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GLOSSARY OF ABREVIATIONS 

AR Auto Regressive - a type of filter or system model whose outputs are a 
linear combination of a finite number of previous filter outputs. 

ARMA Auto Regressive Moving Average - a system model or filter whose outputs 
are on a linear combination of the previous filter inputs and outputs. 

DFT Discrete Fourier Transform - any of the implementations of a Fourier 
transform that is performed on a discrete sequence of time domain 
information. 

DSP Digital Signal Processor - any processor board specifically designed to 
implement software for digital signal processing applications such as 
filtering and transformation of numerical sequences. 

ETFE Empirical Transfer Function Estimation - a widely utilized method of 
system identification which employs Fourier transformations of both the 
inputs and outputs of a system to calculate an empirical estimate of the 
transfer function of the system. 

FFT Fast Fourier Transform - any of the implementations of the DFT, or discrete 
Fourier transform, that decimates the inputs in time or frequency and then 
performs bit reversal on the outputs. This process improves computational 
efficiency from 0(N2) to 0(log2 N). 

FLOPS Floating Point Operations Per Second - a measure of the speed of a 
computer processor - the number of floating point multiplications that can 
be performed by in one second. 

FWHM Full Width Half Maximum - the bandwidth of a power spectrum resonance 
peak at a height of half its maximum power. 

LFIM Low Frequency Impedance Measurement - a technique for electrochemical 
system identification developed by Mark Jaworowski and Hobson Lane 
employing time-domain curve fitting of an output sequence from a system 
that is excited with a sinusoid input. 

LMS Least Mean Square 
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LS Least Squares 

MA Moving Average - a type of filter or system model whose outputs are linear 
combinations of a finite number of previous inputs to the filter. 

MIMO Multiple Input Multiple Output - a system model or filter that includes any 
number of input and output signals. 

OATF Optimal Arbitrary Time-Delay Filter - an input shaping algorithm 
developed by David P. Magee and Dr. Wayne J. Book that relies on a time 
delay fixed at an optimal value while the filter coefficients can be varied in 
order to modify the frequency response of the filter. 

RALF Robot Arm, Large and Flexible - a two degree of freedom flexible link 
device designed as a testbed for verifying and refining vibration control 
techniques. Developed by Thomas Rowe Wilson and Dr. Wayne J Book. 

RISC Reduced Instruction Set Computing - a computing architecture that 
implements a limited number of instructions in order to increase the speed 
at which those instructions can be executed. A highly efficient architecture 
for mathematical calculation intensive applications such as filtering and 
transformation and is thus often chosen for digital signal processors. 

RLS Recursive Least Squares —a filtering technique that employs a linear system 
model whose coefficients are determined by minimizing the square of the 
error between the system model outputs and the actual observed outputs. 
Previous model solutions are utilized to recursively solve for successive 
model coefficients. This filtering technique has proven useful for both 
system identification and output noise reduction. 

SAMII Small Articulated Manipulator U - a three degree of freedom, rigid link 
manipulator intended as an end effector for flexible link manipulators. It 
was developed by David W. Cannon and Dr. Wayne J. Book for use as a 
testbed for micro/macro manipulator dynamic interactions and control. 

SISO Single Input, Single Output - a system model or filter that includes only one 
input signal and one output signal. 

SNR Signal to Noise Ratio - a ratio of the.ppwer contained in a desired signal to 
the power in the background noise it is immersed in. 

TI Texas Instruments 
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Time Varying Transfer Function Estimation - an algorithm for system 
identification, developed by Tzes and Yurkovich in 1990, similar to ETFE 
but allows for smoothing in the frequency domain and an RLS filter in the 
hybrid frequency-time domain. 
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GLOSSARY OF NOTATION 

Parentheses denote functions of real or complex numbers. 

Brackets denote discrete functions of integers, usually time senes. 

Transfer function from input / to output /. 

