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A B S T R A C T

The first and main contribution of this research work is the higher-order statistics (HOS)-based 
non-linear analysis and subsequent diagnosis of abnormal electrocardiogram (ECG) signals, 
particularly myocardial ischaemia. In the time domain; the second-, third-, and the fourth-order 
cumulants have been used in the analysis. In the frequency domain; up to the tenth-order 
polyspectra have been exploited. This HOS-based analysis of normal and ischaemic 
electrocardiogram signals has led to the identification of certain key discriminant features for 
the two physiological states of the heart. These features are then fed to different 
backpropagation-based multiple layer perceptrons for classification. The second contribution is 
a proposed new methodology to discriminate patients with angina pectoris or with old 
myocardial infarction (MI) during the first 60 seconds of stress test (or in some cases using rest 
ECG). It is based on the pseudo-spectral Multiple Signal Classification (MUSIC) and has the 
potential of being highly sensitive diagnostic signal processing tool. The third contribution is 
the development of a novel higher-order statistics, high-resolution estimator for quadratically 
coupled frequencies based on subspace spectral estimation.

Extensive studies of cumulants, bispectra and bicoherence-squared of normal and ischaemic 
ECG signals collected from MIT and ST-T European databases has enabled us to see key 
discriminant features in both the third- and fourth-order cumulant domains. In the frequency 
domain, the polyspectral study has been extended to the lOth-order poly spectra. By calculating 
one-dimensional polyspectrum slices using an algorithm developed by Zhou and Giannakis 
(1995) a considerable reduction in the CPU time has been achieved. Furthermore, Zhou’s 
algorithm has been further extended to estimate the polycoherency slices which are used to 
characterise non-linearities in normal and ischaemic ECG signals. An important finding in this 
thesis is the decrease of the order of non-linearity representing the electrocardiogram signals of 
ischaemic patients.

This thesis also includes the results of a pilot study involving eighteen healthy subjects (MIT 
database) and confirmed that the ECG signal is non-Gaussian, cyclostationary and quasi- 
periodic. Combined spectral and bispectral analysis of the signal revealed that there are unique 
harmonic characteristics for the P-wave, QRS complex and T-wave and other frequencies due to 
harmonic interactions.

In this work three linear and one non-linear adaptive filtering/predictions techniques have been 
applied to noisy ECG signals and their respective performances appraised. It is shown that the 
Kalman filter gives the best mean-square error MSE error but its comparatively long execution 
time and problems arising from ill-conditioning of the state-error covariance matrix render it of 
limited use in ECG applications. It is also shown that the LMS-based quadratic and cubic 
Volterra filters are the most superior for the ECG signal prediction.

For ECG classifications; three multi-layer perceptrons employing back-propagation and 
modified back-propagation algorithms, and using two sets from the higher-order most 
discriminant features as their inputs, have yielded fairly high classification rates.

xii



Chapter 1 background

C h a p t e r  1

BACKGROUND

1.1 Introduction

Signal processing is concerned with the representation, manipulation, and 

transformation of signals and the information that they carry. For example, we may 

wish to enhance a signal by reducing the noise or some other interference. Or process 

the signal to extract some information such as the words in a speech signal, the identity 

of a person in a photograph, or the classification of a target in a radar signal. 

Biomedical signal processing is concerned with the analysis of physiological signals 

such as the electroencephalogram (EEG), the blood pressure wave, the 

electrocardiogram (ECG), ...etc. The most beneficial aspect of this analysis is to 

extract information from these signals. This information can be used in automated 

interpretation and classification of the case or to facilitate, accelerate and support 

clinical decision-making. Examples of the tools used in signal processing techniques 

include linear and non-linear filtering, power spectral analysis, time frequency analysis, 

higher-order statistics and neural networks.

The electrocardiogram (ECG) signals examine the potential differences between the 

excited and non-excited parts of the heart caused by action potentials of myocardial 

cells. Although patterns associated with cardiac events appear clearly in the ECG 

signal, classification and diagnosis of the ECG signal is difficult for the following 

reasons (Cox, et al. 1972): 1) measurements at a distance from the heart partially 

obscure cardiac processes. 2) Complex variabilities are inherent in the phenomena for 

example wave morphology, bizarre at one location, can simultaneously appear quite 

normal at another. 3) Arrhythmia detection is a complex problem, often involving 

diverse morphologies and rhythms that vary among different subjects as well as
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Chapter 1 :Background

different time for the same subject. Inconsistency of the human observer adds another 

form of variability to the problem of ECG signal analysis. A study in which 125 ECG 

signals were analysed twice by nine experienced interpreters, the results were consistent 

on average in just 73 percent of the cases (Yamada 1968). Machine processing using 

objective measurement and classification criteria may provide more reproducible 

analysis.

In recent years the trend toward automated analysis of ECG signals has gained 

momentum. Microprocessor-based recorders have been developed, the computation 

power of microprocessors allows for the implementation of many digital ECG signal 

processing techniques. Perhaps, the most critical use of these computerised ECG 

systems occurs in the intensive care units (ICU) where the ECG signal processing 

algorithms must run in real-time. However, there are many other instruments that use 

such real-time algorithms. These include real-time patient monitoring in ambulatory 

ECG recording to detect arrhythmia or to monitor effects of cardiac drugs, operating 

room monitors, and ECG stress systems. Some automated systems work off-line such 

as, 12-lead off-line ECG signal analysis and Holter tape analysis. Holter technology 

produces 24 hours recording of the ECG signal of an ambulatory patient using a special 

tape recorder. A trained technician replays this Holter recording at high speed on a 

separate device called a Holter scanner, detects the various abnormalities in the ECG 

signal, and generates a report for the physician. Since the manual scanning of Holter 

tapes is a boring task and prone to errors from operator fatigue, there have been 

numerous attempts to automate this process. It is also suggested in recent literature 

dealing with the design consideration of cardiac pacemakers1 that the latest generation 

of these devices employs an ECG analysis capability. These automated systems must 

do the following, linear and non-linear filtering of the ECG signal, identification of 

ECG wave components and characterisation points such as the QRS complex, J-point, 

the ST-segment, the P- and T-waves, see Figure 1.1, then search and detection of 

abnormalities, if any, and decision-making (Thakor and Zhu 1991).

Pacemakers, are electronic devices that deliver regular short pulses of electricity to promote contraction of the heart 

muscle in people with a defect in the heart’s conduction system (heart block).

2



Chapter l:Background

Figure 1.1 Visual illustration of the ECG waveform and its component definitions.

1.2 The Heart

The heart serves as a four-chambered pump for the circulatory system. The main 

pumping function is supplied by the ventricles. The atria are merely antechambers to 

store blood during the time the ventricles are in systole. The heart is located in the 

thoracic cavity, medial to the lungs. Figure 1.2 shows a longitudinal section of the heart 

and the major arteries and veins (Burke 1985). The upper chambers of the heart, or the 

atria, have thin walls and a smooth shiny inner surface. The right atrium receives 

venous blood from the superior and inferior vena cava and sends its blood to the right 

ventricle. The left atrium receives blood from four pulmonary veins and sends its blood 

to the left ventricle. The lower chambers of the heart are the ventricles, which have 

much thicker walls than the atria. The right ventricle sends its blood to the pulmonary 

artery and to the capillaries of the lungs to be oxygenated. The left ventricle, with walls 

normally about three times as thick as the walls of the right ventricle, pumps blood into 

the aorta and to all parts of the body.

3
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Figure 1.2 Longitudinal section of the heart showing the four chambers and the 
major arteries and veins as well as the blood flow through the heart (Burke 1985).

1.2.1 Intrinsic Conduction System

The heart has specialised tissue that enables it to contract rhythmically and continuously 

without any motor. Structures involved in this specialised conducting system are the 

sinoatrial (SA) node, the atrioventricular (AV) node and the bundle of His, Figure 1.3 

shows the conduction system of the heart (Burke 1985). The SA node is the pacemaker 

that initiates the beat. It sends electrical impulses via the atrial myocardium to the AV 

node. The AV node sends the impulses to the bundle that branches throughout the walls 

of the ventricles. Contraction of heart muscle is preceded by electrical changes 

(depolarisation). The muscle remains depolarised for as long as the heart muscle is 

contracting. Repolarisation occurs when the heart muscle is relaxed. The voltage 

variation between contraction and relaxation (i.e., depolarisation and repolarisation) is 

called an "action potential". During the cardiac cycle, a series of action potentials is 

produced that are recorded as waves on the ECG. These waves represent different 

events during the heart cycle. Even though the heart has four chambers, it can be 

considered, from an electrical point of view, as consisting of only two chambers, since 

the two atria contract simultaneously and the two ventricles contract simultaneously.

4



Chapter 1 :Background

Figure 1.3 A diagrammatic representation of the conduction system of the heart 
showing the source of the electrical impulses and generation of the ECG signal 
(Burke 1985).

1.2.2 The Electrocardiogram (ECG) Signal

An electrocardiogram (ECG) is a graphic tracing of the electric current generated by the 

heart muscle during a heartbeat. One cardiac beat/cycle is one contraction of the heart 

and the relaxation period that follows, each beat of the normal heart originates in the SA 

node. The normal heart rate is approximately 70 beats per minute. The ECG signal 

provides information on the condition and performance of the heart. ECG signals are 

made by applying electrodes to various parts of the body to lead off the tiny heart 

current to the recording instrument. The four extremities and the chest wall have 

become standard sites for applying the electrodes; Figure 1.4 depicts a 12-lead 

recording of a normal ECG wave (Camm 1998). Standardising electrocardiograms 

makes it possible to compare them as taken from person to person and from time to time 

from the same person.

1.2.2.1 Interpretation of the Waveform

The normal electrocardiogram shows typical upward and downward deflections that 

reflect the alternate contraction of the atria and of the ventricles of the heart. Any

5
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deviation from the normal in a particular electrocardiogram is indicative of a possible 

heart disorder. The normal ECG waveform in Figure 1.1 has the following components:

•The P-wave is produced by atrial depolarisation. Normal P-wave results from the 

spread of electrical depolarisation through the atria. Since the muscle mass in the atria 

is relatively small, the electrical changes accompanying their contraction are also small. 

Normally atrial depolarisation originates from the SA node; the pacemaker of the heart. 

The P-wave normally lasts less than 0.11 s and has maximum amplitude of 0.3 mV. 

The P-wave will be upright in the standard monitor leads. Inverted P-waves indicate 

that the atria have been depolarised from an unusual site, and not the sinus node.

•The P-R interval represents the time taken for the electrical impulse to reach the 

ventricles from the atria. The P-R interval is measured from the beginning of the P- 

wave to the beginning of the QRS complex. It varies from 0.12 s to 0.21 s shorter 

intervals being seen at faster heart rates. The segment starting from the end of the P- 

wave to the beginning of the Q-wave (PR-segment) is normally at zero potential and is 

caused mainly by conduction delay in the AV node. A shortened P-R interval precedes 

some atrial ectopic beats1. The P-R interval is increased if there is atrio-ventricular 

block (Camm 1998; Hampton 1992).

•The ORS complex is produced primarily by the spread of electrical depolarisation 

through the ventricular muscle. The manifestations of atrial repolarisation are normally 

masked by the QRS complex. The Q-wave is the first negative deflection. The R-wave 

is the first positive deflection in the complex. The S-wave is a negative deflection in the 

complex that follows R-wave. The QRS complex duration is measured from the start of 

the Q-wave to the end of the S-wave and represents the time taken for ventricular 

depolarisation. A value of more than 0.12 s is abnormal and usually indicates an intra-

ventricular conduction disorder (such as bundle branch block). The individual 

components of the QRS complex will vary from lead to lead such as that the R- or S- 

waves may be dominant, or the Q-, R- or S-waves may be missing. Exaggerated QRS 

complexes may indicate ventricular hypertrophy (enlargement). While small QRS

Ectopic heart beat is a contraction of the heart ventricles occurring prematurely so as to disturb the regular rhythm.
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complexes occur when the heart is ‘insulated’ from the skin by fat or inflated lungs. A 

pathological Q-wave has a duration of > 0.04 s and associates with a variable loss in the 

height of the following R-wave (Q-wave is > 25% of the R-wave height). Pathological 

Q-waves normally indicate a previous myocardial infarction.

•The Q-T interval represents the total time taken for depolarisation and repolarisation of 

the ventricles. It is measured from the beginning of the QRS complex to the end of the 

T-wave. It normally ranges from 0.35 s to 0.45 s and is very rate sensitive, shortening as 

the heart rate increases (Camm 1998). Q-T interval is prolonged in heart failure, 

following myocardial infarction.

•The T-wave is produced by ventricular repolarisation and might be assumed to 

produce a deflection in the opposite direction to the depolarisation wave (QRS) 

complex. However, repolarisation takes place in the opposite direction to depolarisation 

(i.e., from epicardium to endocardium), and the T-wave is usually in the same 

orientation as the preceding QRS complex. Peaked T-waves are a feature of myocardial 

infarction and ischaemia. T-wave inversion may be seen in numerous conditions 

including myocardial infarction, ventricular hypertrophy or with bundle branch block. 

A small positive wave called U-wave is sometimes recorded after the T-wave and it 

may be due to slow repolarisation of ventricular papillary muscles.

•The ST-segment is measured from the end of the S-wave to the beginning of the T- 

wave, see Figure 1.1. It represents the period between the end of ventricular 

depolarisation and the start of ventricular repolarisation. Since after the whole 

ventricular mass has been depolarised all fibres bear identical charges and no potential 

difference exists between any two points, ST-segment is normally at zero potential. 

Displacement of the ST-segment both up and down is common, and may accompany 

myocardial ischaemia or infarction (Owen, et al. 1968).

1.2.2.2 ECG Signal Diagnostic Techniques

The main diagnostic techniques currently used in clinical situation may include: 

• ECG at rest for diagnosing chronic cardiovascular diseases,
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• Exercise ECG for diagnosing coronary artery disease,

• Continuous ambulatory ECG monitoring for studying arrhythmias,

• Intracardiac ECG (invasive technique) for precise location of the regions of 

disorders inside the heart.

Finally, the ECG signal has been used extensively over many decades to extract 

information from patients, these include, for example, disorders of the heart beat (rate 

and rhythm); conduction defects (time delays between the SA node and the AV node); 

damage to the myocardium (ischaemia, infarction); atrial and ventricular hypertrophy; 

and effects of drug intoxication.

Figure 1.4 A normal 12-lead electrocardiogram (Camm 1998).

1.3 Definitions

Normal Sinus Rate and Rhythm

In normal sinus rhythm, the rhythm is regular and the rate varies between 60 and 100 

beat per minute (bpm). Anything less than 60 bpm is known as sinus brachycardia.
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Anything more than 100 bpm is known as sinus tachycardia. Neither is necessarily 

abnormal (Hampton 1992).

The Isoelectric Line (base line)

It is the level of electrical activity between contractions. It includes the ST-segment and 

the line between the T-wave and the next P-wave (Tompkins 1993), see Figure 1.1.

J-point

It is the first inflection point after the S-point, or may be the S-point itself in certain 

ECG waveforms (Tompkins 1993).

Myocardial Ischaemia

Myocardial ischaemia occurs when there is an imbalance between the supply of oxygen 

(and other essential myocardial nutrients) and the myocardial demand for these 

substances. This most commonly occurs as a result of obstructive coronary disease 

(Camm 1998). Ischaemia is considered to be a major complication of the cardiac 

function, and a prime cause for the occurrence of cardiac infarction and dangerous 

cardiac arrhythmias (Geddes and Cascio 1991). The main characteristic of ischaemia at 

the cellular level is the depolarisation of the cellular resting membrane potential. This 

causes a potential difference between the normal and ischaemic tissue which, in turn, 

causes the flow of an "injury current" (Goldschlager and Goldman 1989). This "injury 

current" is manifested in the ECG signal by ST-segment depression or elevation and in 

some cases T-wave inversion, see Figure 1.5.

Myocardial Infarction (MI)

Myocardial infarction is the death and coagulation of part of the heart muscle deprived 

of an adequate blood supply by coronary artery blockage in a heart attack (Youngson 

1992).

Ventricular Tachycardia (VT)

Ventricular tachycardia is a disorder of the heart rhythm in which the contraction of the 

ventricles is initiated from uncontrolled electrical impulses arising in the ventricles 

instead of the SA node. Resulting in abnormally fast heart rate between 140 and 220
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bpm this may persist for hours or days and may, if not treated, progress to severe heart 

failure and death (Youngson 1992).

Late Potentials (LPs)

Late potentials are low amplitude, 1-20 (av, high frequency, 40-250 Hz, signals in the 

terminal part of the QRS complex and ST-segment. LPs reflect irregular propagation of 

the depolarisation of the myocardium; these signals appear to arise from slowly 

conducting areas of the myocardium. Many observers have recorded delayed and 

disorganized activation directly from infracted myocardium (Michael and Simson 

1981). The presence of LPs has been established as a powerful indicator of a subgroup 

of patients with MI at risk of VT (Breithardt, et al. 1986; Gomis, et al. 1997; Svensson, 

et al. 1994; Xue and Reddy 1997).

1.4 Previous Work on ECG Signal Processing

A considerable research effort has been made on ECG signal processing and analysis 

techniques. A brief review will be presented in the following subsections.
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1.4.1 Noise Cancellation using Adaptive Filtering

Adaptive filtering techniques have shown to be useful in many biomedical applications. 

The basic idea behind adaptive filtering has been summarised by Widrow, et al. (1975) 

and used in a variety of ECG processing applications. One simple but important 

application of adaptive filtering is the 60-Hz power line interference cancellation (Huhta 

and Webster 1973); here a reference signal representing power line interference from 

some part of the body (other than the ECG recording area) may be used to cancel power 

line interference from the ECG signal. Another application is the fetal ECG signal 

recording (Widrow, et al. 1975) in which the mother ECG signal is cancelled via chest 

leads. For a comprehensive study of non-invasive fetal heart monitoring see Zgallai 

(2002) and references therein. Thakor and Zhu (1991) developed specialized adaptive 

filter structures for noise cancellation; they also show how an adaptive recurrent filter 

structure detects cardiac arrhythmias. Their idea is to build an impulse response of the 

QRS complex and to detect as arrhythmias the signals whose impulse response deviates 

from normal. This recurrent filter was found to be more suited to applications such as 

rhythm analysis in ambulatory monitoring and less suited for diagnostic ECG signal 

analysis.

1.4.2 Detection of ECG Signal Characteristic Points

Detection of the QRS complex is the most important task in automatic ECG signal 

analysis. The QRS complex detectors are an integral part of modern computerised ECG 

monitoring systems. A number of QRS detectors have been designed which work in the 

presence of moderate noise (Hamliton and Tompkins 1986; Pan and Tompkins 1985; 

Thakor, et al. 1983). An algorithm based on wavelet transform (WT) has been 

developed for detecting ECG characteristic points (Li, et al. 1995) with multi-scale 

feature WT, the QRS complex can be distinguished from high P- or T-wave, noise, 

baseline drift, and artefact. The authors have achieved an average QRS complex 

detection rate above 99.8% for MIT database records’numbers 100 to 234. However, a 

less detection rate was achieved for noisy difficult records (105, 108, 203 and 222 

which has some non QRS complex with highly unusual morphology). A higher QRS 

detection rate has been achieved (Xue, et al. 1992) using neural network-based adaptive
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matched filtering to model the lower frequencies of the ECG which are inherently non-

linear and non-stationary (e.g., the P- and T- waves, additive instrumentation noise and 

time varying electromyocardiogram noise) the residual which contains mostly higher 

frequency QRS complex energy is then passed through a linear matched filter to detect 

the allocation of the QRS complex using this novel approach. The detection rate for a 

very noisy patient record in the MIT arrhythmia database was 99.5%, which compares 

favourably to the 97.5% obtained using a linear adaptive whitening filter (Hamilton and 

Tompkins 1988) and 96.5% achieved with a band pass filtering method (Pan and 

Tompkins 1985). The highest QRS detection rate (99.99%) that has ever been achieved 

for noisy difficult records (105, 108 203, 222 which has some non QRS complex with 

highly unusual morphology) and for very noisy live hospital data, uses sophisticated 

algorithms developed by Sabry-Rizk and Zgallai (2001) and is patent binding. This 

method is suitable for online fully automated arrhythmia detection.

A method for ST-segment recognition was proposed by Skordalakis (1986), this method 

is based on approximating the ST-segment first by a straight line then by a parabola and 

choosing the approximation with the smaller error norm. A personal computer system 

for ECG signal ST-segment recognition based on neural networks was developed by 

Suzuki and Ono (1992). In this system the pre-processor detects the R points and 

divides the ECG signal into cardiac cycles, then the neural networks address the 

approximate locations of the J-point and the onset of the T-wave then the ST-segment is 

recognised as the portion of the ECG signal between these two points.

1.4.3 ECG Signal Dynamics

ECG signal dynamics is concerned with the analysis of the full ECG time series. The 

concept of cardiac rhythm as a periodic oscillator was challenged in the late 1980s, 

when research showed the heart to be associated with irregular and possibly chaotic 

dynamics (Babloyantz and Destexhe 1988). Several investigators have demonstrated 

that extremely stimulated cardiac tissue develop bifurcation patterns like period 

doubling or intermittence that are characteristic of non-linear dynamical systems 

(Chialvo, et al. 1990; Chialvo and Jalife 1987). Other authors hypothesised that the 

fractal structure of the His-Purkinje system may represent a structure substrate of
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chaotic cardiac dynamics (Goldberger and West 1987). Evidence accumulated that 

strictly periodic cardiac dynamics are not accompanied by a healthy condition but on 

contrary turn out to be correlated with pathological states (Pool 1989). Fell, et al. 

(2000) applied the false nearest neighbours method and the saturation of the correlation 

dimension and suggested that an embedding dimension from 6 to 8 may be regarded 

suitable for the topological proper reconstruction of ECG signals. Supported by this 

non-linear nature of the ECG signal, some work has been carried out to extract material 

from ECG signals for diagnosis of heart disease and assessment of heart function 

(Mukhopadhyay and Sircar 1996; Zhang, et al. 1997).

1.4.4 Detection of Heart Abnormalities

The cardiac electrical heart activity is studied in order to detect different pathologies. 

Non-invasive signal processing techniques are utilised to distinguish between normal 

and abnormal ECG signals. The main categories of the heart disease are; 1) defects in 

the rhythm and rate (arrhythmia e.g., VT), 2) conduction defects (e.g., bundle-branch 

block), and 3) defects in the heart muscle (e.g., ischaemic heart disease). Detection of 

the heart abnormalities is a complex problem, so how further to extract information 

intensively from the ECG signals for analysis and diagnosis of the heart disease is still a 

topical subject. Some of the work that has been done in related areas to this research 

will be introduced in the next section. This will be presented from the medical and 

signal processing points of view.

1.4.4.1 Detection of Ml (using LPs)

Time/Frequencv domain-based analysis. Breithardt, et al. (1986); Breithardt, et al. 

(1991); Simson (1981); and Simson, et al. (1980) used the high-resolution and signal 

averaged electrocardiography1 to improve the signal to noise ratio (SNR) and detect 

LPs. The limitations of this technique are; it removes any beat-to-beat variations from *

Signal-averaging is a technique to improve signal to noise ratio. High-resolution ECGs is an ECG recording with 

an extended bandwidth of up to 1000 Hz.
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the signal, and it requires that the LPs signal be present for a considerable number of 

beats. A non-invasive beat-to-beat detection of LPs based on an adaptive signal 

enhancer was proposed by Al-Nashash (1989). That study has provided an evident that 

the adaptive signal enhancer can produce comparable results from a single beat and 

preserve beat-to-beat variations, however, only ten cases were studied. Schels, et al. 

(1991) developed a frequency analysis technique using the maximum entropy method 

(MEM) based on an autoregressive model to detect the LPs from the difference of two 

MEM spectra of the ST-segment. A sensitivity of 71 % was obtained using the MEM 

analysis. Meste, et al. (1994) characterise the LPs in time-frequency domain by means 

of a wavelet transform. That study has illustrated by simulated data and a few real cases 

that the proposed modified WT improves the analysing qualities of the WT and 

practically avoids interference problems of the Wigner-Ville transform.

Higher-order statistics/spectra (HOS), the detection of delayed fragmented waveforms 

or ventricular late potentials (LPs) continuous with the end of the QRS complex during 

sinus rhythm in post MI subjects has been considered by Speirs, et al. (1993). 

Bispectral analysis using nonparametric techniques of synthesized ECG data containing 

LPs was used to identify late signal components terminal in the QRS complex. Usually 

LPs activity cannot be obtained directly from the raw ST-segment time series, the 

bispectrum was shown to detect artificially introduced phase coupled features within the 

segment indicative of non-linearities. However, in real ECG data there is a real 

possibility of missing such LPs activities due to the LP signal being buried in motion 

artefact and lack of temporal and spectral resolution, also the LPs activity will not 

always extend far enough in the ST-segment to be detected (Spaargaren and English 

1999). Shifting the signal start point would introduce the high energy QRS component 

which would saturate the bispectrum thus masking the low level signal activity. It is 

because of this poor sensitivity (60% (Spaargaren and English 1999)), the bispectrum is 

only likely to be of limited practical use (Spaargaren and English 1999). For this reason 

non-linear and non-stationary motion artefact suppressing using adaptive Volterra filter 

was being deemed necessary to suppress motion artefact (Sabry-Rizk, et al. 1998), this 

was followed by detection of LPs in the bispectral multiple signal classification 

(MUSIC) domain to improve frequency resolution over the ST-segment. Temporal 

resolution was taken care of by using fifteen 60 ms overlapping windows starting from
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the R-wave and extending short to onset of P-wave. Sabry-Rizk, et al. (1998) achieved 

LPs bicoherency detection in a limited number of patients suspected of MI and other 

heart abnormalities at -70 dB below noise level over a range of frequencies 150-250 

Hz.

Neural Networks (NNs), a combination of self-organized and supervised artificial NN 

models were developed to recognise LPs (Xue and Reddy 1997). The supervised NN- 

based model was used for classification purposes while the unsupervised one was used 

for pre-processing. Sensitivity and a specificity of 82 % and 86 %, respectively were 

obtained using this combination of NNs trained using extended delta-bar-delta learning 

rule. Sabry-Rizk, et al. (1999b) classified the normal and abnormal ECGs using a 

backpropagation NN, here slices from the third-order cumulants for limited number of 

patients have been used as input features. The idea is that the third-order cumulants 

contains information about quadratic phase coupling associated with LPs at the terminal 

end of the QRS complex (Sabry-Rizk, et al. 1999b).

1.4.4.2 Detection of Ischaemia

Time domain analysis, the previously mentioned techniques, i.e., the standard and 

signal-averaged high-resolution ECG signals, have been used by Abboud, et al. (1987) 

to examine the effects of transient ischaemia on the ECG signal, their methodology was 

based on cross-correlation analysis to compare the beat-to-beat variability in the ST-T 

morphology in the surface ECG and in the QRS complex in the signal averaged high- 

resolution ECG recordings. This technique was found not as sensitive indicator of 

transient ischaemia as the unipolar intra-coronary ECG, however, it did appear to be 

non-invasive means of detecting abnormalities (Abboud, et al. 1987). In the last few 

years many systems have been developed for detection and quantification of ischaemic 

ST-segment changes. These systems have relied on the analysis of the time domain ST 

changes during ambulatory ECG signal monitoring. Jager, et al. (1992) applied a two- 

channel algorithm for robust automated detection of transient ST changes, an ST- 

segment deviation detection function was calculated. Their algorithm has distinguished 

between ischaemic ST changes and non-ischaemic ST deviations caused by position- 

related changes in the electrical axis of the heart. A compartmental multivariate
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analysis of exercise ECGs for accurate detection of myocardial ischaemia was 

developed by Sievanen, et al. (1994). This analysis was heuristically developed by 

determining a diagnostic criteria, which interrelate a modified ST-segment value and the 

maximum heart rate slop (ST/HR-slop). The diagnostic accuracy, sensitivity and 

specificity were 90%, 94%, and 75%, respectively. A system consists of QRS 

detection, parameter measurement, filtering, baseline drift correction and episode 

detection was developed and set up using ECG data from the European ST-T database 

(Taddei, et al. 1995) the authors have found that the interpretation of the ST-T changes 

a critical issue because many physiologic and technical factors that can alter ST- 

segment are unrelated to ischaemia.

HOS-based analysis, a pilot study on suspicious polyphase patterns of normal looking 

ECG signals for diagnoses of coronary artery disease was carried out by Sabry-Rizk, et 

al. (1999a). Higher-order statistics (HOS) based algorithms were employed to develop 

discriminant contour patterns in the multi-dimensional phase of the polyspectra 

(polyphase) of ‘normal’ looking ECGs in outpatients having weariness and general 

malaise or chest pain. Similar polyphase patterns have been found in a limited number 

of ECGs of acute myocardial infarct patients with or without diagnostic ST-segment 

and T-wave changes. The polyphase computation is done in milliseconds but a 

temporal window of 10 ECG cycles is necessary in each of the polyspectral averaging 

process.

NNs-based analysis. In a previous work by Maglaveras, et al. (1998) and Stamkopoulos, 

et al. (1998) supervised backpropagation and unsupervised Principle Component 

Analysis (PCA) NN-based algorithms were used for automated detection of ischaemic 

episodes resulting from ST-segment elevation or depression. The performance of these 

methods was measured using the European ST-T database. In the backpropagation- 

based NN the difference between an ischaemic ST-segment template and the normal 

template was used as input features to the NNs; a hundred and twenty input patterns 

have been used for training and testing the network. It was found that the average of 

ischaemic episode detection sensitivity is 88.62 % and that for normal episodes is 91 %. 

For the PCA-based NN only normal input features were used in the training phase. The 

results showed that by only using two non-linear components and a training set of 1000
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normal samples from each file produce a total classification index of approximately 

79.32 % for normal beats and higher than 75.19 % for the ischaemic beats.

1.5 The ECG Data

ECG data from the following sources have been used in this research work:

1- MIT-BIH Arrhythmia database (MIT-DB) (MIT-CD 1997). This database consists 

of 48 annotated records, obtained using 24-hour Holter tapes. Each record is slightly 

over 30 minutes in length. Each signal file contains two signals sampled at 360 Hz.

2- ST Change database (ST Change-DB) (MIT-CD 1997). This database consists of 28 

records ranging in length from 13 to 67 minutes. Records 300 to 323 were obtained 

during exercise stress tests. These records exhibit transient ST depression in response 

to exercise-induced ischaemia. Records 324 to 327 show ST elevation. All signals are 

sampled at 360 Hz.

3- MIT-BIH Noise Stress Test Database (NST-DB) (MIT-CD 1997). This database 

consists of 15 thirty-minute records. Three of these records contain noise of the types 

typically observed in ECG records. They are obtained using a Holter recorder on an 

active subject, with leads placed so that the subject’s ECG signal is not visible.

4- Normal sinus rhythm database (NSR-DB) (MIT-CD 1997). The NSR-DB contains 

18 records, each between 20 and 24 hours, from subjects without diagnosed cardiac 

abnormalities. The sampling frequency is 128 Hz. Since the data files are not provided 

in the MIT-CD, the author collected this data on a CD-ROM from the MIT archive on 

the Internet (address http://www.physionet.com/).

5- European ST-T database (E-DB) (Taddei, et al. 1992). The E-DB consists of 90 two- 

channel records; each two hours in duration, taken from ambulatory ECG recordings 

from 79 subjects. This database is a set of long-term Holter tape recordings and 

digitised at 250 Hz.
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1.6 Aims and Objectives of This Work

The main aim of this work is to first characterise the ECG signals in terms of their 

higher-order statistics/spectra then the use of this characterisation in the discrimination 

between normal and abnormal ECG patterns in the higher-order domain. The 

concerned abnormalities are myocardial ischaemia and infarction. Towards achieving 

this overall aim, the following specific objectives are addressed; a theoretical study on 

the nature of the ECG signal and its relation to the physiological conditions of the heart 

is undertaken. Also practical studies on the dynamics of the signal, its statistical 

characteristics, its frequency content and the contaminated noise and its filtering 

techniques are carried out. The second objective of this work is to answer an important 

question, that is, is it possible to detect ischaemic heart disease without exercise stress 

test? The third objective is to improve the resolution capability obtainable from the 

existing methods of bispectrum estimation by devising a novel bispectrum estimation 

scheme based on the subspace-based Multiple Signal Classification (MUSIC) 

spectrum. The fourth objective is to build an automated neural network-based classifier 

and evaluate the use of polyspectrum and polycoherency slices as input features to this 

classifier.

1.7 Summary

In this chapter a brief description of the structure of the heart and its conduction system 

was presented. The nature of the ECG signal and its parts (P-wave, QRS complex and 

T-wave) were defined in terms of the source of generation, duration and amplitude. 

Then a brief description on the ECG signal diagnostic techniques and their use in 

abnormality detection was introduced. The next section highlighted some of the work 

that has been done in the application of different signal processing techniques to the 

analysis of the ECG signals. The related areas to my work are the ECG signal dynamics 

and abnormality detection. The different categories of databases that have been used in 

this work were listed. In the last section an overview of the objectives and aims of this 

work was presented.

