experts in order to better recognize environmental variations. As an example, human eyes 

as a remote sensing system receives the radiations from our environment and the brain circuits elicit key 

features from the images in order to recognize the environment [1]. 

Well-known applications of remote sensing systems include analyzing satellite images caught by spectral 

cameras from agricultural land, weather forecasting by the processing of climate sensor data and analyzing 

coral reef images to discover the changes of a marine ecosystem. 

mailto:mahmood.sotoodeh@aggiemail.usu.edu
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     Coral reefs are an important part of tropical shallow-water ecosystems and are made by coral animals. 

Coral reefs are essential for the survival of marine creatures, by providing breeding territory, shelter, and 

food. Enhancing the classification of coral reef images gives us considerable information, valuable in 

monitoring the changes in the seabed and ecosystem of a coast.  

     Most of the acquired coral reef images are noisy, blurred, skewed and rotated. These images have 

different scales because divers cannot precisely fix their cameras undersea. Light changes during image 

capturing also yield distortions. Moreover, color texture features are powerful properties of coral reef 

images that are not often considered in many descriptors. 

Based on the literature, classifying the coral reef images consists mainly of three steps: image enhancement, 

feature extraction and finally applying a classification algorithm. Since the main goal of our study is to 

propose an efficient color descriptor, we focus on the feature extraction step.  

One of the most popular local image descriptors for intensity image is the Scale Invariant Feature Transform 

(SIFT) [2]. This descriptor is utilized to extract key-points, which are robust to scale and rotation changes. 

Oscar et al. [3] applied SIFT and the Gabor filter [4,5] to extract a proper bag of spectral features to describe 

different types of coral reef textures. Padmavathi et al. [6] used kernel principal component analysis 

(KPCA), as an efficient feature reduction method to decrease the large number of features obtained by the 

SIFT method. The main drawback of SIFT-based methods is high computational complexity.  

Beijbom et al. [7] proposed a Maximum Response (MR) filter based method. They investigated the effect 

of several filters on coral reef images. Filter responses are aggregated across the images, and k-means 

clustering is applied to filter responses. Then, the cluster centers, or textons, are merged to create a spectral-

based descriptor. Eduardo et al. [8] utilized a set of Gabor filters to extract spectral features in gray scale 

images. These filters are convolved to each pixel and its output for the corresponding pixel is considered 

as a feature vector. Nonetheless, the final set of features for each image demands a large amount of memory, 

hence the high complexity of the recognition process. Although Gabor filter based methods are effective 

approaches to describe texture features, these are slow in feature extraction and also need parameter tuning. 

Most of the published work in this field used statistical and spectral features, due to the natural 

characteristics of these images. Pican et al. [9] utilized Gray Level Co-occurrence Matrix (GLCM) [10], as 

a statistical descriptor for coral reef textures. The implementation of GLCM based method is easy but there 

are some drawbacks such as sensitivity to gray scale changes and rotation.  

Shihavuddin et al. [11] used a combination of statistical-spectral features for extracting discriminative 

features from gray scale coral reef images. These descriptors are completed Local Binary Pattern (CLBP) 

[12], co-occurrence matrix [10] and Gabor filter. It is one of the best methods for coral reef image 

classification. Blanchet et al. [13] used a combination of descriptors such as Local Binary Pattern, color 

channels (Hue) and the opponent angle histogram in order to extract statistical features. This method is not 

scale-invariant and is also sensitive to noise.  

Some recent work by Elawady [14] and Mahmood et al. [15,16] utilized popular Convolutional Neural 

Networks (CNNs) [17,18] such as LeNet [19] and VGGnet [20] for coral reef image classification. To 

obtain an appropriate classification rate, a large amount of data is needed to train CNN, as well as large 

training time. Gomez et al. [21] proposed a method to solve the problem of inadequate data for CNN-based 

coral reef image classification. They used three versions of recent powerful CNNs,  Inception v3 [22] , 

ResNet [23] and DenseNet [24]. In general, CNN-based Descriptors face several challenges such as noise, 

illumination variations and the variance between images of the same class [21]. 

Local Binary Patterns (LBP) and its variants are among the most prominent texture descriptors used in 

recent researches [25-29]. These methods are computationally efficient in feature extraction and provide 

high-performance features. On the other hand, most of the LBP versions generate a large number of features 

(not appropriate for real-time applications) and are highly sensitive to noise, rotation, and scale. Moreover, 

LBPs capture some of the structural information such as pixel difference but ignore the macrostructure 

information.  
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Shiela et al. [30] used the standard LBP to extract features of color coral reef images. The main flaw of 

LBP features is their sensitivity to the noise and scale, leading to poor classification performance. 

Moreover, these methods suffer from the high dimensionality of feature space. Bewley et al. [31,32] applied 

PCA to reduce the number of extracted features by the LBP and providing more discriminability of features. 

Stokes et al. [33] divided color images into several regions and then applied two-dimensional discrete 

cosine transform (2D-DCT) and RGB histogram to extract low dimensional spectral features. 

Zhu et al. [34] proposed a robust method for noisy texture analysis named Adaptive Hybrid Pattern (AHP). 

In this method, the global texture spatial structure is encoded with the primitive texture microfeatures using 

an adaptive quantization algorithm. AHP uses local and global features simultaneously to provide high 

performance. Shakoor et al. [28] proposed two mapping methods for LBP to decrease the computational 

complexity and increase its robustness against noise.  

In [27] an efficient descriptor named Z with Tilted Z Local Binary Pattern (Z ⊗ TZLBP) is proposed to 

extract texture features from coral reef images. In this method, first the neighborhood pixels are divided 

into two groups. After that, the LBP operator is performed on each group separately. Then, the output of 

each operator is concatenated to build the final feature set. Ani et al. [26] proposed improved local 

derivative pattern (ILDP) [35], which captured the statistical variations in horizontal, vertical and diagonal 

directions to extract a rich set of features. Although this method is one of the most powerful methods for 

coral reef image classification, it is somewhat sensitive to the noise and is not scale invariant. Octa-angled 

Pattern for Triangular sub-region (OPT) is a feature descriptor for coral reef images which is proposed by 

Ani et al. [36]. Triangular patterns in clockwise and counter-clockwise directions are considered to select 

the neighbors. They also introduced and used a classifier named Pulse Coupled Convolutional Neural 

Network (PCCNN) to classify coral reef images.  

In [37], two descriptors are proposed to classify diseases in coral reef images. The first descriptor is called 

Mean Direct Code Pattern (MDCP), which uses HSV color space for feature extraction. The Diagonal 

Direction Value Pattern (DDVP) is the second descriptor, which utilizes RGB space to extract feature.  

The LBP algorithm was first introduced by Ojala et al. [38]. In this method, a local patch is used to compute 

the LBP code. First, the corresponding patch is placed on each pixel of the image and then for each neighbor 

pixel in the patch, a one-bit value is calculated as follows: 1, if the gray value of the neighbor pixel is greater 

than the gray value of the center, otherwise zero. This way, a binary sequence for each center pixel is 

generated and converted to a decimal number (called local binary pattern code): 

𝐿𝐵𝑃𝑟,𝑝 (𝑥𝑐) = ∑(s(𝑥𝑟,𝑝,𝑛 − 𝑥𝑐) × 2n

𝑝−1

n=0

) 

𝑠( 𝑥𝑟,𝑝,𝑛 − 𝑥𝑐) = {
1   𝑥𝑟,𝑝,𝑛 ≥ 𝑥𝑐  

0   𝑥𝑟,𝑝,𝑛 < 𝑥𝑐  
 

                           (1) 

 

where, xc is the gray value of the pixel located at the center of the patch, xr,p,n represents the gray value of 

the nth neighbor of each corresponding pixel, p indicates the number of neighbors in the patch and r is the 

neighborhood radius. Afterward, the histogram of the LBP codes can be used as a feature vector to classify 

the texture images.  