"On the order of..." or "Increases no greater than..." Unless otherwise 
specified,, the variables m, a, and f within the parenthesis refer to 
multiplication, addition and transcendental function operations. 
Subscripts will indicate complex or real number operations. For 
example, 0( rac + aT +/ c) may be read as "on the order of four complex 
multiplications and divisions, plus three real additions and 
subtractions, and 2 complex transcendental function calls (sinusoids, 
exponentials, etc.). For the DSP hardware used in this research these 

o -j 

values represent minimal time values: mr-ar> 2x10" s, rac > 1.2x10" 
s, ac>4xl0"8s. 

Auto-correlation power spectrum from input i to input). 

Cross-correlation power spectrum from input / to output/ 

Bold, not italicized, capital, variables represent matrices. 

Bold, not italicized, lower-case, variables represent vectors. 

Italicized, lower-case variables represent scalars. 

Italicized, upper-case variables are generally used to represent 
frequency transformations of time-domain scalars, e.g. X(co)=FFT(jc(t)). 
However, to retain compatibility with several cited works, N is used to 
represent a scalar, time-domain integer, usually a buffer length. 
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SUMMARY 

Research into the manipulation of flexible structures has matured to the point that 

numerous effective means for reducing vibration through active control have been 

developed and demonstrated. Successful implementation of such algorithms requires 

knowledge of the dynamics of the controlled device. In addition, systems designed for 

practical use exhibit time-varying and nonlinear properties that are difficult to predict and 

model. To eliminate these sources of difficulty, on-line system characterization techniques 

can be implemented to control the structure in an adaptive manner and further reduce 

vibration. 

The effectiveness of real time system identification and adaptive control of an 

elastic manipulator was demonstrated on a device named RALF, Robotic Arm, Large and 

Flexible, a planar, two-degree-of-freedom robot. Vibration information was obtained from 

lateral-effect photodiodes installed on RALF. Spectrum identification and analysis was 

performed on a dedicated digital signal processing board located within the controlling 

MVME bus. 

The practical issues examined include choice of sensors, efficiency and accuracy of 

FFT-based data processing and identification algorithms, and identification response times 

to changing structure characteristics such as continuous changes in link orientation with 

respect to gravity. In addition the problem of obtaining vibration data from a structure that 

is controlled to minimize excitation of such vibration is explored. 

xvi 



CHAPTER I 

INTRODUCTION 

This chapter motivates research in real-time system identification and adaptive 

control of flexible structures by pointing out applications and then examines recent 

theoretical and experimental research in this area. In Chapter D the system identification 

methods employed in this research are developed. Chapter III describes the hardware and 

software utilized for implementation of the proposed frequency domain system 

identification and adaptive control scheme. In addition, issues relevant to the 

implementation of the optimal arbitrary time-delay filtering technique developed by Magee 

and Book and its applicability to adaptive control are discussed. Chapter IV provides 

experimental results from adaptive control experiments on a planar, two degree-of-

freedom, robotic device with flexible links named RALF as well as simulations intended to 

verify the experimental results. Finally, Chapter V provides conclusions regarding the 

system identification and adaptive control techniques demonstrated. Chapter V will also 

list contributions of this research, ideas for future work in the area of adaptive input 

filtering, and explanations of difficulties for future researchers to avoid. 
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1.1 Adaptive Control Motivation 

1.1.1 Manipulator Vibration Reduction Problem 

When an engineer designs a robotic device, the rigidity of the joints and links is 

often given high priority. Rigid robots provide many advantages over flexible 

manipulators including simplified forward and inverse kinematics formulation, and 

improved tip positioning accuracy when using simple PI, or proportional-integral, 

controllers. However, many applications demand performance that exceeds the limits of 

current materials if confined to rigid designs. For example, the weight of structures 

deployed in space is limited by the payload capacity of an economical launch vehicle. As a 

result, elastic structures could provide the optimal solution to this balancing of structure 

payload with weight restrictions. 