The rest of the thesis will be divided as follows. In chapter 2 the theory of the linear 

and non-linear adaptive filtering techniques will be presented and the performance of
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these filters will be evaluated through their application to filter the ECG signals. In 

chapter 3 the ECG signal statistical and spectral characteristics will be identified. The 

spectrum of normal and ischaemic ECG signals will be analysed to detect ischaemic 

heart disease based on this spectral analysis. The theory, mathematics and 

characteristics of the higher-order statistics/spectra will be introduced in chapter 4. 

Cumulant patterns of normal and abnormal ECG signal will be computed and appraised 

in chapter 4 then the normal ECG signals will be analysed using three bispectrum 

techniques and the existence of quadratic non-linearity will be investigated. A new 

bispectrum estimation technique will be introduced and applied to simulation examples 

and ECG signal in chapter 4. In Chapter 5 an algorithm for calculating the 

polyspectrum slices will be presented, also a new estimator for the polycoherency index 

slices, which is based on the estimated polyspectrum slices, will be presented in this 

chapter. Differences between normal and ischaemic ECG signals in the bispectrum 

domain will be assessed then the possibility of the existence of higher-order non- 

linearities will be investigated and evaluated for normal and ischaemic ECG signals 

using slices from the polyspectrum and polycoherence indices. Chapter 6 introduces an 

automated NN-based ECG signal classifier using input features from the polyspectrum 

and polycoherence indices slices. Chapter 7 is a summary of what has been achieved in 

the field of ECG signal analysis and classification by this thesis. This chapter also 

suggests the possible extensions that may be worth of further study.
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C h a p t e r  2

ADAPTIVE FILTERING OF THE ECG SIGNAL

2.1 Introduction

Many of the existing ECG signal processing techniques require relatively noise-free 

digitised ECG signals. Data corrupted with noise must either be filtered for moderate 

SNR or discarded for relatively high noise levels. ECG signal quality assurance 

requires not only human attention but also necessitates noise detection and elimination 

schemes, otherwise there would be loss of clinically significant data. These issues are 

important design consideration for applications in real-time electrocardiogram heart 

monitoring.

In this chapter several adaptive filter structures are used for noise cancellation. An 

adaptive filter essentially minimises a prescribed criterion, such as the mean square 

error (MSE), between a pre-specified desired response and the output of the filter. For 

noise cancellation applications the filter minimises the MSE between a primary input, 

which is in this case the noisy ECG signal, and a reference input, which is either noise 

that is correlated in some way with the noise in the primary input or a signal that is 

correlated only with ECG signal in the primary input. Three popular Finite Impulse 

Response (FIR) adaptive filtering algorithms will be described and applied to the ECG 

signals. A non-linear adaptive filter, namely Volterra filter, is also applied to ECG 

signals and its performance is appraised.

2.2 Adaptive Finite Impulse Response Filters

FIR filters are routinely used in adaptive filtering applications. Unlike the infinite 

impulse response filter (HR), the FIR filter is inherently stable, because its structure
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involves the use of forward path only. The presence of feedback path in the IIR filter 

can make it, if not properly controlled, unstable with the result that the filter oscillates. 

The inclusion of adaptivity, which brings a stability problem of its own, makes the use 

of IIR with adaptive algorithms undesirable (Hayes 1996; Haykin 1991).

The design of Wiener filters, which is a class of optimum linear discrete-time filters, 

requires prior information about the statistics of the data to be processed. However, 

adaptive filters do not require such information. In the literature the term “adaptive” is 

usually reserved for the sort of estimation in which the parameters of an adaptive filter 

are updated from one iteration to the next, the parameters become data dependent which 

makes it possible for the filter to perform satisfactorily in an environment where 

complete knowledge of the relevant signal characteristics is not available. Yet, in a 

stationary environment, we find that after successive iterations of the algorithm it 

converges to the optimum Wiener solution in some statistical sense. In a non-stationary 

environment, the algorithm offers a tracking capability, whereby it can track time 

variations in the statistics of the input data, provided that the variations are sufficiently 

slow. Another two important advantages of adaptive algorithms for real time 

applications are their fast operational speed and computational efficiency. Figure 2.1 

shows a block diagram of the adaptive transversal filter with adaptive weight-control 

mechanism (Haykin 1991).

u(t), 
input signal

Transversal Filter
witj)

___ Í____
Adaptive Weight- 
Control Algorithm

y(t)

e(t)

d(t)
desired response

Figure 2.1 Block diagram of the adaptive transversal filter.

The operation of this adaptive filter consists of a combination of two basic processes: 

(a) an adaptive process, which involves the automatic adjustment of a set of tap weights,
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w(t), where t is the discrete time, (b) a filtering process, which involves, forming the 

inner product of a set of inputs, u(t) and the corresponding set of weights emerging from 

the adaptive process to produce an estimate of a desired response, y(t). Then generating 

an estimation error, e(t), by comparing this estimate with the actual value of the desired 

response, d{t). The estimation error is in turn used to actuate the adaptive process to 

minimise a specified cost function.

Consider the problem of noise cancellation in which a signal x(t) is observed in the 

presence of an interfering signal v(t), u(t) = x(r)+v(i). In such applications the desired 

response is not available; another approach is be considered in which a delayed version 

of the observed signal is used as the tap input, see Figure 2.2, in this case the adaptive 

noise canceller takes the structure of a predictor. Suppose x(t) and v(t) are uncorrelated 

processes and v(t) is random noise, the filter will be adapted to produce an estimate of 

the predictable part of the signal which is an estimate of the original signal, jc(0, (Hayes 

1996; Makhoul 1975; Romare 1998).

Figure 2.2 Adaptive noise canceller (predictor structure).

With a unit delay the filter uses the input vector u(t - 1) containing the previous m

samples [w(r-l),....... ,u(t-m)]T from a tapped-delay line to produce the estimated

signal, x(t) = uT(t-\)w(t), where w(t) is the vector containing the estimated filter

coefficients [w ...... , vvm]r and T is the transpose operator. The error term e(t), which is

theoretically the contaminating noise, between the current sample u(t) and x(t) is fed 

to an adaptive algorithm which updates w(t).
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2.2.1 The Least Mean Square (LMS) Algorithm

The steepest descent adaptive filter1, which is a gradient search technique, uses a 

weight-vector update equation given by:

w(t +1) = w(t) + Aw = w(t) + p{-V^(t)} (2.1)

where w(t + l)is the weight vector at iteration f+1, w(r)is the weight vector at iteration 

t. zlwis a change in the weights which is proportional to the negative gradient, Vi\(t). 

The proportionality constant; ju called the step-size and £(i) is the Mean Square Error 

(MSE) defined by:

^(t) = E[e2(t)] = E m t ) - y ( t ) ) 2]

= E m t ) - u T(t)w{t))2]

where u(t) = [u(t),u(t -1),.....,u(t -m)]T

According to the steepest descent method, the weights of the filter assume time-varying 

form, and their values are adjusted in an iterative fashion along the error surface with 

the aim of moving them progressively towards the optimum solution. The MSE is a 

quadratic function of the filter weights, with a unique minimum found by setting the 

gradient to zero.

aẐ r - -  = -2A[a m d ( t ) - u T ( t )w (m  = 0 (2.3)
aw

This gives the Wiener-Hopf equations (Haykin 1991):

R .w = Rdu (2.4)

where R„„ is the autocorrelation matrix of the filter input vector and Rf/„ is the cross-

correlation vector between the current sample d{t) and the filter input vector.

1 It is an iterative procedure for obtaining the parameters that minimise a function. At each iteration of the steepest 
descent procedure, the values of the parameters (weights) are modified in the direction in which the error function 
decreases most rapidly.
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The LMS algorithm (Hayes 1996; Widrow, et al. 1975) is a stochastic implementation 

of the method of the steepest descent. When the filter operates in an unknown 

environment, the exact measurements of the gradient vector are not possible since this 

requires a prior knowledge of both RMU and Rd„. Consequently, the Widrow-Hoff 

algorithm (Widrow, et al. 1975) uses an instantaneous estimation of the gradient:

VE[e2(t)\ = -2u (t)e(t) (2.6)

Hence the LMS adaptation rule is:

w{t+ \) = w{t)Jr2\m (t)e(t) (2.6)

with the initial condition w>(l)= 0. The constant /u is an amplification factor which 

controls the rate of descent or convergence. The performance of the LMS is heavily 

dependent on the choice of the step-size /u, which sets a compromise between the rate of 

convergence of the weights and the excess MSE or misadjustment after convergence 

(Haykin 1991; Widrow, et al. 1976). With small n  the descent towards the bottom of 

the error surface is slow but smooth, leaving a small amount of noise in the weights and 

a small gradient error after convergence. With jU large the rate of descent is faster but 

leaves a higher gradient error. If n  is too large the algorithm may become unstable.

2.2.2 The Least Mean Fourth (LMF) Algorith m

A general class of steepest descent algorithms for adaptive filtering which allow error 

minimisation in the mean fourth, mean sixth, etc., sense has the following weight update 

rule (Walach and Widrow 1984):

w(t + \) = w(t) + 2\ike2kA(t)u (i) (2.7)

where 2k is the exponent of the error being minimised. Both the LMS and LMF 

algorithms can be viewed as special cases of the general algorithm.

For the LMF algorithm k-2 hence the weight update rule becomes:

w(t+ \) = w{t) + 4\ie2 (t)u (t) (2.8)
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The behaviour of the LMF algorithm is of special interest, since under some 

circumstances, it will have substantially lower weight noise than the LMS algorithm.

2.2.3 The Kalman Algorithm

The Kalman filter is a member of the optimum linear discrete-time filters. The 

distinctive features of the Kalman filter is that its mathematical formulation is described 

in terms of state-space concepts and its solution is computed recursively (Kalman 1960; 

Kalman and Bucy 1961). The system under observation is represented by a general 

multi-dimensional dynamic model defined in state-space form by the process and the 

measurement equations:

x(t +1) = 0(r +1, t)x(t) + v1(t) (2.9)

where x(t) and y(t) are the state and measurement vectors, 0(;+ l,z) is the state- 

transition matrix relating the states of the system at time t to the states at time i+1, C(?) 

is the measurement matrix relating the states at time t to the observation at time t, and 

vi(t) and \ 2(t) are the process and measurement noise vectors, respectively, usually 

assumed to be mutually independent, zero-mean and white with covariance matrices

The filtering problem can be formulated using the Kalman algorithm based on the one- 

step prediction technique (Haykin 1991). For the ECG signal this is obtained by using a 

dynamic Auto-Regressive (AR) model driven by the measurement noise.

Equation (2.12) may be viewed as the measurement equation of the AR model. With 

the non-stationarity of the output attributed to the variation of the system parameters

y(0 = C(i)x(t) + v2(t) (2. 10)

(2 . 11)

u{t) = uT (t-\)w(t) + v{t) (2.12)
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with time according to the first order Markov process1 (Zhang and Haykin 1983), the 

process equation of the AR model is.

w,(r 44) = <]),. (0^,(0+ 5^(0, i = 1,2,...,wi (2.13)

where the <]), and <5W, terms account for deterministic and random fluctuations, 

respectively. Putting Eq. (2.13) into matrix form gives

w(t 4-1) = 0(t)w(t) + 5w(t) (2.14)

Eqs. (2.12) and (2.14) are state-space equations for the time-varying AR process. If no 

priory information is available on the (|), terms, these are usually set to a constant /3< 1 

for all i and t, simplifying the state-transition matrix to ft.I (Romare 1998). The Av, 

terms can also be assumed to be mutually independent, zero-mean white process with 

constant variance q and diagonal covariance matrix q.I (Godard 1974). The variance of 

measurement noise, v(t), can be estimated using the following adaptive procedure 

(Arnold, et al. 1998):

e(r 4-1) = u(t + l)-uT (t)w(t) (2 15)
g ] (* +1) = o2e (0 ~ c.(o2e (t )-e2(t +1))2

where e(t+l) is the prediction error, and the adaptation constant 0 < c < 1 determines 

the speed of adaptation.

A flow chart for the prediction of the ECG signal with the Kalman filter is given in 

Figure 2.3. K{t, t-1) is the (m x  m) covariance matrix of the predicted error vector in the 

states, i.e., w(t)- m>(? — 1). By minimising the trace of this matrix recursively the 

optimum estimate of the time varying state-vector is determined. G{t) is the Kalman 

gain vector at time t.

1 A random vector w(t) is called Markov of first order, or simply Markov, if its conditional joint probability density 
function conditioned on all past values is the same as using the value in the immediate past.
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t = t + l

Figure 2.3 Flow chart for the adaptive Kalman predictor.
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2.3 Adaptive Non-linear Filter

The concept of optimum linear filtering has had enormous impact on the recent 

development of various techniques to estimate and process stationary time series. The 

obvious advantage of a linear filter is its simplicity in design and implementation. 

However, in some cases, i.e., where the signal to be filtered or predicted is non-linear, 

the performance of a linear filter may be unacceptable because the linear predictor will 

only exploit the first and the second statistical moments of the signal and ignore the 

higher order moments. As a consequence useful information about the signal will be 

lost. One constructive and versatile approach to non-linear filters is to utilise the filter 

structure in the form of a Volterra series (Koh and Powers 1985; Schetzen 1980).

2.3.1 Second-order Volterra Filters (SVF)

The second-order Volterra filter, Figure 2.4, consists of a parallel combination of linear 

and quadratic filters (Davila, et al. 1987).

d(t)

Figure 2.4 Second-order Volterra filter. 

The second-order Volterra filter has the form:

m-1 m-1
y(t) = ha + ̂  a(i)u(t -  0 + ̂  ̂ ¿ ( i ,  j)u(t -  i)u(t -  j ),

/=0 i'=0 7=0
m -1  m -1

where h
i=o j=o

In the matrix form this will be:

(2.16)
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y(t) = Aru(t) + tr[B[u(t) uT (f) -  Ruu ]] (2.17)

where u(i) is the input vector, A is (mx 1) linear weight vector and B is the ([mxm) 

quadratic weight matrix, they represent the linear and the quadratic contributions of the 

input signal, respectively. T and tr denotes the transpose and trace operators, 

respectively, and [Ruu]iJ=E[u(j-i)u(t- j  + /)] denotes the autocorrelation matrix of

u(t).

A = [a(0),a(l),.....a{m-  l ) f  (2.18)

b( 0,0)

B =

b(m -1,0)

b(0,m-l)

b(m - 1, m - 1)

(2.19)

It is assumed that the quadratic filter weights are symmetric, i.e., b(i,j) = b(j,i). Given 

the zero-mean discrete-time, stationary, jointly Gaussian random processes u(?) and d(t), 

it can be shown that the optimum linear and quadratic filter weights which minimise the 

MSE are given by Davila, et al. (1987); Koh and Powers (1985):

K  = RuURdu (2-20)

B0={\l2)R;lZdX u  (2-21)

where R (lu = [rdu (0),...........rdu (m -  l)]r

Zrf„(0.0) ..... zdu(0,m-l)

Zdu =

.^«(,?î_1’°) .....  zdu(m-l ,m-l)

rdu (7) = E[î/(î)m(î — j )\,

Z-du (7. i) = E[d(t)u(t -  j)u(t -  /)]

(2 .22)

(2.23)
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2.3.2 Adaptive Second-order Volterra Filter

Several LMS-type adaptive algorithms have been described which attempt to 

recursively compute A0 and B0 (Coker and Simkins 1980; Koh and Powers 1985). 

These algorithms have the general form:

e(t) = d{t)-uT (t)A(t) - u T {t)B(t)u (t) (2.24)

A(r + l) = A(0 + pau(tM0 (2.25)

B(f +1) -  B(f) + p,,u(/)uT (t)e(t) (2.26)

where ¿ua and fib are the step-sizes for linear and quadratic parts of the filter, 

respectively. With 0<pa <A^ax and 0 < jub < A”2ax (Koh and Powers 1985).

These parameters may also be updated using adaptive the Kalman algorithm described 

in section 2.2. In this case Eqs. (2.25) and (2.26) will be:

A(t +1) = A(t) + G a (t)e(t) (2.27)

B(f +1) = B(i) + G b (t)e(t) (2.28)

where Ga(0 and Gb(0 are the Kalman gain for the linear and the quadratic parts of 

Volterra filter at time t, receptively

2.3.3 Adaptive Third-order Volterra Filter

The LMS- and the Kalman-based algorithms may be extended to estimate the linear, 

quadratic and cubic kernels of the third-order Volterra filter. From Figure 2.5, the error 

signal is defined as

e(t) = d(t)-y(t),
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Figure 2.5 Cubic Volterra filter.

where

m-1 m-1 m-1
y(t) = ^ \ ( i)u(t -  i) + ^  ^ ¿ ( i ,  yX f -  i)u(t -  j ) +

1=0 1=0 7=0

w-1 m-1 m-1
c(i, j)u(t -  i)u(t -  j)u{t -  k) (2.29)

i=0 7=0 k =0

= u[(0A(0 + u^(r)B(r) + <(t)C(r) 

and uq (0 = u; (i) 0  u; (i), uc (t) = u, (t) 0  (r)

The symbol 0  indicates the Kronecker product of vectors (Sicuranza 1992). B(i) is m 

vector containing the quadratic kernels and C(t) is m3 vector containing the cubic 

kernels.

2.4 Model Order Selection

The best choice of the filter order, m, is not generally known a priori and it is usually 

necessary to postulate several model orders. Based on this, one then computes some 

error criteria that indicate which model order to choose (Marple 1987). Three well- 

known criteria are combined here to choose m, these will be described briefly:
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Akaike Information Criteria (AIC) The AIC determines the model order by minimising 

an information theoretic function (Akaike 1969):

AlC(m) = N ln(pm) + 2m (2.30)

where N is the number of data samples and pm is the estimated white noise variance, 

the linear prediction error variance will be used for this estimate, pm = N \em (r)|~ •

An extended version of the AIC criteria, that can handle the problem of the signal and 

noise subspaces separation, can be calculated directly from the eigen-values of the 

autocorrelation matrix or singular values of the data matrix of the given signal as 

follows (Marple 1987):

AIC(m) = (L -  m)ln

L

____  i=m+1
L

y-(L-m)

i=m+l

+ m(2L -  m) (2.31)

where L>m: is the size of the data matrix, X0 > X\ >...> XL are the eigen-values of the 

sample autocorrelation matrix.

Minimum Description Length (MDL) Criteria

MDL is defined as (Rissanen 1983):

MDL(m) = N ln(pm ) + m. ln(A) (2.32)

As the probability of error in choosing the correct order in the AIC does not tend to zero 

as N , the MDL criteria is said to be more statistically consistent than the AIC.

Final Prediction Error (FPE)

This criterion selects the order of the AR process so that the average error variance for a 

one-step prediction is minimised. It is defined as (Akaike 1969):
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FPE(m) =
' N + (m + 1)N 
N -  (m + 1)

(2.33)

Since these criteria may or may not work well with real data, depending on how well 

such data are modelled by an AR process and on whether the noise is Gaussian or not, 

they may be used as guide lines for initial order selection.

A particular quality measure of the filter order that is used here is the MSE defined by 

Mulgrew and Mclaughlin (1994). This will be useful in two ways, firstly to choose a 

model order from the range estimated by the above mentioned criteria. Secondly the 

value of the MSE will be used to compare the performance of the adaptive predictors.

MSEdB = 101og10 t =m +1_______
N

^ V ( t )
/=m+1

(2.34)

2.5 Signal-to-Noise Ratio

In simulation studies the signal-to-noise ratio (SNR) is calculated using the following 

relation (Haykin 1983)

SNR = (2.35)
E[v2]

where e [x 2] and Z?[v2] are the mean square value of the signal and the noise, 

respectively. In real signal applications, it is difficult to separate the signal from the 

noise. Stokes, et al. (1999) defined the SNR from the singular values of a rectangular 

data matrix, Rx, constructed for a cyclic or quasi-periodic data as follows

jc(1) jc(2) ....... x(lf )
x(lf  +1) x(lf  + 2 ) ....... x(2 lf )

(2.36)

x((L - 1  )lf  + 1) x((L -1)1 f  + 2) ....... x(Llf )
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where each row in this matrix contains one period of the signal, If is the fundamental 

period length, which is defined by Stokes, et al. (1999) as the smallest of the most 

frequently occurring stride-cycles, and L is the number of periods used for calculating 

this matrix. Applying the SVD to this matrix the SNR can be calculated as follows.

S N R  =

i=p+1

(2.37)

where sif i= 1,2,......If are the singular values of Rx and p is number of dominant singular

values, which theoretically constitute the signal subspace and the sum squares of these p 

singular values represent the energy content of the signal. For strictly periodic process 

with no noise the total energy is s 2 (Stokes, et al. 1999).

2.6 Noise Artefacts in ECG Signals

Electrocardiogram (ECG) signals may be corrupted by various kinds of noise and 

artefact. Typical examples are (Friesen, et al. 1990):

1. Power line interference, the source of this interference is the ac line potential (50

Hz in the UK or 60 Hz in USA).

2. Electrode contact noise; is transient interference caused by loss of contact between

the electrode and skin, which effectively disconnect the measurement system 

from the subject.

3. Motion artefacts (MA); are transient baseline changes caused by changes in the

electrode-skin impedance as a result of patient movement.

4. Muscle contractions (EMG), cause artefactual millivolt-level potentials to be

generated. These signals can be assumed to be transient bursts of zero-mean 

band-limited Gaussian noise.

34



Chapter 2: Adaptive filtering of the ECG signal

5. Baseline wander (BW), which is mainly due to ECG signal amplitude modulation 

with respiration.

Frequencies in the range of 0-0.5 Hz should be removed to reduce baseline drift (Aase, 

et al. 2000; Ahlstrom and Tompkins 1985; Marques 1982) which is simply 

accomplished by using a conventional high pass filter. Power line interference can be 

removed either by conventional filtering (Huhta and Webster 1973) or adaptively 

(Sahakian and Furno 1983). The basic idea behind ECG signal adaptive filtering has 

been summarised by Widrow, et al. (1975) and used by Thakor and Zhu (1991), 

Yelderman, et al. (1983) for ECG signal enhancement, noise cancellation and 

arrhythmia detection. Since both the EMG and MA noises are non-stationary, and the 

EMG has a frequency spectrum that may overlap that of the ECG signal (Thakor, et al. 

1984), Thakor and Zhu 1991 recommended the use of adaptive filtering techniques for 

removal of these artefacts.

2.7 Results

To quantify the performance of the aforementioned adaptive filter techniques in terms 

of noise cancellation in the ECG data, these algorithms have been applied to two 

categories of the ECG databases; the MIT-DB and the ST Change-DB (MIT-CD 1997). 

The data are first pre-processed to eliminate the baseline wander using a standard first- 

order high pass filter (HPF) with cut-off frequency 0.5 Hz (Aase, et al. 2000; Ahlstrom 

and Tompkins 1985; Marques 1982). Figure 2.6 shows the result obtained after 

applying this filter to record No. 101 (MIT-DB).

There are two problems that have to be addressed here; the first one is the non- 

stationarity of the ECG data when considering a time scale larger than the beat-to-beat 

interval (Waldo and Chitrapu 1991). The second is that, the centre frequencies of the P- 

and T-waves are on the lower frequency side of the ECG spectrum and that of the R- 

wave is in the higher frequency side of that spectrum. Therefore, if a constant- 

coefficient filter is used with a high cut-off frequency, only partial noise cancellation 

would be achieved, making it difficult to extract the P- and T-waves. Reducing the cut-

off frequency will reduce the noise content but distortion of the ECG signal may occur
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Figure 2.6 Results obtained using the baseline wander filter: (a) the original ECG 
signal with baseline wander from record No. 101 (MIT-DB), (b) the filtered ECG 
signal, and (c) the baseline noise removed from the ECG signal.
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as the R-wave starts to be filtered. A well-designed adaptive filter can track all of the P- 

, R-, and T-waves if the degree of non-stationarity is not too high (Sabry-Rizk, et al. 

2000b), i.e., if the frequency variations are sufficiently slow relative to the speed of 

adaptation of the filter coefficients.

2.7.1 Linear Predictors

In this section the performance of LMS, LMF and the Kalman predictors are compared 

using four records from the MIT-DB and ST Change-DB (MIT-CD 1997), namely No. 

100, No 101, No 300 and No. 325. The AIC criteria represented by Eqs. (2.30) and 

(2.31), the MDL criterion described by Eq. (2.32) and the FPE in Eq. (2.33) are used, as 

the basis to select the filter order. As shown in Figure 2.7, an order between 11 and 15 

can be used for minimum AIC, MDL and FPE. This result comes in agreement with the 

results obtained by Niranjan and Murthy (1993). As a final guide, the MSE value Eq. 

(2.34) and the execution time (CPU time) are calculated as a function of the model order 

for the LMS predictor as shown in Figure 2.7 (e), (f). The MSE is minimum at m=14, 

while the CPU time increases with the model order.

Figure 2.8 depicts the performance of LMS (LHS) and LMF (RHS) predictors (m = 14, 

p = 0.3 and 0.9 for LMS and LMF, respectively) for records No. 101 (a), (b), No. 300 

(c), (d) and No. 325 (e), (f). In each of (a), (b), (c), (d), (e) and (f) the output is shown 

in the top panel and the squared error is shown in the bottom panel. The LMS predictor 

shows smaller error and faster convergence. The minimum MSE errors obtained are 

0.048 (-13.17 dB) and 0.08 (-10.85 dB) for LMS and LMF predictors, respectively.

The tracking performance of an adaptive filtering algorithm is influenced not only by 

the rate of convergence (which is a transient characteristics) but also by the fluctuation 

in the steady-state performance of the algorithm due to the measurement and algorithm 

noise (Haykin 1991). Considering the tracking capability of the two algorithms, Figures

2.8 (a), (b) can be used as good examples to explain this issue. The input to the 

adaptive predictor which is the ECG signal (record No. 101), see Figure 2.6, shows a 

change in the amplitude at sample number 2000 onwards. This means a change in the 

mean value; this represents a non-stationary behaviour of the signal. In response to that
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both the LMS and LMF algorithms are automatically tuned to minimise the 

misadjustment at the filter output, which resulted in a slight increase in the steady-state 

error value. Since the increase in the steady-state error is smaller for the LMS than the 

LMF algorithm, the former is found to have better tracking performance.

Figure 2.9 shows the MSE values with different values of the step-size for both the 

LMS and LMF predictors from which we recognise that the step-size stability range for 

the LMF is wider than that of the LMS. The Figure also shows that the percentage 

misadjustment, which is the difference between the minimum MSE obtained by Wiener 

filter and the one obtained by the LMS method, increases with the step-size, in the mean 

time the convergence time decreases with the step-size, so one has to carefully choose 

the step-size that matches the filtering requirements.

The Kalman predictor in Figure 2.10 outperforms both the LMS and LMF predictors 

from the points of view of the convergence time and the squared error. The best 

performance is achieved with the parameters q and (3 set to zero and one, respectively. 

Optimised parameters of model order m=5, an adaptation constant c=0.01 and an initial 

value of the covariance matrix &o=0.01 are used for the predictor in Figure 2.10. The 

limitation of the Kalman predictor is the computation time. The mathematical 

complexity included in the Kalman algorithm makes its computation time longer than 

either of the LMS or the LMF (Kalman takes about 2.5 s/4500 samples and LMS takes 

3xl0 2 s/4500 samples for a filter order of 5 running on a UNIX machine). The 

minimum MSE obtained by the Kalman predictor is 0.0057 (-22.4 dB). The tracking 

performance for both the LMS and LMF algorithms in Figures 2.8 (a), (b) is better than 

that of the Kalman predictor in Figure 2.10 (a). This is because the relatively high 

increase in the steady-state error value at sample 2000 onwards compared to its original 

value for the Kalman predictor.
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(a)

(c)

(b)

( d )

(e) (f)

Figure 2.7 Filter order selection using the AIC criterion and its extension (b, a), 
respectively, MDL criterion (c) and FPE (d). (e) is the MSE, and (f) is the CPU 
time. Using record No. 100 (MIT-DB).
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Figure 2.8 Performance of LMS (LHS) and LMF (RHS) predictors (m  = 14, p = 0.3 
and 0.9 for LMS and LMF, respectively) for records No. 101 (a), (b), No. 300 (c), (d) 
and No. 325 (e), (f). In each of (a), (b), (c), (d), (e) and (f) the output is shown in the 
top panel and the squared error is shown in the bottom panel.
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Chapter 2: Adaptive filtering of the ECG signal

Figure 2.9 Convergence analysis of the linear adaptive predictors applied to record 
No. 101 (MIT-DB), with an optimised model order of, m= 11. (a) and (b) show the 
MSE as a function of the step-size for both LMS and LMF, respectively, (c) and 
(d) show the convergence time and the percentage misadjustment as a function of 
the step-size.
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Figure 2.10 Performance of the Kalman predictor for records No. 101 (a) and No 
325 (b), using m=5, c=0.01 and &o=0.01. In each of (a) and (b) the output is shown 
in the top panel and the squared error is shown in the bottom panel.

2.7.2 Volterra Adaptive Predictor

The inherent non-linearity of the ECG signal (Xue, et al. 1992) compromises the 

performance of the linear filters. So it is worthwhile to investigate the performance of
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Volterra filter to such a signal. As mentioned earlier, the adaptation of Volterra kernels 

can be obtained either by the LMS or the Kalman algorithms. The computational 

complexity associated with implementing the Kalman adaptive algorithm for the 

Volterra structures prohibits its application to the ECG data. Hence, the LMS algorithm 

is chosen with Volterra structure for our application. To choose the number of samples, 

m, in the input vector for the linear part of the Volterra predictor, the MSE value Eq. 

(2.34) is calculated as a function of m for fixed and jub as shown in Figure 2.11 (left),

then for optimum ¿4 and JUb with each m as in Figure 2.11 (right). Figure 2.11 (bottom) 

shows the MSE as a two dimensional function of m and /4  with JUb equal to 0.01. From 

these Figures a value of m between 3 and 7 can be used for minimum MSE.

Min: MSE(3,0.9)=0.0089

Figure 2.11 Selection of the number of samples in the input vector for Volterra 
predictor using record No. 101 (MIT-DB). In the left plot the selection is based on the 
estimated MSE for step-sizes of 0.2, 0.01, 0.0 for linear, quadratic and cubic parts, 
respectively, and in the right plot pre-selected optimal step-sizes are used. The bottom 
plot shows the value of the MSE as a function of the number of input samples and step- 
size of linear part with step-sizes of 0.01 and 0.0 for quadratic and cubic parts, 
respectively.

Figure 2.12 parts (a), (b) show the output (upper panel) and the squared error (bottom 

panel) for the quadratic and cubic Volterra predictors when applied to record No. 325 

(ST Change-DB), respectively. In each part the top panel represents the output of the
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filter and the bottom panel represents the squared error. MSE value of 0.013 (-18.86 

dB) and 0.01 (-20 dB) are obtained for quadratic and cubic Volterra predictors, 

respectively. From these results we can conclude that the quadratic Volterra series is 

adequate for prediction of this ECG record.

(a )

t

(b)
Figure 2.12 Comparison between quadratic (a), and cubic (b) Volterra predictors 
applied to record No. 325 (ST Change-DB). m=3, step-sizes (0.9, 0.01,0.0) for (a) 
and (0.9,0.01, 0.01) for (b).
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2.7.3 Adaptive Artefact Filtering

2.7.3.1 Introduction

In this section the adaptive algorithms are applied to cancel two types of the most 

common artefacts found in the ECG records, namely, the electromyogram (EMG) and 

the Motion Artefact (MA). These are obtained from NST-DB (MIT-CD 1997); each 

was recorded using a different lead, other than the ECG signal recording leads, to record 

one type of artefact. To simulate a realistic situation a weighted artefact is added to the 

ECG signal to form a noisy version of the signal and simultaneously used as the tap 

input to the filter. The weight factor is chosen to provide the desired signal-to-noise 

ratio (SNR) level as follows.

u(t)~ vn(t), where vn(t)= c v(t) and d(t)= x(t) + vn(t)

where in this case u(t) and d(t) are called the reference signal (tap input) and the primary 

signal, respectively, see Figure 2.13, vn(t) is the normalized noise, c is the weighting 

constant andv(r) is the ECG signal.

u(t)
reference signal

d(t) ----------
primary signal

^ Q - ^ e d )

Figure 2.13 The adaptive artifact filter structure.

With zero mean signal and noise and given a target SNR defined in Eq.(2.35), the 

constant c is found as c = <7 2, where ax is the variance of x(t). The filter error,
1 ^ q SJVR/10

e = d(t)- y(t) = x(t) + vn(0 - y(t), then <?2 = [x(t) + vn(r)]2 - 2y(t) [x(t) + vn(0] -  / ( 0  

or e2 = [v„(0 - y(t)]2 + x2(t) + 2x(t) v„(t) -2y(t) x(t).

Since the signal and the noise are uncorrelated, the MSE is,
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E[e2]=E[(vD(t)-y(t))2]+E[x\t)]

Minimising the MSE results in a filter error output that is the best least-squares 

estimates of the signal x(t) (Thakor and Zhu 1991).

2.7.3.2 Results

Record No. 100 from the MIT-DB with added noise at different SNRs is used in this 

simulation. Figure 2.14 shows (a) the original ECG signal, (b) the EMG noise artefact, 

and (c) the MA noise artefact.

Figure 2.15 depicts the performance of LMS-based EMG filter, m = 5 and p = 0.5 using 

record No. 100 (MIT-DB) and different signal-to-noise ratios; SNR = 15 dB (for parts 

(a) and (b)), SNR = 10 dB (for parts (c) and (d)) and SNR = 5 dB (for parts (e) and (f)). 