The standard LBP has several shortcomings. It is not robust to noise and rotation changes. Moreover, it 

suffers from high dimensionality. Various versions of LBP are proposed in the literature to tackle this 

problem.  
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The LBPri and LBPriu2 [38-41]  are two rotation invariant LBPs that use a circular patch instead of a square 

patch for computing the LBP code. Due to the circle form of the neighborhoods, some values of p are 

obtained through interpolation [41]. The calculation of LBPriu2 is indicated in Eqs. (2) to (4): 

LBP𝑟,𝑝
𝑟𝑖𝑢2(𝑥𝑐) = {

∑ s(𝑥𝑟,𝑝,𝑛 − 𝑥𝑐)

𝑝−1

𝑛=0

   if   U(LBPr,p) ≤ 2        

p + 1                           otherwise                     

 (2) 

        

𝑠( 𝑥𝑟,𝑝,𝑛 − 𝑥𝑐) = {
1   𝑥𝑟,𝑝,𝑛 ≥ 𝑥𝑐  

0   𝑥𝑟,𝑝,𝑛 < 𝑥𝑐  
 

 

(3) 

       

       U(LBPr,p) = |s(xr,p,p−1 − xc) − s(xr,p,0 − xc)| + 

                         ∑|s(𝑥𝑟,𝑝,𝑛 − 𝑥𝑐) − s(xr,p,n−1 − xc)|             

p−1

n=1

 

 

(4) 

where function U reveals the number of bitwise transition from zero to one and vice versa. For each binary 

pattern, if the value of U≤2, then it is considered as a uniform pattern, otherwise, it is a non-uniform pattern. 

According to Eq. (2), each uniform pattern has a distinctive value, while all non-uniform patterns are labeled 

p+1. Since non-uniform patterns do not produce suitable information for texture classification, a single 

value is considered for them. 

Local Ternary Pattern (LTP) [42] is a variation of LBP that enhance the noise robustness. LTP generates 0, 

1, and -1 (instead of 0 and 1 in the standard LBP) when comparing the corresponding pixels with their 

neighbors. Although LTP is a well-known noise robust method, it is not resistant to the gray-scale variation 

since it uses a fixed and predefined threshold to encode values. In addition, the length of the pattern 

histogram is long.  

In [43], a rotation invariant and robust-to-noise LBP version was introduced. In this method, after extracting 

the histogram of an image, only 80% of the histogram bins are used. The 20% of bins having the lowest 

frequency are considered as noise and removed. Producing a large number of features could be a drawback 

of this method.  

In a similar manner, Zhang et al. [35] proposed Local Derivative Pattern (LDP), as a robust-to-noise LBP 

version, which uses higher order derivations. Center Symmetric Local Binary Pattern (CS-LBP) [44] was 

introduced to reduce the number of extracted features. In this method, some details of information could be 

ignored because the difference between values of symmetric pixels is considered instead of the difference 

between the center and its neighbors.  

Noise Tolerant Local Binary Pattern (NTLBP) [45] was suggested to extract uniform and non-uniform 

texture features to capture simple and complex textures. High computational time and low accuracy are two 

drawbacks of this method when compared to some new noise resistant LBP versions.  

Completed local binary pattern (CLBP) descriptor was proposed by Guo et al. [12] to capture both sign and 

magnitude values of pixels. This descriptor is scale variant and sensitive to noise. Completed robust local 

binary pattern (CRLBP) [46] was suggested as a robust to noise LBP version, where the value of each 

corresponding pixel in a 3 × 3 local patch is replaced by the average gray level of that local patch.  

Binary rotation invariant and noise tolerant (BRINT) [47] was proposed as a suitable rotation invariant and 

robust-to-noise LBP version. This method produces convincing results in several applications. Moreover, 

Radial Mean Local Binary Pattern (RMLBP) [48], was introduced as a robust-to-noise LBP variant, in 
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which the mean of points around each radial local patch was considered instead of using angular neighbor 

points.  

Liu et al. [49] proposed a powerful LBP biased texture classification method named Extended Local Binary 

Pattern (ELBP). It is constructed by the joint probability distribution of three LBP based descriptors 

including Center Intensity-based LBP (ELBP_CI), Neighbor Intensity-based LBP (ELBP_NI) and Radial 

Difference based LBP (ELBP_RD). Although ELBP has good discriminative power and high performance 

for texture classification, it produces a high dimensional feature vector and cannot capture macrostructure 

texture. Moreover, it is sensitive to image noise and blur. 

Median Robust Extended Local Binary Pattern (MRELBP) [25] is proposed to overcome the disadvantages 

of ELBP descriptor. In this approach, first the median filter is applied to the original image. Then, instead 

of using the value of individual neighboring pixels, the result of a patch on each neighboring pixel is 

compared with the center pixel. The joint histogramming of three derived descriptors, RELBP_CI, 

RELBP_NI and RELBP_RD forms the final descriptor, called RELBP. In addition, the median filter is 

utilized to increase the robustness of RELBP, hence named MRELBP. To capture more micro- and 

macrostructures of gray texture images, the multiscale of this descriptor is used.  

Although the MRELBP is a powerful descriptor for classifying texture images in gray scale domain, its 

performance is not very high for processing color images. MRELBP ignores the relative relationship 

between color texture patterns. Moreover, the multiscale MRELBP generates high dimensional feature 

vectors. To tackle these problems, in this paper, we propose a powerful feature extraction method based on 

Median Robust Extended Local Binary Pattern (MRELBP) [25]. To construct the color texture descriptor, 

the MRELBP is applied to three channels of color space independently. The joining histogram of MRELBP 

components of each channel are concatenated and considered as a descriptor named Color Median Robust 

Extended Local Binary Pattern (CMRELBP). This descriptor is very accurate and has good discriminative 

power but the dimensionality of the generated feature vector is very high.  

To reduce the dimensionally of the CMRELBP, we propose another descriptor named Co-occurrence Color 

Median Robust Extended Local Binary pattern (CCMRELBP). By applying the Integrative Co-occurrence 

Matrix (ICM) [50,51] on color MRELBP components, the co-occurrence features of color texture patterns 

are computed and concatenated to form the CCMRELBP descriptor.  

Furthermore, to capture macrostructural information and the relative relation of microstructures, a 

multiscale strategy is proposed based on [25]. Two Fixed and Varying Multiscale schemes are considered 

for this strategy. Therefore, by applying these schemes on the proposed method, four multiscale descriptors 

are generated, namely FMS-CMRELBP, VMS-CMRELBP, FMS-CCMRELBP, and VMS-CCMRELB.  

To put it in a nutshell, the contributions of this study are: 

• We proposed two color descriptors based on the robust-to-noise method MRELBP.  

• These descriptors are rotation and illumination invariant. 

• The proposed method has high discriminative power. It achieves an appropriate tradeoff between 

performance and dimensionality of the feature vector. 

• Two multiscale schemes (varying and fixed multiscale) are introduced for proposed descriptors to 

capture more structural information from texture images and the relative relation between 

microstructural information. 

• These descriptors can capture both micro- and macrostructural information from color images.  

• To construct the color descriptors, three color spaces (RGB, opponent, and HSV) are tested and 

HSV is selected as the best color spaces for the descriptors. 
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• No pretraining or parameter tuning is needed for the proposed method.  

• KNN classifier with three different similarity measures (Chi-Square, Canberra and extended 

Canberra distance) have been tested and the extended Canberra distance measures provided the 

best overall classification performance.       

The rest of this paper is organized as follows. The proposed method is described in Section 2. The 

experimental results are discussed in Section 3. Finally, the paper is concluded in Section 4. 

 

2. The Proposed Method 

In this section, first the Median Robust Extended Local Binary Pattern is briefly explained. Next, the 

proposed color texture descriptors (CMRELBP and CCMRELBP) are elaborated. Then, the fixed and 

varying multiscale versions (FMS and VMS) of the proposed descriptors are introduced. 

2.1 Median Robust Extended Local Binary Pattern 

Median Robust Extended Local Binary Pattern (MRELBP) [25] is a robust descriptor for extracting 

powerful texture features of gray scale images. This method is based on the Extended Local Binary pattern 

(ELBP) [49]. The ELBP consists of three LBP components: Center Intensity-based LBP (ELBP_CI), 

Neighborhood Intensity-based LBP (ELBP_NI) and Radial Difference based LBP (ELBP_RD). The joint 

probability distribution of ELBP_CI, ELBP_NI and ELBP_RD are considered as the main ELBP descriptor.  

For obtaining ELBP_CI, first, the intensity value average of the whole image is used as a threshold, then it 

is compared with the intensity values of central pixels: 

𝐸𝐿𝐵𝑃_𝐶𝐼(𝑥𝑐) = 𝑠(𝑥𝑐 − 𝑚) 

𝑚 =
1

𝑁
∑ 𝑥𝑐

𝑁

𝑐=0

 
(5) 

where s() is a sign function, m is the mean of whole image and 𝑥𝑐 is a central pixel. 

