48 research outputs found

    A Survey Study of the Current Challenges and Opportunities of Deploying the ECG Biometric Authentication Method in IoT and 5G Environments

    Get PDF
    The environment prototype of the Internet of Things (IoT) has opened the horizon for researchers to utilize such environments in deploying useful new techniques and methods in different fields and areas. The deployment process takes place when numerous IoT devices are utilized in the implementation phase for new techniques and methods. With the wide use of IoT devices in our daily lives in many fields, personal identification is becoming increasingly important for our society. This survey aims to demonstrate various aspects related to the implementation of biometric authentication in healthcare monitoring systems based on acquiring vital ECG signals via designated wearable devices that are compatible with 5G technology. The nature of ECG signals and current ongoing research related to ECG authentication are investigated in this survey along with the factors that may affect the signal acquisition process. In addition, the survey addresses the psycho-physiological factors that pose a challenge to the usage of ECG signals as a biometric trait in biometric authentication systems along with other challenges that must be addressed and resolved in any future related research.

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book

    Counterpulsation cardiac assist device controller defection filter simulation and canine experiments

    Get PDF
    Electronic control systems for counterpulsation Cardiac Assist Devices (CADs) are an essential part of cardiac assistance. Synchronization of the counterpulsation CAD controller with the cardiac cycle is critical to the efficacy of the CAD. The robustness of counterpulsation CAD controllers varies with the ability of the CAD controller to properly trigger on aortic pressure (Pa) and electrocardiogram (ECG) signals for sinusoid rhythms, non-sinusoid rhythms and non-ideal signals resulting from surgical intervention. An analog-to-digital converter and digital-to-analog converter based CAD controller development platform was devised on a 33Mhz PC-AT. Counterpulsation Pa systolic rise and dicrotic notch detectors were demonstrated with a 15cc pediatric Intraaortic Balloon (IAB) and 50cc Extraaortic Counterpulsation Device (EACD) CADs using mongrel canine experimental models in which biological variation due to changing heart rate and arrhythmia as well as surgical interference due to mechanical ventilation, electrocautery, signal attenuation and random noise was present. The robust Pa triggering algorithm was based on a derivative comparator riding clipper algorithm for the Pa-based controller. In order to empirically determine the robustness of the Pa triggering algorithms, a simulation platform, Pa trace model, and Pa trace artifact and physiological variation models were devised. Each set of simulation experiments utilized a different Pa trace artifact or physiological variation model to determine the capability of the Pa trigger algorithm to withstand the effects of the Pa detection impediments while maintaining 100% accuracy of the dicrotic notch detection. Multiple simulation experiments were conducted in which the same nominally adjusted interference was increased to benchmark the immunity threshold of the dicrotic notch detector. Biological variation and deviations in Pa artifacts due to clinical conditions experienced in cardiothoracic surgery were investigated. Pa triggering was unhindered by biological variation of a Pa trace with a 3 mmHg dicrotic notch deflection along with a Pa trace with no dicrotic notch deflection present. Pa triggering was unhindered by heart rate variability ranging from 60 to 80 bpm due to respiration. Pa triggering was unhindered by clinical conditions including 40 mmHg changes in the Pa baseline modeling mechanical ventilation, aortic trace attenuation modeling variations in pressure transducer positioning and blood coagulation on the pressure catheter tip ranging from 100% to 200% of the Pa trace amplitude every four seconds, uniformly distributed noise with a mean of 0.5mmHg and standard deviation of 0.289mmHg and Gaussian distributed noise with a zero mean and standard deviation of 0.6nunHg. The results of the simulation experiments performed quantified the robustness of the Pa detection algorithm. Development of a fault tolerant counterpulsation CAD control system required the development of a robust ECG triggering algorithm to operate in tandem with the Pa triggering algorithm. An ECG detector was developed to provide robust control for a range of ECG traces due to biological variation and signal interference. The ECG R-wave detection algorithm is based on a modified version of the Washington University QRS-complex DD/1 algorithm (Detection and Delineation 1) which uses the associated AZTEC (Amplitude Zero Threshold Epic Coding) preprocessing algorithm and provides accurate ECG-based CAD control R-wave detection for 96.56% of the R-waves stored within the MIT/BIH ECG Arrhythmia database with a maximum detection delay of 8 milliseconds. Further IAB experiments performed with mongrel canine experimental models demonstrated that the systolic time interval to heart rate relationship existing in humans (essential to human patient CAD control inflation prediction) is not prevalent in canine mongrels particularly when treated with beta-blockers. In order to execute both Pa and ECG C software detection algorithms for a fault tolerant counterpulsation CAD controller, investigation into the communications throughput of a quad-transputer board was performed. Development of streamlined communication primitives led to a communication processor utilization of 8.3%, deemed efficient enough for fault tolerant multiprocessor CAD control implementation