The LHS; in each of (a), (c), and (e) the primary input is shown in the top panel and the 

reference signal is shown in the bottom panel. The RHS; in each of (b), (d) and (f) the 

output is shown in the top panel and the removed artefact is shown in the bottom panel.

Figure 2.16 depicts the performance of LMS-based MA filter, m = 5 and p = 0.5 using 

record No. 100 (MIT-DB) and different signal-to-noise ratios; SNR = 15 dB (for parts 

(a) and (b)), SNR = 10 dB (for parts (c) and (d)) and SNR = 5 dB (for parts (e) and (1)). 

The LHS; in each of (a), (c) and (e) the primary input is shown in the top panel and the 

reference signal is shown in the bottom panel. The RHS; in each of (b), (d) and (f) the 

output is shown in the top panel and the removed artefact is shown in the bottom panel.

Figure 2.17 depicts the performance of LMF artefact filters, SNR = 10 dB, m = 3 and p 

= 0.5 using record No. 100 (MIT-DB) artificially contaminated with EMG noise artefact 

(a) and motion artefact (MA) noise (b). In each of (a) and (b); the output is shown in the 

top panel and the removed artefact is shown in the bottom panel.

Figure 2.18 depicts performance of LMS-based quadratic Volterra artefact filters, SNR 

= 10 dB, m = 3, pa = 0.5 and pb = 0.1, pc = 0.0 using record No. 100 with artificially 

introduced EMG noise (a) and motion artefact (b). In each of (a) and (b) the filter 

output is shown in the top panel and the removed artefact is shown in the bottom panel.
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Chapter 2: Adaptive filtering of the ECG signal

The performance of the LMS-based quadratic Volterra EMG filter is approximately 

similar to that of the LMS filter of Figure 2.15 (d), each has SNR = 10 dB. This is 

because the input to the filter is the noise itself (not the ECG signal as in the case of 

predictors).

Figure 2.14 Original signals used in the adaptive artefact filtering, (a) Record No. 
100 (MIT-DB), (b) the EMG noise and (c) the MA noise from NST-DB.
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(C) (d)
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(e) (f)
Figure 2.15 Performance of LMS-based EMG filter, m-5 and p=0.5 using record No. 
100 (MIT-DB) and different signal-to-noise ratios; SNR=15 dB (for parts (a) and (b)), 
10 dB (for parts (c) and (d)) and 5 dB (for parts (e) and (f)). The LHS shows the 
primary input (top panel) and the reference signal (bottom panel). The RHS shows the 
output (top panel) and the removed artefact (bottom panel).
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Figure 2.16 Performance of LMS-based MA filter, m=5 and (!=().5 using record No. 
100 (MIT-DB) and different signal-to-noise ratios; SNR=15 dB (for parts (a) and (b)), 
10 dB (for parts (c) and (d)) and 5 dB (for parts (e) and (f)). The LHS shows the 
primary input (top panel) and the reference signal (bottom panel). The RHS shows the 
output (top panel) and the removed artefact (bottom panel).
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Figure 2.17 Performance of LMF artefact filters, SNR=10 dB, m=3 and p=0.5, 
using record No. 100 (MIT-DB) artificially contaminated with EMG noise artefact 
(a) and MA noise artefact (b). In each of (a) and (b); the output is shown in the top 
panel and the removed artefact is shown in the bottom panel.
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(a)

Figure 2.18 Performance of LMS-based quadratic Volterra artefact filters, 
SNR=10 dB, m=3, pa=0.5, and ju.b=0.1, using record No. 100 (MIT-DB) artificially 
contaminated with EMG noise (a) and MA noise (b). In each of (a) and (b); the 
output is shown in the top panel and the removed artefact is shown in the bottom 
panel.

51



Chapter 2: Adaptive filtering of the ECG signal

2.7.3.3 SNR Evaluation

Finally the input and the output SNR are calculated for each of the previous filters using 

Eq. (2.37). Table 2.1 shows the results obtained using record No. 100 (MIT-DB) with 

artificially introduced EMG and MA noises. The singular values of the matrix in Eq. 

(2.36) and the number of signals in the signal subspace, p, are calculated using the SVD 

algorithm.

Estimated input Estimated output SNR (dB)

SNR (dB) LMS LMF Volterra

EMG noise:

15.0866 17.77 16.04 17.77

10.27 15.141 12.682 15.139

4.835 11.566 6.0 11.527

MA noise:

14.6 18.63 14.838 18.629

12.165 18.099 14.858 18.093

5.713 11.516 7.855 11.49

Table 2.1 Estimated input and output SNR for the adaptive artefact filters.

The results obtained in Figures 2.15 to 2.18 and Table 2.1 indicate the following;

• The performance of the LMS-based EMG and MA filters is quite satisfactory in 

removing these artefacts as shown in Figures 2.15 and 2.16. The LMF-based 

EMG and MA filters require more than 1000 samples to converge. Also from 

Table 2.1, on average, the achieved improvements in the SNR are 68.13% (for 

EMG) and 59.3% (for MA) using the LMS filter and 17.97% (for EMG) and 

20.4% (for MA) using LMF filter. It was explained by Walach and Widrow 

(1984) that the implementation of "higher-order error algorithms, £>1" requires 

a certain degree of caution as in certain cases these algorithms might cause 

deterioration in the performance, one of these cases is when the noise is
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Gaussian, in such a case the LMS will outperform the LMF. As the EMG noise 

is Gaussian and the MA has a distribution that is very similar to the Gaussian 

distribution, this makes the LMF algorithm not suitable for this application.

• In general, similar performance to that of the LMS-based EMG and MA filters is 

obtained using the LMS-based quadratic Volterra filters, as indicated in Table 

2.1, on average, an improvement in the SNRs of about 67.9% (for EMG) and 

59.2% (for MA) are achieved in the output of each of these filters. While, the 

LMS-based quadratic Volterra predictor outperformed the linear LMS predictor 

as the MSE obtained using the adaptive quadratic Volterra predictor (0.013) was 

approximately four times less than that obtained using the linear LMS predictor 

(0.048). One reason for that is, in the case of the adaptive predictors the input to 

the filter is ECG signal which is highly non-linear, as will be explained in 

chapters 4 and 5. However, for the case of the adaptive noise cancellers the 

input to the filter is the weighted noise.

• The improvement in the output SNR is about 68% for the EMG filter and about 

59% for the MA filter, which means that the noise is partially removed. One 

reason for that is, the operation of these noise cancellers is based on the fact that 

the noise is random and uncorrelated with the signal, which may not be the real 

situation for the ECG signal. A second reason is that the change in the QRS 

complex or in the P- and T-waves morphologies from beat to beat has led to 

incomplete adaptation. Third, the adaptive filters may need longer operating 

time to reach the optimal performance.

• Motion artefact is the most difficult problem because large non-stationary MA 

cannot be efficiently handled with any linear filtering techniques (Sabry-Rizk, et 

al. 2000a; Sabry-Rizk, et al. 2000b). In this study, both the linear LMS and the 

quadratic LMS-based Volterra filters partially removed the MA. Also a 

recurrent filter, used by Thakor and Zhu (1991), in which the primary input is 

the ECG signal with motion artefact and the reference input is an impulse that is 

coincident with the beginning of the P-QRS-T complex with its adaptation takes
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place for the samples spanning the signal complex leaves the MA as residual, 

had partially removed the MA.

2.8 Discussion

There are several advantages to the adaptive filtering approaches; the most significant 

feature of these filters is that they allow estimation of the underlying signal in the 

absence of a priori knowledge of the statistical or spectral properties of the signal and 

noise. These filters are easy to implement on modem microprocessors with numerical 

capabilities.

In this chapter the LMS, LMF, the Kalman and Volterra predictors/filters were used for 

linear and non-linear prediction/filtering of the ECG signals. The LMS showed faster 

convergence and smaller MSE than the LMF algorithm. On the other hand the LMF 

showed more stability. The Kalman predictor resulted in the smallest MSE value and 

the fastest convergence. The limitations of the LMS with respect to the Kalman 

algorithm are the slow rate of convergence and its sensitivity to the eigen-value spread 

problem (for stable LMS the step-size should be in the range 0<p<l/A,max, Xmax is the 

max eigen-value in the autocorrelation matrix of the input signal). So with the LMS 

algorithm a satisfactory performance can be obtained for the proper choice of p. The 

computational complexity and the numerical problems arise from ill-conditioning of the 

state-error covariance matrix [K(t+1, t)], as round-off errors accumulate and propagate 

from one iteration to the next, are the main limitations of the Kalman algorithm. Also 

the Kalman algorithm showed slower response to signal variations during tracking than 

during convergence. This may give the LMS a slight performance advantage in non- 

stationary environments. Volterra non-linear predictor resulted in a good performance 

with smaller MSE. This gives indication that the ECG signal contains inherent non-

linearity; this particular point will be investigated in depth in chapters 4 and 5.

The adaptive artefact cancellers have yielded fairly reasonable results. Their limitation, 

as previously explained, is that not all the noise has been removed. This lead to the 

need to use higher-order (>2) non-linear Volterra filter combined with ElOS for removal 

of these artefacts as explained by Sabry-Rizk, et al. (1998).
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In the following chapters, these adaptive filters will constitute two important steps in the 

ECG signal pre-processing stage prior to its analysis. Since for all the ECG data 

available there is no channel recorded for separately measuring the noise for each 

record, the adaptive predictor structure will be applied. The first step is to remove the 

BW. If the ECG signal is contaminated with any type of artefacts, described in this 

chapter, then the second step is to suppress this artefact as follows, (a) non-linear and 

non-stationary motion artefact will be removed using adaptive Volterra LMS-based 

filter then transforming the signal to the bispectrum domain (Sabry-Rizk, et al. 1998), 

(b) since the power line interference is stationary it can be removed using a 

conventional band stop filter, (c) since the spectrum of the EMG noise overlaps with 

that of the ECG signal (Thakor, et al. 1984), adaptive filters can partially remove this 

artefact. As the EMG is a Gaussian signal (Friesen, et al. 1990) this makes its removal 

very easy by transforming the ECG signal to the higher-order domain which is the main 

analysis tool used in this research work (see chapters 4 and 5).
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C h a p t e r  3

STATISTICAL AND SPECTRAL ANALYSIS OF
ECG SIGNALS

3.1 Introduction

In this chapter the ECG signal will be statistically characterised in terms of periodicity, 

Gaussianity and stationarity. In order to extract features from the frequency domain, it 

is important to have an accurate frequency representation of the signal and an accurate 

interpretation of each frequency component in its spectrum. The power spectrum of the 

ECG signal is estimated using the Welch method. Then a high-resolution frequency 

estimator namely, the MUtiple Signal Classification (MUSIC) algorithm, is applied to 

investigate the frequency content of the whole ECG cycle, the P-wave, the QRS 

complex, and the T-wave of normal ECG signals. To differentiate between normal and 

ischaemic ECG signals in the second-order spectral domain, the high frequency regions 

(60 - 180 Hz) of the whole ECG spectrum and that of the combined ST-segment and the 

T-wave (ST-T complex) have been investigated for normal and ischaemic ECG signals 

using the Maximum Entropy Method (MEM) and the MUSIC algorithm.

3.2 Statistical Properties of the ECG Signals

The ECG signal’s distinctive global nature of pseudo-periodicity (Niranjan and Murthy 

1993), and the different features of the constituent signals (P-wave, QRS complex and 

T-wave) representing actions of various parts of the heart, makes it worthwhile to study 

these features intimately.

A brief study has been made to statistically characterise the ECG signal. A normal 

sinus rhythm ECG record (No. 16483) from the NSR-DB (MIT-CD 1997) will be
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presented as an example from this study. An ECG cycle from this record is shown in 

Figure 3.1.

Figure 3.1 Time domain of one normal ECG cycle record No. 16483 (NSR-DB).

3.2.1 Periodicity Test

The singular values of the data matrix in Eq. (2.36), chapter two, are used by Stokes, et 

al. (1999) to calculate the so-called coefficient of periodicity (CP), which has been used 

as a measure for the degree of periodicity. The total energy in the data matrix Rx is the 

sum of squares of its singular values, and for a noise-free periodic processes, the total 

energy is contained in the dominant singular value (Palit and Kanjilal 1994). This 

suggests the following form of CP,

CP = (3.1)

It follows immediately from this definition that CP= 1 for strictly periodic processes. 

This coefficient, CP, is calculated for 18 normal ECG records using 10,000 samples 

from each record. The CP is found to be in the range from 0.84 to 0.98 with a mean
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value of 0.89. This confirms that the ECG signal is a pseudo-/quasi-periodic signal as 

explained by Mukhopadhyay and Sircar (1996); Niranjan and Murthy (1993).

3.2.2 Normality Test

In this section the sample coefficients of the mean, variance, skewness and kurtosis 

(Press, et al. 1990) are applied to reject or accept the Normality (Gaussianity) 

hypothesis of the ECG signal then the histogram and the Probability Distribution 

Function (PDF) are plotted to show the marginal distribution of the signal’s amplitude. 

The physical meaning of these statistics is (Mood, et al. 1974):

Mean: it is an estimate of the value around which the central clustering of a set of 

values occurs.

Variance: it characterises the “width” or “variability” of a distribution around its central 

value (e.g., mean).

Skewness: The skewness measures the degree of asymmetry of a distribution around its 

mean. It is a pure number, non-dimensional, that characterises only the shape of the 

distribution. A positive skewness indicates that the distribution is skewed to the right, 

whereas a negative skewness usually indicates that the distribution is skewed to the left.

Kurtosis: The kurtosis is also a non-dimensional quantity. It measures the relative 

peakedness or flatness of a distribution relative to a Gaussian distribution. A positive 

kurtosis indicates that the density is more peaked around the mean value than the 

density of the Normal distribution, whereas a negative kurtosis usually indicates that the 

density is more flat around its mean value than do the Normal distribution.

The mathematical expressions for these statistics will be introduced in chapter four. 

The mean, variance, skewness and kurtosis are computed from averaging of the results 

obtained for one hundred and three cardiac cycles. The values obtained are 0.0258,

0.284, 2.7428, and 15.1019, respectively. For Normal distribution the values of 

skewness and kurtosis are zero and 3, respectively, (Patel and Read 1982). A positive 

skewness of 2.7428 for the ECG data indicates that the sample data are skewed to the 

right. While a kurtosis value greater than 3 indicates that the sample distribution has
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rather more values in the tail regions than would be expected for a Normal distribution, 

this also declare peakedness around the mean value.

The histogram in Figure 3.2 emphasises this fact as marginal distribution does not 

appear to be symmetric and it skews to the right. Figure 3.3 shows the PDF, which is 

the integration of the histogram. Both the histogram and the PDF are calculated from 

averaging of 103 Histograms and using 50 equally spaced bins.

- 0 . 6  - 0 . 4  - 0 . 2  0  0 . 2  0 . 4  0 . 6  0 . 8  1
N o rm a lis e d  a m p litu d e

Figure 3.2 Histogram of a normal ECG record No. 16483 (NSR-DB) using 50 
equally spaced bins.

Figure 3.3 Probability Distribution Function (PDF) of a normal ECG record No. 
16483 (NSR-DB) using 50 equally spaced bins.
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3.2.3 Stationarity Test

We will now look at the spectrogram, which is an estimate of the short-term, time- 

localised frequency content of the signal. The spectrograms in Figures 3.4 (a), (b) are 

calculated by splitting the signal into zero overlapping segments and windowing each 

with Hanning window. Figure 3.4 shows that the dominant frequency tracks are 

between 0 and 30 Hz. Comparing Figure 3.4 (a) and 3.4 (b): Figure 3.4 (a) shows 

constant frequency tracks with time (especially in the dominant frequency region) 

which means that this segment (one cycle) can be considered stationary. Figure 3.4 (b) 

shows changes in the frequency tracks with time indicating that this segment (> one 

cycle) is not stationary. One can conclude that the ECG signal can be considered 

stationary within one cycle, i.e., cyclostationary. Cyclostationary processes are random 

processes with statistical parameters, such as mean, autocorrelation...etc. that fluctuate 

periodically with time (Dandawate and Giannakis 1994; Gardner and Franks 1975). 

These processes are characterised by the invariance of the probability distribution under 

shift by multiples of a certain period; this is the characterisation in the strict sense. 

Bennett (1958) introduced the term "cyclostationary" to denote this class of processes. 

Other investigators have used terms such as "periodically stationary," "periodically 

correlated," and "period non-stationary," to denote the same class. The cyclostationary 

signals are usually treated as if they are stationary simply by averaging the statistical 

parameters over one cycle. This is equivalent to representing the phase of the process as 

a random variable uniformly distributed over one cycle (Gardner and Franks 1975).

where x is the cyclostationary signal, x is the phase randomised signal and Pv is the 

probability density function of (p. In this case the mean, mx, and autocorrelation,

ka (t ), of x can be defined mathematically as:

x = x(t + cp)

0
2
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m = l f
T J - t ,

4 1

mx(t) dt

•T /  2

T / 2

kxx(t + T,t) dt

O 5  1 0  1 5  2 0  2 5  3 0  3 5

T im e

(a )

Figure 3.4 Spectrogram of a normal ECG signal. The segment length is (a) one 
ECG cycle, and (b) 128 samples with overlap=0.
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3.3 Spectral Analysis of the ECG Signals

The power spectrum determines the distribution of power among individual frequency 

components of the process (Priestley 1981). To have a concise definition of the ECG 

spectrum (e.g., shape and limits) the power spectrum of the whole ECG is calculated 

using the Welch periodogram. Then in order to understand the frequency components 

of this spectrum, a high-resolution frequency estimation technique namely, the Multiple 

Signal Classification (MUSIC) algorithm is applied to estimate the MUSIC spectra of 

the whole ECG cycle, the P-wave, QRS complex and T-wave.

3.3.1 The Welch Periodogram

Welch provided a computationally efficient procedure using the FFT for averaging 

periodograms' of weighted and overlapped data segments. Consider a data record

[x(0),x(l),.... ,x(/V-l)] of N samples divided into J segments of M samples each, with l

samples between adjacent segments (/ <M ). The weighted ith segment will consist of 

the samples (Marple 1987).

x^\t)-Win{t)x(t + il) (3.2)

where Win(t) is the window function applied to x{t) for 0<t<M  -1 . The sample 

spectrum of the weighted ilh segment is given by

s,i)m =-E-xwa)k(')(/)]' =7r!dxw(/)1
UMT UMV

(3.3)

Over the frequency range -1 /2  T < f  < \/2T , where X^(/) is the discrete FT of the ith 

segment.

M-1
x {i)( f ) -  T ^ x (i\t)exp(-j2nftT) (3.4)

1=0 1

1 PSD estimates based on direct transformation of the data followed by averaging are collectively termed 

periodograms.
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M -1
and U is the discrete-time window energy given by U = T^^W in2(t) . The average of

(=0

the windowed segment periodograms yields the Welch periodogram estimate,

J

i=l
(3.5)

To characterise the ECG signal in the frequency domain, the Welch method is applied 

to calculate the power spectrum for some records from the NSR-DB (MIT-CD 1997). 

Figure 3.5 shows the power spectral density of a normal ECG signal (record No. 

16483). The power spectrum is smoothed with Hanning window. The number of 

points used for calculating FFT, (nfft) =128, 7=76 and each segment =one ECG 

cycle+zero padding to 128 samples. From this Figure we can conclude that the ECG 

signal has a frequency spectrum that covers the frequency range 0 - 4 0  Hz. The 

frequency components with significant amplitudes are in the range 0 - 30 Hz, this comes 

in agreement with the previous result using the spectrogram in Figure 3.4. There are 

about 6 frequency components in this spectrum. These frequency components are at 

(1.4545, 4.3636, 8.7273, 13.0909, 16, and 20.3636 Hz). The fundamental frequency is 

at 1.4545 Hz, the frequencies at 4.3636, 8.7273, 13.0909, 16 and 20.3636 Hz are the 

third, sixth, ninth, eleventh, and fourteenth harmonics of the fundamental frequency. 

The relation between these frequencies and the P-wave, QRS complex and T-wave will 

be investigated in the next section using the MUSIC algorithm and in chapter four using 

the bispectrum.
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W e l c h  P S D  E s t i m a t e

W e l c h  P S D  E s t i m a t e

Figure 3.5 Power spectrum of a normal ECG signal (record No. 16483) in linear 
(up) and dB (bottom) scales.

3.3.2 The Multiple Signal Classification (MU SIC) Algorithm

The MUSIC algorithm was first presented by Schmidt (1979); Schmidt (1981). It 

belongs to the so-called "super/high-resolution" algorithms. It is a subspace-based 

algorithm, i.e., basically such an approach partitions the observation space spanned by
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the eigen-vectors of the correlation matrix into two subspaces, and exploits the 

orthogonality of the signal and the noise subspaces to estimate the frequencies of the 

input signal. It is a frequency estimation technique based on eigen-decomposition or 

singular value decomposition (SVD) of the autocorrelation matrix or the data matrix of 

the input signal. Consider an input random process, x(t), of the form

x(t) = j^A, ejni- +W(t) (3.6)
1=1

where At = |A,.|ey<p' and co,, i=l,2,....p are the amplitudes and the frequencies of the p

complex exponentials, respectively. W(t) is white noise process with zero mean and 

variance Gw2.

Let Rx e(L+l,L+l) be the autocorrelation matrix of x(t), with (L+l)>p. If the eigen-

values of Rx are arranged in decreasing order, Àj >X2 >....... > \ L, and if Vi, y 2,..... ,vl

are the corresponding eigen-vectors, then these eigen-vectors can be divided into two 

groups: the p signal eigen-vectors corresponding to the p largest eigen-values, and the 

(L+l)-p noise eigen-vectors which, ideally, have eigen-values equal to ow . let Vs = 

[vi,....,vp], and VN = [vp+i,....,vL+i] be the signal and noise subspaces, respectively, 

these two subspaces are the orthogonal complement of each other (Haykin 1991)

VhnVs = 0 (3.7)

The MUSIC spectrum uses the following frequency estimation function:

S  m u s i c  ( w ) - (3.8)

e "  frii'i =  11 -j(z.-p)(owhere K J L "" J is the frequency scanning vector. This spectrum

will exhibit sharp peaks at the frequencies of the complex exponentials.
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3.3.2.1 MUSIC Spectrum of the ECG

To estimate the MUSIC spectrum, Eq. (3.8), of the ECG signal and the constituent 

waves (P-wave, QRS complex and T-wave), it is necessary to know the number of 

signals in the signal subspace. This can be accomplished by calculating the number of 

significant singular values of the covariance matrix of the signal, by applying the 

extended version of the AIC criterion in Eq. (2.31) chapter 2. Figure 3.6 (a) shows the 

singular values of the covariance matrix of an ECG signal from record No. 16483, 

NSR-DB (MIT-CD 1997). The AIC for this ECG signal is flat for orders higher than 

15, which is chosen as the number of signals in the signal subspace as described by 

Niranjan and Murthy (1993). Figure 3.6 (b) shows the MUSIC spectrum for this record. 

Figure 3.7 shows the MUSIC spectra for the PR interval, QRS complex, and ST-T 

complex for this record. Table 3.1 shows the spectral peaks obtained from the MUSIC 

spectra for records No. 16483 and No. 16539 (NSR-DB). The spectrum is calculated 

for the whole ECG cycle, PR interval, QRS complex, and ST-T complex for both of 

these records. From Figures 3.6 (b) and 3.7 and Table 3.1 the MUSIC spectrum of the 

whole ECG cycle consists of 6 spectral peaks. The first peak at 4.0315 Hz is due to the 

T-wave, the second one at 15.1181 Hz is due to the QRS complex and the component at 

10.0787 is due to the P-wave. This result comes in agreement with the results obtained 

by Sabry-Rizk, et al. (2000c); Thakor, et al. (1984). The higher frequency components 

at 19.1496, 23.1811, 24.1890 and 28.2205 seems to be due to interactions between the 

main frequency components, this observation will be investigated in the next chapter 

using the bispectrum. From the spectral peaks of the MUSIC spectra of the constituent 

waves for the two records in Table 3.1, it is observed that, the peak due to the P-wave 

lies in the range 6-10 Hz, and that due to QRS complex lies in the range 15-17 Hz and 

that for T-wave is at about 4 Hz. The peak at 2.0317 in the MUSIC spectrum for the 

ST-T complex of record No. 16539 may be due to the motion artefact.
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(a)

M usic  S p e c tru m  o f R ecord  1 648 3 (N S R -D B )

(b)

Figure 3.6 (a) Singular-values of the covariance matrix, and (b) the MUSIC 
spectrum of the whole ECG cycle (record No. 16483, the NSR-DB) with zero 
padding to 128, p - 15 and L=24.
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(b)

(c)

Figure 3.7 MUSIC spectra for (a) the PR interval, (b) QRS complex, and (c) ST-T 
complex. With zero padding to the nearest FFT length. The signal subspace 
parameters, p =5 for (a) and =3 for (b) and (c).
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Segment Record 16539 Record 16483

Whole ECG 4.0315, 15.1181, 10.0787, 

19.1496, 23.1811 and 

28.2205 Hz.

4.0315, 15.1181, 19.1496, 

10.0787, 24.1890 and 

28.2205 Hz.

PR interval 2.0317 and 6.0952 Hz. 8.2581 Hz.

QRS complex 17.0667 Hz. 17.0667 Hz.

ST-T complex 2.0317 Hz. 4.0635 Hz.

Table 3.1 Spectral peaks of the MUSIC spectra estimated for records No. 16539 
and No. 16483 (NSR-DB).

The next step in this analysis is to compare the MUSIC spectrum of a normal ECG 

signal with that of an ischaemic case. The normal ECG is interpolated to threefold 

using cubic spline technique (see appendix A) to over sample the signal to about 360 

Hz, to match the sampling rate for the ST Change-DB. Figure 3.8 shows the MUSIC 

spectra for these two cases. The upper panel is the spectrum for a normal subject 

(record No. 19830, NSR-DB). The middle and the bottom panels show the MUSIC 

spectra for two ischaemic cases record No. 325 (ST elevation case) and No. 301 (ST 

depression case), these two cases are taken from the ST Change-DB. Both of these 

spectra are characterised by High Frequency Components (HFC) in the higher 

frequency region, /  > 60 Hz, outside the region that the normal spectrum cover, /<  60 

Hz. These HFC are investigated in more details in the next section.
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Figure 3.8 MUSIC spectra of a normal case (top, record No. 19830), and two 
ischaemic cases (record No. 325 in the middle and record No. 301 in the bottom). 
p=16 and L=24.
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3.4 Detection of Ischaemic Heart Disease

3.4.1 Introduction

To maintain proper functioning, the heart must have a continuous supply of oxygen. 

When the oxygen supply becomes inadequate, varying degrees of ischaemia appear, 

angina pectoris, MI, or sudden death may occur. Any circumstance that increases 

myocardial oxygen demand or reduces the oxygen supply is capable of inducing angina. 

It is commonly noted with strenuous physical effort or emotional upsets (Camm 1998). 

In hospitals there are several ways of stressing the heart to assess patients with 

ischaemic heart disease. These include dynamic exercise1, isometric exercise1, 

pharmacological stress1, and atrial pacing1. Not all patients are able to do dynamic 

exercise, due to obesity, poor physical conditions, respiratory limitation, arthritis, 

diabetes, unstable angina, or risk of complication and physical incapacity in patients 

with recent Myocardial Infarction (MI). Cardiac stress induced by isometric exercise is 

often inadequate in provoking ischaemic events. Pharmacological stress by drugs such 

as dipyridamole or dobutamine is commonly associated with undesirable cardiac or 

noncardiac side effects. Although transesophageal atrial pacing has been reported to be 

safe it may develop sensation during the procedure also careful patient education and 

preparation must be made before the pacing (Armstrong 1997; Jadvar, et al. 1991; 

Mazeika, et al. 1992). It has been estimated that 15% to 30% of patients with suspected 

or known coronary artery disease are unable to perform an adequate exercise stress test 

(Bruce, et al. 1974; Jadvar, et al. 1991). It is therefore beneficial, using advanced signal 

processing techniques, to be able to detect ischaemic heart diseases even when they do 

not manifest themselves as ST-segment depression or elevation.

3.4.2 ECG Data Annotation

ECG data from the ST Change-DB and the NSR-DB (MIT-CD 1997) are used in this 

analysis. Since the ST Change-DB provides no ST-segment and/or T-wave annotation,

1 See appendix E for definitions.
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these data are annotated by two well-trained cardiologists1. In this annotation episodes 

of ST depression/elevation have been carefully identified. Four groups of episodes are 

studied:

Group 1: this group is taken from the NSR-DB and is called Normal Confirmed 

Episodes (NCE).

Group 2: this group is taken from ST Change-DB at the initial resting phase of the 

exercise test for records No. 300 to No. 323, and from episodes that do not show 

elevation for records No. 324 to No. 327. In this group of episodes ischaemia could not 

be confirmed by the cardiologists as there is no clinically significant ST 

depression/elevation and the ST-T episodes look normal, i.e., Normal Looking Episodes 

(NLE). This group may contain episodes from either ST depression or ST elevation 

records.

Group 3: this group is taken from ST Change-DB at the peak effort phase of the 

exercise test for records No. 300 to No. 323, and from episodes that do show elevation 

for records No. 324 to No. 327. In this group ischaemia is manifested in the form of ST 

depression or elevation. Ischaemia is confirmed by the cardiologists, i.e., Ischaemic 

Confirmed Episodes (ICE). The ICE group may contain episodes from either ST 

depression or ST elevation records.

Group 4\ this group is taken from ST Change-DB and includes episodes from some 

records in which the cardiologists could not confirm ischaemic events throughout the 

whole record. This group is named Ischaemic Suspected Episodes (ISE).

3.4.3 Analysis Technique
The HFC found previously in the MUSIC spectrum for ischaemic subjects using the 

whole ECG cycle may appear clearer and more significant in the MUSIC spectrum of 

the combined ST-segment and T-wave (ST-T complex) for the following reasons: 1) As 

explained in chapter one ischaemic heart disease mainly affects the ST-T complex. 2)

1 Independent annotation by Dr. E.M. Elswefy, MRCP, PhD, and Dr. A. Zeida, MRCP, PhD, St. George’s Hospital 

Medical School, London, UK and Assiut University, Egypt.
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The steep slopes inside the QRS complex act as an impulse and resulted in a continuous 

spectrum that may cover the low amplitude high frequency components. The facts that 

the MUSIC algorithm is a super-resolution frequency estimation technique and it is 

based on single realisation of the underlying stochastic process represented by its 

correlation/data matrices make it useful in calculating low amplitude, high frequency 

components. The following strategy is adopted in this analysis

1) Pre-processing, since the baseline wander may affect the level of the ST-segment, the 

baseline wander is eliminated as previously described in chapter 2. All data records are 

visually checked beat by beat to ensure that they are free from ectopic beats, electrode 

disconnection and considerably high amplitude EMG and MA noises and power line 

interference. The NSR-DB records are interpolated to about three folds using cubic 

spline technique (Press, et al. 1990). Then R peaks are detected, R peak detection 

algorithm consists of amplitude normalisation, separation of the positive part, squaring 

then using certain amplitude and time thresholds to detect the position of the R peaks 

(Tompkins 1993). ST-T complexes are started 50 msec after the R peak (18 samples), 

with segment size of about 400 msec; which is equivalent to about 150 samples.

2) Investigate the MUSIC spectrum of ST-T complex from NCE and ICE groups and 

report the differences between these two spectra. 3

3) As a reference, apply the MEM method, which is a parametric high-resolution 

technique to calculate the previous spectra and compare the results. The MEM 

spectrum is calculated from:

^  MEM ( / )  -

u .
m

eXp{~ jlftfiT}1 +
i=l

(3.9)

where: SMem if): output power spectral density, Um : the power of the white noise or 

prediction error,/: frequency, T: sampling interval, -1/2T < /  < 1/2T , and amj : the 

AR-parameters, of a prediction error filter of order m. More detailed reviews of the 

Burg algorithm may be found in (Burg 1967; Marple 1980).
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4) Calculate the MUSIC spectra for ST-T complexes from ICE and NLE groups of the 

same patient and analyse the difference.

5) Estimation of the optimal order of the process is a delicate problem, unresolved in the 

literature of ECG analysis until now. An order range from 13-20 has been used by 

Schels, et al. (1991) to detect LPs using the MEM spectrum. An empirical analysis 

combined with model order selection criteria described in chapter 2 showed that the 

number of signals in the signal subspace and the AR order for the MEM should be 

chosen in the range 15-20 to obtain a clear picture of the HFC in the MUSIC spectrum 

of the ST-T complexes.

6) The diagnostic accuracy (the fraction of correct diagnoses), the sensitivity (the 

fraction of correctly diagnosed ischaemic segments) and the specificity (the fraction of 

correctly diagnosed normal segments) are calculated to evaluate the performance of the 

analysis (Sievanen, et al. 1994).

3.5 Results

Time domain plots for the different types of episodes that have been used in this 

analysis are shown in Figure 3.9. One ECG cycle from each type of episode is included 

in this Figure. The top two ECG cycles represent NCE (record No. 16483, NSR-DB 

(MIT-CD 1997)) and ISE (record No. 316, ST Change-DB (MIT-CD 1997)), the middle 

represent ICE and NLE for ST depression case (record No. 300, ST Change-DB) and 

the two in the bottom represent ICE and NLE for ST elevation case (record No. 324, ST 

Change-DB).