In ELBP_NI, the average of neighboring pixels’ values is considered as a threshold. The neighboring pixels 

are compared with this threshold to obtain the binary patterns: 

𝐸𝐿𝐵𝑃_𝑁𝐼𝑟,𝑝(𝑥𝑐) =  ∑ 𝑠(𝑥𝑟,𝑝,𝑛 − 𝑚𝑟,𝑝)2𝑛

𝑝−1

𝑛=0

 

𝑚𝑟,𝑝 =
1

𝑝
∑ 𝑥𝑟,𝑝,𝑛

𝑝−1

𝑛=0

 

(6) 

 

In the above equation, , ,{  0 1}|r p nx n p  −  indicates p neighboring pixels of xc that are located in a circle 

of radius r. Obviously, 𝑚𝑟,𝑝 is the average of the local intensity value of the p neighboring pixels. 

The difference of pixels in radial directions are used in the ELBP_RD descriptor: 

𝐸𝐿𝐵𝑃_𝑅𝐷𝑟,𝑟−1,𝑝(𝑥𝑐) =  ∑ 𝑠(𝑥𝑟,𝑝,𝑛 − 𝑥𝑟−1,𝑝,𝑛)2𝑛

𝑝−1

𝑛=0

 (7) 
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where 𝑥𝑟,𝑝,𝑛 and  𝑥𝑟−1,𝑝,𝑛 for  0 1n p  − indicate p neighboring pixels located within radiuses r and r-1 

respectively.  

The joint probability distribution of ELBP_NI, ELBP_RD, and ELBP_CI is considered as the main 

descriptor, ELBP. Although the performance of this method is noteworthy, it suffers from some drawbacks: 

First, it is sensitive to image noise and blur. Second, texture macrostructures cannot be detected and 

captured by ELBP. Third, it produces high dimensional feature vectors.  

Liu et al. [25] proposed MRELBP to solve the mentioned problems for gray scale images. They developed 

a structural approach to extend ELBP. MRELBP uses a local window of pixels in the multiscale scheme 

instead of individual pixel processing. This window is centered on each pixel, and the response of a 2D 

filter is used to process and reduce noise sensitivity. The median filter is utilized to increase the noise-

robustness of this method.  

Multiscale MRELBP is utilized to capture more microstructures and macrostructures in gray scale images. 

MRELBP is applied to the neighboring points of each center pixel for different neighborhood radiuses. The 

MRELBP strategy is shown in Fig.1. 

 

 

  

Fig.1. Applying the MRELBP method to pixel Xc 

 

MRELBP is constructed from joint histogramming of three LBP components: center pixel representation 

(MRELBP_CI), neighbor representation (MRELBP_NI) and radial difference representation 

(MRELBP_RD). These descriptors utilize rotation invariant uniform pattern mapping (riu2) to extract 

discriminative features and also a certain filter k (for example, median filter) to increase noise robustness.  

To compute MRELBP_CI for each pixel xc, first,  𝑘(𝑋𝑐,𝑤) is calculated by applying a certain filter k (e.g., 

median filter) on a local window of size 𝑤 × 𝑤 centered at xc. Then, this value is compared with 𝜇𝑤
𝑘 , which 

is the mean value of the whole image filtered by k. MRELBP_CI is formulated as: 

𝑀𝑅𝐸𝐿𝐵𝑃_𝐶𝐼(𝑥𝑐) = 𝑠( 𝑘(𝑋𝑐,𝑤) − 𝜇𝑤
𝑘 ) 

(8) 

 

 Central pixel, Xc 

 
A neighboring pixel, 𝑋𝑟1,𝑝,𝑤𝑟1,𝑛, in 

radius r1 and W1=3 

 
A neighboring pixel, 𝑋𝑟2,𝑝,𝑤𝑟2,𝑛, in 

radius r2  and W2=5 
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𝜇𝑤
𝑘 =

1

𝑁
∑  𝑘(𝑋𝑐,𝑤)

𝑁

𝑐=0

 

where s() is the sign function and N is the total number of pixels in the image. 

The MRELBP_NI descriptor is the neighbor representation computed as follows: 

𝑀𝑅𝐸𝐿𝐵𝑃_𝑁𝐼𝑟,𝑝(𝑥𝑐) =  ∑ 𝑠(𝑘(𝑋𝑟,𝑝,𝑤𝑟 ,𝑛) − 𝜇𝑟,𝑝,𝑤𝑟
𝑘 )2𝑛

𝑝−1

𝑛=0

 

𝜇𝑟,𝑝,𝑤𝑟
𝑘 =

1

𝑝
∑ 𝑘(𝑋𝑟,𝑝,𝑤𝑟,𝑛)

𝑝−1

𝑛=0

 

(9) 

 

In the above equation, 𝑋𝑟,𝑝,𝑤𝑟,𝑛 indicates a local patch with size 𝑤𝑟×𝑤𝑟, which is centered on 𝑥𝑟,𝑝,𝑛, and 

𝜇𝑟,𝑝,𝑤𝑟
 is the mean of  𝑘() over the local patch 𝑋𝑟,𝑝,𝑤𝑟,𝑛. As previously mentioned, p denotes the number 

of neighboring pixels that are placed around the center pixel 𝑥𝑐. 

For radial based descriptor, first, two sets of neighboring pixels 𝑥𝑟,𝑝,𝑛 and 𝑥𝑟−1,𝑝,𝑛  (0 ≤ 𝑛 ≤ 𝑝 − 1) should 

be determined, which are located respectively on radiuses r and r-1, from the center 𝑥𝑐. Then the 

MELBP_RD is obtained by: 

𝑀𝑅𝐸𝐿𝐵𝑃_𝑅𝐷𝑟,𝑟−1,𝑝,𝑤𝑟,𝑤𝑟−1  (𝑥𝑐) =  ∑ 𝑠(𝑘(𝑋𝑟,𝑝,𝑤𝑟,𝑛) − 𝑘(𝑋𝑟−1,𝑝,𝑤𝑟−1,𝑛))2𝑛

𝑝−1

𝑛=0

 

 

(10) 

where 𝑋𝑟,𝑝,𝑤𝑟,𝑛 and 𝑋𝑟,𝑝,𝑤𝑟−1,𝑛  are local patches centered on pixels 𝑥𝑟,𝑝,𝑛 and 𝑥𝑟−1,𝑝,𝑛 respectively.  

Liu et al. [25] applied different basic operators for k() consisting of Gaussian, Averaging, and Median, 

among which the Median operator provided the best results for enhancing noise robustness of RELBP. The 

main descriptor, MRELBP is built by joint histogramming MRELBP_CI, MRELBP_NI and 

MRELBP_RD. They also extended the MRELBP descriptor by multiscale sampling scheme. Multiple 

feature vectors or histograms are generated and concatenated together as the final descriptor.  

MRELBP is proposed to extract textures in gray scale images and ignore the color textures in color images. 

In addition, MRELBP ignores the relative relationship between color texture patterns. Moreover, it suffers 

from high feature vector dimensionality in multiscale sampling schemes. 

2.2 Color Median Robust Extended Local Binary Pattern (CMRELBP) 

Color texture features are powerful descriptors, which are used in many image processing and computer 

vision applications such as image classification, object recognition, image retrieval, image segmentation, 

object tracking and so on. Although MRELBP performs extremely well in gray scale domain, its 

performance is not very high for processing color images. In this paper, we propose two color descriptors 

based on MRELBP. The first proposed descriptor is constructed as follows.  