In addition, many terrestrial devices, such as the Light Duty Utility Arm, or LDUA, 

being developed for the Department of Energy, possess significant flexible modes in the 

manipulator links resulting from design requirements of extreme reach and payload. This 

device is intended to be deployed in nuclear waste storage tanks through an aperture of only 

one to four feet in diameter while reaching the sides of a tank forty-five to seventy-five feet 

in diameter. Even existing equipment, such as power-line maintenance arms, and street 

sweepers with hydraulically actuated trash vacuuming arms, could benefit from vibration 

reduction technologies. As a result of these and other applications of elastic robotic 

manipulators, identification and control of the vibrational modes of these structures has 

become an area of increasing interest. 
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1.1.2 Hardware Design Solutions 

Many proven hardware design techniques are available to the engineer to reduce 

endpoint vibration in elastic manipulators. Passive damping of vibration in a robotic 

device can be accomplished by adding damping material to the structure. However, 

because the damping material generally cannot contribute to the structural strength of the 

robot, the payload capacity of the device is necessarily reduced. In addition, passive 

damping can reduce a structure's residual vibration but cannot eliminate it [2]. Inputs at 

the resonant frequencies of the passively damped system will still excite significant and 

possibly destructive vibration. 

Another hardware design option is to install vibration absorbers at the resonant 

frequencies of the links being manipulated. However, this technique requires accurate 

knowledge of the structure's dynamics. If the true dynamics vary over time or with robot 

configuration, the robustness of the vibration damping system to these variations becomes 

critical. Any multi-degree-of-freedom, robotic device, especially those operating in a 

gravitational field, will experience significant changes in the frequency characteristics of its 

links. For example, RALF typically expenences a 50% variation in natural frequency over 

its workspace. Even if a system is precisely modeled and the vibration absorbers are 

capable of automatically adjusting their frequency characteristics, successful 

implementation will merely result in two new resonant peaks located above and below each 

of the original resonance frequencies of the system. These additional peaks must be 

avoided by any system inputs so as not to induce vibration. As an example, Figure 1.1 

shows the frequency response of a second order system with a damping ratio of 5% and a 
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damped natural frequency of 1 rad/sec coupled with a vibration absorber with the same 

resonant frequency but a smaller damping ratio of 0.001. It can be seen that the region of 

large vibration is merely separated and shifted. The maximum magnitude of the response 

function is not significantly reduced. 

Frequency Response: Coupled Pair of 2nd Order Systems 

•Primary System 

rimary System + Absorber • 

0.5 1 
Normalized Frequency (w/wn) 

1.5 

Figure 1.1 Second Order System With a Vibration Absorber Installed 

1.1.3 Controller Design Solutions 

The most attractive solution to the problem of vibration reduction in elastic robotic 

devices is to design a controller that either avoids excitation of the manipulator's flexible 

modes or rapidly nullifies those oscillations whenever they occur. Software solutions have 



the additional advantage of being easily retrofitted to existing devices. Vibration reduction 

can be achieved though a variety of control schemes. 

Notch filters can be applied to the inputs of the system at the resonant frequencies 

of the device to avoid exciting vibration. A, similar method, generally referred to as input 

command shaping, consists of convolving the manipulator input signal with a series of 

pulses that are selected so as not to excite the natural frequencies of the manipulator [23]. 

Effectively, input shaping filters attempt to place zeros at or near the known pole locations. 

The particular input filter utilized for this research was the Optimal Arbitrary Time-Delay 

filter developed by Magee and Book. A third control method, inertial damping, is 

accomplished by manipulating a smaller rigid device, or micro-manipulator, at the tip of a 

flexible link in such a way as to counteract the tip motion with the inertia! reaction forces 

of the micro-manipulator [3][4]. 