Figure 3.10 shows the results obtained using MUSIC (top) and MEM (bottom) for 

normal case (record No. 16539, NSR-DB). Figure 3.11 is the corresponding spectra for 

an ischaemic case (record No. 327, ST Change-DB). Ten randomly selected ST-T 

complexes from each episode are analysed using the MUSIC and the MEM algorithms. 

The spectrum of each of these ten segments is calculated and superimposed in a cascade 

diagram (waterfall 3-D plot).
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Record  1 6 4 8 3  (N S R -D B ) Record  316  ( S T C hange-D B  )

R ecord  300  ( S T  C hange-D B ) R ecord  300  ( S T  C hange-DB)

R ecord  324  ( S T  Change-DB) Record  324  ( S T  C hange-D B  )

Figure 3.9 One ECG cycle from different episodes, NCE, ISE, NLE, ICE (ST- 
depression) and NLE, ICE (ST-elevation) from top to bottom, respectively.
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Since no amplitude normalisation has been applied to the resultant spectra from the 

MUSIC and MEM algorithms, the two methods resulted in different amplitude ranges 

as depicted in Figures 3.10 and 3.11. Both methods reveal high frequency components 

(HFC) in the range 60 Hz< /<  180 Hz for the ischaemic case. Since this ischaemic case 

is a MI patient these HFC represent the so-called LPs, which are defined in chapter 1. 

Better resolution is obtained using the MUSIC algorithm. A previous work by Schels, 

et al. (1991) suggested that Burg technique (MEM spectrum) in the original form is 

insufficient for the analysis of the ST-segment and to enhance the visual differentiation 

of LPs, the authors developed a frequency analysis technique based on the difference 

between two MEM spectra. In the present study the MUSIC spectrum clearly reveals 

the LPs / HFC.

Using 50 randomly selected ST-T complexes from each type of episode for each data 

record, the MUSIC spectra of a total of 1800 ST-T complexes (700 from the NCE, 350 

from the NLE, 550 from the ICE and 200 from the ISE) are estimated. This is 

equivalent to analysing about 1494 sec from the data. Figures 3.12, 3.13 and 3.14 

depict 3-D waterfall plot of the MUSIC spectra for different types of episodes. Each 

Figure consists of three parts plotted in three pages for data taken from different parts of 

the data file. Each part shows the MUSIC spectra of two types of episodes in two 

panels. In each panel the spectra of 10 complexes from one type of episodes are shown 

as 3-D waterfall plot. Prominent spectral peaks in the range 60 Hz< f  < 100 Hz 

characterise the MUSIC spectra of the episodes that represent ST-segment depression as 

shown in Figure 3.12. Prominent spectral peaks in the range 60 Hz< /  < 180 Hz 

characterise the MUSIC spectra of the episodes that represent ST-segment elevation are 

shown in Figure 3.13. Figure 3.14 (a) shows the MUSIC spectra of the ST-T complexes 

of a normal case (No. 18184), there are no detectable spectral peaks in the high 

frequency range. Figure 3.14 (b) represent an ISE case (record No. 316), the existence 

of spectral peaks in the range 60 H z< /<  100 confirms the database classification, i.e., 

ST-segment depression for this record.
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(a)

(b)

Figure 3.10 MUSIC (a) and MEM (b) spectra for ten randomly selected ST-T 
complexes of a normal case (record No. 16539, NSR-DB). Using a segment size of 
about 150 samples.
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(a)

Figure 3.11 MUSIC (a) and MEM (b) spectra for ten randomly selected ST-T 
complexes of an ischaemic case (record No. 327, ST Change-DB). Using a 
segment size of about 150 samples.
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Comparing Figures 3.12 (a) and 3.12 (b) which represent ICE’s and NCR’s for ST- 

segment depression case, respectively, we can conclude that the spectral peaks in the 

range in 60 Hz< /  < 100 Hz are obvious in episodes that represent the initial resting 

phase of exercise test just like that in the peak effort phase of the exercise. Comparing 

Figure 3.13 (a) and 3.13 (b), which represent ICE’s and NLE’s for ST-segment elevation 

case, respectively, one can notice the spectral similarity between these episodes.

From the above two observations it may be possible to detect ischaemia by applying 

high-resolution spectral analysis techniques on little effort exercise test or even resting 

ECG signals. This result is important considering some ischaemic cases in which 

ischaemia cannot be detected without exercise test such as chronic stable angina. A 

dominant spectral peak at about 85 Hz in the cases of ST-segment depression and at 

about 150 Hz in ST-segment elevation cases characterises the MUSIC spectra of about 

70% of the total number of segments. This spectral peak can be used as a significant 

feature to differentiate between normal, depressed, and elevated ST-segments. Figure 

3.15 shows the MUSIC spectra for one segment from each of these three cases.

Table 3.2 summarises the results obtained for all normal and ischaemic cases. From 

this table the accuracy, sensitivity and specificity of the analysis are calculated as 

follows (Green and Swets 1966; Jager, et al. 1991):

Accuracy = (TP+TN)/Total number of segments,

Sensitivity = TP/(TP+FN), and

Specificity = TN/(TN+FP).

where TP: true positive, number of correctly diagnosed ischaemic segments, TN: true 

negative, number of correctly diagnosed normal segments, FN is the false negative, 

number of incorrectly diagnosed ischaemic segments, and FP is the false positive, 

number of incorrectly diagnosed normal segments.

According to these definitions, the resulted accuracy, sensitivity and specificity are 

84%, 80%, and 91%, respectively.
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Figure 3.12 MUSIC spectra of ten ST-T complexes for episodes represent NT.F. (a-
1), and ICE (b-1) for ST-segment depression case (record No. 301,ST Change-
DB). Using a segment size of about 150 samples.
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Figure 3.12-continued MUSIC spectra of ten ST-T complexes for episodes
represent NLE (a-2), and ICE (b-2) for ST-segment depression case (record No.
301, ST Change-DB). Using a segment size of about 150 samples.

81



Chapter 3: Statistical and spectral analysis of ECG signals

Figure 3.12-continued MUSIC spectra of ten ST-T complexes for episodes
represent NLE (a-3), and ICE (b-3) for ST-segment depression case (record No.
301, ST Change-DB). Using a segment size of about 150 samples.
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Figure 3.13 MUSIC spectra of ten ST-T complexes for episodes represent NLE (a-
1), and ICE (b-1) for ST-segment elevation case (record No. 325, ST Change-DB).
Using a segment size of about 150 samples.
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Figure 3.13-continued MUSIC spectra of ten ST-T complexes for episodes 
represent NLE (a-2), and ICE (b-2) for ST-segment elevation case (record No. 325, 
ST Change-DB). Using a segment size of about 150 samples.
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(b-3)

Figure 3.13-continued MUSIC spectra of ten ST-T complexes for episodes
represent NLE (a-3), and ICE (b-3) for ST-segment elevation case (record No. 325,
ST Change-DB). Using a segment size of about 150 samples.
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Figure 3.14 MUSIC spectra of ten ST-T complexes for episodes represent NCE (a-
1), and ISE (b-1) for a normal case (record No. 18184) and an ischaemic case
(record No. 316, ST Change-DB). Using a segment size of about 150 samples.
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(3-2)

(b-2)

Figure 3.14-continued MUSIC spectra of ten ST-T complexes for episodes 
represent NCE (a-2), and ISE (b-2) for a normal case (record No 18184, NSR-DB) 
and an ischaemic case (record No. 316, ST Change-DB). Using a segment size of 
about 150 samples.
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(a-3)

(b-3)

Figure 3.14-continued MUSIC spectra of ten ST-T complexes for episodes 
represent NCE (a-3), and ISE (b-3) for a normal case (record No. 18184, NSR-DB) 
and an ischaemic case (record No. 316, ST Change-DB). Using a segment size of 
about 150 samples.
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Figure 3.15 MUSIC spectra of one ST-T complex for NCE (top), ICE (middle, ST- 
segment depression) and ICE (bottom, ST-segment elevation). Using a segment 
size of about 150 samples.
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Record

Number

Segment

description

No. of segments with high frequency components out of 50

f> 60 Hz 700>f <180 Hz

16483 NCE 2 ___
16539 NCE 3 ___
16795 NCE ___ ___
19830 NCE 7 ___
16272 NCE 13 ___
16420 NCE 11 ___
16265 NCE 3 ___
16773 NCE 5 ___
16786 NCE 2 ___
18177 NCE 4 ___
18184 NCE 1

19088 NCE 5 ___
19093 NCE 1

17052 NCE 4 ___
300 ICE 44 ___
300 NLE 40 ___
301 ICE 41 ___
301 NLE 43 ___
302 ISE 43 ___
303 ICE 43 ___
304 NLE 37

304 ICE 34 2

306 ICE 40 ___
307 ISE 41 1

311 ICE 45 1

311 NLE 41 ___
316 ISE 39 ___
317 ISE 35 10

320 NLE 33 3

320 ICE 41 1

324 ICE 30 27

324 NLE 36 40

325 ICE 35 41

325 NLE 36 49

326 ICE 35 27

327 ICE 37 41

Table 3.2 MUSIC results for all normal and ischaemic records.
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3.6 Discussion

In this chapter some statistical properties of the ECG signal have been calculated. The 

results come in agreement with other research work in this field. It has been shown that 

the ECG signal is a quasi-periodic, non-Gaussian and cyclostationary signal. Linearity 

properties of the ECG will be investigated in the following two chapters using higher- 

order statistics.

The frequency domain of the ECG signals was studied and the results showed that the 

signal is harmonic in nature and its spectrum extends in the frequency range from 0 to 

40 Hz. Some spectral components in this band (0 - 40 Hz) are due to the constituent 

waves (P-wave, QRS complex, and T-wave) and others in the frequency range 0 - 3 Hz 

are due to the contaminated noise (motion artefact and EMG). The high frequency 

components tend to be due to coupling between the fundamental frequency and the 

harmonics. This will be investigated in the next chapter using the bispectrum.

In the literature a number of methods have been proposed for detection of ischaemic 

events using the analysis of ST-segments. These methods were based on digital 

filtering, time domain analysis of the first derivative of the signal and wavelet-based 

methods (Hsia 1986; Li, et al. 1995; Weisner, et al. 1982). They tend to measure 

specific parameters (such as degree of depression, ST-T duration etc...) in ways 

critically dependent upon the correct detection of the J-point on the ECG signal. 

Uncertainty regarding J-point position may lead to inaccurate estimation of the ECG 

parameters related to the ST-T complex. In the time domain, there are many problems 

contributing to poor detection and incorrect classification of the ST-segment, include: 

slow baseline drift, noise, sloped ST changes, patient-dependent abnormal ST-segment 

depression levels and varying ST-T patterns in the ECG of the same patient 

(Stamkopoulos, et al. 1998). This work differs considerably from previously used 

algorithms in that: 1 ) the current investigation examined the existence of abnormality 

(ischaemia) rather than the detection of ST-segment depression/elevation, 2) it used 

information coming from the whole ST-T pattern, and 3) This information was analysed 

in the frequency domain.
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Recently late potentials (LPs) have been proposed to identify a subgroup of patients 

with MI at risk of VT, see chapter one, (Breithardt, et al. 1986; Meste, et al. 1994; 

Schels, et al. 1991; Simson, 1981). This work enhances the concept of LPs to include 

the abnormal high frequency components (HFC) found in the MUSIC spectrum of the 

ST-T complexes of the ECG signals to identify patients with myocardial ischaemia 

and/or infarction.

The frequency analysis of the normal episodes taken from normal subjects showed 

insignificant HFC. For ischaemic subjects, these HFC were found for the same patient 

not only in episodes that represent peak effort phase of exercise ECG (i.e., episodes 

show ST-segment depression) but also in episodes representing the initial resting phase 

of exercise ECG (i.e., episodes do not show ST-segment depression). The HFC are also 

found in some resting ECG recordings (No. 324 to No. 327, ST Change-DB), for both 

episodes that show and that do not show ST-segment elevation of the same patient.

In this chapter we tried to answer an important question, that is, is it possible to detect 

ischaemia without exercise test? In some ischaemic cases such as chronic stable angina 

and old MI the resting ECG show normal ST-T episodes. But from signal processing 

point of view the dynamics of the generator (the heart) of the signal have changed, this 

implies changing the dynamics of the ECG signal itself which in turn can be detected 

using signal processing techniques. The MUSIC analysis of two different types of 

episodes from the same patient (100 ST-T complexes) showed the spectral similarity 

between these episodes, which means similar dynamics over the whole record despite of 

the innocent appearance of some episodes. Hence it may be possible to detect 

ischaemia by applying high-resolution spectral analysis techniques on low levels of 

exercise stress test or even resting ECG signals. In this analysis high-resolution was 

obtained using the MUSIC algorithm compared to the maximum entropy method 

(MEM). The estimated accuracy, sensitivity and specificity of the analysis offered a 

promise in the direction of the detection of ischaemia without exercise test.

Having defined the Gaussianity, periodicity, stationarity and the second-order spectral 

characteristics of the ECG signals, the following two chapters will explore the ECG 

signal in the higher-order statistical domain and define its linearity characteristics.

92



Chapter 4: Higher order statistics/spectra

C h a p t e r  4

HIGHER-ORDER STATISTICS/SPECTRA

4.1 Introduction

This chapter is concerned with the characterisation of the ECG signals in the higher- 

order statistics (HOS) domain. Non-Gaussianity and non-linearity of the signal will be 

identified using HOS. In the time domain, the second-, third- and fourth-order 

cumulants are estimated for normal and ischaemic ECGs to investigate their different 

characteristics. In the frequency domain, the three-dimensional bispectral patterns are 

investigated for normal ECG signals. For the ischaemic case, the bispectral analysis is 

dealt with in chapter 5. Also, the bispectrum magnitude and bicoherence-squared index 

are used in this chapter to detect and quantify quadratic phase coupling which includes 

both frequency and phase coupling. This in turn will be used to classify ischaemic 

abnormality in ECG signals in chapter 5.

In this chapter some definitions for higher-order statistics are given along with relevant 

mathematical formulae. Descriptions of the estimation techniques of the cumulants and 

bispectra are also given. Basically, three methods for bispectrum estimation are 

considered in this chapter, namely, (i) the direct, (ii) the indirect, and (iii) the third-order 

recursion methods. The direct method, which involves calculating the triplet product of 

the EFT of the signal (Nikias 1993), is primarily used for bispectrum estimation in this 

analysis. The indirect method, which calculates the EFT of the third-order cumulants, 

and the method referred to as the Third-Order Recursion (TOR) for bispectrum 

estimation (Nikias 1993; Raghuveer and Nikias 1985), are also applied to the same 

ECG signals for comparison. Hinich tests for non-Gaussianity and non-linearity 

(Hinich; 1982) are then applied to individual records to further confirm, statistically, 

their hypothesis.
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This chapter also introduces a new algorithm aimed at improving the resolution 

capability of the bispectrum. This new bispectrum estimator is an eigen-decomposition- 

based technique and it is reminiscent of the spectral Multiple Signal Classification 

(MUSIC) approach (Haykin 1991). In this thesis, it is called the MUSIC Pseudo- 

Bispectrum (MUSIC-PB). It is used to calculate the quadratic phase coupling by 

estimating; (i) a Toeplitz matrix from the third-order cumulant, (ii) the signal and noise 

subspaces, and (iii) pseudo-bispectral peaks. In order to test the algorithm, simulated 

sinusoidal signals are first introduced before dealing with the actual measured ECG 

signals. It is worth reporting here, that the MUSIC-PB estimator is different from the 

method adopted by (Sabry-Rizk, et al. 1997b; Sabry-Rizk, et al. 2001b; Zgallai 2002) to 

calculate: (i) the spectral MUSIC, (ii) the bispectrum of the spectral MUSIC in which 

the signal and noise subspaces have been filtered to further enhance the signal over the 

desired frequency band (Sabry-Rizk, et al. 2000c).

4.2 Higher-order Statistics/Spectra

The higher-order statistics (HOS); also known as cumulants, are related to the more 

familiar moments and may be expressed in terms of them. Higher-order spectra 

(polyspectra) are the multi-dimensional Fourier Transforms (FT) of the cumulants of 

stationary signals. Just as the FT of the autocorrelation (the power spectrum) is a useful 

tool, so are the FT of cumulants. A key characteristic which differentiates cumulants 

from correlations is that cumulants are blind to all kinds of Gaussian process, whereas 

correlations are not. This means that cumulants automatically improve the SNR. 

Another important advantage of working with cumulants and polyspectra, is that they 

preserve phase information about the underlying process. On a practical level, one very 

attractive property of cumulants is that the cumulant of the sum of two statistically 

independent random processes equals the sum of the cumulants of the individual 

processes. Therefore, it is easy to work with cumulants as operators. Higher-order 

moments, by contrast, do not have this property (Mendel 1991). There are several 

motivations behind the use of the higher-order statistics/spectra in the ECG signal 

analysis and diagnosis (Sabry-Rizk and Zgallai 1999; Sabry-Rizk, et al. 1998):
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1- To eliminate Gaussian noise. This implies improving the SNR of the ECG data.

2- To characterise non-Gaussian components of the ECG signal and non-Gaussian 

noise artefacts (Hinich and Gary 1990).

3- To characterise certain types of non-linearity associated with normal and abnormal 

ECG signals.

4- To enable accurate detection, classification and coding of heart abnormalities using 

artificial neural networks (Sabry-Rizk, et al. 1999b).

4.2.1 Moments and Cumulants

4.2.1.1 Definitions

If [x(0], 1=0,±1, ±2, ±3,....is a real stationary discrete-time signal and its moments exist 

up to order k, then (Nikias 1993)

Mom[x(t),x(t + T,),......x(t + Tk_1)\ = mxn(x1,T;2,....x*_,) ^  ^
= E[x(t), x(t + Tj).........x(t + T|t_j)]

This represents the £,;'-order moment function of the stationary signal, which depends 

only on the time difference T\, Tj , . . .Zk-i, Ti=0, ±1,... for all i. The second-order 

moment function,mi(t ,) is the autocorrelation of [x(r)] whereas Tj , t 2) and

m^Xj,T2,x3)are the third- and fourth-order moments, respectively. E[.] denotes 

statistical expectation.

The ^'-order cumulant function of a non-Gaussian stationary random signal x(r) can be 

written as

Cxk (x ,, x2,....xt _!) = Cum[x{t), x(t + x ,),.....x(t + x ^ .,)] (4.2)

For a zero-mean random process, for £-3,4 only, the order cumulant of \x(i)} can be 

defined as (Mendel 1991):
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c k  (^1 >^2»....... ^ k - 1 )  ~  E \ x ( X \  )>......... , x ( X k _ i  ) ]  E [ g ( T ,  ) , - . . ,  g { X k _ l  )] (4.3)

where [g(0] is a Gaussian random process with the same second-order statistics as 

[*(?)]. Cumulants, therefore, not only display the amount of higher-order correlation, 

but also provide a measure of the distance of the random process from Gaussianity. If 

x{t) is Gaussian then the cumulants are all zero, for all k>2. The second-, third- and 

fourth-order cumulants of zero-mean x(t), are (Mendel 1988).

cï,(x) = E[x{t),x(t + x)\ (4.4a)

c3 (Tj, x2 ) = E[x(t), x(t + x1 ), x(t + x2 )] (4.4b)

C4 (x,, x2, t 3 ) = E[x(t ), x(t + Ti ), x{t + x2 ), x(t + x3 )]
-  C* (Ti )cx2 (X 3 -  x2) -  Cx (x 2 )cx2 (X3 -  Tj ) -  Cx2 (x3 )c* (x2 -  Tj )

(4.4c)

4.2.1.2 Relationship Between Moments and Cumulants

The relationship between moment and cumulant sequences ofx(t) are:

first-order cumulants

cxl {x) = mx =E[x{t)] (mean value) (4.5)

second-order cumulants

ci (Ti ) = m2 (Ti ) _ ( < ) 2 (covariance sequence) (4.6)

third-order cumulants

fourth-order cumulants
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c\ (Tj,x2,x3) = ml (x,, x2, x3) -  ml (x, ).m2 (t 3 -  x2) 
m\ (x2 ).m2 (x3 -  T,) -  ml (x3 ).m2 (x2 -  xt)
-  [m3 (x2 -  x,, x3 -  x,) + m3 (x2, x3) + m3 (x2,x4)] + wi3 (x,,x2)] (4.8)
+ (ml)2[ml(x,) + m2 (x2) + m2(x3) + ?rc2 (x3 - X,) + m \(x3 - x2) + m\(x2 - x,)]

- 6  ( < ) 4

If the process [x(t)] is zero-mean ( mxx =0), it follows from (Eq 4.6) and (Eq 4.7) that 

the second- and third-order cumulants are identical to the second and third-order 

moments, respectively. However, to generate the fourth-order, we need knowledge of 

the fourth-order and second-order moments, i.e.,

(Xj,x2,t 3) = (Ti,x2,x3) - (Xj).mj(x3 -x 2) „  ^
m2(T2).m2(x3 -T1)-m^(x3).m2(x2 -X,)

By putting T\ =T2=Ti=0 and assuming mf = 0 we obtain:

y2 = E[x2(i)] = c2(0) (variance) (4.10a)

y3 = E[x2(t)] = c3(0,0) (skewness) (4.10b)

Y4 = E[xA (01 -  3[y2 ]2 = C4 (0,0,0) (kurtosis) (4.10c)

A 1-D slice of the b o rd e r  cumulant can be obtained by freezing (k-2) of its indices. A 

diagonal slice is obtained by setting Tj=r, z=l,2,...£-l. These 1-D slices are very useful 

in applications of cumulants in signal processing (Nikias and Mendel 1993).

4.2.1.3 Estimation of Higher-order Cumulants

Let [x(l),x(2),...,x(AD] be the given data set, then we have the following (Nikias and 

Mendel 1993):

1- Segment the data into J segments of M samples each, i.e., N=J.M.

2- Subtract the average value of each segment.
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3- Assuming that [x(0(i), t = 0,l,...M -1] is the data set per segment (i=l, 2 the 

estimates of higher-order moments are given by:

s 2

m[!\Tp ....,T*_1) = - ^ - V  x (,) (t)xi0 (t + T ,).... ■X°\t + Tk_1) (4.11)
M ¿—d

l=si

where: k= 2,3,..., i=l,2,...J, r*=0,±l, ±2,..., s\=max(0,-T\,.■ . S2=min(M-l,M-l- 

Ti,...,M-l-Tk-i) and |xk|< L*, where Lk determines the region of support of the 

estimated k?/'-order moment function.

4- The average over all segments

j

i=i
(4.12)

For stochastic signals, generate the cumulants c * ( T j x , . , )  using Eqs. (4.6, 4.7 and 

4.9), with mi '=0.

4.2.1.4 Cumulant Analysis of ECG Signals

The second-, third- and fourth-order cumulants are calculated for 18 normal records 

from the NSR-DB (MIT-CD 1997) and 15 ischaemic records from the ST Change-DB 

(MIT-CD 1997). Before calculating the cumulants special care of appropriate 

segmentation of the ECG signals should be taken. For example, for periodic signals the 

segment length, M samples, should be a multiple integer of the period (Nikias 1993). 

Since the ECG signals are quasi-periodic and cyclostationary (chapter 3), therefore for 

reliable cumulant estimates, and to meet the quasi-periodicity property, the segment 

length should be a multiple integer of the mean period length, Ip, where Ip is the mean 

number of samples in an ECG cycle calculated over the whole data length, N. For 

cyclostationarity property, the segment length, M samples, should be much smaller than 

2Xlp. Based on this, the range, "M<nearest power of 2 to the number of samples in Ip", 

has been used for estimating cumulants (Gardner and Franks 1975; Waldo and Chitrapa 

1991). The ECG data are segmented into 50 segments ( / = 50), each contains M
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samples, with M = 128 for NSR-DB, and M = 256 for ST Change-DB. Figures 4.1 and

4.2 show the typical second-, third-, and fourth- order cumulant patterns and slices for 

each of normal (record No. 16539, NSR-DB) and ischaemic (record No. 325, ST 

Change-DB) cases, respectively. The Figures (4.1 and 4.2) show the ECG signal (a), 

the second-order cumulants (b), the third-order cumulants and its diagonal slice (c, d) 

and the diagonal and wall slices of the fourth-order cumulants and their diagonals (e, f, 

g, and h). The diagonal slices are used here to reduce the computational time and they 

do contain useful information from the higher order domain keeping the advantage of 

improved SNR. The ischaemic case has myocardial infarction (MI), and the subject’s 

ECG signal show ST-elevation. Figures 4.1 and 4.2 highlight the following:

1- Deviations from zero in the third- and fourth-order cumulants indicates deviations 

from Gaussianity. The ECG signal can be regarded as non-Gaussian. A non- 

Gaussian signal contaminated with Gaussian observation noise would therefore have 

the noise component suppressed by transforming to higher-order domain.

2- The cumulant patterns reflect typical statistical features in the ECG signals, which 

reduce the variability among different beats taken from the same subject. On the 

other hand, differences between different subjects are enhanced.

3- The second-order cumulants of a normal ECG signal follows the pattern shown in 

Figure 4.1 (b), while the second-order cumulants of ST-elevation case (record No. 

325) in Figure 4.2.1 (b) shows an elevated segment starts at x = 10 to x s60. Also, it 

has been observed that the second-order cumulant sequence of each of the ST- 

depression cases exhibits depression, see Figure 4.2.II.

4- The second-, third- and fourth-order cumulants of the ischaemic cases show higher 

degrees of correlation than that of the normal ECG signals. The characteristic peaks 

of the second-order cumulants and that of the diagonal slices of higher-order 

cumulants occupy larger regions for ischaemic cases (lags, x= 3 to 5 samples for 

normal cases and x= 10 to 20 samples for ischaemic cases).

This last observation presents a new feature for the differentiation between normal and 

ischaemic ECGs. This feature will be defined as the normalised area under the curve of
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second-order cumulants and the curve of the diagonal slices of the higher-order 

cumulants. This can be represented mathematically as follows:

NAC2 = —^~
To2 max

2 max r ' (

J0 c2(0)
dx (4.13a)

NADC3 = - 1 rY  c3(x,x)J ~ ----- dx
^ 3  max 0 C3 ( 0 , 0 )

(4.13b)

NADC4 = 1

G max

^4  max

/
0

c 4 ( t ,  t , t )  

c4 (0,0,0)
dx (4.13c)

where NAC2 is the Normalised Area under the curve of second-order cumulants (C2). 

NADC3 is the Normalised Area under the curve of the Diagonal slice of the third-order 

cumulants (C3) .  NADC4 is the Normalised Area under the curve of the Diagonal slice of 

the fourth-order cumulants (C4) .  X2max, xhmax and x ^ x  are the maximum lags used in 

calculating the second-, third-, and fourth-order cumulants, respectively. Figure 4.3 

depicts the results obtained from this analysis.

Analysing the results presented in Figure 4.3, a number of observations can be obtained 

by considering all of the cumulant orders used. First, the estimated NACs of the 

abnormal cases are typically higher than those of the normal cases. Second, the 

abnormal and normal cases are completely separable by a constant threshold value of

0.3, for NADC4 feature we find that we can achieve very high specificity in all of the 33 

records. Third, using the same threshold for both NAC2 and NADC3 results in less 

accuracy in the classification, missing ten abnormal cases in the former and four 

abnormal cases in the latter. The success rate of the fourth-order cumulant compared to 

the lower orders is an indication of complexity of the ECG signal.
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Figure 4.1 Cumulants of record No. 16539 (NSR-DB); (a) the ECG signal, (b) the 
second-order cumulant, (c) the third-order cumulant, and (d) its diagonal slice, (e) the 
diagonal tensor of the fourth-order cumulant, and (f) its diagonal slice; (g) the wall tensor 
of the fourth-order cumulant, and (h) its diagonal slice. Segment length = 128 samples, x  

(max) = 90, 50, and 30 samples for second-, third- and fourth-order cumulants, 
respectively.
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Figure 4.2.1 Cumulants of record No. 325 (ST Change-DB); (a) the ECG signal, (b) the 
second-order cumulants, (c) The third-order cumulants, (d) its diagonal slice, (e) The 
diagonal tensor of the fourth-order cumulants, (f) its diagonal slice, (g) The wall tensor 
of the fourth-order cumulants, (h) its diagonal slice. Using segment length = 256 samples 
and t  (max) = 90, 50 and 30 samples for the second-, third- and fourth-order cumulants, 
respectively.
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(d )

Figure 4.2.II Cumulants of record No. 304 (ST Change-DB); (a) The ECG signal, (b) the 
second-order cumulants. (c) The third-order cumulants, (d) its diagonal slice, (e) The 
diagonal tensor of the fourth-order cumulants, (f) its diagonal slice, (g) The wall tensor 
of the fourth-order cumulants, (h) its diagonal slice. Using segment length = 256 samples 
and x (max) = 90, 50 and 30 samples for the second-, third- and fourth-order cumulants, 
respectively.
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Figure 4.3 Cumulant-based classification for normal/ischaemic cases. In each part 
the x-axis represents the record index. The y-axis represents NAC2 (top), NADC3 
(middle) and NADC4 (bottom), x (max)=90, 50, and 30 samples for second-, third-, 
and fourth-order cumulants, respectively.

4.2.2 Higher-order Spectra

Higher-order spectra (also known as polyspectra) are defined in terms of Higher-Order

Statistics (HOS). The k,h-order spectra Ck(co,,co2,..... ,00̂ )  of the process [x(t)] is

defined as the FT of the kth-order cumulant sequence (Nikias and Raghuveer 1987):
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Cxk( CO, ©*-1)
+ o ° +oo

^ .... .......................... ,T t_1).ex p {-;(to 1'C1 +
T j= -o o  T * _ ,= - ° °

+ )} (4-14)

In general, Cxk (C0j ,.... co .̂j) is complex and a sufficient condition for its existence is that

c(Tj,.....is absolutely summable (i.e., ....^ ^c* ( t ,,...... ,T(t_1)<°°). The power

spectrum, bispectrum and trispectrum are special cases of the &th-order spectrum Eq. 

(4.14) for k=2,3,4, respectively. The bispectrum, which is the third-order cumulant 

spectrum, has been previously used in many areas of practical applications such as 

seismic deconvolution, signal reconstruction, detection of quadratic phase coupling and 

deviations from normality. In the next section different methods of bispectrum 

estimation and application to ECG signals will be presented.

4.2.2.1 Bispectrum Estimation

There are two chief approaches that can be used to estimate higher-order spectra, 

namely, the conventional/nonparametric approach (Fourier type) (Bollinger 1965; Huber 

et al. 1971; Rosenblatt and Van Ness 1965) and the parametric approach (Nikias and 

Raghuveer 1987; Raghuveer and Nikias 1986; Rosenblatt 1980). The conventional 

methods are straightforward and their implementation is based on Fast Fourier 

Transform (FFT) algorithms. The bispectrum can be estimated using the conventional 

approach by two techniques (Mendel 1991; Nikias 1993): 1) the indirect class of 

techniques, in which the bispectrum is estimated as the 2-D FT of the third-order 

cumulants. 2) The direct class of techniques, in which the bispectrum is estimated 

directly from the average triple products of FT coefficients of the data segments. 

Hence, the direct class of methods for higher-order spectrum estimation is similar to the 

"average periodogram" or the Welch method for power spectrum estimation. The 

parametric techniques first estimate the parameters of the underlying data, generating a 

model and then use this model to compute the polyspectra. These models are in the 

classes of moving average (MA), auto-regressive (AR), or auto-regressive moving 

average (ARMA) processes.
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4.2.2.2 Indirect Method of Bispectrum Estimation

The block diagram in Figure 4.4 summaries this method of estimation.

Figure 4.4 Bispectrum estimation using indirect method, where W i n ( x u x 2) is a 2-D 
window function.
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4.2.2.3 Direct Method of Bispectrum Estimation

The bispectrum of a stochastic process jt(r)is mathematically defined as (Kim and 

Powers 1978):

C* (co,, co2) = £{ X (co,) X (co2) X * (co, + co2)} (4.15)

where X (co) is the FT of the signal x(t) and X * (co) is its complex conjugate. The block 

diagram Figure 4.5 shows the steps for this estimation.

Figure 4.5 Bispectrum estimation using the direct method.
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4.2.2.4 Quadratic Phase Coupling

There are situations where, because of interaction between two harmonic components of 

a process, there is a contribution to the power at their sum and/or difference frequencies. 

Three frequencies are harmonically related when one of them is the sum or the 

difference of the other two. Such a phenomenon could be due to second-order non- 

linearities which gives rise to certain phase relations and is called quadratic phase 

coupling. A special case is when we have two components with one being at twice the 

frequency of the other this is called quadratic self-coupling (Nikias 1993). The 

bispectrum is a useful tool in analysing quadratic non-linear interactions among 

different frequency components of a signal and in checking for the presence of second- 

order non-linearity, via the detection of quadratically phase-coupled frequencies (Huber, 

et al. 1971).

4.2.2.5 The Normalised Bispectrum (Bicoherence)

The bicoherence index; ¿>/c(co1,co2) , also called the normalised bispectrum, quantifies 

the extent of phase coupling between two frequency components. It is defined as 

(Huber, et al. 1971; Nikias 1993).