Considering a certain color space, at first, the image is decomposed into different channels (ch1, ch2, and 

ch3, for example, R, G and B for RGB color space). Next, the three components of MRELBP descriptor 

(i.e., MRELBP_CI, MRELBP_NI and MRELBP_RD described in Eqs. (8) – (10)) are independently 

applied on each channel. The result consists of nine LBP images (Three LBP image for each channel). In 

the third step, for each channel, the histogram of all LBP components are computed and joined together to 
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form feature vectors (for example, MRELBPch1, MRELBPch2, and MRELBPch3). These feature vectors are 

concatenated together to represent the color texture image. The resultant descriptor is named Color 

MRELBP (CMRELBP) and formulated as: 

𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝐶𝐼𝐶ℎ𝑙(𝑥𝑐) = 𝑠(𝑘(𝑋𝑐,𝑤
𝐶ℎ𝑙) − 𝜇𝑤

𝐶ℎ𝑙) 

𝜇𝑤
𝑘,𝐶ℎ𝑙 =

1

𝑁
∑ 𝑘(𝑋𝑐,𝑤

𝐶ℎ𝑙)

𝑁

𝑐=0

   ∀ 𝑙 ∈  {1, 2, 3} 
(11) 

𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑁𝐼𝑟,𝑝
𝐶ℎ𝑙(𝑥𝑐) =  ∑ 𝑠(𝑘(𝑋𝑟,𝑝,𝑤𝑟 ,𝑛

𝐶ℎ𝑙 ) − 𝜇𝑟,𝑝,𝑤𝑟

𝐶ℎ𝑙 )2𝑛

𝑝−1

𝑛=0

 

𝜇𝑟,𝑝,𝑤𝑟

𝐶ℎ𝑙 =
1

𝑝
∑ 𝑘(𝑋𝑟,𝑝,𝑤𝑟 ,𝑛

𝐶ℎ𝑙 )  ∀ 𝑙 ∈  {1, 2, 3} 

𝑝−1

𝑛=0

 

(12) 

  

𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑅𝐷𝑟,𝑟−1,𝑝,𝑤𝑟,𝑤𝑟−1

𝐶ℎ𝑙 (𝑥𝑐) =  ∑ 𝑠 (𝑘(𝑋𝑟,𝑝,𝑤𝑟,𝑛
𝐶ℎ𝑙 ) − 𝑘(𝑋𝑟−1,𝑝,𝑤𝑟−1,𝑛

𝐶ℎ𝑙 )) 2𝑛   ∀ 𝑙 ∈  {1, 2, 3}

𝑝−1

𝑛=0

 (13) 

 

where 𝐶ℎ𝑙 indicates the lth color space channel. 𝑋𝑟,𝑝,𝑤𝑟,𝑛
𝐶ℎ𝑙  and 𝑋𝑟−1,𝑝,𝑤𝑟−1,𝑛

𝐶ℎ𝑙  are local patches defined for the 

lth channel, centered on pixels 𝑥𝑟,𝑝,𝑛 and 𝑥𝑟−1,𝑝,𝑛 respectively. Two sets of neighboring pixels 𝑥𝑟,𝑝,𝑛 and 

𝑥𝑟−1,𝑝,𝑛  (0 ≤ 𝑛 ≤ 𝑝 − 1) are located respectively on radiuses r and r-1, from the center pixel  𝑥𝑐. 

The CMRELBP descriptor can capture micro- and macrostructures in color images. The CMRELBP is 

illumination and rotation invariant and robust to noise. However, it extracts high dimensional feature 

vectors. 

 

2.3 Co-occurrence Color Median Robust Extended Local Binary Pattern (CCMRELBP) 

The CMRELBP produce high dimensional feature vectors. In order to solve this drawback, we propose a 

computationally efficient color texture descriptor called Co-occurrence Color Median Robust Extended 

Local Binary Pattern (CCMRELBP). It is based on MRELBP and utilizes a color version of the co-

occurrence matrix called Integrative Co-occurrence Matrix (ICM) [50] [51]. The ICM as a rotation invariant 

color descriptor considers the relative relationships between the pixels in color images.  

The ICM method has three steps. First, it uses single channels of color images and their pairwise 

combinations (i.e., six bands for RGB space: R, G, B, RG, RB, GB) to construct co-occurrence matrices. 

Second, it extracts the five best features from each of these six co-occurrence matrices. Based on the 

Haralick method [10], these features are energy, contrast, correlation, homogeneity, and entropy. Finally, 

the extracted features are concatenated to form the final feature vector of size 30 = 5 × 6. 

The proposed descriptor is constructed as follows. As discussed in the previous section, by means of 

Equation (11)-(13) nine LBP images (three LBP images for each channel) are obtained. Next, the LBP 

images of each component, are combined together to form three color LBP images: 
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𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝐶𝐼 = 𝐹(𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝐶𝐼𝐶1 , 𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝐶𝐼𝐶2 , 𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝐶𝐼𝐶3) 

𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑁𝐼 = 𝐹(𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑁𝐼𝐶1 , 𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑁𝐼𝐶2 , 𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑁𝐼𝐶3) 

𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑅𝐷 = 𝐹(𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑅𝐷𝐶1 , 𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑅𝐷𝐶2 , 𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑅𝐷𝐶3) 

(14) 

The F function is used to combine three LBP  images of different channels to form a color LBP image (i.e., 

F concatenates three 2-D LBP images into a single 3-D matrix).  

Then, to reduce the size of the feature vectors, the ICM is used to extract compact and powerful features 

from each of these color LBP images: 

 

where 𝐶_𝐶𝐼𝑑,𝜃
𝑏 , 𝐶_𝑅𝐷𝑑,𝜃

𝑏  and 𝐶_𝑅𝐷𝑑,𝜃
𝑏  are respectively co-occurrence matrices of three color LBP images 

𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝐶𝐼, 𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑁𝐼 and 𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑅𝐷 in special band b. The band b includes three channels 

and their three pairwise combinations. The length and orientation of distance vector are denoted as 𝑑 and 

𝜃 respectively. 

The resultant features are concatenated to form our proposed descriptor, which is named Co-occurrence 

Color Median Robust Extended Local Binary Pattern (CCMRELBP). The CCMRELBP descriptor is 

derived as: 

The function H extracts Haralick features from co-occurrence matrices. 

The CCMRELBP descriptor provides high-discriminative low-dimensional feature vector. Moreover, it can 

capture micro-and macrostructures and their relative relation information. 

2.4 Multiscale versions of descriptors 

We extended the CMRELBP and CCMRELBP descriptors to form multiscale versions, similar to the 

multiscale version of MRELBP [25]. For each center pixel, different radiuses are considered. For each 

radius 𝑟𝑖 ∈ 𝑅, a set of neighboring pixels is defined of the size 𝑝𝑖. The neighboring point set is defined as 

𝑃 = {𝑝𝑖}. 

Considering a radius set R, the proposed descriptors are applied to each scale (i.e., radius 𝑟𝑖 ∈ 𝑅 and 𝑝𝑖 ∈

𝑃),  and the results are concatenated to form the multiscale CMRELBP and CCMRELBP.  

Two type schemes are considered for constructing multiscale descriptors, Fixed Multiscale (FMS) and 

Varying Multiscale (VMS). In the FMS scheme, the number of neighboring pixels p is the same for all 

𝐶_𝐶𝐼𝑑,𝜃
𝑏 (𝑖, 𝑗) = ∑ 𝐼𝐶𝑀𝑑,𝜃(

𝑁×𝑁

𝑐=1

𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝐶𝐼𝑟,𝑝(𝑥𝑐), 𝑖, 𝑗)  ∀ 𝑖, 𝑗 ∈  {0. . .255}, ∀ 𝑏 ∈  {1. . .6} (15) 

  

𝐶_𝑁𝐼𝑑,𝜃
𝑏 (𝑖, 𝑗) = ∑ 𝐼𝐶𝑀𝑑,𝜃(

𝑁×𝑁

𝑐=1

𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑁𝐼𝑟,𝑝(𝑥𝑐), 𝑖, 𝑗)  ∀ 𝑖, 𝑗 ∈  {0. . .255}, ∀ 𝑏 ∈  {1. . .6} (16) 

  

𝐶_𝑅𝐷𝑑,𝜃
𝑏 (𝑖, 𝑗) = ∑ 𝐼𝐶𝑀𝑑,𝜃(

𝑁×𝑁

𝑐=1

𝐶𝑀𝑅𝐸𝐿𝐵𝑃_𝑅𝐷𝑟,𝑝(𝑥𝑐), 𝑖, 𝑗)  ∀ 𝑖, 𝑗 ∈  {0. . .255}, ∀ 𝑏 ∈  {1. . .6} (17) 

𝐶𝐶𝑀𝑅𝐸𝐿𝐵𝑃 = [𝐻(𝐶_𝐶𝐼𝑑,𝜃
𝑏 ), 𝐻(𝐶_𝑁𝐼𝑑,𝜃

𝑏 ), 𝐻(𝐶_𝑅𝐷𝑑,𝜃
𝑏 )], ∀ 𝑏 ∈  {1. . .6} (18) 
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corresponding radiuses (e.g, 𝑝𝑖 = 8, ∀𝑖)). On the other hand, in the VMS scheme, the number of 

neighboring pixels can vary for different radiuses (usually increases monotonically).  