Regardless of the technique employed to reduce manipulator vibration, the natural 

frequencies and damping characteristics of the system must be available to the designer of 

the control algorithm or must be measurable states within the controller itself. This 

necessitates an accurate means of determining the flexible mode parameters of the 

manipulator. In addition, because robotic devices often have modal parameters that are 

configuration dependent, a real-time identification scheme must be developed to combat 

the nonstationarity of a linear approximation of the system. 
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1.1.4 Adaptive Control Solutions 

Adaptive control attempts to overcome the limitations of traditional control 

schemes when applied to nonstationary systems by identifying the changing parameters of 

the controlled system in real time and adjusting control gains or input filter parameters 

accordingly. The volume of literature devoted to the problem of system identification is 

extensive. This paper will limit discussion to those techniques most suited to real-time 

application due to their low computational requirements and robustness to sensor noise and 

other sources of error. A general overview and derivation of the RLS, or Recursive-Least-

Squares, technique is provided in Appendix D. RLS is useful not only as a system 

identification tool in the time domain but is also applicable to the more general problem of 

noise reduction in time-series data. Such data can include frequency domain information 

that is evolving in time, or "hybrid time-frequency domain" data [27]. 

1.2 Prior Work in System Identification for Adaptive Control 

Methods for estimation of a linear transfer function from discrete empirical data 

have been widely studied and employed in both real-time and off-line applications. 

Research in discrete, linear, transfer function estimation in the frequency domain began 

with the advent of the discrete Fourier transform that enabled frequency information to be 

quickly obtained from time series measurements. Even before the advent of the P<ourier 

transform, early least-squares techniques provided a means of estimating discrete linear 

transfer functions in the time domain. Some examples of time-domain system 

identification algorithms include the Yule-Walker and Modified Yule-Walker method [18], 
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and Prony's method [14]. Subsequent refinement has progressively improved the 

computational efficiency, numerical accuracy, and robustness to noise of transfer function 

estimation methods. 

For on-line system identification and adaptive control, frequency domain 

techniques are often preferred to time domain techniques for several reasons. Frequency 

domain algorithms generally require fewer computations, 0(N\og2(N)) for the discrete 

Fourier transform as opposed to 0(N2) for a typical time-domain identification algorithm, 

where N is the number of frequency bins of information required. The additional 

computational load required to parameterize the frequency domain data after the Fourier 

transform has been computed is small, as the poles are readily available as the local 

maxima of the magnitude spectra. Another advantage of frequency domain techniques is 

that detailed statistical knowledge about the distribution of noise signals transformed by a 

discrete Fourier transform is available [8]. As a result, frequency domain identification 

techniques are generally less sensitive to sensor noise [27]. Also, frequency domain 

techniques can be used to identify a larger dynamic range of possible transfer functions 

than equivalent time-domain approaches [7]. Finally, once the slight computational 

investment of a Fourier transform is paid, frequency information is readily available and 

can be displayed visually to aid the control designer in verifying control and identification 

algorithms. 
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1.2.1 Fundamentals of Frequency Domain System Identification, EThb 

The most basic frequency domain approximation of a discrete transfer function can 

be found by applying a discrete Fourier transform to a series of the sampled outputs and 

inputs of a physical system, and then taking the ratio of this frequency domain information 

at each available frequency bin. This method can be summarized in an input/output 

relationship as [16] 

Yi=HiXi i = 0X2,... N, (1-1) 

or solving for the unknown transfer function, 

H,=Y i = 0,1,2,... W, (1-2) 

where 

" * o " 

= F 

~x[Q)~ 

_ * » _ _x[N]_ 

(1-3) 

and 

V 
= F 

' y[0]' 

_v y[N] 

(1-4) 

The x[k] and y[k] sequences are the observed, physical system, input and output time series 

data of length N. The F operator refers to the discrete Fourier transform which can be 
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implemented by a variety of efficient algorithms including the popular FFT, or Fast Fourier 

Transform. Tzes and Yurkovich refer to this system identification technique as Empirical 

Transfer Function Estimation, or ETFE. They assert in published work [29] [27] that when 

this method is utilized, "the variance in the estimation is equal to the signal-to-noise ratio at 

the frequency under consideration." Variance reduction of a time-invariant system can be 

accomplished by averaging the Fourier transforms of nonoverlapping sample ensembles. 