Theoretically the ¿>/c(co,,co2) can take any value between zero and one. When the 

component at (C0j + w2) is produced entirely due to the phase coupling of components at 

co, and co2, then the bicoherence index at (co,,co2) is one, which implies that the 

frequency components at co,, co2, and (co, +cn2) are non-linearly coupled modes and 

suggests the existence of quadratic non-linearity. When all the three components are 

uncorrelated the bic is zero, which implies the absence of coherence and suggests that 

these three components may be spontaneously excited independent modes of the system 

(Kim and Powers 1979). In practice, however, the bicoherence index often exceeds 

one. One of the reasons is that the power spectra and bispectra of each segment are 

smoothed by different windows. Another reason is when the power spectrum and the

(4.16)
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bispectrum are calculated using different models in the case of parametric techniques of 

power spectrum and bispectrum estimation. A comprehensive study on the statistics of 

the bicoherence indices can be found in (Sebert and Elgar 1989).

4.2.2.6 Statistical Properties of Conventional Methods

In general, the indirect and direct estimates of bispectrum are different. They become 

identical if they are estimated without windowing. For sufficiently large segment size 

M and total length of data N, the conventional methods provide asymptotically unbiased 

and consistent estimates (Nikias 1993).

£{ C3* (co,, co2 )} = C3* (co,, co2 ) (4.17)

with asymptotic variances:

Var{ RelC^ (to,, co2 )]} = Var{ Im[C3* (CD,, C02 )]} 
1 ?

=  - a 3 (co,,CD2 )
(4.18)

CT3 (CD,,C02 ) :

ULj
MJ

N'

S x ((û 1) S x ( ü32 ) S x ((û 1 +co2)

3 c x

MJ
5 x((D,)5j:((D2)5 'r(co1 +co2)

indirect

direct
(4.19)

where 0<coi<o)2, J is the number of records, M is the number of samples per record and 

U is the total energy of the bispectrum window, which is unity for rectangular window. 

L3 is the region of support for bispectrum estimates. N^-MKlwin^+l), win3 is the size 

of the smoothing window. S*(co) is the true power spectrum.

4.3 Bispectral Analysis of Normal ECG Signals

4.3.1 Introduction

Recently the bispectrum has been shown to be a very useful diagnostic tool in 

experimental studies of non-linear wave interactions in random media. In particular, it
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has been shown that the bicoherence spectrum may be used to discriminate between 

non-linearly coupled waves and spontaneously excited ones. Applications have 

appeared in oceanography (Hasselman, et al. 1963), plasma physics (Kim and Powers 

1978; Kim and Powers 1979), biomedical signal analysis (Muthuswamy, et al. 1999; 

Sabry-Rizk, et al. 1999a; Sabry-Rizk, et al. 1995a; Sabry-Rizk, et al. 1998; Sabry-Rizk, 

et al. 1999b; Sabry-Rizk, et al. 1995b; Sabry-Rizk, et al. 1995c; Sabry-Rizk, et al. 

1997b; Sabry-Rizk, et al. 2000c; Zhang, et al. 2000) and fetal and mother ECG non- 

invasive blind source separation (Sabry-Rizk, et al. 2000a; Sabry-Rizk, et al. 2000b; 

Sabry-Rizk, et al. 1997a; Sabry-Rizk, et al. 1996; Sabry-Rizk, et al. 2001a; Zgallai 

2001). In this research work the possibility of such quadratic non-linear interactions 

between different frequency components of the ECG signal has been investigated. It is 

also beneficial to develop familiarity with the bispectral features of the normal ECG 

signal in a noise-free environment. This investigation may in turn be helpful in 

discovering changes in physiological states of the heart; this might help as a reference 

against which abnormal ECG signals can be diagnosed. A comparison between 

different bispectrum estimators will be also introduced through the application to 

normal ECG signals.

4.3.2 Results

In chapter three, the power spectrum is calculated to analyse the frequency content of 

normal ECG signals. In this section, some components of this spectrum will be 

identified based on the frequency content of the bispectrum. The bispectrum, which is 

an ensemble average of a product of three spectral components, is used to detect if one 

of these spectral components is due to quadratic interaction between the other two. This 

is followed by calculating the bicoherence-squared index which is then applied to 

measure the degree of phase coherence of the triple wave harmonics.

Eighteen records from the NSR-DB and record No. 300 from the ST Change DB with J 

= 50, M = 256 samples, L3 = 64, and \ v in 3 = 5 are used in this analysis. In the pre-

processing phase of the analysis, the ECG signal is high-pass filtered (fc = 0.5 Hz) to 

remove the baseline wander and the adaptive filters (see chapter two) are applied where 

necessary. The R peaks of the ECG data are detected using the same algorithm
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mentioned in chapter three (see section 3.4.3). Then, the mean length of one cycle, Ip, 

is calculated. This Ip is then used to divide the whole data into a number of cycles. 

Each cycle is considered as one segment, 50 segments are used for each NSR-DB 

record. The estimated bispectrum is the average of the bispectra of individual segments. 

Figure 4.6 shows the steps adopted in this analysis. A Kaiser smoothing window with a  

= 0.5 is applied throughout this analysis, see appendix B for more details.

The power spectrum was calculated in chapter three using the Welch Method. The 

direct method of bispectrum estimation is mainly adopted in this analysis as it results in 

a much lower variance (of the order of 10"3) of that calculated by the indirect method as 

depicted in Figure 4.7. Figures 4.7a and 4.7b are the bispectrum variance for the 

indirect and direct methods, respectively, estimated fromEq. 4.19.

Calculating 
magnitude, contours 
and slices

Figure 4.6 Methodology adopted in this analysis.

(a) (b)
Figure 4.7 Bispectrum variance using (a) the indirect and (b) the direct method of 
bispectrum estimation with Kaiser window. J=50 records, M=256 and using record 
No. 300 (MIT-DB).
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The following two subsections (sections 4.3.2 and 4.3.3) present the results of the 

analysis of the ECG signal using a nonparametric method (i.e., the direct method) and a 

parametric one (i.e., TOR method) of bispectrum estimation, respectively.

4.3.2.1 ECG Analysis using the Direct Method Bispectrum

Figure 4.8 depicts (a) three-dimensional (mesh plot) bispectrum magnitude of a normal 

ECG signal obtained from the NSR-DB record No. 16483, and (b) the bispectrum 

contour. Figure 4.9 shows the diagonal slice (top), and the wall slice (bottom) of the 

bispectrum magnitude. Figure 4.10 shows (a) the corresponding bicoherence-squared 

contour, (b) the diagonal, and (c) the wall slices. Table 4.1 includes the significant 

frequency components found in the power spectrum and bispectrum of record No. 

16483 (NSR-DB).

Observations from Figures 4.8, 4.9, 4.10 and Table 4.1 indicate the following: the 

power spectrum exhibits a peak at the fundamental frequency (1.4545 Hz), and peaks at 

(4.3636, 16 and 8.7273 Hz). These are due to the T-wave, QRS complex, and P-wave, 

respectively, as explained using the MUSIC algorithm in chapter three. The bispectrum 

and bispectrum contour show many peaks in the low frequency region (0 - 20 Hz). 

From Table 4.1 one can conclude that the peaks at (13.0909 Hz) and that at (20.3636 

Hz) are due coupling between components at (8.7273, 4.3636) and at (16, 4.3636), 

respectively. A cursory look at Table 4.1 reveals the existence of several harmonics, 0), 

= i (Do, where i is an integer. The bicoherence-squared contour indicates a high degree 

of phase coupling between frequency components in the region (0 - 20 Hz), which 

means that the above mentioned two triple waves are due to a phase coupling 

phenomenon. The diagonal slice of the bispectrum in Figure 4.9 shows a self-frequency 

coupling at the fundamental frequency (1.4545 Hz), third (4.3636 Hz), sixth (8.7273 

Hz), and ninth (13.0905 Hz) harmonics. The bicoherence diagonal and wall slices of 

Figure 4.10 show that most of the peaks in the region of interest (0 - 20 Hz) are >0.9. 

This strongly points at the quadratic phase-coupling phenomenon and hence the 

quadratic non-linearity (Kim and Powers 1979).
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Bispectrum Magnitude

(a)

Figure 4.8 Bispectrum magnitude of a normal ECG signal (record No. 16483, 
NSR-DB) using the direct method of estimation, (a) mesh plot, and (b) contour 
plot. The segment length, M, is one ECG cycle and number of segments, J=50.
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Diagonal Slice of the Bispectrum Magnitude

Wall Slice of the Bispectrum Magnitude

Figure 4.9 The diagonal (top) and wall (bottom) slices of the bispectrum 
magnitude of record No. 16483.

Spectrum
peaks

Bispectrum peaks

fl £2 Diagonal Wall

1.4545 1.4545 1.4545 1.4545 1.4545
4.3636 1.4545 2.9091 4.3636 4.3636
20.3636 1.4545 4.3636 13.0909 20.3636
13.0909 4.3636 8.7273 8.7273 13.0909

16 1.4545 11.6364 16
8.7273 1.4545 13.0909 8.7273

1.4545 14.5455
1.4545 16
1.4545 17.4545
1.4545 18.9091
1.4545 20.3636

Table 4.1 Significant frequency components from the power spectrum and the 
bispectrum of record No. 16483.
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Wall Slice of the Bicoherence Squared

Figure 4.10 Bicoherence-squared of a normal ECG signal (record No. 16483) using 
the direct method of estimation, (a) The magnitude contour, and the diagonal (b) and 
wall (c) slices. The segment length, M, is one ECG cycle and number of segments, 
7=50.
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4.3.2.2 ECG Analysis using the TOR Bispectrum

Nikias (1993); Raghuveer and Nikias (1985) suggested that, the parametric methods 

possess much higher resolution capability than the frequency resolution of the 

conventional methods and the techniques which are based on AR modelling of the third- 

order cumulants are shown to be high-resolution quadratic phase coupling detectors. 

Hence a parametric technique, namely, Third Order Recursion (TOR) method is utilised 

to show a more resolved picture of the bispectrum and to confirm the results obtained 

by the direct method. Using the TOR method, the bispectrum is defined as (Raghuveer 

and Nikias 1985):

C3* (to,, co2) = y4// ((j\ )H  (cd2 )H ‘((Oj + co2) (4.20)

The TOR method is based on the AR modelling of the third-order cumulants. y4 is the

kurtosis of the driving noise and H(z)= 1/A(z), a=[l,a(l),........a(m)]T are the parameters

of the AR model of order m. The TOR bispectrum of record No. 16483 (NSR-DB) is 

estimated after pre-processing of the ECG signal using the above mentioned steps. An 

AR model of order 15 is used; the model order criteria mentioned in chapter two have 

been used as the first guideline for this choice. Figure 4.11 confirms the existence of 

quadratic coupling in the same region (0 - 20 Hz). Its diagonal slice in Figure 4.12 

reveals the self-phase coupling phenomenon as with the previous method (El-Khafif, et 

al. 2001).

Comparing the two bispectra, the TOR bispectrum shows a smoother look than the one 

estimated by the direct method. The frequency resolution of the TOR method is 

independent of the time domain segment. On the other hand, the frequency resolution 

of the direct method is roughly the reciprocal of the time domain interval (1IM). For the 

case of the ECG signal, this is < 0.01, depending on the length of one cycle. This 

resolution is fairly adequate for our application. Also as the factor of choosing the 

correct AR model order is not included in the direct method, this method is 

computationally efficient and produces more reasonable frequency estimates. In 

addition, the variance of parametric frequency based estimators is 0(M_1) as opposed to 

0(M" ) exhibited by nonparametric frequency estimators (Brillinger 1980).

116



Chapter 4: Higher order statistics/spectra

Bispectrum Magnitude

Figure 4.11 Bispectrum magnitude of a normal ECG signal (record No. 16483) using 
the TOR method, (a) 3-D plot, and (b) contour plot. The segment length, M, is one 
ECG cycle and number of segments, J=50.
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0 5 10 15 20 25 30 35 40
fWall Slice of the Bispectrum Magnitude

Figure 4.12 The diagonal (top) and wall (bottom) slices of the TOR bispectrum 
magnitude of record No. 16483.

4.3.2.3 H in ich  T e s t

A statistical test developed by Hinich (1982), which makes use of the statistical 

properties of the bispectrum, is applied to statistically test the hypothesis that the ECG 

signal bispectrum is non-zero (i.e., the signal is non-Gaussian) and that the signal is 

linear (see appendix C for a brief description).

The test is applied to 18 normal ECG records from NSR-DB (MIT-CD 1997) using 

1024 samples for the EFT and a resolution /smoothing parameter, c=0.51. Table 4.2 

includes the estimated (Re) and the theoretical (Rt) values. The estimated (Re) is the 

sample inter-quartile range of the statistics, S-Gauss1. It should be noted; from Table

4.2 that these values are not close to each other for all records indicating that the signal 

is not linear. Furthermore, large values of the test statistics for Gaussianity, S-Gauss, 

with Probability of False Alarm1 2, PFA = 0, are obtained for all records. It is certain that

1 S-Gauss is the test statistics for Gaussianity.

2 PFA is the probability that we will be wrong in accepting the alternate hypothesis, i.e., the data are non- 
Gaussian.
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the signal has non-zero bispectrum and hence is non-Gaussian; this statistically 

confirms the results obtained using the cumulant and the bispectrum analysis (El- 

Khafif, et al. 2001).

R ecord  No. S -G au ss

Re

(es tim ated )

Rt

(th eory)

16483 7409.40 149.81 24.60
16539 11708.73 261.90 31.08
16795 6108.89 137.42 22.26
19830 9262.47 67.26 27.50
17052 9298.48 222.28 27.69
16265 13766.02 203.11 33.76
16272 11341.84 227.95 30.41
16273 7784.34 122.53 25.19
16420 10876.72 182.30 30.02
16773 15148.64 119.54 35.21
16786 11408.57 126.63 30.61
18177 12021.78 182.52 31.38
18184 16886.74 201.15 37.29
19088 10317.68 225.77 29.12
19090 13026.39 194.73 32.64
19093 14043.10 139.32 33.72
19140 9848.28 165.90 28.37

17453 15120.39 215.70 35.32

Table 4.2 Hinich test applied to 18 norma ECG records.

4.4 The MUSIC Pseudo-Bispectrum

4.4.1 Introduction

Recently some attention has been focussed on developing eigen-structure algorithms 

based on higher-order statistics for sinusoidal frequency estimation and related 

problems (Forster and Nikias 1991; Leyman and Durrani 1994; Porat and Friedlander 

1991; Swami and Mendel 1991). Several techniques for estimating quadratic phase 

coupling based on nonparametric and parametric bispectrum estimation exist in the

119



Chapter 4: Higher order statistics/spectra

literature. The nonparametric techniques suffer from limited frequency resolution for 

short data segments and the parametric ones may result in unstable models. On the 

other hand the eigen-decomposition-based techniques such as the spectral MUSIC and 

its variants constitute effective methods for frequency estimation. The high-resolution 

capability of these algorithms motivates their extension to the higher-order domain. A 

MUSIC-like method for estimating quadratically coupled frequency pairs in a noise 

corrupted complex harmonic process was proposed by Parthasarathy, et al. (1994). In 

that algorithm the authors based their analysis on eigen-decomposition of a matrix with 

a complete orthogonal eigen-structure1 derived from the third-order cumulants. They 

constructed a search function for frequency estimation using the signal eigen-vectors. 

The proposed algorithm herein involves constituting a Toeplitz matrix1 2 from the 

diagonal slice of the third-order cumulant matrix. It applies SVD to this matrix to 

separate the signal and the noise subspaces. By exploiting the orthogonality between 

these subspaces a frequency estimation function is constructed using the noise singular 

vectors. Instead of calculating the true cumulant bispectrum, the newly developed 

MUSIC-based spectral function is aimed at enhancing the frequency components 

embedded in the third-order cumulants.

4.4.2 Formulation of the Problem

Recall the MUSIC algorithm previously described in chapter three, where the frequency 

estimation function was defined as:

where e//(co) = [l e JU} .... e j(L p)“] is the frequency scanning vector and v„ i = p + 1 , 

p+2 , ..., L+l constitute the singular vectors of the noise subspace.

1 An orthogonal eigen-structure means a matrix with orthonormal set o f eigenvectors.

2 An (nxn) matrix is called Toeplite if all the elements along each of the diagonals have the same value.
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Since the data matrix used in the MUSIC algorithm does not contain phase information 

about the process, a Toeplitz matrix derived from the diagonal slice of the third order 

cumulants is used in this work for bispectrum estimation. This very matrix has been 

used by Raghuveer and Nikias (1985) in estimating the bispectrum using the TOR 

method. The third-order cumulant of a discrete time process, x(t), which is third-order 

stationary and has zero-mean is defined in Eq. (4.4b) as 

C3 (Ti ,x2) = E[x(t)x{t + xx)x{t + x2)\. The matrix R is calculated from the diagonal slice, 

c3(1 ,x ) as follows:

cl (0,0) C3 (1,1) ......  c*(L,L)
C3 ( 1, 1) C3 (0,0) .......  C3 (L -1 ,L -1 )

R =

cl{-L,-L) C3 (-L + 1,-L +1) ......  c3*(0,0)

(4.22)

The SVD of the matrix Re (L+l)x(L+l) is, in general, given by Golub and Van Loan 

(1989)

R = U Z V r , UUT =Ur U = Ii+1,and VVr =Vr V = I L+1 (4.23)

where the columns of U and V are the left and right singular vectors, respectively. 2 is 

a diagonal matrix whose diagonal entries are the singular values of R. Eq. (4.21) can be 

re-written as follows:

S m u s i c  (w) ~ x+i  ̂ (4.24)
E h M 2

i=p+ 1

where
N- 1

v(co) = v (f) e~j,(a 
1=0

(4.25)

From which and based on the definition of the direct bispectrum estimation, the 

following bispectrum frequency estimation function is proposed:
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S(cop co2) = — ------------------------------------- (4.26)
^  V,- ( iO , ) V ;  (C 02 ) v *  (COj + c o 2 )

i=p+l

Since only the phase-coupled components contribute to the third cumulants of the 

process (Nikias 1993), this frequency estimation function will show peaks only at the 

phase-coupled frequencies. Theoretically these peaks tend to infinity. The bicoherence 

in Eq. (4.16) can be calculated using the MUSIC spectrum and bispectrum as follows

bic(d)l ,(i)2) = _________________ B ( o )  i , c o 2 )_________________

MUSIC ( W1 ^  MUSIC ( W 2 ^ M U S I C  ( W1 +  W2 )

(4.27)

4.4.3 Simulation Results

Example 1: Consider the process used by Raghuveer and Nikias (1985)

3

X(t) = X cos(27t/,t + cp,.) + W (;t) (4.28)
i—i

where/i = 0.109375, f 2 = 0.1875,/ 3 =/i + / 2 and W(t) is a -30 dB WGN. Sixty-four 

segments of 128 samples each are formed. To insure statistical independence of the 

segments, cpp cp2 and (p3 are drawn independently from a uniform distribution on 

[0,27t] and W(t) is generated independently for each segment. To test the performance 

in the presence and absence of phase coupling, the MUSIC pseudo-bispectrum 

(MUSIC-PB) is calculated for: (case-1) (p3 = cp, +(p2, and (case-2) cp3 * cpj + cp2. Figure 

4.13 (a) shows the magnitude bispectrum and Figures 4.13 (b), and (c) show the 

bicoherence-squared for 'case-1' and 'case-2', respectively. A signal subspace of, p - 6 

with L -  15 are used in bispectrum estimation. The peak in the bispectrum is at the 

correct location, i.e., at (/}, fi) .  The bicoherence-squared shows a peak at (/}, f 2) for 

'case-1 ' indicating total phase coupling and it is zero for 'case-2 ' viewing the absence of 

phase coupling.
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1

( c )

Figure 4.13 MUSIC pseudo-bispectrum magnitude (a), and the bicoherence- 
squared for (p3 = <P, + cp2 (b), and (p3 ^ (p, + (p2 (c). Segment length=128 and the 
number of segments=64.
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Example 2: In this example, the performance of the proposed algorithm is compared to 

the performance of the direct and the TOR methods for long and short data segments to 

detect quadratic phase coupling of the process

x(t) = X cos(2tiftt + <p,.) + W(t) (4.29)
i=t

where/i = 0.1 , / 2 = 0.15, /3 -f\ + f2 and (p3 = (pj + (p2 , / 4 = 0.19, / 5 = 0.17, / 6 =/4 + / 5 and 

<P6 *<P4 + (p5. W{k) and cp, are simulated as explained in example 1. This example is 

implemented for two cases: (case-1 ) sixty-four segments of 128 samples, and (case-2) 

sixty-four segments of 64 samples. Figure 4.14 shows the resultant bispectrum contour 

plots using (a) the MUSIC-PB, (b), direct method, and (c) the TOR method for ’case-1’. 

For ’case-1’ there is no significant difference between the results obtained using these 

three methods. For short segment length, ’case-2’, better resolution is obtained using the 

MUSIC-PB as shown Figure 4.15. A signal subspace of, p= 12 with L- 24 for the 

MUSIC-PB and an AR model order of 30 for the TOR are used in the calculations.

Example 3: In this example the performance of MUSIC-PB in retrieving closely spaced 

self-coupled harmonics is tested. The process in example 2 is used to simulate two pair 

of harmonics with the following values, f\ = l.0 ,f2 = 2.0 Hz and tp2 = 2(pl5/3 = 1.1, / 4 =

2.2 and (p4 = 2cp3. W{k) and cp(. are simulated as explained in example 1. Sixty-four

statistically independent segments of 128 samples each are used. The results obtained 

are shown in Figures (4.16, 4.17) and Figure 4.18 using the MUSIC-PB and the TOR 

methods, respectively.

Example 3 shows that the choice of the number of signals, p is very effective on the 

performance of the MUSIC pseudo-bispectrum. In Figure 4.16, where p=5, the 

MUSIC-PB cannot resolve the two peaks and it splits them into many peaks between 

1.0 and 1.1 Hz. The main peak’s amplitude is 7.9xl04 and spurious peak’s amplitude, at 

2 Hz, is 1.6xl04. While using p=l in Figure 4.17 the two peaks are clearly resolved, the 

main two peak’s amplitudes are 1.2xl05 , 0.74xl05 and spurious peak’s amplitude, at 2 

Hz is 0.34xl05. On the other hand better resolution is obtained in Figure 4.17 over the 

TOR bispectrum in Figure 4.18. For the TOR bispectrum, the main two peak’s
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amplitudes are 1.07xl04, 0.854xl04 and spurious peak, at 2 Hz, =0.48xl04. The three 

bispectra show a spurious peak, at 2 Hz. Compared to the main peaks, the spurious 

peak is less competent for the MUSIC-PB. The amplitude of spurious peak in Figure 

4.16 is the smallest one, where p - 5. However, choosing p-1  in Figure 4.17 improves 

the resolution but increases the amplitude of that peak.
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Figure 4.14 MUSIC-PB (a), direct method (b), and TOR (c) bispectrum contours 
for segment length of 128 samples and number of segments of 64.
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(a)

(b)

(c)

Figure 4.15 MUSIC-PB (a), direct method (b), and TOR (c) bispectrum contours 
for segment length of 64 samples and number of segments of 64.
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(b)

Figure 4.16 MUSIC-PB (a), and contour plot (b) for a sinusoid signal consists of 
two pairs of self coupled harmonics, with f 1=1.0, f3=l.l Hz, and f2=2*fl and 
f4=2*f3. p=5.
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Figure 4.17 MUSIC-PB (a), and contour plot (b) for a sinusoid signal consists of 
two pairs of self coupled harmonics, with fl=1.0, 0=1.1 Hz and, f2=2*fl, f4=2*0. 
P = 7-
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Figure 4.18 TOR bispectrum (a), and contour plot (b) for a sinusoid signal consists 
of two pairs of self coupled harmonics, with fl=1.0, f3=l.l Hz and f2=2*fl, 
f4=2*f3. The AR model order=9.
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Example 4

In this example the effect of added coloured noise with different SNR on frequency 

estimates is studied. Example 1 is repeated with /i=0.15, / 2=0.1 Hz, fc=f\+fi, 

cp3 = (p, + cp2 and W(t) is coloured noise generated by passing white Gaussian noise on a

MA filter with coefficients [1 -2.33 0.75 0.5 0.3 -1.4], Table (4.3) presents the results 

obtained. Each entry in this table is calculated from averaging of the frequency 

estimates of three independent realisations of the signal x(t). No significant change in 

the frequency estimates can be noticed with this decrement in the SNR, indicating the 

ability of this estimator to eliminate Gaussian noise.

SNR, dB 30 20 10 0

/ . 0.151 0.148 0.149 0.147

¡2 0.1 0.1 0.1 0.101

Table 4.3 Frequency estimates wit i changing t le SNR.

4.4.4 Application to ECG Signal

The MUSIC pseudo-bispectrum is applied to some records from the NSR-DB. Figure 

4.19 shows the bispectrum magnitude (a) mesh plot, and (b) its contour for record No. 

18184. As oppose to the previously described bispectra, the MUSIC pseudo-bispectrum 

consists of many discrete impulses, which assure the high-resolution capability of the 

algorithm. The MUSIC-PB covers the same frequency region (0 - 20 Hz) as the direct 

method and the TOR bispectra. It also showed very similar frequency estimates for the 

quadratically coupled frequencies as that estimated by the parametric method. As 

explained earlier by example 3, the main problem for application of this algorithm to the 

ECG signal is the choice of the number of signals in the signal and the noise subspaces. 

Wrong choice of these numbers will lead to lots of spurious peaks in the bispectrum.
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(b)

Figure 4.19 MUSIC-PB estimation for record No. 18184 (NSR-DB). (a) mesh 
plot, and (b) contour plot. Fifty segments are used in the third-order cumulant 
estimates, each segment is one ECG cycle, p =15 and L-24.
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4.5 Discussion

In this chapter the ECG signal was characterised in the higher-order domain. First, the 

analysis of the third- and the fourth-order cumulants showed that the ECG signal is non- 

Gaussian. This finding is in agreement with the results obtained in chapter 3 (see 

section 3.2.1). Transforming the ECG signal to the higher-order domain automatically 

improves the SNR, as the Gaussian noise, such as the EMG, will be removed. Also the 

Gaussian part of the MA noise will be suppressed. Cumulant analysis of the normal and 

ischaemic ECG signals presents a novel feature, i.e., the NACs, to differentiate between 

the two classes. This feature was found to be more effective for the fourth-order 

cumulants since the two classes are completely separable using the chosen threshold.

Second, healthy ECG signals have been characterised in terms of their spectral content 

in the second- and third-order domains. The power spectrum was utilised to show the 

frequency content of the ECG signal. The bispectrum was used to detect quadratic non-

linearity of the ECG signal, which cause bispectral combinations to emerge at 

harmonically related frequencies. The squared bicoherence index was used as a 

measure of the degree of phase coherence of the triple of wave harmonics. Three tests 

have been applied using the bispectrum. The direct method of bispectrum estimation 

was firstly used to obtain accurate estimation of the location of the coupled frequencies 

then the bicoherence index was used to show the degree of phase coupling in different 

frequency regions. The bispectrum indicates the existence of many harmonically 

related frequencies in the low frequency region (0 - 20 Hz) and the squared bicoherence 

reveals a strong phase coupling between these frequencies. Then the TOR method was 

utilised to show the differences between the conventional and parametric techniques and 

to confirm the results obtained by the direct method. Finally, the Hinich test 

statistically confirmed the nonzero bispectrum and the quadratic non-linearity of the 

ECG signals. The results indicated that the bispectral analysis of the ECG signal could 

reveal extra information not obtainable from the power spectrum.

Third, a new algorithm (MUSIC pseudo-bispectrum) for estimating the quadratic 

coupled frequency pairs in the bispectrum domain was proposed. The algorithm is 

based on SVD of a Toeplitz matrix derived from the third-order cumulant sequence of

133



Chapter 4: Higher order stati sties/spectra

the process. This matrix is decomposed into two orthogonal subspaces, the signal and 

the noise subspaces, then a frequency estimation function, matching to the one used in 

the MUSIC algorithm, was specifically developed to extract the phase-coupled 

frequencies imbedded in the third-order cumulants. Simulation results indicate the 

high-resolution capability of the proposed method in detecting and resolving 

quadratically phase-coupled frequencies. Comparable resolution to the direct and the 

TOR methods is obtained for the same data length and better resolution for short data 

segments.

In the MUSIC-like algorithm proposed by Parthasarathy, et al. (1994) the size of the 

matrix used for eigen-decomposition was (N2 X N2), while that size was (N/3 X N/3) for 

SVD in the MUSIC-PB. The MUSIC pseudo-bispectrum algorithm proposed here is 

computationally efficient than the MUSIC-like algorithm. Also the frequency 

estimation function used in the MUSIC pseudo-bispectrum was derived using the noise 

subspace, and that used in the MUSIC-like algorithm proposed by Parthasarathy, et al. 

(1994) used the signal subspace, which makes the performance of the MUSIC-PB 

analogous to the performance of the original MUSIC spectrum.

As a member of the parametric bispectrum estimation techniques, the main problem of 

the MUSIC pseudo-bispectrum is that the frequency estimates are sensitive to the 

choice of the number of the signals in the signal and noise subspaces this means that 

with wrong choice of these numbers the pseudo-bispectrum will show artificial 

frequency peaks or split the original peaks. It is also worth noting here that for 

applications of the parametric bispectrum techniques to real signals the problem of an 

optimal model order selection has not been yet solved. Considering this issue 

Parthasarathy, et al. (1994) suggested that an information theoretic criteria need to be 

developed for estimation of the signal eigen-values. For application of the parametric 

techniques to real time signals attention must be given to this choice otherwise, there 

will be serious consequences, namely, a significant frequency estimation error or loss of 

resolution.

The bispectral analysis of the normal ECG signals highlighted the fact that the 

bispectrum and bicoherence index are powerful tools in detecting and quantifying, 

respectively, the quadratic non-linearity in the signal. Chapter 5 will exploit these tools,
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i.e., the polyspectrum and polycoherence indices, in detecting and quantifying higher- 

order non-linearities in normal and abnormal ECG signals. In this chapter the 

bispectrum domain of the normal ECG signals was investigated, chapter 5 is mainly 

concerned with comparison between normal and ischaemic ECGs first in the bispectrum 

domain then in the higher-order (>3) spectral domains.
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C h a p t e r  5

DETECTION OF HIGHER ORDER 
NON-LINEARITIES

5.1 Introduction

Recently evidence has accumulated that ECG signals are of non-linear nature. This 

motivated the investigation of the ECG signals with methods from non-linear dynamic 

system theory. This non-linearity has been studied from the points of view of chaotic 

system theory (Babloyantz and Destexhe 1988; Fell, et al. 2000a; Fell, et al. 2000b; 

Goldberger and West 1987; Signorini, et al. 1994), complexity measure (Zhang, et al. 

1999), and wavelet transforms (Meste, et al. 1994; Zhang, et al. 1997). In this chapter the 

non-linearity character of the ECG signal will be studied from points of view of the ElOS.

In spite of the powerful capabilities of the HOS in detecting and characterising non- 

linearities in time series, only a handful of papers have applied them in the analysis of the 

ECG signals. As previously explained in detail in chapter 1, HOS has been used for the 

detection of late potentials (Sabry-Rizk, et al. 1998; Spaargaren and English 1999; Speirs, 

et al. 1993), for fetal ECG detection (Sabry-Rizk, et al. 2000a; Sabry-Rizk, et al. 2000b; 

Sabry-Rizk, et al. 1997; Sabry-Rizk, et al. 1996), and for P-wave detection (Sabry-Rizk, 

et al. 2000c; Sabry-Rizk, et al. 2000d). On the other hand, HOS have been applied 

extensively in the field of EEG signal processing, examples of this work can be found in 

(Muthuswamy, et al. 1999; Ning and Bronzino 1989; Ning and Bronzino 1993; Sigl and 

Chamoun 1994; Zhang, et al. 2000).

The bispectral analysis in chapter four provides evidence for the quadratic non-linearity of 

the normal ECG signals. Since the quadratic non-linearity is of special importance in 

analysing such signals, it can be used to quantify the presence of higher-order non-
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linearities. This quadratic non-linearity will be investigated for ischaemic ECG signals in 

this chapter. The differences between normal and ischaemic bispectral features will be 

established. The possibility of higher-order non-linearities in ECG signals will be 

investigated using an elegant algorithm proposed by Zhou and Giannakis (1995). In this 

algorithm an estimator of the diagonal slices of polyspectrum up to any order was 

proposed. These slices have the advantage of one-dimensionality, they are Gaussian 

noise free and informative with HOS features. Self-coupled harmonics are retrieved from 

the peaks on the diagonal slices of the polyspectrum. The peaks at the fundamental 

frequencies and the phase angles at these frequencies are then used to detect non- 

linearities. An extension of this algorithm to estimate the polycoherency index slices of 

any order, using the diagonal slice of the polyspectrum of the same order and the power 

spectrum, will be introduced. This will be used to quantify the degree of self-phase 

coupling between frequency components on the diagonal slices of the polyspectra. 

Normal and ischaemic ECG signals are analysed using the two methods, differences 

between the two physiological cases in the higher-order domain have been assessed, then 

the order ranges of non-linearity that can represent ECG signal dynamics for both them 

are identified.