There is a tradeoff between accuracy and size of the feature vector. As the number of neighboring pixels 

increases, the performance improves, whereas the dimensionality of feature space would be increased too. 

The tradeoff should be considered in the application: subject to the problem requirements (classification 

time vs. accuracy) one of the proposed descriptors should be selected.   

 

3. Experimental Results and Discussion 

For evaluating the proposed method, four coral reef datasets are selected consisting of RSMAS 

(http://www.rsmas.miami.edu/) [52], MLC 2012 [7,52], EILAT and EILAT2 [52,53]. In addition, to 

demonstrate the performance of the purposed method for other types of textures, well-known texture 

datasets namely Outex (http://www.outex.oulu.fi/temp/) [54], UIUCTEX [55], KTH-TIPS [56] and 

CURET (http://www.cs.columbia.edu/CAVE/exclude/curet/) [57] are chosen. The descriptions of these 

datasets are summarized in table 1. For each class of datasets, two sample images are selected and shown 

in Fig. 2-5. It should be noted that the split of the datasets into train and test sets have been performed based 

on [26-28,36,37].  We use the parameters R=[2 4 6 8], P=[8 8 8 8], wc=3 and wr=[3 5 7 9] which is the 

recommended setting by [25]. This setup is assumed throughout the paper unless otherwise stated.  

Table 1. A brief description of the datasets used in the experiments 

Dataset type Dataset name # of images # of classes Sample size  Color/Grayscale image 

Coral reef 

EILAT 1100 8 64 × 64 Color 

RSMAS 750 14 256 × 256 Color 

EILAT 2 300 5 128 × 128 Color 

MLC 2012 32,450 9 312 × 312 Color 

Texture 

CURET 5600 61 200 × 200 Grayscale 

UIUCTEX 1000 25 640 × 480 Grayscale 

KTH-TIPS 800 10 200 × 200 Color 

Outex_TC10 4320 24 128 × 128 Grayscale 

Outex_TC12h 4800 24 128 × 128 Grayscale 

Outex_TC12t 4800 24 128 × 128 Grayscale 

 

 

       

       
(1) (2) (3) (4) (5) (6) (7) 
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(8) (9) (10) (11) (12) (13) (14) 

Fig. 2 Each column shows the two selected samples of each class of RSMAS dataset.  

 

 

    

    
(1) (2) (3) (4) 

    

    
(5) (6) (7) (8) 

Fig. 3 Each column shows the two samples of each class of EILAT dataset. 

 

 

     

     
(1) (2) (3) (4) (5) 
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(6) (7) (8) (9) 

Fig. 4 Each column shows the two samples of each class of MLC dataset. 

 

 

     

     
(1) (2) (3) (4) (5) 

Fig. 5 Each column shows the two samples of each class of EILAT2 dataset. 

 

3.1 Similarity Measures and Performance Metric 

Several similarity measures exist for comparison of texture images for the classification task. A similarity 

measure finds the most similar image in the train set for each given test image based on their feature vectors. 

In this paper, we use the following well-known functions (Chi-square [57], Canberra [58] and Extended-

Canberra [59]) to measure the similarity between the feature vector of a training image Yi and the feature 

vector of a test image Yj : 

Chi-Square distance: 
𝑑𝐶ℎ𝑖(𝑌𝑖 , 𝑌𝑗) = ∑

(𝑌𝑖,𝑘 − 𝑌𝑗,𝑘)2

𝑌𝑖,𝑘 + 𝑌𝑗,𝑘

𝑁

𝑘=1

 
(19) 

Canberra distance: 
𝑑𝐶𝐷(𝑌𝑖 , 𝑌𝑗) = ∑

|𝑌𝑖,𝑘 −  𝑌𝑗,𝑘|

𝑌𝑖,𝑘 + 𝑌𝑗,𝑘

𝑁

𝑘=1

 
(20) 

Extended-Canberra distance: 
𝑑𝐸𝐶𝐷(𝑌𝑖 , 𝑌𝑗) = ∑

|𝑌𝑖,𝑘 −  𝑌𝑗,𝑘|

(𝑌𝑖,𝑘 + ∑ 𝑌𝑖,𝑙
𝑁
𝑙=1 ) + (𝑌𝑗,𝑘 + ∑ 𝑌𝑗,𝑙

𝑁
𝑙=1 )

𝑁

𝑘=1

 
(21) 

 

where N is the length of feature vectors and Yi,k and Yj,k indicate the kth feature of the train and test images, 

respectively. The distance measures of Equations 19-21 are used in the Nearest Neighbor (1-NN) algorithm 

to classify the texture images. To evaluate the performance of the proposed method, the Overall Accuracy 

(OA) is utilized, which is expressed as the percentage of correctly classified images.  

 

3.2 Results on the Coral Reef Datasets  

In this section, we first evaluate the performance of different color spaces (RGB, opponent, and HSV) in 

order to select the most appropriate choices for further experiments. Next, the effectiveness of multiscale 

versions of the proposed descriptors is investigated on the coral reef datasets. 
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3.2.1 The impact of color spaces on the proposed descriptors 

In the first step, the results of the proposed method on MLC 2012 dataset in two cases (i.e., with/without 

ICM) are reported. By means of different color spaces (RGB, opponent, and HSV), five color descriptors 

are derived: RGB-MRELBP, opponent-MRELBP, HSV-MRELBP, normal version of RGB (nRGB-

MRELBP) and normal version of opponent (nopponent MRELBP) descriptors. The length of the feature 

vector for each of these descriptors is 600 (i.e., each color channel generates 200 features for the setting: 

mapping=riu2, r=2, and p=8). 

After applying the ICM to the color descriptors, the co-occurrence color versions of the descriptors are 

obtained. The size of resultant feature vectors is 90. It means that the ICM significantly reduces the feature 

dimensionality (in comparison with the size of 600), hence a considerable improvement in the 1-NN 

classification time.  

To indicate the effectiveness of the proposed color descriptor, the performance of gray scale descriptor, 

MRELBP are obtained and compared with their color versions in Table 2. The length of the feature vector 

for MRELBP and Co-occurrence CMRELBP (CCMRELBP) is 200 and 15, respectively. As shown in Table 

2, HSV color space is the best choice for our proposed method, whether ICM is applied or not. Based on 

this evidence, the HSV-MRELBP and ICM-HSV-MRELBP are chosen as color descriptors and are referred 

in the rest of the document as CMRELBP (Color MRELBP) and CCMRELBP (Co-occurrence Color 

MRELBP) respectively.  

Table 3 shows the overall accuracy of CMRELBP and CCMRELBP for all coral reef datasets, considering 

different distance measures. Although the accuracy of the CMRELBP descriptor is slightly higher than 

CCMRELBP, the dimensionality of this descriptor is very high.  

 

Table 2 Evaluation of the proposed method on MLC2012 for selecting the best color space with (r , p)=(2 ,8) ,  wc=3 

and wr= [3 5 7 9]. 

(r, p) Methods Number of features Canberra Chi-

Square 

Extended Canberra 

(2,8) 

MRELBP [25] 200 78.58 79.76 81.10 

RGB-MRELBP 600 85.50 87.30 88.60 

nRGB-MRELBP 600 88.71 90.11 92.09 

opponent-MRELBP 600 91.40 92.55 92.87 

nopponent-MRELBP 600 92.90 94.01 95.30 

HSV-MRELBP 600 95.91 96.30 96.76 

(2,8) 

ICM-MRELBP 15 55.23 56.73 58.15 

ICM-RGB-CMRELBP 90 82.50 84.30 86.60 

ICM-nRGB-CMRELBP 90 85.10 86.80 87.90 

ICM-opponent-CMRELBP 90 87.40 89.80 90.03 

ICM-nopponent-CMRELBP 90 90.90 93.00 94.09 
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ICM-HSV-CMRELBP 90 94.80 95.01 95.70 

 

Table 3 The overall accuracy of the proposed method on all coral reef datasets with or without of using ICM with 

wc=3 and wr= [3 5 7 9]. 