The variance reduction for such a technique is equal to a factor of l/n where n is the 

number of averaged ensembles [6]. A significant improvement in the variance of the 

transfer function produced by this traditional method is gained by averaging multiple 

Fourier transforms that are performed on consecutive sample sets or ensembles. Using this 

method the random error in the computed spectrum is reduced by a factor of 1 / where 

n is the number of averaged, possibly overlapping, sample ensembles [15]. This error 

estimate of averaged successive spectra is only valid for stationary systems when a large 

number of consistent sample ensembles can be acquired. 

1.2.2 Time-varying Transfer Function Estimation, Tl'hb 

In 1990 Tzes and Yurkovich refined the ETFE approach for application to time-

varying systems and renamed it, Time-varying Transfer Function Estimation, or TTFE. 

This method attempted to reduce the variance of the estimated frequency response while 

maintaining tracking of a time-varying system [29]. The structure of this time-dependent 

frequency domain information coined the "hybrid time-frequency domain"[27] by Tzes and 

Yurkovich is defined by 
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" U0[k] ' 

= F 

~u[k -N + \] 

VN-A*\ u[k] 

' Y0[k] " 

= F 

'y[k-N + l]~ 

_V,[*]_ y[k] 

(1-5) 

The time dependence of the frequency domain information is now explicitly indicated by 

the time step index k. 

The first substantive improvement over traditional ETFE suggested by Tzes and 

Yurkovich was to smooth the transfer function in the frequency domain according to 

//,.[*] = 

(i+A,)mod N 

XeWl 
;=( i-A, )mod N 

0+A,)mod N 

se; 
)=(i-A, )mod N 

(1-6) 

where A, is the smoothing window width, and eV is the linear weighting factor that 

determines the degree to which the transfer function value in the i frequency bin depends 

upon the element in they"̂  bin. However, Tzes and Yurkovich did not implement this 

smoothing function in a real-time control loop due to its high computational cost. In 

addition, smoothing will often bias the spectrum resulting in damping ratio estimates that 

are larger than those from an unsmoothed spectrum [21]. 
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The second improvement suggested by Tzes and Yurkovich is more applicable to 

real-time system identification. A dependence of a given impulse response on the (3 

preceding impulse responses is assumed such that 

Hi[k] = x(Hi[k-\l...,Hi[k-$i]) (i_7) 

This relationship results in the new input/output model 

P, 

W = £ # , ( * -;)£/,•(*-./). (1-8) 
J=\ ... 

As before, in Equations (1-6) through (1-8), the subscript i enumerates the frequency bin, 

while the independent variable k is the time step at which the frequency information was 

acquired, and Pi represents the window width over which a history of transfer functions 

continues to influence the present response. Notice that the window of past influence, pi, 

may be different for each frequency bin in the discrete transfer function. 

This formulation is a generalization of the well-known ensemble averaging 

technique mentioned previously. Equation (1-8) gives the most general expression for the 

dependence of the present spectrum on previously acquired spectra. However, in practice, 

the function X may be chosen such that the frequency response of the system is not 

calculated at every sample. For example, data could be acquired continuously while 

recomputing the transfer function estimate only after each / samples have arrived, where / is 
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an arbitrary positive integer. The batch size, /, should be chosen as small as possible while 

remaining within the computational limits of the controller. Larger / allows a greater 

sampling rate for a given computational speed. Smaller / retains more of the variance 

reduction benefits of TTFE spectrum averaging. 

1.2.3 Real-Time Application of Tl hb 

For real-time application, Tzes and Yurkovich simplify the first part of the TTFE 

algorithm shown in Equation (1-6) by setting Aj to zero for all i. It is then stated that this 

results in the frequency information merely being windowed according to the E] discrete 

weighting function [27]. In reality, it can be seen in Equation (1-6) that the weighting 

factors will actually cancel each other out leaving no effect on the spectrum at all. This is 

the first typographical error in Tzes & Yurkovich's published work. 