5.2 Detection of K^-order Non-linearity

The presence of coupled harmonics in the data is a symptom attributed to non-linear 

mechanisms generating the available time series. Self-coupling results in the presence of 

frequency pairs (w0,£co0) and perhaps phase pairs (<t>o, kfyo) as well, with k an integer. It 

appears in periodic signals or when harmonics undergo non-linear transformations. The 

existence of self-frequency (w0,£co0) and self-phase ((|)o, h ¡>o) coupling components

strongly suggests the presence of Ch-order non-linearity. However, self-frequency 

coupling alone does not necessarily confirm the presence of /¿"'-order non-linearity. In 

such cases, self-frequency coupling information can be combined with other evidence to 

investigate system non-linearity (Huber, et al. 1971). To confirm the kth-order non-

linearity Zhou and Giannakis (1995) proposed a "self coupling detection algorithm" for 

retrieval of self-frequency coupling combined with the estimation of the phase angle at 

the self-coupled frequencies in the polyspectrum domain. However, in this study the self-
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frequency coupling is accompanied by the estimation of the value of the polycoherency 

indices at the self-coupled frequencies.

5.2.1 Self-Coupling Detection Algorithm

This algorithm (Zhou’s algorithm) mainly uses one data segment for estimation of the 

diagonal slices of the polyspectrum. It consists of three steps; (i) it checks for self-

frequency coupling along the diagonal of the polyspectrum, (ii) estimates the phase angle 

at the fundamental frequency, and (iii) statistically tests if this angle is zero via an 

estimated phase threshold. For this analysis Zhou and Giannakis (1995) assumed a 

harmonic process in an additive noise of the form:

where A, ’s are real, nonzero, and deterministic constants, cj), ’s are deterministic constants 

in (-7t,7i] and 0)/’s are distinct and nonzero in (-7t,7t). The noise v(t) is zero-mean and 

stationary and the samples of v(t) are assumed to be well separated and can be 

approximately independent.

5.2.1.1 Estimation of Polyspectrum Slices

The (&+l)st-order Fourier series polyspectrum is defined as the Fourier series coefficient 

of the (A'+l)st-order moment and its estimator is given by Zhou and Giannakis (1995)

L

1=1
A, em ‘+<fl) +v(t) (5.1)

k

(5.2)

which is the scaled (£+l)st-order polyspectrum and it is asymptotically unbiased. The 

diagonal slice of this estimator is,

(5.3)
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N - 1
where X N (oo) = £  x(t) e~jml , N is the number of samples.

t=0

Assume the frequency coupling in Eq. (5.1) has the form mod (27t), where i, j  are

integers and there is no other frequency coupling then the (&+l)st-slice will theoretically 

have the form

M{k+i](co) = A ^ A ^ '- ^ S C oj -co0), (5.4)

where 8(.) denotes the kronecker delta and (tij is the fundamental frequency.

A Self-Couylins Frequency Estimator

Zhou and Giannakis (1995) proposed the following estimator for self-coupled harmonics

co0 = arg max «) (5.5)

Phase Couylins Estimator

The phase estimate of the polyspectrum at w0 is given by

<j) = arg[/W ,<*+1(co0)J (5.6)

where "arg" denotes the principal value of the phase.

5.2.1.2 Summary of the Algorithm

The algorithm consists of the following steps:

Step 1: compute Mk+l(co) fromEq. (5.3)

Step 2: Peak in m ;+,(cd) b o rd e r self-frequency coupling. Estimate co0as in Eq. (5.5).

For the case of the ECG signal only peaks that satisfy the following conditions are picked.
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(a) The standard separation criteria (Brillinger 1980), that is, for two peaks at to, ,co; , the 

min|(b; -  to,I = N ~1'2, i ± j. (b) The peak amplitude > k times the mean Fourier amplitude.

Step 3: Calculate 0 using Eq. (5.6).

Step 4: Statistical test

This to statistically check for the presence of the &th-order self-phase coupling. If the 

phases 0, and <j)2 of two components whose frequencies are to, and co2, respectively, are 

self-coupled with <))2 =k$l, then based on Eq. (5.4), the estimated phase of the 

polyspectrum is 0 = 0 by Eq. (5.6). To check for the zerosness of 0 two hypotheses are 

set up:

H0 :0 = 0mod271 Versus Hl :0*Omod27t (5.7)

where mod (2n) is included since in practice, 0 can only be estimated in multiples of 2n . 

It has been shown by Zhou and Giannakis (1995) that ViV(0-0) is asymptotically

normal with zero mean and variance ct| .  Therefore [Vv(0 - 0)]"y^a| is central chi-

squared distributed with one degree of freedom as denoted by x2(l)- The probability of 

false alarm PFA is defined as:

FA > r \H A (5.8)

where r  is determined from a central %2(1) table with tail probability Pf a- A threshold for 

the value of 0 can be calculated by:

3 = ra\/N (5.9)
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The presence of phase coupling is statistically confirmed if <jr < 3 and rejected otherwise. 

The variance of the phase estimate, a | in Eq. (5.8) is calculated using the following 

equation,

2 k 2 1
a? =--------+---------.

0 2 SNR, 2SNR2
k> 2 (5.10)

where SNRi, 1=1,2 is the peak signal-to-noise ratio at 0)/, and defined as follows

SNR, = Ai (5.11)

where 5v(ooz) denotes the power spectral density of v(t) and

A f = M x((bl) (5.12)

This algorithm is computationally efficient as it employs the diagonal polyspectrum slice 

to detect increasing orders of non-linearity without corresponding increase in the 

dimensionality and only a single segment is required for the phase-coupling detector and 

its frequency estimator requires a single harmonic to probe an unknown non-linearity. In 

addition to that performance evaluation by the authors reveals decreasing variance in 

slices of polyspectra of increasing order. For detection of phase coupling this algorithm 

relies on the estimation of phases at self-coupled harmonics and then estimation of the 

phase thresholds. This brings about a limitation of the use of this algorithm because of 

the following: (1) frequency bias is magnified in phase errors as described by the authors 

(Zhou and Giannakis 1995). (2) The estimation of the phase threshold is dependent on 

the estimation of the contaminated noise, in real signals this may lead to inaccurate and 

unreliable values for the phase threshold. In order to overcome the aforementioned 

limitations, the normalised polyspectrum slice (polycoherency index) is proposed in this 

study as a measure for the degree of phase coupling. I used the algorithm proposed by 

Zhou to estimate the diagonal slices of the polyspectrum, but with multiple independent 

segments, then to estimate the frequency-coupled harmonics. The value of the 

polycoherency index at the fundamental frequency is then estimated.
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5.2.2 The Polycoherency Indices

The polycoherency indices are very useful in the detection and characterisation of non- 

linearities in time series and in discriminating linear processes from non-linear ones 

(Nikias 1993). For totally coupled harmonics co0,2co0,..... A:co0, the £th-order

polycoherency index, Pkx+], at the fundamental frequency, co0, is one and it is zero when 

these components are uncorrelated. The following estimator for &th-order polycoherency 

index is proposed:

Pk\x (COpM^....,«,) _______ MtJ+1(tD,,

2(co1)Mf(co2).,

(5.13)

Its diagonal slice can be calculated from:

Pk+l (co,co,....,co) = P/+1(co) = CO)

M 2 (kw)
(5.14)

where Mk+l(co) and M *(co) can be calculated from Eq. (5.3). In contrast to Zhou’s 

method, multiple independent segments are required for correct estimation of the 

polycoherency index, which in turn increases the computations required but still has the 

advantage of one dimensionally.

5.2.2.1 Summary of the Algorithm

Setpl: follow step 1 and 2 in the previous algorithm but with multiple independent 

segments to estimate Mk+l (to).

Step 2: compute M \(to) fromEq. (5.3), using k= 1.

Step 3: compute Pk+l(to) fromEq. (5.14).

Step 4: If Pk+] (co0) > 0.9 => &th order self-phase coupling exists (for 90% confidence).
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5.3 Results

5.3.1 Introduction

Normal ECG data from the NSR-DB (MIT-CD 1997) and ischaemic ECG data from the 

European ST-T database (Taddei, et al. 1992) are used in this analysis. The analysis 

consists of three steps; first the bispectrum and bicoherency index will be estimated (in 

section 5.3.2) for all normal and ischaemic cases used in this analysis then the differences 

between them in the bispectrum domain will be investigated. The second step is to apply 

Zhou’s algorithm to detect higher-order non-linearities for all normal and ischaemic cases 

(section 5.3.3.1). The third step is to investigate the results obtained in the second step 

using the polyspectrum and polycoherency indices (section 5.3.3.2). Data from 18 normal 

cases and 21 ischaemic cases are analysed. Throughout this analysis, the segment length 

is taken equal to Ip, calculated for individual ECG records. Sample ECG waveforms from 

normal ECG cycle taken from the NSR-DB (record No. 16272, left) and an ischaemic 

ECG cycle from E-DB (record No. e0105, right) are displayed in Figure 5.1.

Record 16272 (NSR-DB) Record 00106 (E-DB)

Figure 5.1 Time domain of an ECG cycle from record No. 16272, NSR-DB (left) 
and record No. e0105, E-DB (right).
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5.3.2 Bispectral Analysis of Normal/lschaemic ECG Signals

The bispectrum is calculated using the direct method of estimation Eq. (4.15) and the 

squared bicoherence index, "bic2 , is calculated using Eq. (4.16). The bispectrum is 

calculated as an average of 50 individual bispectra. Typical magnitude bispectra from a 

normal case (record No. 16539) and an ischaemic case (record No. e0103) are shown in 

Figure 5.2 (a), (b), respectively. Figure 5.2 (c) is the diagonal slices for the normal (left) 

and ischaemic (right) cases. Figure 5.3 is a contour plot of the squared bicoherence index 

and its diagonal slice for each of these cases. Observations from these figures include:

1- The bispectrum of a normal ECG signal has harmonics that cover a wide range of 

frequencies (0 - 30 Hz) while that of an ischaemic ECG signal covers a narrower 

range of frequencies (0 - 20 Hz). This finding comes in agreement with the results 

obtained by Clayton, et al. (1993) for the power spectral analysis of normal and 

abnormal ECGs.

2- The bispectra in Figure 5.2 reveal how closely the frequency components interact 

quadratically among themselves in both normal and ischaemic cases. This 

indicates the existence of phase-coupled frequencies. To quantify the degree of 

this phase coupling the bicoherence-squared contours and their slices in Figure 5.3 

are used. The contour plots Figures 5.3 (a), (b) are drawn in gray scale levels with 

white and black areas correspond to maximum and minimum bicoherence indices, 

respectively. According to this scale the low frequency region (0 - 20 Hz) in the 

bicoherence contours indicates a high degree of phase coupling between 

frequency components in this region. A value of bic > 0.9 means that it is 90% 

confidant that these components are due to totally phase coupled frequencies.

3- The diagonal slices in Figure 5.3 (c) and 5.3 (d) confirm the previous finding as 

the self-coupled frequencies show a value near to one for the bicoherence indices 

in this region especially for normal ECG signal.

4- Using the bispectrum further processing is made to extract features that may 

characterise the normal and abnormal ECG signals, as follows;
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• First a pilot study has been made to extract features from the phase of 

bispectrum. The bispectrum is calculated for segments starts from the R 

peak to the end of T-wave (RST-T) of normal and abnormal ECG signals 

(Sabry-Rizk, et al. 1999). In this study the bispectrum phases are 

employed to develop discriminant contour patterns in the multi-

dimensional phase of the polyspectra (polyphase) of ‘normal’ looking 

ECG signals in outpatients having weariness and general malaise or chest 

pain. Similar polyphase patterns have been found in the ECG signals from 

acute myocardial infarct patients with or without diagnostic ST segment 

and T-wave changes. Three cases from hospital recordings and some from 

the ST Change-DB showed discriminant biphasic contour patterns but no 

further success is obtained in this direction.

• Second the bispectrum magnitude and bicoherence-squared index are 

investigated. Two features have been extracted: (a) the Maximum 

Bicoherence Index (MBI), i.e., the value of the bicoherence index at the 

frequency of the maximal intensity, f m (the fundamental frequency) on the 

bispectrum magnitude, (b) The Average Bicoherence Index (ABI), i.e., 

the mean value along the diagonal slice of the bicoherence indices in the 

frequency range (0 - 20 Hz). Similar features have been employed by 

(Muthuswamy, et al. 1999) to detect burst suppression patterns in EEG 

signals in the bispectrum domain.
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(a)

Figure 5.2 Bispectrum magnitude of a normal case, No. 16539 (a), of an ischaemic 
case, No. e0103 (b), and their diagonal slices (c), for the normal (left) and for the 
ischaemic (right) bispectra. Each bispectrum is calculated from averaging of 50 
individual bispectra.
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Figure 5.3 Contour plots (a, b) and diagonal slices (c, d) of the bicoherence indices 
of a normal case, No. 16539 (a, c) and an ischaemic case No. e0103 (b, d). Each 
bispectrum is calculated from averaging of 50 individual bispectra.

The MBI and ABI are estimated for all normal and ischaemic cases included in this study. 

Figure 5.4 shows the results obtained from this analysis. The x-axis represents the record 

index in both figures and the y-axis represents the MBI in (a) and the ABI in (b). Both of 

the bicoherence measures, MBI and ABI, in Figures 5.4 (a) and 5.4 (b) for normal ECG 

signals are almost larger than that of the ischaemic ECG signals. According to the MBI 

one can conclude that both the normal and the ischaemic ECG signals contain quadratic 

non-linearity. But according to the ABI, Figure 5.4 (b), it is likely to say that the normal 

ECG signals are more consistent with the quadratic non-linearity than the ischaemic ones 

and are more likely to have higher-order non-linearities. This will be studied in the 

following section.
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(a )

(b)

Figure 5.4 Bicoherence analysis of 18 normal and 21 abnormal records, (a) The 
Maximum Bicoherence Index (MBI), and (b) the Average Bicoherence Index (ABI). 
The x-axis represents the record index for both normal and ischaemic cases and the y- 
axis represents the value of the MBI (a) and the ABI (b).

5.3.3 Higher-order Spectral Analysis

This analysis consists of the following steps: (1) Calculate the diagonal slices of the 

polyspectrum for orders k= 2 to 10. (2) Detect the peaks on the polyspectrum slices that 

satisfy the previously mentioned conditions, and estimate their frequencies. (3) Apply
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algorithms described in sections (5.2.1 and 5.2.2) to check the existence of the self-phase 

coupling phenomenon in normal and ischaemic ECG signals. (4) Evaluate the 

performance and the differences between the results obtained from the two algorithms. 

(5) Extract some features to differentiate between normal and ischaemic ECG signals and 

define the non-linearity order that can model the dynamics of the two physiological cases. 

The following two subsections (5.3.3.1 and 5.3.3.2) present the results for Zhou’s 

algorithm and the polycoherency indices, respectively. First samples from the diagonal 

slices of the polyspectrum for orders k= 3,5,7 for a normal case (No. 16272) and an 

ischaemic case (No. e0104) are shown in Figure 5.5. As observed before in the 

bispectrum analysis these polyspectrum slices show that generally the abnormal ECG 

signal spectra cover narrower band of frequencies than the normal ones.

5.3.3.1 Detection of Non-linearities using Zhou s Algorithm

In this part of the study the diagonal slices of the polyspectrum for fifty segments from 

each record are calculated for all normal and ischaemic cases. Each slice is estimated 

using one segment (i.e., no averaging). The power spectrum, Sv(co,), of the contaminated 

noise in Eq. (5.11) is estimated using record ’em’ from NST-DB (MIT-CD 1997). This 

record contains electrode motion artefact (usually the result of intermittent mechanical 

forces acting on the electrodes), with significant amounts of baseline wander and muscle 

noise as well.

Tables 5.1 to 5.9 show the results obtained for all normal and ischaemic ECG signals. 

The first column is the record number, the second is the segment number which show the 

most reliable results for that order, the third is the frequencies at which the self-coupling 

is detected, the fourth is <j>2, the fifth is the threshold value, 3 , for 5% PFA, and the last 

column lists the NSC which is the number of segments, out of 50, that show self-phase 

coupling for that order.

149



Chapter 5: Detection of higher order non-linearities

x 10'7

f

x 10-6

f f

Figure 5.5 The magnitude of polyspectrum slices of a normal case (No. 16272, 
left) and an ischaemic case (No. e0104, right) for moment orders k = 3, 5 and 7 from 
top to bottom, respectively, segment length= one ECG cycle, one segment is used 
to calculate the polyspectrum slices.
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Record
Num ber

Segm ent
Number

Frequency
(Hz)

Polyphase  
Squared (rad2)

Threshold
(PFA=5% ) NSC*

16273 8 6.957 2.31 E-06 1.80E-03 43
16483 25 4.174 1.22E-04 5.54E-03 13
16539 29 10.868 4.92E-07 1.08E-04 12
16773 32 4.491 2.03E-05 4.69E-03 21
18177 39 7.046 2.92E-06 2.07E-03 19
19090 17 8.072 3.61 E-07 5.29E-04 21
19093 19 4.000 2.36E-03 4.37E-03 4
19140 12 7.385 2.21 E-05 2.59E-03 8
19830 48 8.727 1.55E-04 1.13E-03 1
e0103 43 7.968 4.27E-06 6.67E-05 4
e0104 19 7.576 2.41 E-08 2.24E-04 4
e0105 24 2.768 3.17E-06 3.34E-04 7
e0107 40 7.246 5.80E-07 1.24E-04 6
e0111 23 11.307 3.93E-05 7.64E-04 7
e0115 40 5.515 5.52E-06 2.99E-03 12
e0116 24 5.800 9.64E-06 2.60E-04 5
e0121 21 3.906 3.07E-05 2.25E-03 12
e0162 18 3.769 1.08 E-05 1.53E-03 8
e0166 8 9.328 3.54E-05 7.14E-05 1
e0202 41 3.968 1.28 E-05 2.31 E-03 11
e0203 26 2.825 8.24E-04 2.47E-03 1

able 5.1 Results of the self-coupling detection a gorithm for the order k=
The above values of the frequency, phase angle, and threshold are obtained for 
the corresponding tabulated segment number that led to the smallest phase 
value. *The number of segments out of 50 that show self-phase coupling for 
k=2.
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Record
Num ber

Segm ent
Num ber

Frequency
(Hz)

Polyphase  
Squared (rad2)

Threshold
(PFA=5% )

NSC

16265 20 6.454 8.58E-07 2.34E-03 10
16272 47 6.687 1.01E-07 1.01 E-03 8
16273 50 4.174 4.41 E-04 7.88E-03 15
16539 33 3.623 2.20E-05 6.10E-03 6
16773 50 4.491 2.09E-03 1.08E-02 1
16795 40 0.977 1.05E-03 4.62E-03 1
18177 15 7.046 5.86E-05 4.69E-03 11
19093 19 4.000 7.54E-04 9.47E-03 1
19830 22 8.727 1.79E-05 2.38E-03 1
e0103 12 7.968 1.50E-07 1.21 E-04 8
e0105 37 5.535 2.93E-07 1.58 E-04 6
e0107 39 7.246 5.07E-05 2.68 E-04 1
e0115 47 5.515 1.06 E-04 5.20 E-03 4
e0119 37 4.975 8.97E-05 3.20E-04 1
e0121 43 3.906 2.00E-04 7.53E-03 6
e0122 34 8.278 6.95E-06 5.32E-04 1
e0161 47 2.451 6.63E-03 1.53E-02 1
e0166 12 0.933 6.39 E-04 1.57E-02 1
e0205 22 1.894 2.67E-04 5.31 E-03 2

Table 5.2 Results of the self-coupling detection algorithm for the order k= 3. 
The above values of the frequency, phase angle, and threshold are obtained for 
the corresponding tabulated segment number that led to the smallest phase 
value. The number of segments out of 50 that show self-phase coupling for 
k=3.
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Record
Num ber

Segm ent
Num ber

Frequency
(Hz)

Polyphase  
Squared (rad2)

Threshold
(PFA=5% )

NSC'

16273 3 4.17E+00 2.72E-03 0.014323 1
16420 40 5.07E+00 7.55E-03 0.02892 2
16539 30 1.21E+00 1.97E-05 0.008403 7
16773 50 4.49E+00 6.03E-03 0.019211 1
16795 27 2.93E+00 7.31 E-05 0.015957 8
17052 44 3.23E+00 2.39E-02 0.040318 1
19093 19 4.00E+00 5.86E-03 0.016753 1
19830 45 8.73 E+00 1.60E-03 0.004319 1
e0103 42 7.97E+00 1.16E-04 0.000262 1
e0105 6 5.54E+00 1.78E-06 0.000172 8
e0106 6 2.20E+00 3.54E-09 0.010394 5
e0107 4 1.81 E+00 7.28E-03 0.014561 1
e0115 18 5.51 E+00 8.19E-03 0.011083 1
e0116 2 5.80E-01 1.18E-04 0.01671 1
e0121 39 3.91 E+00 7.29E-05 0.011828 4
e0122 49 4.97E+00 4.91 E-03 0.020324 1
e0161 5 1.23 E+00 7.03E-05 0.053631 2
e0162 49 3.77E+00 1.01E-04 0.006313 8
e0166 30 1.87E+00 5.83E-04 0.008819 4
e0205 29 1.89 E+00 1.97 E-03 0.008191 2

Table 5.3 Results of the self-coupling detection algorithm for the order k= 4. 
The above values of the frequency, phase angle, and threshold are obtained for 
the corresponding tabulated segment number that led to the smallest phase 
value. *The number of segments out of 50 that show self-phase coupling for 
k=4.
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Record
Num ber

Segm ent
Num ber

Frequency
(Hz)

Polyphase  
Squared (rad2)

Threshold
(PFA=5% )

NSC'

16539 43 3.623 4.60E-03 1.62E-02 5
16773 50 4.491 1.01E-02 3.01 E-02 1
19088 13 1.293 1.57E-03 1.31 E-02 5
19830 14 1.455 5.94E-03 2.18E-02 4
e0103 45 3.984 9.21 E-07 1.50E-05 1
e0105 26 2.768 2.17E-04 1.94 E-03 1
e0106 48 2.203 5.81 E-04 1.82 E-02 3
e0111 10 1.256 7.78E-04 1.41 E-02 2
e0113 49 1.214 2.30 E-02 2.48 E-02 1
e0115 25 1.838 2.99E-03 1.73E-02 4
e0119 6 4.975 4.17E-04 9.22 E-04 1
e0121 39 3.906 2.34E-03 1.85 E-02 2
e0122 38 8.278 4.16 E-04 1.86 E-03 6
e0147 17 2.183 6.62E-06 1.52 E-02 3
e0161 30 3.676 7.34E-03 7.36E-03 2
e0162 29 3.769 2.28 E-04 1.19E-02 7
e0166 47 1.866 6.85E-04 1.43E-02 3
e0203 26 2.825 9.37E-03 1.46 E-02 1
e0205 9 5.682 2.61 E-03 1.38 E-02 1

Table 5.4 Results of the self-coupling detection algorithm for the order k= 5. 
The above values of the frequency, phase angle, and threshold are obtained for 
the corresponding tabulated segment number that led to the smallest phase 
value. *The number of segments out of 50 that show self-phase coupling for 
k=5.

Record
Number

Segm ent
Num ber

Frequency
(Hz)

Polyphase  
Squared (rad2)

Threshold
(PFA=5% )

NSC

16272 5 2.866 4.20E-06 3.93 E-02 41
16539 43 3.623 2.67E-05 2.33E-02 8
19140 47 1.231 3.37E-06 6.33 E-03 21
19830 30 1.455 4.25E-05 4.53E-02 7
e0105 39 2.768 8.41 E-05 2.22E-03 10
e0111 50 1.256 9.37E-05 1.11 E-02 12
e0119 1 2.488 2.77E-04 5.74E-02 7
e0121 40 3.906 1.18E-04 2.74E-02 4
e0122 9 3.311 5.80E-06 5.69E-02 13
e0123 21 2.488 3.76E-05 3.00E-02 10
e0147 39 1.092 1.21 E-04 1.45 E-02 4
e0161 6 1.225 1.11 E-07 7.54E-02 4
e0162 18 3.769 1.18E-05 1.31 E-02 6
e0205 40 1.894 5.63E-03 1.53 E-02 1

Table 5.5 Results of the self-coupling detection algorithm for the order k= 6. 
The above values of the frequency, phase angle, and threshold are obtained for 
the corresponding tabulated segment number that led to the smallest phase 
value. *The number of segments out of 50 that show self-phase coupling for 
k=6.
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Record
Num ber

Segm ent
Num ber

Frequency
(Hz)

Polyphase  
Squared (rad2)

Threshold
(PFA=5% )

NSC'

16272 39 0.955 4.50E-04 4.27E-02 8
16539 33 3.623 4.89E-06 3.32E-02 12
16786 48 1.032 1.62E-07 1.80E-02 3
17052 31 1.076 1.58E-02 2.31 E-02 1
18184 20 0.992 1.40E-06 3.81 E-02 5
19093 48 1.000 2.41 E-06 1.85 E-02 18
19830 22 1.455 2.76E-05 5.63 E-02 17
e0103 48 3.984 2.08E-05 3.81 E-05 2
e0104 38 0.947 1.74E-04 1.91 E-02 3
e0105 18 2.768 1.61E-04 5.26E-03 5
e0106 7 2.203 8.38E-06 3.20E-02 4
e0107 32 2.717 2.43E-04 6.07E-03 6
e0111 41 1.256 8.30E-04 2.32 E-02 7
e0115 4 3.676 3.93E-05 3.72E-02 2
e0119 44 2.488 7.55 E-04 5.95 E-02 4
e0121 40 3.906 2.98E-02 3.73E-02 1
e0122 43 4.967 1.00E-02 4.49E-02 5
e0161 42 2.451 9.80E-04 6.46 E-02 3
e0162 40 3.769 1.69E-02 1.93E-02 4
e0166 22 0.933 6.92E-02 7.06E-02 1
e0202 37 7.937 5.02E-03 3.52E-02 2
e0203 1 2.825 4.23E-03 2.58E-02 5
e0205 39 1.894 3.19E-05 2.56 E-02 3

Table 5.6 Results of the self-coupling detection algorithm for the order k= 7. 
The above values of the frequency, phase angle, and threshold are obtained for 
the corresponding tabulated segment number that led to the smallest phase 
value. The number of segments out of 50 that show self-phase coupling for 
k=7.
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Record
Num ber

Segm ent
Num ber

Frequency
(Hz)

Polyphase  
Squared (rad2)

Threshold
(PFA=5% )

NSC

16272 30 0.955 1.36E-03 4.89E-02 1
16483 33 1.391 7.40E-04 4.90E-02 2
16539 33 3.623 3.44E-04 4.34E-02 10
16786 15 1.032 3.65E-05 2.72E-02 19
16795 40 0.977 7.17E-04 2.64E-02 5
17052 2 1.076 3.93E-03 3.23E-02 3
18184 2 0.992 7.58E-07 5.52E-02 20
19088 26 1.293 8.54E-03 2.00E-02 1
19093 42 1.000 6.33E-04 2.37E-02 3
19830 32 2.909 3.40E-03 5.36E-02 4
e0103 20 3.984 5.60E-06 4.14E-05 1
e0104 13 0.947 1.51 E-03 4.61 E-02 7
e0105 7 2.768 6.18E-05 4.17E-03 2
e0106 32 2.203 1.34 E-03 4.41 E-02 5
e0107 30 2.717 6.51 E-04 6.92E-03 6
e0111 36 1.256 4.55E-03 3.03E-02 1
e0115 2 1.838 2.63E-05 5.17E-02 5
e0119 2 1.244 2.53E-02 1.37E-01 2
e0121 40 3.906 1.46E-02 4.87E-02 2
e0122 44 4.967 2.86E-04 5.53E-02 2
e0147 43 1.092 4.94E-04 4.50E-02 3
e0161 28 3.676 5.24E-04 2.55 E-02 5
e0162 18 3.769 9.10E-03 2.35E-02 3
e0166 13 0.933 1.34E-02 9.25E-02 2
e0203 3 2.825 3.15 E-04 3.51 E-02 7
e0205 11 1.894 8.70E-03 3.42E-02 5

Table 5.7 Results of the self-coupling detection algorithm for the order k= 8. 
The above values of the frequency, phase angle, and threshold are obtained for 
the corresponding tabulated segment number that led to the smallest phase 
value. *The number of segments out of 50 that show self-phase coupling for 
k=8.
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Record
Number

Segm ent
Num ber

Frequency
(Hz)

Polyphase  
Squared (rad2)

Threshold
(PFA=5% )

NSC

16265 11 4.303 1.05E-02 8.04E-02 4
16483 20 1.391 4.31 E-05 6.26E-02 17
16539 29 3.623 7.44E-04 5.09E-02 12
16795 22 0.977 6.86E-04 4.98E-02 5
17052 48 1.076 8.55E-04 3.45 E-02 1
18184 4 0.992 5.06E-04 6.90E-02 5
19088 17 1.293 5.78E-03 2.51 E-02 5
19090 14 3.459 1.88E-03 6.48E-02 1
e0103 42 3.984 1.71 E-08 9.34E-05 1
e0104 27 0.947 2.28E-04 3.10E-02 8
e0108 6 1.078 2.58E-06 5.74E-02 9
e0113 13 1.214 7.58E-03 5.31 E-02 8
e0115 29 3.676 2.45E-04 5.31 E-02 10
e0116 12 2.320 3.31 E-04 1.92E-03 1
e0119 14 2.488 9.85E-03 7.45 E-02 5
e0121 47 1.302 3.22E-05 1.66E-01 2
e0122 50 3.311 6.82E-02 1.41 E-01 1
e0147 38 1.092 1.13E-04 7.54E-02 4
e0161 17 3.676 9.09E-03 4.14E-02 9
e0162 46 2.513 7.10E-02 9.85E-02 1
e0166 36 1.866 2.60E-06 5.15E-02 10
e0202 46 3.968 4.67E-04 1.93 E-02 2
e0203 6 2.825 4.56E-07 4.35 E-02 19

Table 5.8 Results of the self-coupling detection algorithm for the order k= 9. 
The above values of the frequency, phase angle, and threshold are obtained for 
the corresponding tabulated segment number that led to the smallest phase 
value. ’The number of segments out of 50 that show self-phase coupling for 
k=9.
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Record
Num ber

Segm ent
Num ber

Frequency
(Hz)

Polyphase  
Squared (rad2)

Threshold
(PFA=5% )

NSC'

16265 23 4.303 6.26E-03 1.02E-01 4
16539 21 3.623 5.78E-04 6.46E-02 9
16795 26 0.977 5.69E-04 6.09E-02 7
17052 42 1.076 2.96E-02 5.02E-02 1
18184 22 0.992 3.74E-03 8.53E-02 5
19088 8 1.293 4.06E-04 5.44E-02 6
19090 16 3.459 8.92E-06 7.95E-02 23
e0103 20 0.996 9.51 E-03 1.73E-01 10
e0104 18 0.947 2.54E-03 5.22E-02 7
e0106 2 2.203 3.67E-04 5.88E-02 3
e0108 35 1.078 9.44E-05 5.14E-02 12
e0113 41 1.214 3.64E-04 5.81 E-02 3
e0115 23 1.838 1.84E-02 8.08E-02 2
e0119 8 3.731 1.55 E-03 7.02E-02 7
e0121 19 2.604 2.72E-03 1.47E-01 5
e0122 45 8.278 5.80E-03 1.25 E-02 14
e0123 32 2.488 1.78 E-03 1.13E-01 8
e0147 15 2.183 1.09E-05 5.70E-02 5
e0161 45 2.451 1.64E-04 1.60E-01 5
e0162 31 2.513 2.45E-02 1.82E-01 4
e0166 10 1.866 5.44E-03 5.02 E-02 6
e0202 17 3.968 5.57E-04 3.26E-02 7
e0203 12 2.825 2.27E-05 5.60E-02 18

Table 5.9 Results of the self-coupling detection algorithm for the order k= 10. 
The above values of the frequency, phase angle, and threshold are obtained for 
the corresponding tabulated segment number that led to the smallest phase 
value. The number of segments out of 50 that show self-phase coupling for 
k=10.

The self-coupling detection algorithm (Zhou’s algorithm) shows that both normal and 

ischaemic ECG signals contain up to 10th-order non-linearity. A closer look at Tables 5.1 

to 5.9 show that the NSCs are larger for the normal ECG signals for most of the 

polyspectrum orders. This number is estimated for all normal and all ischaemic cases and 

accumulated individually, for each order. The results are summarised in Figure 5.6, in 

this figure y-axis shows number of segments % (which is, total number of NSCs over all 

records for each order to total number of segments that has been tested for that order over 

all records percent) and x-axis represent the polyspectrum order, k.
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Figure 5.6 The total number of NSCs over all records for each order to total 
number of segments that has been tested for that order percent as a function of the 
polyspectrum order, k.

5.3.3.2 Detection of Non-linearities using the Polycoherency 
Indices

First the use of the polycoherency indices in quantifying self-phase coupling frequencies 

will be demonstrated in the following example.

Example

Consider the process used by Zhou and Giannakis (1995) which is generated by self- 

coupled harmonics Eq. (5.1) with L-  4, to, = co0 = 1, co2 = 2, co3 =3, co4 =4, Ai=2, A2=1.5 

and A3=1.8 and A4=1.0. The angles are uniformly distributed random variables in (-re, 7t], 

Two cases are considered here; (case-1) frequency and phase coupled harmonics, 

co; = &w0, and cp, = £tp0 and, (case-2) frequency coupled harmonics, co; = k(n0 and 

(p, * ky0 , Z=l,2,...,4 and k is the non-linearity order. Sixty-four statistically independent 

records with 128 samples each are used. The additive noise v(t) is generated by passing
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zero-mean, i.i.d., exponentially distributed deviates with unit variance through a first 

order FIR filter with parameters [1, 0.3].