Proposed method Number of 

features 

Dataset  Canberra Chi-Square Extended 

Canberra 

CRMELBP 600 

RSMAS 96.71 97.08 98.03 

EILAT 96.85 97.16 98.26 

EILAT2 96.92 97.25 98.56 

MLC2012 95.91 96.30 96.76 

CCMRELBP 90 

RSMAS 95.06 95.99 97.03 

EILAT 95.56 96.77 97.33 

EILAT2 95.98 96.43 97.94 

MLC2012 94.80 95.01 95.70 

 

3.2.2 Evaluation of multiscale descriptors on coral reef datasets 

In this section, the multiscale versions of the proposed descriptors, CMRELBP and CCMRELBP, are 

applied on coral reef datasets. Two types of schemes are considered in this experiment: fixed and varying 

neighboring point sets. The value of all the neighboring points in the fixed multiscale scheme (FMS) is 

similar for all corresponding radiuses and in our experiments is set to 8 for two radius sets ([2 4 6 8], [1 3 

5 7]). On the other hand, for the varying multiscale scheme (VMS), the neighboring point set [8 16 24 24] 

is selected for both radius sets.  

The results of the fixed scheme are reported in Tables 4 and 5 for the proposed descriptors FMS-CMRELBP 

and FMS-CCMRELBP, respectively. As shown in Table 4, the highest performance of the FMS-

CMRELBP descriptor have been obtained with radius set [2 4 6 8] and neighboring points set [8 8 8 8] for 

all coral reef datasets. The maximum values for both radius sets have obtained utilizing the Extended 

Canberra distance measure. The final descriptor is constructed by the concatenation of the feature vectors 

of all scales. It generates a feature vector of size 2400 (i.e., 4 scales each of which of size 600).  

In Table 5, the results of the fixed multiscale FMS-CCMRELBP for coral reef datasets is presented. 

Although, the performance of CMRELBP and CCMRELBP are comparable, the length of their feature 

vectors is drastically different (i.e., CCMRELBP reduces the length to 360=4x90 features for all scale). The 

CCMRELBP generates low-dimensional discriminative features.  

       

Table 4 the results of the proposed FMS-CMRELBP descriptor on the coral reef dataset, wc=3 and wr= [3 5 7 9]. 

Proposed method Number of 

features 

Dataset  Canberra Chi-Square Extended 

Canberra 

Fixed multiscale-

CMRELBP 

P=[8 8 8 8] 

R=[2 4 6 8] 

4 × 600 = 2400 

RSMAS 97.27 98.06 98.98 

EILAT 97.62 98.09 99.07 

EILAT2 97.26 98.53 99.23 

MLC2012 96.10 96.43 97.02 

Fixed multiscale-

CMRELBP 

P=[8 8 8 8] 

R=[1 3 5 7] 

4 × 600 = 2400 

RSMAS 96.99 97.85 98.12 

EILAT 97.05 97.92 98.33 

EILAT2 97.11 98.33 98.76 

MLC2012 95.98 96.13 96.88 
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Table 5 the results of the proposed FMS-CCMRELBP descriptor on the coral reef dataset, wc=3 and wr= [3 5 7 9]. 

Proposed method Number of 

features 

Dataset  Canberra Chi-Square Extended 

Canberra 

Fixed multiscale-

CCMRELBP 

P=[8 8 8 8] 

R=[2 4 6 8] 

4 × 90 = 360 

RSMAS 96.23 97.53 98.86 

EILAT 96.78 97.89 99.00 

EILAT2 97.17 97.72 99.06 

MLC2012 95.16 95.91 96.83 

Fixed multiscale-

CCMRELBP 

P=[8 8 8 8] 

R=[1 3 5 7] 

4 × 90 = 360 

RSMAS 96.10 97.35 97.96 

EILAT 96.55 97.66 98.88 

EILAT2 97.05 97.57 98.94 

MLC2012 94.88 95.73 96.11 

 

The experimental results of varying multiscale of both CMRELBP and CCMRELBP are presented in table 

6. The performance of VMS-CMRELBP is slightly higher than the fixed version reported in table 4 but the 

size of the feature vector is very high (10665). The number of neighboring points varies for different 

radiuses which result in high dimensional feature vectors. In other words, VMS-CMRELBP is not efficient 

in term of classification time. On the other hand, VMS-CCMRELBP not only produces low dimensional 

discriminative feature vectors (of size 360) but also provides acceptable performance. In fact, the results of 

descriptors FMS-CMRELBP and VMS-CCMRELBP are noteworthy.   

 

Table 6 the results of the proposed descriptors, VMS-CMRELBP and VMS-CCMRELBP, wc=3 and wr= [3 5 7 9]. 

Proposed method Number of features Dataset  Canberra Chi-Square Extended 

Canberra 

Varying multiscale-

CMRELBP 

P=[8 16 24 24] 

R=[2 4 6 8] 

600 + 1947 + 4059
+ 4059 = 10665 

RSMAS 97.98 98.32 99.00 

EILAT 98.08 98.55 99.15 

EILAT2 98.23 98.61 99.36 

MLC2012 96.21 96.87 97.33 

Varying multiscale-

CCMRELBP  

P=[8 16 24 24] 

R=[2 4 6 8] 

4 × 90 = 360 

RSMAS 96.27 97.72 98.88 

EILAT 96.90 97.95 99.03 

EILAT2 97.29 98.00 99.01 

MLC2012 95.16 95.91 96.51 

 

The results of the state-of-the-art methods on the coral reef datasets are demonstrated in Table 7. In this 

table, we compare the performance of our descriptors with state-of-the-art methods. Note that the results of 

the VMS-CMRELBP and FMS-CMRELBP descriptors are not reported because of their high 

dimensionality (having a feature vector of size 10665) and time consumption. We also pointed out the top 

four methods by labels (1) to (4).  

EILAT dataset: The highest performance for EILAT dataset belongs to the proposed VMS-CCMRELBP 

descriptor with the value of 99.03. Our FMS-CCMRELBP descriptor is the runner-up method obtaining an 

accuracy of 99.00. In the third place, 98.90 is achieved by the method proposed by Ani et al. [36]. They 

used OPT methods for feature extraction from coral reef images and utilized PCNNN approach to classify 

them. MDCP+DDVP descriptor [37] is the next best approach in the fourth place.  
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EILAT2 dataset: The OPT based method [36] provides the best accuracy 99.20. Both FMS-CCMRELBP 

and VMS-CCMRELBP descriptors have an accuracy of higher than 99.00 in the second and third place 

respectively. The next best accuracy, 99.00, is obtained by MDCP+DDVP method  [37].  

MLC 2012 dataset: The first and second ranks are obtained by the proposed descriptors FMS-CCMRELBP 

and VMS-CCMRELBP, respectively. The third best approach is the OPT method proposed in  [36] which 

achieved an accuracy of 94.70 (about 1.8 less than the second rank). The next best result belongs to the 

MDCP+DDVP method  [37].    

RSMAS dataset: The highest performance for RSMAS dataset belongs to the OPT based method [36]. 

Our varying CCMRELBP and fixed multiscale CCMRELBP descriptors are ranked in the second and third 

place respectively. The fourth place is achieved by MDCP+DDVP method which is proposed by Ani et al. 

[37].  

In fact, the results of the proposed descriptors are noteworthy. According to the results of the proposed 

descriptors in Tables 4-7, the FMS-CCMRELBP and VMS-CCMRELBP provide the best trade-off 

between performance (accuracy) and length of the feature vector. 