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua

    Acoustic sensing as a novel approach for cardiovascular monitoring at the wrist

    Get PDF
    Cardiovascular diseases are the number one cause of deaths globally. An increased cardiovascular risk can be detected by a regular monitoring of the vital signs including the heart rate, the heart rate variability (HRV) and the blood pressure. For a user to undergo continuous vital sign monitoring, wearable systems prove to be very useful as the device can be integrated into the user's lifestyle without affecting the daily activities. However, the main challenge associated with the monitoring of these cardiovascular parameters is the requirement of different sensing mechanisms at different measurement sites. There is not a single wearable device that can provide sufficient physiological information to track the vital signs from a single site on the body. This thesis proposes a novel concept of using acoustic sensing over the radial artery to extract cardiac parameters for vital sign monitoring. A wearable system consisting of a microphone is designed to allow the detection of the heart sounds together with the pulse wave, an attribute not possible with existing wrist-based sensing methods. Methods: The acoustic signals recorded from the radial artery are a continuous reflection of the instantaneous cardiac activity. These signals are studied and characterised using different algorithms to extract cardiovascular parameters. The validity of the proposed principle is firstly demonstrated using a novel algorithm to extract the heart rate from these signals. The algorithm utilises the power spectral analysis of the acoustic pulse signal to detect the S1 sounds and additionally, the K-means method to remove motion artifacts for an accurate heartbeat detection. The HRV in the short-term acoustic recordings is found by extracting the S1 events using the relative information between the short- and long-term energies of the signal. The S1 events are localised using three different characteristic points and the best representation is found by comparing the instantaneous heart rate profiles. The possibility of measuring the blood pressure using the wearable device is shown by recording the acoustic signal under the influence of external pressure applied on the arterial branch. The temporal and spectral characteristics of the acoustic signal are utilised to extract the feature signals and obtain a relationship with the systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively. Results: This thesis proposes three different algorithms to find the heart rate, the HRV and the SBP/ DBP readings from the acoustic signals recorded at the wrist. The results obtained by each algorithm are as follows: 1. The heart rate algorithm is validated on a dataset consisting of 12 subjects with a data length of 6 hours. The results demonstrate an accuracy of 98.78%, mean absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and a correlation coefficient of 0.998 with reference to a state-of-the-art PPG-based commercial device. A high statistical agreement between the heart rate obtained from the acoustic signal and the photoplethysmography (PPG) signal is observed. 2. The HRV algorithm is validated on the short-term acoustic signals of 5-minutes duration recorded from each of the 12 subjects. A comparison is established with the simultaneously recorded electrocardiography (ECG) and PPG signals respectively. The instantaneous heart rate for all the subjects combined together achieves an accuracy of 98.50% and 98.96% with respect to the ECG and PPG signals respectively. The results for the time-domain and frequency-domain HRV parameters also demonstrate high statistical agreement with the ECG and PPG signals respectively. 3. The algorithm proposed for the SBP/ DBP determination is validated on 104 acoustic signals recorded from 40 adult subjects. The experimental outputs when compared with the reference arm- and wrist-based monitors produce a mean error of less than 2 mmHg and a standard deviation of error around 6 mmHg. Based on these results, this thesis shows the potential of this new sensing modality to be used as an alternative, or to complement existing methods, for the continuous monitoring of heart rate and HRV, and spot measurement of the blood pressure at the wrist.Open Acces

    Robust ECG based person identification system

    Get PDF
    Identity theft is a burgeoning issue. Gaining unauthorized access to computer network tends to compromise the system which could potentially cause undetected fatal destruction and disastrous consequences for individuals and the nation. It is to the extent of taking down communication networks, paralyzing transportation systems and crippling power grids. If security system are burdensome, people may avoid using them, preferring functionality and convenience. For these reasons, an effective security mechanism needs to be deployed in combating identity crimes. Therefore, this thesis proposes of implementing biometric technology as a viable solution for the aforementioned problems. In the recent years, the electrocardiogram (ECG) signal was introduced as a potential biometric modality to overcome issues of currently available biometric attributes which could be falsified by gummy fingerprints, static iris and face images, voice mimics and fake signatures. When a person is having a heartbeat, automatically it proclaims that the person exist and is alive. Thus, the advantage as a life indicator mechanism verifies the presence of a person during the time of recognition. For the past decade, preliminary investigations on the validity of using ECG based biometric have been manifested with different person recognition methods to support its usability in security and privacy applications. Even though, ECG based biometric has set its ground in recognizing people, however, the underlying issues that governs a practical biometric system have not been properly addressed. Basic problems which require further attention are fundamental issues which touch the aspects of reliability and robustness of an ECG based biometric system in a real life scenario. Thus, in this thesis, we have identified four main research problems which are essentially important to increase user acceptability of ECG based biometric recognition covering different aspects of a practical biometric system such as distinctiveness, permanence, collectability and performance. The research issues being posed in this thesis are the selection of extracted biometric features, subject recognition with different pathological and physiological conditions, performing biometric with low sampling frequency signals and applying ECG based biometric in mobile surroundings. This thesis suggests of solving ECG based biometric recognition raised problems in a holistic perspective which does not limit the implementations to certain groups of users but looking at the issue as a whole and in a boarder avenue so that it could be applicable to almost all walks of life. A single optimum biometric system that supersedes others does not exist as each biometric modality is based on the nature of the implementation and application. Nevertheless, ECG based biometric features give a strong indication that it would be well accepted by users in the future due to the automatic liveness detection factor which is available in every human being that further expands to people with disabilities such as amputees and those who are visually impaired. Therefore, this thesis is substantial and vital as to assist and provide alternative person identification mechanism to present security and privacy applications in the quest to combat identity crimes
    corecore