Figure 5.7 shows the diagonal slices of the polyspectrum (LHS) and polycoherency index 

(RHS) for k=3 (a, b, c, d) and k-A (e, f, g, h). Figures 5.7 (a) and 5.7 (e) are the 

polyspectrum slices and Figures 5.7 (b) and 5.7 (f) are their polycoherency slices for 

’case-1’, respectively. Figures 5.7 (c), (g), (d), and (h) are the corresponding slices for 

’case-2’. The polyspectrum slices peak at co0=1 for ’cases-1 and-2’. The amplitude of the 

peak is much smaller for ’case-2’. For ’case-1’ the polycoherency slices show peaks of 

amplitude approximately one at co0 indicating the presence of totally phase coupled 

harmonics for k- 3 and 4. For ’case-2’ the polycoherency slices are approximately zero for 

k= 3 and 4 indicating the absence of phase coupling. From this example one conclude that 

the polycoherency slices are very effective in checking if the peaks on the polyspectrum 

slices are due to phase coupled harmonics and hence confirms the non-linearity.

Now the ECG signals will be analysed. To obtain reliable estimates for the 

polycoherency indices the diagonal slices of the polyspectrum and polycoherency indices 

are calculated using averaging of more than 50 polyspectrum slices. Each plot in Figure

5.8 consists of two parts, the magnitude of the diagonal slice of the 6th moment is shown 

in the upper panel and the corresponding polycoherency slice is shown in the bottom 

panel for a normal case (record No. 18184, a) and an ischaemic case (record No. e0107, 

b). The polyspectrum slices in this figure indicate the presence of self-coupled frequency 

components at 4 and 3.6 Hz for normal and ischaemic cases, respectively. The 

polycoherency indices are 0.95 and 0.66 at these frequencies, respectively, indicating 

higher degree of phase coupling for the normal case.

The diagonal slices of the polyspectrum and polycoherency index are estimated for all 

normal and ischaemic records for orders k=2 to £=10. Similar features to the MBI and 

ABI are employed in this analysis: a) The Maximum Polycoherency Index (MPIS) i.e., 

the value of the polycoherency index at the frequency of the maximal intensity, f m (peak 

frequency) on the polyspectrum slice, b) The Average Polycoherency Index (APIS), i.e., 

the mean value along the diagonal slice of the polycoherency indices in the frequency
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Figure 5.7 The diagonal slices of the polyspectrum (LHS) and polycoherency 
index (RHS) for k- 3 (a,b,c,d) and k=A (e,f,g,h). The polyspectrum slices in figures 
(a,e) and their polycoherency slices in figures (b,f), respectively, are the results 
obtained for case-1. Figures (c,g), and figures (d,h) are the corresponding slices for 
case-2.

161



Chapter 5: Detection of higher order non-linearities
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Figure 5.8 Persistent characteristics of the diagonal slices of the polyspectrum 
(upper panels) and polycoherency indices (bottom panels) for a normal person (a) 
and an ischaemic person (b) for k=6.
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range (0 - 10 Hz). They are considered as measures to check if the self-coupled frequency 

components in this region are due to phase-coupled harmonics.

In Figures 5.9, 5.10, and 5.11 the x-axis represents the record index for both normal and 

ischaemic records and y-axis represents the value of the MPIS (left) or the APIS (right) 

for orders k-2 to &=10. The MPIS and APIS for normal ECG signals are higher than that 

for ischaemic ECG signals for all polyspectrum orders indicating that the self-coupled 

frequencies for normal ECG signals are more likely to be due to phase-coupled 

harmonics. An important note from Figure 5.10 is that the MPIS for one of the normal 

records {k-1 and record index=4) has a value of zero. Theoretically, this means that the 

harmonics at that frequency are completely uncorrelated. However, this represents an odd 

result as the data analysed here are real ECG signals.

The value of the MPIS and that of the APIS normalised over all normal and over all 

ischaemic records are calculated to spot the difference between the normal and abnormal 

ECGs and to estimate the appropriate non-linearity order for each of these ECGs, as 

shown in Figure 5.12. Figure 5.12 is a summary for all the results obtained in this 

analysis. The x-axis correspond to the polyspectrum order, k, and the y-axis correspond 

to the mean value of the MPIS (a) and the mean value of the APIS (b) calculated over all 

normal and all ischaemic records for orders k=2 to A-10. The normal ECG signals can be 

differentiated from ischaemic ECG signals by each of the polycoherency measures. The 

non-linearity order that represents the ECG signal dynamics for normal and ischaemic 

conditions can be predicted using these two polycoherency measures. For example, for 

90%, 80% and 70% confidence levels the mean APIS and the mean MPIS indicate order 

ranges 3-5, 4-6, and 6-8, respectively, for normal ECG signals and 1-2, 2-4, and 3-4, 

respectively, for ischaemic ECG signals. On average the normal and ischaemic ECG 

signal dynamics can be modelled using a non-linearity order range of 5-7 and 2-4, 

respectively.
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MPIS APIS

Figure 5.9 Polycoherency indices for 18 normal and 21 ischaemic records. The 
Maximum Polycoherency Index (MPIS), and the Average Polycoherency Index 
(APIS), are employed. The x-axis represents the record index for both normal and 
ischaemic cases and the y-axis represents the value of the MPIS (left) and the APIS 
(right) for k=2 (top), k=3 (middle) and k=4 (bottom).
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MPIS APIS

Figure 5.10 Polycoherency indices for 18 normal and 21 ischaemic records. The 
Maximum Polycoherency Index (MPIS), and the Average Polycoherency Index 
(APIS), are employed. The x-axis represents the record index for both normal and 
ischaemic cases and the y-axis represents the value of the MPIS (left) and the APIS 
(right) for k=5 (top), k=6 (middle) and k=7 (bottom).
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MPIS APIS

Record index Record index

Figure 5.11 Polycoherency indices for 18 normal and 21 ischaemic records. The 
Maximum Polycoherency Index (MPIS), and the Average Polycoherency Index 
(APIS), are employed. The x-axis represents the record index for both normal and 
ischaemic cases and the y-axis represents the value of the MPIS (left) and the APIS 
(right) for k=8 (top), k=9 (middle) and k=10 (bottom).
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(a)

(b)

Figure 5.12 Average of the polycoherency indices measures, i.e., the mean MPIS 
and the mean APIS, calculated over all the normal and all the ischaemic records for 
polyspectrum orders k=2 to k=10. The x-axis represents the polyspectrum order 
and the y-axis represents the value of the mean MPIS (a) and the mean APIS (b).
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5.4 Discussion

Physiological and pathological cases from the MIT/BIH (MIT-CD 1997) and from the 

European ST-T (Taddei, et al. 1992) databases have been studied. All the available 

normal data were studied, while, the number of the abnormal data records was limited to 

patients with ischaemic heart disease. Records for patients with abnormalities that may 

affect other parts (for example, the QRS complex) of the ECG cycle and also records with 

small number (< 50 episode) or positional changes (for example, axis shift) ST-T episodes 

were excluded from the analysis.

The analysis of the bispectrum and bicoherence index revealed tight quadratical 

interactions among frequencies in the region (0 - 20 Hz). The bicoherence index 

indicated that these coupled frequencies are due to phase-coupled frequencies that 

strongly suggests the existence of quadratic non-linearities in both normal and ischaemic 

ECG signals. The diagonal slices of the polyspectrum and polycoherency index 

constitute important features to discriminate between physiological and pathological 

conditions of the heart. These slices are Gaussian noise free, preserve phase information 

and they are one-dimensional with all polyspectrum orders. In addition to that, it is 

theoretically proven (Pozidis and Petropulu 1998) that even short length segments (64 

samples) are appropriate for HOS slices estimation and could result in lower variance and 

better estimation than using the whole HOS information.

Generally, the frequency domain of the normal ECG signals covers a wide range of 

frequencies while the frequency domain of the ischaemic ECG signals covers a narrower 

range of frequencies for all polyspectrum orders that have been tested in this study.

Normal and ischaemic ECG signals were analysed in the higher-order domain using the 

self-coupling detection algorithm (Zhou’s algorithm) and the proposed extension to this 

algorithm (polycoherency indices). Zhou’s algorithm revealed the existence of higher- 

order non-linearities, up to the tenth order for both normal and ischaemic ECG signals. 

Using the same segments of data to calculate the polycoherency indices it has been shown 

that the inherent non-linearity in the ECG signal dynamics decreases with ischaemic 

conditions and specified order ranges of 5-7 and 2-4 for normal and ischaemic ECG 

signals, respectively. However, the results of the polycoherence indices were found to be
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consistent with some results in the literature. Previous studies using chaotic theory and 

which mainly applied to arrhythmia detection and heart rate variability showed the 

following observations about the dynamics of the normal and abnormal ECG signals: 

Pool (1989) found that strictly periodic cardiac dynamics are correlated with pathological 

states. According to the results obtained by Golgberger, et al. (1990) irregularity and 

unpredictability are important features of health; on the other hand, decreased variability 

and accentuated periodicities are associated with ageing and disease. Signorini, et al. 

(1994) studied the dynamics of the cardiovascular variability signals and found that in 

general a decrease in the system complexity is correlated to pathological conditions. 

Zhang, et al. (1997) declared that ECG signal dynamics is dominated by a 5-6- 

dimensional non-linear system, whose complexity is about 0.7. Fell, et al. (2000a) 

applied the false nearest neighbours method and the saturation of the correlation 

dimension on healthy persons and suggested that an embedding dimension from 6 to 8 

may be regarded suitable for the topological proper reconstruction of ECG signals. Hence 

the loss of complexity in ECG signal dynamics may be an important marker of 

susceptibility to disease.

The results showed that higher-order spectral analysis of the ECG signals can reveal 

useful information and provide insights regarding the physiological state of the heart. The 

extracted features from the bispectrum/bicoherence, i.e., the MBI and ABI, and from the 

polyspectrum/polycoherency slices, i.e., the MPIS and APIS are found to be informative 

and effective in detecting abnormality. These findings are of interest from the 

physiological viewpoint as they motivate a new approach to help illuminate quantitatively 

and non-invasively, ECG signal dynamics. From a practical point of view, quantification 

of the MPIS and APIS may have potential applications for Holter tape monitoring.

These valuable features from the HOS will be utilised in the following chapter to extract 

informative input patterns for the neural network-based ECG signal classifier.
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C h a p t e r  6

NEURAL NETWORKS

6.1 Introduction

The aim of this chapter is to utilise adaptive Neural Networks (NNs) to classify normal 

and abnormal (the abnormality of interest being ischaemic heart disease) ECG signals in 

their higher-order statistical domain. This is an implementation of an automated ECG 

signal classifier. Automated ECG signal analysis is important during ambulatory 

electrocardiographic monitoring, in interpretation of noisy ECG episodes...etc. It is 

also of particular interest in long term ECG signal monitoring called Holter monitoring, 

here, the ECG signal of a patient is recorded on a magnetic tape for as long as 24 h. 

Beat by beat visual examination is almost impossible in this case. Artificial Neural 

Networks (ANNs) can be taught by experts for such tasks, and so may be particularly 

suitable. Also since the NN approach is essentially a pattern matching technique based 

on non-linear input output mapping, it is well suited for detecting morphological 

changes especially in non-linear signals such as the ECG signal. For NN applications, it 

is important to find informative and robust features that reflect any changes, which may 

occur between successive ECG episodes. These features should enable the network 

classifier to differentiate between normal and abnormal ECG signals. In this work 

slices from the higher-order spectra have been used as the input features to the NN 

classifier. As the HOS preserve phase information these slices will reflect the non-

linear character of the signal. The previous work by Maglaveras, et al. (1998) and 

Stamkopoulos, et al. (1998) was based on the analysis of the time domain ST segments. 

The input features to the NN were the difference between an ischaemic ST segment 

template and the normal template in the former, and the principal components of the 

normal ST segments in the latter.
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6.2 Artificial Neural Networks

Neural Networks have received much attention in the research community in recent 

years. They have been proven to powerfully achieve solutions to problems in pattern 

recognition, associative memory, target detection, classification, non-linear modelling, 

database retrieval and data compression. The topic of neural networks is given various 

names by different authors. Some of these names are ’Artificial Neural Networks’, 

’Connectionist Models’, Parallel Distributed Processing Models’, ’Self-Adapted or Self- 

Organised Systems’, ’Cyberware’and ’Neurocomputers’.

6.2.1 Rational for using Neural Networks

Neural networks have a number of important properties that befit their use for signal 

processing applications, in particular (Haykin 1994; Haykin 1996):

1) The NN is a distributed non-linear device. This property is a direct result of the fact 

that each processing unit (i.e., neuron) of a neural network has a built-in activation 

function (for example, in the form of a logistic function) that is non-linear. 

Accordingly, the NN has inherent ability to model non-linearities contained in the 

physical mechanisms responsible for generating the input data.

2) The NN consists of massively parallel processors that have the potential to be fault 

tolerant. A multi-layer perceptron consists of a large number of neurons arranged in the 

form of layers, with each neuron in a particular layer connected to a large number of 

source nodes/neurons in the previous layer. This form of global interconnectivity has 

the potential to be fault tolerant.

3) The NN has a natural ability to adapt its free parameters to statistical changes in the 

environment in which they operate. As a rule of thumb, we may say that the more we 

make a non-linear system adaptive, the more robust the performance of that system is 

likely to be when it operates in a non-stationary environment, subject to the requirement 

that the system remains stable.

4) The NN provides a nonparametric approach for the non-linear estimation of data. 

The non-linear, feedforward class of NN (encompassing multi-layer perceptron and
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radial basis-function networks) learns from examples by constructing an input-output 

mapping for the problem at hand. It can also approximate any continuous input-output 

mapping to any desired degree of approximation, given a sufficient number of hidden 

layers, and thus working as a universal approximator.

The scope of neural networks is too wide to be covered in one chapter, so a simple 

structural, functional and conceptual overview of the relevant neural network 

architectures will be provided in the following sections.

6.2.2 Basic Element

Figure 6.1 shows the structure of the basic element (called neuron) of an artificial neural 

network that models the behaviour of a biological neuron. The body of the jth neuron is 

often represented by a weighted linear sum, z¡, of the input signals followed by a linear 

or non-linear function, yj=f(Z j ) .  This function is called the activation function; it 

determines the output of a neuron in terms of the activity level at its input.

Figure 6.1 Neuron model.

The following notation will be used:
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1) The indices i,j,k refer to different neurons in the network; neuron j  lies in a layer 

to the right of neuron i, and neuron k lies in a layer to the right of neuron j  when 

j  is a hidden unit.

2) dj(t), yj(t), eff) are the desired response, the output and the error, respectively, 

for neuron j  at discrete time t.

3) The symbol denotes the synaptic weight connecting the output of neuron i 

to the input of neuron j  at iteration t.

The neuron output signal is given by the following relationship:

(  n \

y j =f ( Zj )  = f , w J ix i

1=1

= / K t *) (6 . 1)

where w>, is the weight vector defined as wj =[wl,w2........ ,wn]T, and x  is the input

vector: x = \xv x2........ ,xnY ■ Different Neural Networks use different activation

functions. The activation function, /(.), can be linear or non-linear such as sigmoidal, 

hyperbolic tangent and threshold functions. Two well known sigmoidal functions can 

be written as follows (Zurada 1992):

f(z)  =
l + exp-riz Bipolar sigmoidal function (6 .2)

f ( z )  =
1

l + exp“112
Unipolar sigmoidal function (6.3)

The parameter r\ >0, in Eqs. (6.2 and 6.3), is proportional to the neuron gain 

determining the steepness of the function/(z) near z=0. The activation functions of Eqs. 

(6.2 and 6.3) are shown in Figure 6.2 for various r|. As r|^°°these two functions 

reaches the limit of sgn(z):

/(z )  = sgn(z) = +1, .....z  >  0

-1 ,....z < 0
Bipolar Binary function, or (6.4)
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f ( z )  = sgn(z)=
[ 1 , .........z  >  0

0,... z < 0
Unipolar Binary function. (6.5)

Setting r\ equal to 2 in Eq. (6.2) will be equivalent to the hyperbolic tangent function:

/  (z) = tanh(^) = -1 CXp
2 1 + exp

Hyperbolic Tangent Function (6.6)

Figure 6.2 Activation functions of a neuron. Bipolar continuous (left) and unipolar 
continuous (right) with T| varies from 0.5 to 3.5.

Neural networks may have fixed weights or adaptable weights. For networks with fixed 

weights, the strength of the interconnections has to be determined explicitly from the 

description of the problem. The latter type uses learning laws to adjust the values of the 

weights. Learning by itself may be supervised and unsupervised. In supervised 

learning we assume that at each instant of time when the input is applied, the desired 

output of the system is provided. The distance between the actual and the desired 

response of the network is used as error measure and serves to correct the network 

parameters externally. This mode of learning is used in many situations of natural 

learning. A set of input and output patterns called training set is required for this 

learning mode. On the other hand, in unsupervised learning the desired response is not 

known, thus, explicit error cannot be used to the correct network behaviour and learning 

can be accomplished using observations of responses to inputs that we have no 

knowledge about. Unsupervised learning can be used, for example, in finding the 

boundary between classes of input patterns (Haykin 1994; Zurada 1992). The scope of 

our application will be mainly adaptable weights and supervised learning neural 

networks.
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6.2.3 Learning Rules

Learning rules determine how the network is going to adjust its weights using an error 

function or some other criteria. A general learning rule has been used by Amari (1990) 

the weight vector Wj increases in proportion to the product of the input vector x and 

learning signal r. The learning signal r is in general a function of w,-,-, x,- and sometimes 

of the desired response dj. This can be formulated mathematically as follows:

r(t) = r(Wji (t), x, {t), dj  (t)) (6.7)

The increment of the weight vector w# resulting from the application of the general 

learning rule at time step t can be written as:

dwn(t) = P.r (ny-, (t), xt (t ),d j (t )).x, (t) (6.8)

where P is a positive number known as the learning constant, which determines the rate 

of learning. Using this weight increment, the weight vector at time (r+1) becomes:

Wji (r + 1) = Wji (t) + A w }, (0  (6.9)

where vv/,(t) and vy/-,(r+1) are the old and new values of the synaptic weight 

According to the form of the function r we can get different learning rules. Here are 

some examples of these learning rules (Zurada 1992).

Awji (t) = Py; (Ox, (0 Hebbian Learning Rule

Awji (0 = P[dj (0 -  sgn(w;, (0 x, (0)]x, (t) Perceptron learning Rule (6.10)

Awji (0 = P(dj (0 -  y} {t))xi (0 Delta Learning Rule

The delta learning rule, sometimes called normalised Least Mean Squares (LMS), 

represents one of the most popular learning algorithms. The basic idea of this algorithm 

depends on using the gradient, or steepest descent, procedure to minimise the mean 

squared error signal.
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6.2.4 Multi-Layer Neural Networks

A single layer feedforward neural network can be thought of performing a linear 

combination of a set of input variables with weights being proportionality coefficients. 

This sort of network can be used, for example, to build a linear model or to achieve 

correct classification of linearly separable classes. For problems with complex 

mappings, a single layer neural network will not perform well. Because in this case, for 

a classification problem, the network will try to separate between patterns using a linear 

boundary while the actual boundary is a complex curved one. A multi-layer 

feedforward neural network is capable of implementing arbitrary complex input/output 

mappings. The multi-layer network consists mainly of a number of single layered 

networks with the output of the first layer is directly connected to the input of the 

second layer (feedforward) and so on. The layers other than the first (input) and the last 

(output) layers are called hidden layers. Figure 6.3 shows the structure of a typical 

multi-layer feed forward neural network.

Figure 6.3 Multi-layer feedforward neural network.

6.2.5 Back-Propagation Algorithm

In the single layer network with the delta learning rule, the estimated error at the output 

of the network has been used to modify the weights from the input to the output nodes 

(Zurada 1992). Now for the multi-layer network this error can be used to update only 

the weights of connections between the output and the last hidden layer. For the other 

connections between the hidden layers and between the input layer and the first hidden
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layer this error cannot be used. This is what the back-propagation technique (Lippmann 

1987; Rumelhart, et al. 1986) is all about.

There are two phases involved in the back-propagation learning. During the first phase, 

the inputs are presented to the network, which propagate forward to produce the output 

for each neuron in the output layer. The activity of each neuron is determined by 

Eqs.(6.1) and (6.2) or (6.3). Then the error signal is generated. It is defined at the 

output of neuron j  at iteration t by,

ej (t) = dj ( t ) -y j (t) , neurony is an output node (6.11)

The instantaneous sum of squared errors of the network is written as

(6-12)
C e j

where the set C includes all neurons in the output layer of the network. In a similar way 

to the LMS algorithm, £(f) is minimised by the weight update rule. During the second 

phase, the error signals propagate backward through the network to allow the recursive 

computation of the weight updates. The back-propagation algorithm applies a 

correction AWj&) to the synaptic weight which is proportional to the instantaneous 

gradient d^(i)/dw;,(r). Applying the "chain rule" to differentiate (6.12) with respect to

Wjiit), and using Eqs.(6.11) and (6.1) we get, (Haykin 1994):

aC(Q
dWj i i t )

= -Ej (t)yi(t) (6.13)

where y,-(r) is the input signal of neuron j  and the local gradient or the modulated error, 

£ j ( t ) ,  is defined by

Ej(t) = e](t)fj(zJ(t))

S,(0 = / * , ( 0 ) £ e 4

, neuron y is in the output layer 

(t)wkj(t) , neurony is hidden
k

(6.14)

(6.15)
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where in Eq. (6.14) the error term can be calculated directly from Eq. (6.11) and the 

factor f'(Zj(t)) in both equations depends solely on the activation function associated

with the neuron j. In Eq.(6.15) the term £,t(f) requires knowledge of the error signal 

ek(t), for all those neurons that lie in the layer to the right of the hidden neuron j  and that 

are directly connected to neuron j, the term Wkj(t) consists of the synaptic weights 

associated with these connections.

The correction Avy/,(r) applied to xv/t) is defined by the delta rule

The use of minus sign in Eq. (6.16) accounts for gradient descent in weight space. 

Eqs.(6.13) and (6.16) yield

For the network to learn, the generalised delta rule (Haykin 1994) is applied to update 

the synaptic weight W ji(t ).

The following flow chart shows a summary of error back-propagation algorithm.

(6.16)

Awji{t) = $zj {t)yi(t) (6.17)

W Ji {t +1) = wJt (t) + (3ey (i)y, (0 (6.18)
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Figure 6.4 Error back-propagation learning algorithm flow chart.

6.2.5.1 Faster Convergence of the Backpropagation Algorithm

One of the critical parameters that has a significant effect on the rate of convergence of 

the back-propagation algorithm is the learning constant. In general, the optimum value 

for the learning constant depends on the problem being solved and should be chosen 

experimentally. Large learning constants will speed up the convergence but may cause 

overshoot in the solution for problems with steep and narrow minima. On the other 

hand, however, small learning constants will guarantee a solution; the price is the 

increased number of steps that need to be made to reach the satisfactory solution. Many 

suggestions have been made of how to adaptively change the learning constant (Kesten 

1958; Saridis 1970) and for a complete survey of the learning algorithms, see (Anderson 

1986). The following section describes two methods that have been used to increase the 

rate of convergence of the backpropagation algorithm, namely, the momentum and the 

delta-bar-delta learning rule.
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6.2.5.1.1 Momentum

The momentum, a, represents one of the heuristics that have been used to overcome the 

convergence problem mentioned in the previous paragraph. The method involves 

feeding a portion of the previous delta weight through the current delta weight in Eq.

(6.18) to have the following form:

Typically, a  is chosen between 0.1 and 0.9. This, in effect, acts as a low pass filter to 

reduce the overshooting behaviour and maintaining fast convergence.

6.2.5.1.2 Delta-Bar-Delta Learning Rule

An effective algorithm to adaptively update the learning constant was proposed by 

Jacobs (1988). He proposed four heuristics for achieving faster rate of convergence 

through learning constant adaptation. These heuristics suggest that: 1) every weight of 

a network should be given its own learning rate; 2) these rates should be allowed to vary 

over time. Additionally the heuristics suggest how the learning rates should be adjusted 

that is, 3) when the derivative of a parameter possesses the same sign for several 

consecutive time steps, the learning rate for that parameter should be increased, 4) when 

the sign of that derivative alternates for several consecutive time steps, the learning rate 

for that parameter should be decreased.

Jacobs introduced the delta-bar-delta (DBD) learning rule as an implementation for 

these heuristics. The DBD learning rule consists of a weight update rule and a learning 

constant update rule.

The weight update rule

Awjj (0 = (3s j (t)y, (t) + a Aw n (t -1) (6.19)

(6 .20)

where (3;i(t) is the learning rate value corresponding to w,,(0 at time t.

The learning rate update rule

The learning rate update rule is defined as follows (Jacobs 1988):
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¿M*+d = -^M')
o

K if 8£ (t-1)6^1) >0
(6 .21)

Otherwise

where K  is constant, 5ji(t) = dC,(t)/dwji(t) and 5;,(i) = (l-Q)Sji(t) + QdJi(t-l)  is a

weighted average gradient of the current and past derivatives with 0, which is a positive 

constant, as the base. According to Eq. (6.21) if the current derivative of a weight and 

the weighted average of the weight’s pervious derivatives posses the same sign, then the 

leaning rate for that weight is incremented by a constant, K , and if they posses opposite 

signs, then the learning rate for that weight is decremented by a proportion, f), of its 

current value.

6.3 ANN-Based ECG Signal Classifier

6.3.1 Introduction

The feedforward multi-layer neural network with error back-propagation learning 

algorithm has been used as normal/abnormal ECG signals classifier. During the 

training phase, the input patterns are presented to the classifier along with the category 

to which each particular pattern belongs. In the test phase, new patterns are presented to 

the network, which has not seen before. This classification as described above belongs 

to a supervised learning problem and has the advantage of constructing non-linear 

decision boundaries between the normal/abnormal ECGs in a nonparametric fashion, 

and thereby offer a practical method for solving highly complex pattern classification 

problems.

6.3.2 The NN Classifier Structure

Figure 6.5 shows the general configuration of the different stages employed in the 

classification process. Data from NSR-DB (MIT-CD 1997) and E-DB (Taddei, et al. 

1992) have been used in this analysis. A total of 800,000 samples or about 6420 ECG 

beats from 18 normal subjects and 1650,000 samples or about 6600 ECG beats from 27 

ischaemic subjects are analysed. This is in total equivalent to about 1.0833xl07 ms.
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Figure 6.5 The ECG signal NN-based classifier.

The signal pre-processing stage applies the same procedure described in chapter four. 

The feature extractor stage consists of two main programs and three subroutines written 

in Matlab by the author to calculate the polyspectrum and polycoherency slices, these 

slices are used as input features to the neural classifier. Using a Pentium II, 333 MHz, 

196 Mbytes RAM computer, the CPU time was about 0.15-sec/polyspectrum slice and

6-sec/polycoherency slice. The data preparation part is a Matlab program made to 

prepare the input data files and the desired patterns in the format required for the NN 

training and testing phases. The desired pattern is the binary sequence used to encode 

different cases for the output, i.e., [1 0] is used to represent normal ECG signals and [0

1] for ischaemic ECG signals. A feedforward multi-layer neural network with error 

back-propagation learning algorithm is built using a NN software package 

(NeuralWorks Pro II Plus with Predict®1 program).

6.3.3 Classifier Training and Testing

It has been found in the previous chapter that the diagonal slices of the polyspectrum 

and polycoherency indices constitute very important features to discriminate between 

normal and ischaemic ECG signals. An experimental investigation is carried out 

targeted at the choice of the best input features and the best NN structure. Towards 

achieving this aim, information from the previous chapter combined with a trail and 

error procedure has been used to choose the order of the polyspectrum and the most 

informative training sets of slices, based on this investigation three different training

1 NeuralWorks Pro 11/plus, NeuralWare Inc. 1993. NeuralWorks Predict® program is an accompanying part o f the 
NeuralWorks Pro II/Plus package with an interface to Excel work sheet for data input and output. Predict has the feature 
o f automating much of the painstaking manipulation, selection, and pruning of data that takes up most o f the time in 
building a neural network application.
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sets are examined. First slices from the polyspectrum magnitude for orders 5 and 6 are 

used but no convergence is obtained in this case. Then two sets (SI and S2) have been 

successfully used in training and testing the NNs, these are:

1. The polycoherency index slices in the frequency range from 0 to 20 Hz for 

polyspectrum order k = 6 (SI). The order is chosen based on the analysis and 

conclusions from the previous chapter. This set requires an input layer of 20 

neurons. Figure 6.6 shows examples of this input feature for normal and 

ischaemic ECG signals. SI consists of 120 patterns or examples for the training 

phase and 74 different patterns for the test phase.

2. Multiple features from the HOS domain (S2). These are the polyspectrum order 

k, the diagonal slices of the polyspectrum for orders 2 to 10 in the frequency 

range 0 - 2 0  Hz, the MPIS and the APIS for each order. S2 can be represented 

by an input layer of 23 neurons. S2 consists of 234 examples for the training 

phase and 117 different examples for the test phase.

Three NN structures (NN1, NN2 and NN3) are implemented and tested using these 

feature sets. An adaptive gradient learning method with back-propagation (Jacobs 

1988; Minia and Williams 1990) has been used, with different initial learning constants 

for hidden and output layers during the learning phase. Initial selection of the number 

of neurons in the hidden layers is based on trial and error along with various heuristics 

from previous studies (Lippmann 1987; Sietsma and Dow 1991). The methodology 

adopted in training the network and included in the neural network package used is as 

follows:

1) Restricting the architecture of the network by restricting the number of allowable 

hidden nodes to a small number to start with.

2) Adding hidden nodes one or more at a time and retraining the network. The node 

giving best performance on the objective function (the pre-set minimum output error) is 

retained and established in the network.

3) During training the squared error e2(t), which is the error between the desired and the 

actual output, is minimised by using the back-propagation algorithm. Each network has
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been trained using one training set of examples and tested using new examples, from the 

same group, that have not been seen during training phase.

Figure 6.6 Polycoherency slices used in training the NN. The figure consists of 
two slices for normal cases (18184, 19088, up) and two for ischaemic cases (e0104, 
e0105, bottom), the slices are calculated for k=6 and from averaging of 50 
individual polyspectra.

6.3.4 Implementation of the Three NN

NNl is implemented using the NeuralWorks Pro II package. The first set of input 

features, SI, is used in training this network. An output layer of two neurons is used, 

the output of each of these neurons assumes a value between zero and one. To study the 

effect of the various learning rules mentioned in the previous sections on the 

performance of the network, NNl is trained using Delta Rule (DR), Delta-Bar-Delta 

(DBD), and Extended Delta-Bar-Delta (EDBD)1. Using one and two hidden layers, two

1 The Extended Delta-Bar-Delta, developed by (Minai and Williams 1990), is an extension of DBD which also calculates a 
momentum term for each connection.
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different structures are applied, 20-5-2 and 20-5-3-2. The activation functions within 

each neuron in the input, hidden and output layers are the hyperbolic tan.

Figure 6.7 shows the RMS error during the learning phase of NN1 as a function of 

epoch (during the training phase each time step is called an epoch, it is defined to be a 

single sweep through all the training patterns. At the end of each epoch, the weights of 

the network are updated). Using the DR no convergence is achieved while the DBD 

resulted in slow convergence. The EDBD rule gave a faster convergence and a smaller 

RMS error. Figure 6.8 are bar charts depict the sum squared error, between the NN 

output sequence during the training (LHS) and test (RHS) phases and the correct 

sequence at the output layer, versus the input/target pairs. Table 6.1 summarises the 

results obtained using DR, DBD, EDBD and EDBD with two hidden layers. The 

training parameters are a=0.8 and (3=0.3, 0.2, and 0.15 for the first and second hidden 

and output layers, respectively, and the epoch=30 patterns.
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(a) (b)

(c) (d)

Figure 6.7 Training phase RMS error for NN1 trained with DR (a), DBD (b), 
EDBD (c), and EDBD using two hidden layers (d). The training parameters are 
a=0.8 and (3=0.3, 0.2, and 0.15 for the first and second hidden and the output 
layers, respectively.

Learning Rule Final RMS Classification Rate

Delta Rule 0.158 88%

Delta-Bar-Delta

(DBD) 0.0551 90%

Extended DBD 0.018 89%

Extended DBD with 

two hidden layers 0.0056 93%

Table 6.1 The RMS and the classification rate obtained using DR, DBD, EDBD 
and EDBD with two hidden layers using NN1 structure.
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Input/Target Pa irs

(a ) (b)

N etw ork Errors

( e ) (f)

Input/Target Pa irs

( g )

N etw ork Errors

Figure 6.8 Bar chart for the sum squared error at the output layer during training 
(LHS) and test (RHS) phases for NN1 trained with DR (a,b), DBD (c,d), EDBD 
(e,f), EDBD using two hidden layers (g,h). The training parameters are a=0.8 and 
P=0.3, 0.2, and 0.15 for the first, second hidden and the output layers, respectively.
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The NeuralWorks Predict® program has been used for the implementation of NN2 and 

NN3. NeuralWorks Predict® provides mechanisms to automatically transform user 

data into formats suitable for the neural network. A variety of analyses are performed to 

determine if an input field should be eliminated, or how it might be transformed to 

maximise the performance of the network, see appendix D.