 

 
Table 7 The Overall Accuracy (OA) (%) of the proposed methods in comparison with the state-of-the-art methods 

on the coral reef datasets 

Descriptor  Methodology EILAT EILAT2 MLC2012 RSMAS 
Shiela et al. [30] (2008) NCC, LBP 87.90 89.50 68.70 69.30 

Oscar et al. [3] (2008) 
SIFT, Gabor filter 

response, NCC 
67.30 79.90 68.70 73.90 

Stokes et al. [33] (2009) DCT, RGB 75.20 78.90 78.30 82.50 

Guo et al. [12] (2010) CLBP 79.12 85.99 68.90 82.60 

Beijobom et al. [7] (2012) MR-filter bank 69.10 82.10 73.70 85.40 

Shihavuddin et al. [11] 

(2013) 

CLBP, GLCM, 

Gabor filter 

response 

96.90 91.90 85.50 96.50 

Mohammad et al. [28] (2018) CLBP 88.30 90.35 63.53 83.51 

Ani et al. [26] (2017) ILDP 97.50 98.20  89.10 97.10 

Ani et al. [27] (2018) Z⊕TZLBP 97.30 98.00  93.90  97.80 

Ani et al. [36] (2018) OPT 98.90 (3) 99.20 (1) 94.70 (3) 99.00 (1) 

Ani et al. [37] (2018) MDCP + DDVP 98.56 (4) 99.00 (4) 94.60 (4) 98.12 (4) 

Gomez et al. [21] (2019) ResNet  97.85  98.97 76.66 97.95  

FMS-CCMRELBP CCMRELBP 99.00 (2) 99.06 (2) 96.83 (1) 98.86 (3) 

VMS-CCMRELBP CCMRELBP 99.03 (1) 99.01 (3) 96.51 (2) 98.88 (2) 

 

3.3 Results on the Texture Datasets 

To evaluate the robustness of the proposed method, two different sets of experiments have been carried out. 

The purpose of the first is to test the robustness of the method to variations such as rotation, illumination 

and viewpoint. The second is to examine robustness to random noise corruption.  

3.3.1 Evaluation of robustness to texture variations  
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To evaluate the robustness of the proposed method to texture variations, a number of well-known datasets 

are selected: KTH-TIPS, CURET, UIUCTEX, Outex_TC_00010 (TC10) and two groups of 

Outex_TC_00012 (TC12t and TC12h). These datasets are briefly described in Table 8. 

Table 8 description of Texture datasets 

Dataset Image 

Rotation 

Illumination 

Variation 

Scale 

Variation 

Significant 

Viewpoint/Pose 

KTH-TIPS No Yes Yes Yes 

CURET Yes Yes  No No 

UIUCTEX No Yes Yes Yes 

OUTEX_TC10 Yes Yes No No 

OUTEX_TC12h Yes Yes No No 

OUTEX_TC12t Yes Yes No No 

 

 

In the experiments, the FMS-CCMRELBP and VMS-CCMRELBP descriptors are tested on the 

abovementioned datasets and the results are shown in table 9. For both proposed descriptors, the 

classification accuracy is very high on all texture datasets. The classification accuracy of both proposed 

descriptors is remarkable on all texture datasets. The performance indicates the robustness of the proposed 

method to rotation, illumination, viewpoint, and small scale changes. Moreover, the generated feature 

vectors have very low dimensionality (i.e., size of 60 and 360 for gray and color images respectively).  

 

Table 9 The overall accuracy of the proposed descriptors on the texture datasets for the evaluation of the robustness 

Proposed method Dataset  Number of 

features 

Distance measure 

Canberra Chi-

Square 

Extended 

Canberra 

FMS-CCMRELBP 

CURET 4 × 15 = 60 97.63 98.99 99.83 

UIUCTEX 4 × 15 = 60 97.30 98.08 99.26 

KTH-TIPS 4 × 90 = 360 97.93 98.14 99.41 

OUTEX_TC10 4 × 15 = 60 97.74 98.11 99.48 

OUTEX_TC12t 4 × 15 = 60 97.10 98.82 99.13 

OUTEX_TC12h 4 × 15 = 60 97.58 98.96 99.27 

VMS-CCMRELBP 

CURET 4 × 15 = 60 97.21 98.86 99.75 

UIUCTEX 4 × 15 = 60 97.00 98.33 99.37 

KTH-TIPS 4 × 90 = 360 97.11 98.69 99.53 

OUTEX_TC10 4 × 15 = 60 97.80 98.45 99.55 

OUTEX_TC12t 4 × 15 = 60 97.03 98.91 99.21 

OUTEX_TC12h 4 × 15 = 60 97.07 98.90 99.30 

 

In table 10, we compare the results of the proposed descriptors with other major texture classification 

approaches. In this table, we pointed out four best methods ranked by numbers (1) to (4). For the CURET 

dataset, the proposed FMS-CCMRELBP is the best method with the accuracy of 99.83 and the OPT method 

[36] is the runner up. The third place belongs to the VMS-CCMRELBP descriptor, followed by the 

Z⊕TZLBP [27] with an accuracy of 99.70.   
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For the UIUCTEX and KTH-TIPS datasets, the ranking of best methods is similar. The proposed VMS-

CCMRELBP provide the best accuracy, followed by the OPT approach [36]. The FMS-CCMRELBP 

descriptor is ranked in the third place. The fourth best results belong to Z⊕TZLBP method [27].  

According to the results in tables 9 and 10, the proposed descriptors can be considered as powerful, efficient 

and robust descriptors, which are comparable with the state-of-the-art methods and in some cases, it 

outperforms them.   

 

Table 10 Comparison of the results with other major methods on UIUCTEX, CURET, and KTH-TIPS datasets 

Author Methodology CURET UIUCTEX KTH-TIPS 

Sheila et al. [30] (2008) NNC, LBP 20.80 14.60 25.50 

Stokes et al. [33] (2009) 
SIFT, Gabor, 

NNC 
49.70 56.90 88.90 

Oscar et al. [3] (2008) DCT,RGB 38.10 19.90 48.30 

Zhang et al. [60] (2007) SIFT 98.50 99.00  96.70 

Caputo et al. [57] (2010) LBP 98.60 98.20 98.60  

Guo et al. [12] (2010) CLBP 95.85 91.10 97.20 

Beijobom et al. [7] (2012) MR filter bank 86.50 32.20 36.30 

Shihavuddin et al. [11] (2013) GLCM, Gabor 99.20  97.30 97.30 

Ani et al. [26] (2017) ILDP 99.40  98.90  98.90  

Mohammad et al. [28] (2018) CLBP 96.59 93.04 97.30 

Ani et al. [27] (2018) Z⊕TZLBP 99.70 (4) 99.20 (4) 99.40 (4) 

Ani et al. [36] (2018) OPT 99.78 (2) 99.31 (2) 99.48 (2) 

FMS-CCMRELBP CCMRELBP 99.83 (1) 99.26 (3) 99.41 (3) 

VMS-CCMRELBP CCMRELBP 99.75 (3) 99.37 (1) 99.53 (1) 

 

3.3.2 Evaluation of robustness to noise 

 To evaluate the robustness of the proposed method to random noise corruption, three well-known test 

suites from the OUTEX dataset are selected as benchmarks, consisting Outex TC10, Outex TC12t and 

Outex TC12h (see table 8). Each test suite has 24 texture image classes consisting of images of size 

128 × 128 pixels, collected under different illumination and rotation angles. We artificially add Gaussian 

noise to these test suites in order to measure the robustness of our method [48].  

The results of the proposed descriptors on these test suites with different Signal to Noise Ratio (SNR) values 

[48] are shown in Tables 11-13. To evaluate the method, the results of the state-of-the-art robust-to-noise 

LBP variants are also reported in these tables.  

Outex TC10: In table 11, the accuracy of the proposed method in comparison with other major methods 

on noisy OUTEX TC10 dataset is presented. The CRLBP method performs best for SNR= 30 and 15, 

whereas for SNR=10, and 5, Mean-C+RMCLBP is the best method. The proposed VMS-CCMRELBP 

outperforms other methods for SNR=3. Although different methods obtain the best accuracy in different 

SNR values, our proposed method has the best robustness against intensity variation. To better illustrate 

this superiority, the results of major methods are illustrated in Fig. 6. As the noise increases from SNR 30 

to SNR 3, the performance of VMS-CCMRELBP method degrades 14.66 percent, the least among all of 

the methods. The second best method is FMS-CCMRELBP having 14.82 percent decrease, followed by 

