1,635 research outputs found

    Noise effect on adaptive command shaping methods for flexible manipulator control

    Get PDF
    ©2001 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other worksDOI: 10.1109/87.896749Since its introduction, the command shaping method to design command shapers as robust as possible based on the has been applied to the control of many types of flexible manipu- available infonnation on a given system (e.g., expected varialators and sthe effectiveness in the vibration suppression has been tion range of the natural frequency) [11]. Unfortunately, the roverified. However, designing an effective command shaper requires a priori knowledge about the system parameters. Recently, some bustness of the shaper comes at the expense of the command efforts have been made to make the command shaper adapt to the shaper length, which means more delay in the response. Morechanges in the system parameters. In this paper, the indirect and _. over, this approach still requires a fair amount of a priori knowlthe direct adaptive command shaping methods in the time domain edge about the system parameters for proper design. The second are compared, especially in terms of the noise effect on the per- approach is to make the command shaper adapt to uncertain formance. Analysis shows that the direct approach is less sensitive . to the noise and this analytic result is verified by the proper simu- or varying system parameters. The indirect adaptive command lation. Finally, experimental results using the direct approach are shaping method has focused on the system identification either included. in the frequency domain [3], [14] or in the time domain [2], [8]

    Dynamics and Control of Smart Structures for Space Applications

    Get PDF
    Smart materials are one of the key emerging technologies for a variety of space systems ranging in their applications from instrumentation to structural design. The underlying principle of smart materials is that they are materials that can change their properties based on an input, typically a voltage or current. When these materials are incorporated into structures, they create smart structures. This work is concerned with the dynamics and control of three smart structures: a membrane structure with shape memory alloys for control of the membrane surface flatness, a flexible manipulator with a collocated piezoelectric sensor/actuator pair for active vibration control, and a piezoelectric nanopositioner for control of instrumentation. Shape memory alloys are used to control the surface flatness of a prototype membrane structure. As these actuators exhibit a hysteretic nonlinearity, they need their own controller to operate as required. The membrane structures surface flatness is then controlled by the shape memory alloys, and two techniques are developed: genetic algorithm and proportional-integral controllers. This would represent the removal of one of the main obstacles preventing the use of membrane structures in space for high precision applications, such as a C-band synthetic aperture radar antenna. Next, an adaptive positive position feedback law is developed for control of a structure with a collocated piezoelectric sensor/actuator pair, with unknown natural frequencies. This control law is then combined with the input shaping technique for slew maneuvers of a single-link flexible manipulator. As an alternative to the adaptive positive position feedback law, genetic algorithms are investigated as both system identification techniques and as a tool for optimal controller design in vibration suppression. These controllers are all verified through both simulation and experiments. The third area of investigation is on the nonlinear dynamics and control of piezoelectric actuators for nanopositioning applications. A state feedback integral plus double integral synchronization controller is designed to allow the piezoelectrics to form the basis of an ultra-precise 2-D Fabry-Perot interferometer as the gap spacing of the device could be controlled at the nanometer level. Next, an output feedback linear integral control law is examined explicitly for the piezoelectric actuators with its nonlinear behaviour modeled as an input nonlinearity to a linear system. Conditions for asymptotic stability are established and then the analysis is extended to the derivation of an output feedback integral synchronization controller that guarantees global asymptotic stability under input nonlinearities. Experiments are then performed to validate the analysis. In this work, the dynamics and control of these smart structures are addressed in the context of their three applications. The main objective of this work is to develop effective and reliable control strategies for smart structures that broaden their applicability to space systems

    Identification of natural frequency components of articulated flexible structures

    Get PDF
    M.S.Wayne J. Boo

    Control of Flexible Manipulators. Theory and Practice

    Get PDF

    Control algorithm implementation for a redundant degree of freedom manipulator

    Get PDF
    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation

    Intelligent Backstepping System to Increase Input Shaping Performance in Suppressing Residual Vibration of a Flexible-Joint Robot Manipulator

    Get PDF
    Input shaping technique can be used to suppress residual vibration, occurring from moving rapidly a flexible system from one point to another point. An input shaping filter produces a shaped input signal that avoids exciting the flexible modes of the flexible system. The technique requires accurate knowledge of mode parameters. When the plant model is not accurate, performance of the input shaper degrades. Several robust input shapers were proposed to handle this inaccuracy at the expense of longer move time. The purpose of this paper is, for the first time, to present an application of an intelligent backstepping system to matching of the resulting closed-loop system with a reference model. The input shaper can then be designed from the mode parameters of the reference model. Because the reference model is accurate even when the plant model is not, the input shaper needs not be robust, resulting in shorter move time. The intelligent backstepping system consists of a three-layer neural network, a variable structure controller, and a backstepping controller. The neural network is used as a black-box model in case when the plant model is unknown, making the proposed system model-independent. The adaptive property of the neural network also makes the proposed system suitable for nonlinear, time-varying, or configuration-dependent systems. The variable structure controller handles the uncertainty arisen in the system. The backstepping controller, through its virtual controls, provides a means for the control authority to reach the unmatched uncertainty in the system. This study contains simulation and experimental results on a flexible-joint robot manipulator. The results showed that this proposed intelligent input shaping system outperformed previously proposed robust input shapers in terms of allowable uncertainty amount and move time. The proposed system is also relatively easy to apply because it does not require the plant model

    Flexible joint robotic manipulator: Modeling and design of robust control law

    Get PDF
    This paper presents modeling and sophisticated control of a single Degree Of Freedom (DOF) flexible robotic arm. The derived model is based on Euler-Lagrange approach while the first and second order (super twisting) Sliding Mode Control (SMC) is proposed as a non-linear control strategy. The control laws are subjected to various test inputs including step and sinusoids to demonstrate their tracking efficiency by observing transient and steady state behaviours. Both orders of SMC are then compared to characterize the control performance in terms of robustness, handling external disturbances and chattering. Results dictate that the super twisting SMC is more accurate and robust against the external noise and chattering phenomena compared to the first order SMC

    An Unsupervised Neural Network for Real-Time Low-Level Control of a Mobile Robot: Noise Resistance, Stability, and Hardware Implementation

    Full text link
    We have recently introduced a neural network mobile robot controller (NETMORC). The controller is based on earlier neural network models of biological sensory-motor control. We have shown that NETMORC is able to guide a differential drive mobile robot to an arbitrary stationary or moving target while compensating for noise and other forms of disturbance, such as wheel slippage or changes in the robot's plant. Furthermore, NETMORC is able to adapt in response to long-term changes in the robot's plant, such as a change in the radius of the wheels. In this article we first review the NETMORC architecture, and then we prove that NETMORC is asymptotically stable. After presenting a series of simulations results showing robustness to disturbances, we compare NETMORC performance on a trajectory-following task with the performance of an alternative controller. Finally, we describe preliminary results on the hardware implementation of NETMORC with the mobile robot ROBUTER.Sloan Fellowship (BR-3122), Air Force Office of Scientific Research (F49620-92-J-0499

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem
    corecore