The two previously explained sets of features, namely, SI and S2 constitute 'the basic 

inputs' to the NN2 and NN3 classifiers, respectively. A single neuron, with two binary 

states, has been used as the output of the two classifiers. An output value of 'O' 

corresponds to the ischaemic case while a value of T  at the output corresponds to the 

normal case. Direct connections from the input layer to the output layer have also been 

included in the network architecture. Cascade connections are also employed which 

allows connections from previously established hidden processing elements to more 

recently established hidden processing elements. The activation functions within each 

neuron in the input and hidden layers are the hyperbolic tan while a softmax1 function is 

used for the output neuron.

NN2 is trained using SI with and without hidden layer. As without hidden layer the 

network assumes linear input-output mapping, much better results have been obtained 

in the structure with hidden layer. This comes in agreement with the nature of the ECG 

signal, which is highly non-linear as explained in the previous chapter and with the 

results obtained using NN1. The 'basic inputs' are used to train NN2 with a layer 

structure of 20-3-1 (or 20-1 without hidden layer).

Table 6.2 shows the performance of the NN2 classifier. A total of 74 patterns have been 

used in this test. Forty-three patterns are from normal ECG signals while the rest (31) 

corresponding to ischaemic ECG signals. The classifier managed to detect 68 patterns 

with a classification rate of 92.7%. Figure 6.9 shows the receiver operating 

characteristics of the classifier with the hit rate on the vertical axis and the false alarm 

rate on the horizontal axis.

1 The SoftMax function can only be used for problems where the transformed output data is probabilistic. In other words, 
for each output record, the sum of values is equal to 1 and each individual output value is between 0 and 1.

188



Chapter 6: Neural networks

Confusion

Matrix

Ischaemic

(Network

O/P)

Normal

(Network

O/P)

Total
Classification

Rate

Ischaemic

(Actual) 28 3 31 90.3%

Normal

(Actual) 3 40 43 95.2%

Total 31 43 74 92.7%

Table 6.2 Performance of the NN2 classifier. he table shows the classification
rate results of the test data set.

Figure 6.9 Receiver operating characteristic (ROC) curve of the NN2 classifier.
As a Figure of merit of the classifier, the area under the ROC curve has been 
calculated to be 96.7%.

In training NN3 some transformation functions, for example, logarithmic function, 

inverse fourth power function and square function (see appendix D) are applied to the 

input features S2. These inputs are called ’the transformed inputs’ to distinguish them 

from the basic inputs. A single hidden layer with two neurons has been used based on 

the best results for the classifier. Table 6.3 shows the performance of the NN3 

classifier. A total of 117 patterns have been used in this test. Fifty-four patterns are 

from normal ECG signals while the rest (63) corresponding to ischaemic ECG signals.
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The classifier managed to detect 88 patterns with a classification rate of 75.4%. Figure 

6.10 shows the receiver operating characteristics of the classifier with the hit rate on the 

vertical axis and the false alarm rate on the horizontal axis.

Confusion

Matrix

Ischaemic

(Network

O/P)

Normal

(Network

O/P)

Total Classification

Rate

Ischaemic

(Actual)
46 17 63 73%

Normal

(Actual)
12 42 54 77.7%

Total 58 59 117 75.4%

Table 6.3 Performance of the NN3 classifier (Network structure 7-2-1).
shows the classification rate results of the test data set.

he table

Figure 6.10 Receiver operating characteristic (ROC) curve of the NN3 classifier. 
As a Figure of merit of the classifier, the area under the ROC curve has been 
calculated to be 80.3%.

190



Chapter 6: Neural networks

The following table summarises the results of the previously built neural networks.

Data set

Package Data Set S1 Data Set S2

NeuralWorks Pro II NN1 93 % No convergence

NeuralWorks Predict NN2 92.7 % NN3 -> 75.4 %

Table 6.4 Summary of the neural networks structures and classification rates 
obtained.

6.4 Discussion

This chapter describes the implementation of an adaptive backpropagation NN-based 

classifier for detection of ischaemic heart abnormality using slices from the higher-order 

spectral domain of the ECG signals. The performance of this automated classifier was 

tested on the European ST-T database, which has been described as particularly 

appropriate for testing the performance of ischaemia detection algorithms (Taddei, et al. 

1992). A high rate of successful classification in the discrimination problem between 

normal and ischaemic cases was achieved.

An effective approach has been adopted in this analysis. The previous chapter 

highlighted the fact that a decrease in the order of the non-linearity is associated with 

ischaemic conditions, this means that the normal and ischaemic ECG signals will be 

presented by different dynamics. This finding is the basis for the automatic ECG signal 

classifier. The polyspectrum and polycoherency indices slices are excellent features to 

represent these dynamics. These slices were calculated using the whole ECG cycle as 

one segment for polyspectrum estimation (as mentioned in the previous chapter) so in 

this approach information from the whole ECG cycle was used. This is considerably 

different from the previous ischaemia detection algorithms in that: 1) it avoids the use 

of the J-point and the ST-segment whose detection are often problematic and time 

consuming. 2) The training set is slices from the frequency domain. 3) The effective 

power of the HOS in detecting non-linearities was exploited by using features from the
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higher-order domain. These features are one-dimensional slices and can be calculated 

within few seconds, which allows the use of this classifier in practical applications. 

Using these slices the NN was trained for ischaemic episode detection rather than 

ischaemic beat detection.

The steps of the procedure used in training and testing the three neural networks and 

using the three different training sets can be summarised as follows:

1) Applying slices from the polyspectrum magnitude for orders 5 and 6 as input 

features resulted in no convergence. This could be due to the fact that these 

slices contain only magnitude information.

2) The set S2 has been tried but no convergence was obtained using the 

NeuralWorks pro II. However, using the NeuralWorks Predict program-based 

NN (NN3) convergence was achieved with a total classification rate of 75.4%.

3) To improve this classification rate the feature set SI was used with the original 

NeuralWorks pro II (NN1) then with the NeuralWorks Predict program (NN2). 

NN1 was trained using different learning rules and two different structures to 

achieve the best RMS, convergence time and classification rate. A significant 

increase has been achieved in the classification rate (93% for NN1 using EDBD 

learning rule with two hidden layers and 92.7% for NN2).

4) The receiver operating characteristic (ROC) curve was used to assess the 

performance of the NN classifiers.

It was expected that taking multiple features from the higher-order domain (S2) will 

result in the best classification rate but the polycoherency slices (SI) tend to be the 

optimal choice for this classification problem. One possibility may be due to the limited 

number of input patterns and their variabilities for different subjects and from one 

polyspectrum order to the other. This makes the use of multiple features in the input 

difficult for the NN to learn. So the NN in this case may need over one thousand input 

patterns. Another reason is the choice of these multiple features, which needs more 

investigation about which feature to use in the input pattern. This explains why the
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NeuralWorks Predict program-based NN (NN3) has converged using the ’transformed 

inputs’from S2, while using the ’basic inputs’convergence could not be achieved.

In previous studies (Jager, et al. 1991; Maglaveras, et al. 1998; Taddei, et al. 1995), a 

sensitivity for ischaemic episode detection between 83% and 88% was obtained. A 

sensitivity of 73% for ischaemic episode detection using PCA neural network; was 

obtained by Silipo, et al. (1995). In a study by Stamkopoulos, et al. (1998) the total 

normal and abnormal classification indices of 79.32% and 75.19%, respectively, were 

obtained for ischaemic beat detection. An average beat classification performance of 

80.4% was achieved by Papadimitriou, et al. (2001) using a self-organizing map model 

supplemented by supervised learning based on the radial basis function. In the current 

study HOS combined with an adaptive backpropagation NN yield superior performance 

in ischaemic episode detection.

The next and final chapter will summarise the main results obtained in this thesis, and 

give the some directions for future work.
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C h a p t e r  7

SUMMARY AND FUTURE WORK

7.1 Summary

Most work done on ECG analysis, over the last three decades, with the exception of Dr. 

Rizk’s HOS-based research at City University, Spaargaren and English (1999) and more 

recently the work by Osowski and Linh (2001), relied heavily on using second-order 

statistical tools. However, because of the ECG signal's inherent non-linearity, 

describing it only in terms of the second-order statistics poses certain limitations. The 

motivation, therefore, behind this research work was primarily to analyse and 

characterise the ECG signals in the higher-order statistical domains, and ultimately, find 

new methodologies to classify them in those noise-free domains. From a signal 

processing point of view this research was aimed at sampling cumulants and 

polyspectral patterns in a selected number of domains and analysing their magnitudes, 

frequency and phase components. This allows the exploitation of the non-Gaussian and 

non-linear properties of the ECG signals. From a medical point of view this research 

sought to identify some discriminant features in HOS domains which in turn help to 

establish criteria in the decision making of certain ECG pathologies (e.g., ischaemic 

heart disease).

Towards achieving this aim several preliminary studies have been carried out on several 

ECG databases. These include noise cancellation using adaptive filtering techniques, 

testing for non-stationarity and quasi-periodicity in order to pave the way for 

appropriately dealing with the signal later using the HOS. The performance of adaptive 

filters to converge and track the non-stationary dynamics of the ECG signals, without 

prior information about the signal or the contaminating noise and with a pre-set MSE 

error value, has been analysed. Good results regarding the output MSE error and the 

fastest convergence rate were achieved especially for the Kalman filter. However, the 

basic limitation of Kalman filtering is the computational complexity, which is a direct
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consequence of the matrix formulation of the solution to the Kalman filtering problem. 

The LMS-based algorithm is simple, and its tracking capability to the non-stationary 

ECG signals is better than the Kalman algorithm. Similar performance to the LMS- 

based filter was obtained, with smaller MSE, using LMS-based non-linear Volterra 

filter; this gives non-linear filtering an advantage over linear filtering for ECG 

application. Higher MSE, slower rate of convergence and lower output SNR are the 

main limitations of the LMF algorithm, which makes this filter unsuitable for ECG 

prediction or filtering purposes (see chapter 2 for more details).

The statistical and spectral analysis of the ECG signals resulted in clear views about the 

nature of the signal. From the statistical analysis it was demonstrated that the signal is 

pseudo-periodic, cyclostationary and predominantly non-Gaussian. This statistical 

characterisation was very beneficial when exploiting the cumulants and the 

polyspectrum. The spectral analysis showed that the spectrum of the ECG signal covers 

a limited band of frequencies, and its spectral content is harmonic in nature. Some 

frequency components are due to the P-wave, QRS complex and T-wave. Moreover, 

the very low frequency components are mainly due to some contaminating noise and the 

middle- to high-frequency components are due to interactions between some principal 

frequencies associated with the P-wave, QRS complex, and the T-wave, and their 

harmonics. An important outcome of this spectral analysis was the development of a 

technique to detect ischaemic heart disease. This detection was based on the MUSIC 

spectrum of the ST-T complexes taken from normal and ischaemic ECGs. In this study, 

normal ECGs were obtained from the NSR-DB (MIT-CD 1997) and ischaemic ones 

from the ST Change-DB (MIT-CD 1997). The ST-Change-DB mainly contains records 

from exercise-induced ischaemia. Episodes from both the initial resting and the peak 

effort phases of each of these exercise ECG recordings were interrogated and two 

independent and highly experienced physicians annotated these episodes. The MUSIC 

spectrum of the ST-T complexes taken from the above mentioned episodes revealed 

persistent high frequency components (HFC) in the range 60 -  180 Hz during these 

intervals. In normal subjects such high frequency components were not found in most 

of their ST-T complexes. This is due to the fact that the ST-T segments were taken 

from the edge of the QRS complex (e.g., starting at the point delineated R-wave + 50 

msec), where most of the high-frequency energy can be found and is attributed to late
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potentials or signals from areas in the myocardium of delayed conduction. These high- 

frequency components constitute an indicator to discriminate between normal and 

ischaemic ECGs. Furthermore, it should be emphasised here that normal-looking ST-T 

complexes gave the same MUSIC high frequency components. Hence, it may be 

possible to detect ischaemic heart disease using the initial phase of the exercise test or 

even in some cases without exercise. This is certainly the case for MI patients as 

explained in details in chapter 3.

Theoretical studies on higher-order statistics are found in chapter 4, where both 

conventional and new techniques for the estimation of cumulants and bispectra were 

discussed. Cumulant analysis of normal and ischaemic ECG signals revealed their 

discriminant features. Notably, a higher classification rate was obtained using the 

fourth-order cumulants as opposed to that due to the second- or the third-order 

cumulants for a pre-selected threshold. Three bispectral estimation methods were 

utilised to investigate the normal ECG signals in the third-order domain. As expected, 

the direct method of bispectrum estimation yielded much smaller variance than the 

indirect method. In terms of spectral resolution, parametric bispectrum estimation 

showed no advantage over the non-parametric estimation in the case of ECG analysis 

(chapter 4). Investigation of the frequency content of both the power spectrum and 

bispectrum of the normal ECG signals has revealed the existence of many harmonically 

related frequencies in the low frequency region (0 - 20 Hz). In this chapter, the 

bispectrum together with the squared bicoherence were used to investigate quadratic 

non-linearity in normal ECG signals over their low frequency end of the spectrum as 

opposed to detecting quadratic non-linearity in the high frequency region of abnormal 

ECG signals (Sabry-Rizk, et al. 1998). The squared bicoherence index was used as a 

measure for the degree of phase coherence of the triple-wave harmonics which causes 

the bispectrum to emerge at harmonically related frequencies. It revealed, for the first 

time, a strong phase coupling between these frequencies and confirms the quadratic 

non-linearity of the normal ECGs. Hinich independent tests statistically confirm the 

non-Gaussianity, and non-linearity of the ECG signals.

To benefit from the super-resolution capability of the eigendecomposition-based 

algorithms in the bispectrum domain, a novel subspace-based bispectrum estimator was
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introduced and applied to simulated sinusoids and to the ECG signal (see chapter 4). It 

is termed the MUSIC pseudo-bispectrum and is aimed at extracting the quadratically 

coupled frequencies rather than estimating the true bispectrum. Its frequency estimation 

function was designed to enhance the spectral content of the third-order cumulant 

sequence responsible for the quadratically coupled harmonics. Furthermore, it was 

shown that the MUSIC pseudo-bispectrum gave higher resolution in comparison with 

the direct and TOR methods for short data lengths. However, the MUSIC pseudo-

bispectrum estimator is sensitive to model order and hence it is strongly recommended 

to have a reliable model order criterion in the third-order domain, and not to rely on the 

commonly known Akaike Information criterion (AIC), Minimum Description Length 

(MDL) Criteria, and the Final Prediction Error (FPE) (Marple 1987).

To extract features from the polyspectrum domain to discriminate between normal and 

ischaemic (ambulatory) ECGs taken from the E-DB (Taddei, et al. 1992), three tests 

have been carried out in chapter 5. First, the magnitude and the phase of the bispectrum 

were investigated. In the study of the bispectrum magnitude and its bicoherence index 

two features are extracted, the maximum and the average bicoherence indices, these 

indices showed that both of these physiological states of the heart contain quadratic 

non-linearity. Also a pilot study on the bispectrum phases has been carried out but it 

failed to generate a general criterion or feature to differentiate between the two cases. 

Second, higher-order polyspectral slices were calculated for polyspectrum orders 2 to 10 

and an algorithm by Zhou and Giannakis (1995) was applied to detect higher-order non- 

linearities in normal and ischaemic ECGs. This detection showed that both of these 

ECGs contain up to tenth-order non-linearity. Third, chapter 5 presented a proposed 

extension to this algorithm to calculate the polycoherency indices slices. Analysis of 

non-linearities in 1-D slices taken from both the polyspectral and the polycoherency in 

normal and ischaemic ECGs helped to establish two discriminant criteria. These are the 

maximum polycoherency index and the average polycoherency index. From these 

criteria non-linearity order ranges for normal and ischaemic ECGs were specified. The 

results obtained using the polycoherency indices tend to be more consistent with many 

of the previous work on ECG non-linear dynamics (see chapter 5 for more details).

197



Several neural network-based classifiers were deployed to automatically classify normal 

and ischaemic ECGs and assessed in chapter 6. These classifiers were trained using the 

polyspectrum patterns and the extracted features from the higher-order spectral analysis 

of chapter 5. These input patterns are Gaussian noise-free and contain both amplitude 

and phase information. To achieve the highest classification rate from these classifiers, 

three neural network structures employing either one or two hidden layers, and using 

two different input sets with three learning rules were examined. Based on this 

assessment, the highest classification rate was obtained from using the polycoherency 

index slices as input features, with the extended delta-bar-delta learning rule and two 

hidden layers.

7.2 Directions for Future work

A few proposals that could form a stimulating extension to this thesis include

1. It is worth studying the ECG signals non-stationarity properties in the higher-order 

domain. Since general approaches have rather limited applicability, this could be 

done by estimating the so-called cyclic moments/cumulants and the associated 

spectra. These cyclic higher-order statistics/spectra are defined for the kth"order 

cyclostationary processes.

2. A more rigorous study towards the identification of ischaemic patients without 

exercise stress test is a primary extension to this work. This can be accomplished by 

applying more input data especially from the high resolution ECG recording to the 

MUSIC algorithm using the technique developed in chapter 3. The MUSIC spectra 

of the high resolution ECG data will provide a complete picture of the HFC, one 

that could not be obtained in this work because of the limited sampling rate of the 

available data. On-line application of this technique is also an interesting task; this 

means the interpretation of the exercise ECG data during the test using the software 

program made in this work. As some patients could not proceed in the exercise test, 

this interpretation may be useful in detecting ischaemic events before making an 

extensive effort on the patient’s heart.
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3. An interesting problem to look at would be to develop an information theoretic 

criterion for estimating the number of signals in the signal and noise subspaces for 

the MUSIC pseudo-bispectrum estimator. This could be done by extending the AIC 

criteria to handle the subspace separation problem in the third-order domain 

following the strategy adopted in its extension to the second-order domain. 

Subsequent to the development of this criterion an extensive application of the 

MUSIC pseudo-bispectrum to ECG signals and other real signals is a natural 

extension to this thesis. Studying the statistical behaviour of the MUSIC pseudo-

bispectrum is also necessary.

4. Ischaemic conditions of the heart range from effort angina, mixed angina, resting 

angina and MI, then risk of VT. A study on the relation between the values of 

MPIS/APIS and the degree of the ischaemic conditions to assign threshold values 

for these polycoherency indices may help to separate each class.

5. Applying the higher-order spectral analysis developed in chapter 5 to other cardiac 

abnormalities or arrhythmias, and to other physiological signals is another 

possibility for future work.
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A P P E N D I X  A

ADDendices

CUBIC SPLINE INTERPOLATION

The cubic interpolation define an interpolated data point y on one particular interval, 

between Xj and xJ+i as

y = A y j  + B y  j+l +  C y '  + D y "j+, 

Where

(A.l)

v; ii v ii (A.2)

X M — X X - X ;
A  ~  7+1 ,..........5 - 1  A -  7 ,

X j + l - X j  x j+l - X j
(A.3)

C ^ ( A 3-  A ) ( x J+l - X j ) 1 2 , .....^  (5 3 -  B ) ( x j+l - X j f , (A.4)

d y  =  y J t , - y l _ 3 X - ~  1 _ , .  + 3B2- l
d x  X j h - X j  6  '  >” > 6 ( ,n >)y‘"

(A.5)

d 2 y  ,  ,

dx>=Ay‘ +By‘"
(A.6)

Two boundary conditions at x j  and x n are needed to calculate Eq (A.l). 

common ways of doing this (Press, et al. 1990):

There are two

1- Set one or both of them equal to zero, giving the so-called natural cubic spline, which 

has zero second derivative on one or both of its boundaries.

2- Set either of y" or y" to values calculated from Eq (A-6) so as to make the first 

derivative of the interpolating function has specified value on either or both boundaries.
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A P P E N D I X  B

KAISER WINDOW

The Kaiser-Bessel window is defined by Harris (1978):

w(t) = ■

T i a J l . O -

N 12

i 0 M
(B.l)

Where I0 is the zero-order modified Bessel function of the first kind defined by

k= 0

/  \ * I X

k\
(B.2)

The parameter na  is half the time-bandwidth product. When a=0, the Kaiser window 

corresponds to the rectangular window. When 7 ta  is 5.44, the resulting window is very 

similar to the Hamming window. The value of a  is determined by the stop-band 

attenuation requirements and may be estimated, empirically, by the equation: 

7toc=0.1102(A-8.7)

If A > 50 dB, where A=-20 logio(ô) is the stop-band attenuation, ô is the minimum of 

the pass-band and the stop-band attenuations. The number of filter coefficients, N, is

given by n >-a ~795 where Af is the normalised transition width. The values of a  and N 
1436Af

are used to compute the coefficients for the Kaiser window w(t).
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HINICH TEST

A P P E N D I X  C

Hinich (1982) presented a sample estimator of the bispectrum, he used this sample 

bispectrum to construct a statistic to test whether the bispectrum of [x(t)] is non-zero. A 

rejection of the null hypothesis implies a rejection of the hypothesis that [x(t)] is 

Gaussian. He also constructed another test statistics for testing the hypothesis that [x(t)~\ 

is linear. In the following part, Hinich’s approach is summarised.

A sample bispectrum of an input signal [x(0), x(l),.... ,x(N-l)] is defined by

F(i,j) = N~lX(i)X(j)X \i  + j) (C.l)

To obtain a consistent estimate of the bispectrum, the sample bispectrum is smoothed 

over a square of M2 points centred at ((2m-l)M/2, (2n-l)M/2) in the two dimensional 

frequency plane. The estimator is

m M - \ nM - 1

Bx (m, ri) = M~2 ^  ^ F(i,j) (C.2)
i = ( m - l ) M  j = ( n - l ) M

Since the asymptotic distribution of each estimator in (C.2) is complex normal, the 

distribution of

___________Bx (m, n)__________
[N /M 2]U2[Sx(m)Sx(n)Sx(m + n)]U2

(C.3)

is complex normal with unit variance. Here Sx is the estimator of the power spectrum of 

x(t). Consequently, |£m_n| is approximately chi-square with two degrees of freedom.

The statistics 5 = 2 E E  icm, r  (c.4)
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is approximately %\p(k) where p is the degree of freedom defined in the principle 

domain and X is the centrality parameter of the chi-square distribution.

Testing for Gaussianity

Under the null hypothesis, Bx(m,n) = 0 and thus S is approximately x lp(0) for large N.

Gaussianity can be determined by comparing S to the probability of exceeding their 

values under a Gaussian zero mean unit variance distribution. If the null hypothesis is 

rejected, then the Gaussian assumption must be rejected. If not, then the process may 

be non-Gaussian but the data is consistent with a zero bispectrum.

Testing for linearity

If the process is linear, its skewness is constant over the region of interest. Recall that 

under the null hypothesis [2km J~l is approximately chi-square with two degrees of

freedom. Thus the expected value of these chi-square variates are the same for all m, n 

under the null hypothesis, otherwise the expected values are different. Rather than 

using an F test of constant means, Hinich used a nonparametric test based on a robust

measure of dispersion, he uses the interquartile range of a subset of the [2Lm J  ], which 

is robust to some bad values of the Clm n. Let R denote the sample interquartile range of 

the [2|^mn|']and R is its estimated interquartile range. Reject the linearity if 

R »  R or R « R .
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THE NEURALWORKS PREDICT PROGRAM

A P P E N D I X  D

As mentioned in chapter 6, some transformation functions are applied to the basic 

features used in training NN3. The general form of, for example, a continuous 

transformation is:

y  =  s0 F(si *  + oO + o0

where F is a continuous function, Si, Oj that implements an inner scaling of the raw data 

to map them to an optimal sub-domain of F and s0, o0 implement an outer scaling so 

that y lies within a suitable range for the neural network

The purpose of these transformations is to manipulate the distribution of the data to 

enhance the possibility that knowledge can be extracted from it. For example, the 

distribution of a field may be skewed. There may be information in this skewness, in 

which case it would be advantageous to scale the data into an appropriate range, and 

pass the scaled data on for classification. But if there is no information in the skewness, 

it would be better to find a transform which makes the data more uniformly distributed 

to make optimum use of the dynamic range of the activation function of the neurons. 

Another example, which would need such transformations, is the existence of outliers 

(i.e., points remote from the bulk data).

There is wide range of continuous functions which can be applied. For example, the 

function F, in the above equation, can be a linear transform with the average of the data 

mapped to the mid point of the transformed range or a Fuzzy Left (right) function for 

outlier detection of small (large) values of x. The following table lists some of the 

functions available in Predict program.
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Function Description Example

Linear Identity function y = ax, a = constant

Log Natural logarithm function y = log(x)

Exp Exponential function y = exp(x)

Pwr2 Square function y = x2

Pwr4 Fourth power function y  =  *4
Rt2 Square root function y = Jx

Rt4 Fourth root function y = V*

Inv Inverse function y= 1/x

IncPwr2 l/(square function) y -  1/x2

IncPwr4 l/(fourth square function)

’—'HII

InvRt2 l/(square root function) y - 1/sfx

InvRt4 l/(fourth root function) y = l /\[x

Tanh Hyperbolic tangent function y = tanh(x)

Fzlft Fuzzy left function See text for more

Fzrgt Fuzzy right function details

Table D.l A sample of the transformation functions supported by Predict package

The data Analysis part of the Predict program analyses each data field and determines 

the type of field and the types of transformation that will convert the field for effective 

use by the Neural Network and may create more than one transformation per field. The 

variable selection component of Predict will determine which set of fields and 

transformations work well together to achieve high performance by comparing all the 

possible structures and scoring each result. If any field did not meet the criteria for any 

of the selected transformations, this field will be skipped.
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GLOSSARY OF TERMS

ABI Average Bicoherence Index.

AIC Akaike Information Criteria.

APIS Average Polycoherency Index on the polycoherency diagonal Slice.

AR Autoregressive time-series model.

ARMA Autoregressive-moving average time-series model.

Atrial pacing a non-invasive method for inducing cardiac stress by an electrical pulse. 

This pulse is transferred by an electrode placed deeply into the oesophagus below the 

left atrium and connected to a transesophageal cardiac stimulator.

BW Baseline drift/Wander.

DBD Delta-Bar-Delta learning rule.

DR Delta Rule.

Dynamic exercise is a technique to assess the cardiac response to exercise. The ECG is 

recorded whilst the patient walks or runs on a motorised treadmill or cycles on a 

stationary cycle ergometer.

EDBD Extended Delta-Bar-Delta learning rule.

EMG Muscle contractions, represent an artefact on the ECG signal.

Excess MSE difference between steady state MSE and MSE of an optimum filter.

FFT Fast Fourier Transform.

A P P E N D I X E
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FIR Finite Impulse response Filter. The current output is a combination of the present 

and a finite number of past inputs.

FPE Final Prediction Error criterion.

FT Fourier Transform.

Gradient error the weight error in the LMS algorithm.

HFC High Frequency Components observed on the MUSIC spectrum.

HOS Higher-Order Statistics.

ICE Ischaemic Confirmed Episodes.

i.i.d. independent identically distributed. If [v(t)] is i.i.d. and non-Gaussian then

where y /  denotes the kth-order cumulants of v(t).

IIF Infinite Impulse response Filter. The current output is a combination of the present 

and a finite number of past inputs and past outputs.

Ill-conditioning a problem is ill conditioned if its solution is very sensitive to small 

changes in the data.

ISE Ischaemic Suspected Episodes.

Isometric exercise is a muscular exercise in which muscle groups are pitted against 

each other so that strong contraction occurs without movement.

LMF Least mean fourth adaptive filtering algorithm.

LMS Least mean square adaptive filtering algorithm.

LPs Late potentials.
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MA Motion artefacts.

MBI Maximum Bicoherence Index corresponding to the maximum peak on the 

bispectrum mesh plot.

MDL Minimum Description Length criteria.

MEM Maximum Entropy Method.

Misadjustment the ratio between the excess MSE and MSE of an optimum filter.

MI Myocardial Infarction.

MPIS Maximum Polycoherency Index corresponding to the maximum peak on the 

diagonal Slice of the polyspectrum.

MSE Mean Square Error. A quadratic function of the filter weights when the filter 

output is a linear function of its weights.

MUSIC Multiple Signal Classification.

NAC2 is the Normalised Area under the curve of 2nd-order cumulants (C2).

NADC3 is the Normalised Area under the curve of the Diagonal slice of the 3rd-order 

cumulants (C3).

NADC4 is the Normalised Area under the curve of the Diagonal slice of the 4th-order 

cumulants (C4).

NCE Normal Confirmed Episodes.

NLE Normal Looking Episodes.

NSC Number of Segments out of 50 that show self-phase Coupling for a specific 

polyspectrum order.

PDF Probability Distribution Function. The distribution of signal values generated by a 

deterministic or random process.
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Pharmacological stress is a technique to stress the heart by drugs such as dipyridamole 

or dobutamine.

Process deterministic or random mechanism responsible for the generation of the 

observed signal or data sequence.

SNR Signal-to-Noise Ratio.

Stability a system is stable if its output remains bounded in response to a bounded 

input. An algorithm is stable if round-off errors introduced at one stage of the 

computation do not propagate through later stages with increasing magnitude.

Stationary random process whose statistics are time-invariant.

Steady-state phase following convergence in a stationary or non-stationary 

environment.

Step-size parameter controlling the speed of adaptation in of the LMS and LMF filters 

weights during convergence and tracking.

SVD Singular Value Decomposition.

SVF Second-order Volterra Filters.

TOR Third-order Recursion.

Tracking steady-state phase during which the weights of an adaptive filter have to be 

readjusted in response to non-stationarities.

VT Ventricular Tachycardia.

White noise random process consisting of a sequence of uncorrelated random variables. 

Characterised by a flat power spectral density.
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LIST OF SOFTWARE

A P P E N D I X  F

All algorithms are derived from the relevant literature (where applicable), and written 

by the author using the following software (programming languages, libraries and 

toolboxes):

1. Fortran 77 accompanied by the NAG and GINO (a registered trademark of 

Bardly Associates Ltd) libraries, which is based on a Sun-Spare (a trademark of 

Sun Microsystem, Inc.) workstation under the Unix operating system (a 

registered trademark of UNIX Systems Laboratory, Inc.) in a time-sharing 

environment.

2. PC-based MATLAB (the name stands for MATrix LABoratory) programming 

language (a trademark of the MathWorks, Inc.), which is a high-performance 

language for technical computing. Both versions 5.0 and 5.3 are used. Some 

toolboxes (a comprehensive collections of MATLAB functions to solve 

particular classes of problems) are used as extensive library subroutines, and 

others are updated and extended to handle certain aspects related to this research 

work.

3. A neural network package, NeuralWorks Professional II plus (NeuralWare, 

Inc.).

4. All figures are produced with MATLAB and Excel 97. The text was typed in 

Word 97.

5. The reference list was generated using Endnote version 3.0.1 software (Niles 

software Inc.). This program is an online search tool, reference database and 

bibliography maker.
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LIST OF PUBLICATIONS

A P P E N D I X  G

[1] M. Sabry-Rizk, W. Zgallai, S. El-Khafif, E. Carson, and K. Gratten, “Higher-order 

ambulatory electrocardiogram identification and motion artefact suppression with 

adaptive second- and third-order volterra filters,” presented at SPIE98, San Diego, 

USA, 1998.

[2] M. Sabry-Rizk, S. El-Khafif, W. Zgallai, E. Carson, K. Gratten, C. Morgan, and P. 

hardiman, “Suspicious polyphase patterns of normal looking ECG's provide early 

diagnosis of a coronary artery disease,” BMES/EMBS, 1999.

[3] M. Sabry-Rizk, W. Zgallai, S. El-Khafif, E. R. Carson, K. Grattan, and P. 

Thompson, “Highly accurate higher-order statistics based neural network classifier 

of specific abnormality in electrocardiogram signals,” presented at ICASSP-99, 

Arizona, USA, 1999.

[4] M. Sabry-Rizk, W. Zgallai, E. R. Carson, S. El-Khafif, C. Morgan, and K. T. V. 

Grattan "Novel decision strategy for P-wave detection utilising non-linearly 

synthesised ECG components and their enhanced pseudospectral resonances", IEE 

International conference, MEDSIP2000, Bristol, UK, September 2000.

[5] M. Sabry-Rizk, W. Zgallai, C. Morgan, S. El-Khafif, E. R. Carson, and K. T. V. 

Grattan, “Novel decision strategy for P-wave detection utilising nonlinearly 

synthesised ECG components and their enhanced pseudospectral resonances,” IEE 

Proceedings Science, Measurement and Technology, Special section on Medical 

Signal Processing, vol. 147, pp. 389-397, 2000.

[6] S. El-Khafif, M. Sabry-Rizk, E. R. Carson and K. T. V. Grattan, “Bispectral analysis 

of normal electrocardiogram signals” 4th J1EEEC Conference, 16-18 April 2001.

[7] S. El-Khafif and M. Sabry-Rizk, Member IEEE. “MUSIC pseudo-bispectrum,” In 

final preparation.
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[8] S. El-Khafif, et al. “Detection of non-linearities in ECG signals using higher-order 

spectral analysis,” In final preparation.

[9] S. El-Khafif, et al, “Pseudo-spectral MUSIC unravels high frequency components 

associated with ischaemic/infraction ECGs in the first few cycles of stress test,” In 

final preparation.
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