BRINT1_CS_CM with 16.54 percent. 
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Table 11. The accuracy of the proposed method in comparison with other major methods on noisy OUTEX TC10 

dataset  

Methods SNR=30 SNR=15 SNR=10 SNR=5 SNR=3 

LTP [42] 95.05 88.91 69.01 25.89 12.08 

LBP [38] 74.66 64.66 48.78 22.40 10.63 

CLBP_S/M/C [12] 96.07 93.65 88.39 51.98 17.79 

CRLBP(R=3, P=24) α =1 [46] 99.35 98.93 97.76 92.27 60.96 

RMCLBP (R = 1,P = 8) [48] 98.31 97.97 97.03 86.93 49.71 

RMLTP (R = 1,P = 8) [48] 97.34 96.69 95.10 72.47 29.01 

BRINT1_CS_CM(MS9) [47] 94.04 92.21 92.42 89.24 77.50 

BRINT2_CS_CM(MS9) [47] 96.48 95.47 92.97 88.31 71.51 

Mean-S + RMCLBP (R = 1,P = 8) [48] 99.09 98.93 97.97 93.93 74.14 

Mean-S + RMLTP (R = 1,P = 8) [48] 97.92 97.40 95.76 88.80 57.55 

Mean-C + RMCLBP (R = 1,P = 8) [48] 98.78 98.67 98.10 94.90 79.69 

Mean-C + RMLTP (R = 1,P = 8) [48] 98.23 97.99 98.02 91.61 64.71 

FMS-CCMRELBP 98.16 98.02 97.66 93.88 83.34 

VMS-CCMRELBP 98.22 98.06 97.79 93.96 83.56 

 

Fig. 6  The accuracy of the well-known approaches on noisy OUTEX TC10 dataset 

 

Outex TC12t: Table 12 shows that both proposed descriptors outperform other methods for high levels of 

noise. The CRLBP method provides the highest accuracy for SNRs= 30 and 15. When the intensity of noise 

increases, our proposed method, FMS-CCMRELBP yields the best results and outperforms other methods. 

The comparison of our method to the major methods is also plotted in Fig. 7.  
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Table 12. The accuracy of the proposed method in comparison with other major methods on noisy OUTEX TC12t 

dataset 

Methods SNR=30 SNR=15 SNR=10 SNR=5 SNR=3 

LTP  [42] 80.30 75.42 60.14 24.93 11.09 

LBP [38] 64.56 53.38 42.18 20.86 9.88 

CLBP_S/M/C [12] 87.41 84.05 79.77 48.73 18.19 

CRLBP(R=3, P=24) α =1 [46] 97.08 96.50 94.91 86.97 56.34 

RMCLBP (R = 1,P = 8) [48] 95.72 94.47 92.63 82.34 52.36 

RMLTP (R = 1,P = 8) [48] 92.31 91.81 90.53 69.58 28.63 

BRINT1_CS_CM(MS9) [47] 90.63 89.72 88.12 83.84 74.47 

BRINT2_CS_CM(MS9) [47] 93.59 91.32 90.49 83.68 69.70 

Mean-S + RMCLBP (R = 1,P = 8) [48] 96.71 95.88 95.32 90.60 75.63 

Mean-S + RMLTP (R = 1,P = 8) [48] 93.06 92.25 93.26 87.15 63.10 

Mean-C + RMCLBP (R = 1,P = 8) [48] 96.85 96.50 95.30 89.58 72.36 

Mean-C + RMLTP (R = 1,P = 8) [48] 93.54 83.47 92.73 86.48 57.31 

FMS-CCMRELBP 97.02 96.44 96.09 92.33 76.88 

VMS-CCMRELBP 97.06 96.48 96.13 92.40 76.91 

 

Fig. 7 The accuracy of the well-known approaches on noisy OUTEX TC12t dataset 

Outex TC12h: As shown in Table 13, Mean-S+RMCLPB provides the best result in SNR=30 and 10. The 

Mean-C+RMCLBP provides the highest accuracy in SNR=15. The highest performance for SNR=5 and 

SNR=3 belongs to the proposed VMS-CCMRELBP descriptor. The results show that the proposed method 

is comparable with the state-of-the-art robust LBP based methods in higher SNR values (SNR>10) and it 

outperforms them in lower SNR values (SNR<10). The proposed descriptors are robust to the noise 

intensity changes as presented in Fig. 8. 

 

Table 13 The accuracy of the proposed method in comparison with other major methods on noisy OUTEX TC12h  

Methods SNR=30 SNR=15 SNR=10 SNR=5 SNR=3 

LTP  [42] 79.23 75.28 64.68 25.42 10.74 

LBP [38] 64.03 55.58 45.02 21.37 10.37 
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CLBP_S/M/C [12] 90.53 86.90 81.78 50.60 17.87 

CRLBP(R=3, P=24) α =1 [46] 97.04 96.57 95.49 88.06 57.22 

RMCLBP (R = 1,P = 8) [48] 95.09 94.84 93.13 82.89 50.84 

RMLTP (R = 1,P = 8) [48] 89.31 89.54 86.74 65.83 26.34 

BRINT1_CS_CM(MS9) [47] 92.31 90.95 89.84 85.83 76.04 

BRINT2_CS_CM(MS9) [47] 95.14 93.66 92.29 84.77 71.02 

Mean-S + RMCLBP (R = 1,P = 8) [48] 97.59 96.53 96.32 91.74 76.74 

Mean-S + RMLTP (R = 1,P = 8) [48] 93.75 92.50 93.24 86.95 61.41 

Mean-C + RMCLBP (R = 1,P = 8) [48] 97.08 97.06 96.27 91.30 73.01 

Mean-C + RMLTP (R = 1,P = 8) [48] 93.10 92.94 92.82 87.59 57.92 

FMS-CCMRELBP 97.11 96.63 95.97 91.83 77.10 

VMS-CCMRELBP 97.18 96.71 96.01 91.87 77.30 

 

 

Fig. 8 The accuracy of the well-known approaches on noisy OUTEX TC12h dataset 

Comparing the results of Figures 6-8, we conclude that CRLBP and RMCLBP are not suitable for very 

noisy texture datasets. On the other hand, BRINT, Mean_S+RMCLBP and the proposed descriptors are the 

most robust methods to the noise and provide the best results on noisy texture datasets in low SNR. 

The feature extraction time of these methods is illustrated in Table 14. This table exhibits that FMS-

CCMRELBP is among the fastest methods while the VMS-CCMRELBP time is higher than FMS version, 

yet comparable with major methods. CRLBP and BRINT have high computation time in comparison to 

other LBP versions due to their large feature vectors. RMCLBP is a fast method but does not perform well 

for noisy images. Table 14 also shows the number of generated features. Obviously, for the proposed 

descriptors, the small size of the feature vectors not only indicates reasonable feature extraction time but 

also low processing time for features matching in the classification phase. Therefore, the proposed 

descriptors could be considered as accurate, fast and robust descriptors.  
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Table 14 Comparison of features extraction time for each texture of Outex TC10 

Method  Number of features Computational time (msec) 

BRINT1_CS_CM (MS9) 1296 39.5 

BRINT2_CS_CM (MS9) 1296 42.4 

CRLBP (R = 1, P = 8) 200 21.4 

CRLBP (R = 3, P = 24) 1352 40.3 

LTP (MS9) 384 21.2 

CLBP (MS3) 4904 29.7 

Mean-S + RMCLBP 200 21.4 

FMS-CCMRELBP 60 21.7 

VMS-CCMRELBP 60 30.7 

 

4. Conclusion 

In this paper, two color texture descriptors and their multiscale versions are proposed for coral reef image 

classification. The considered multiscale strategy includes two schemes: Fixed multiscale (FMS) and 

Varying multiscale (VMS). These descriptors are based on MRELBP, a powerful and robust feature 

extraction method. The accuracy of MRELBP is very high for texture image classification in gray scale 

domain but its performance is not appropriate for color texture classification because it ignores the color 

texture features. In addition, the multiscale version of MRELBP generates high dimensional feature vectors. 

We proposed Color MRELBP (CMRELBP) to extract local color texture from images. The proposed 

descriptor provides high accuracy, but the dimensionality of the feature space is high especially in varying 

multiscale scheme.  

The second proposed descriptor, CCMRELBP, is proposed to overcome this drawback. CCMRELBP is 

constructed based on Integrative Co-occurrence Matrix (ICM) and color MRELBP images. It provides high 

performance in low dimensional feature space. Moreover, it is robust to noise and rotation and illumination 

changes. It can also capture macrostructures and the relative relation of microstructures information in 

texture images, especially in Varying and Fixed multiscale schemes (FMS and VMS).  

Varying and Fixed multiscale versions of the proposed method (VMS-CCMRELBP and FMS-

CCMRELBBP) are tested on the coral reef and well-known texture datasets. The results show that the 

proposed method considers the trade-off between accuracy and dimensionality of the feature vector. In 

future work, we want to modify the proposed descriptors for high–level applications such as image patching 

and object recognition.  
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