Equation (1-6) expresses the most general form of piecewise smoothing of the 

frequency spectrum. One possible implementation is to employ piecewise least squares 

polynomial regression on the data. In addition, Equation (1-6) also allows for variable 

window widths and weighting coefficients that can be implemented as variable window 

widths and polynomial order in the piecewise polynomial fit. In a simulation discussed in 

Appendix E this formula was implemented as an automatically variable polynomial order, 

piecewise curve fit. However, the high computational requirements of solving the poorly 

scaled matrix equation that results from polynomial regression of power spectrum data near 

poles made this particular implementation impractical for experimental work. 
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For the second improvement formulated in Equations (1-6) and (1-7), Tzes and 

Yurkovich suggest applying TV separate, first order, SISO, recursive-least-squares filters to 

each frequency bin of the estimated transfer function. Appendix D provides a more 

detailed derivation of the of the RLS algorithm utilized by Tzes and Yurkovich and extends 

the method for application to multi-input/multi-output systems. The result is the following 

pair of recursive relationships for updating transfer function estimates [29]: 

P(k - ])U (k - ]) 
H,(k) = H^k - 1) + '- }—± —rWik) -U,(k - \)H,(k - 1)], n _ 9 ) 

ai+Pi(k-\)Ui(k-\)2 ' ' ' u y j 

and 

P,(k) = — 
a 

Pi(k-i}.. /5(*-»W(*-i)« 
a + Pi(k-\)UiXk-1)' d-10) 

These formulae correct the second typographical error found in Tzes and Yurkovich's 

work. Implementation of these formulae can be seen to require operations 0(lm(+3ac) = 

(9(28mr+20<2r). In addition, considerable care must be taken to maintain the numerical 

stability of these recursive solutions if more than 100,000 iterations are to be performed 

[14]. 

1.2.4 Parameterization of the TTFE 

Once a satisfactory complex valued transfer function estimate has been produced it 

must then be parameterized to be useful for adaptive control. The poles and/or zeros of the 
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system must be identified. Simple maxima searches over arbitrary ranges of the magnitude 

spectrum were employed by Tzes and Yurkovich. Determining damping ratio in real time 

was not attempted. Another technique is to employ a high order polynomial least squares 

regression of the magnitude spectrum and utilize the analytical derivative of this 

polynomial to locate the maxima and perform a full width half maximum calculation on the 

polynomial to determine the damping ratio of the pole. An even more computationally 

complex solution is to perform a nonlinear curve fit to the data near a peak using a second 

order system magnitude function to directly determine the damping ratio and natural 

frequency parameters. 

Unfortunately it is this parameterization step that is least often addressed adequately 

in recent literature on adaptive control. Besides direct maxima searches and full width half 

maximum techniques, more robust algorithms for spectrum parameterization have been 

widely available since the 1970's. These include parametric curve fitting, and the method 

of moments [21]. Rather than relying on the single data point at the peak of a spectrum, all 

of the points in an arbitrary region around the peak are utilized to calculate a damping ratio 

and natural frequency. The systems of equations that result from both of these methods 

involve transcendental functions and must be solved iteratively. 

More recently, Lin, Lim, and Liew successfully demonstrated a new modal 

parameter estimation technique in 1995 called the Variable Residue Method, or VRM [10]. 

VRM allows identification of closely spaced poles and provides an analytic solution for the 

damping ratio and natural frequency from complex valued spectrum information contained 

at only three frequency bins. Again, effort is usually concentrated in regions surrounding 
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peaks. However, an initial estimate of the pole location is required in order to restrict the 

algorithm to the region most likely to contain the modal frequency being determined. A 

detailed description of this method and its merits and limitations is provided in Appendix 

C. 

1.3 Prior Work in Control of Vibration in Mechanical Structures 

1.3.1 Flexible Dynamics Control 

Because implementations of notch filtering of controller inputs are often noncausal 

and can result in significant delay times that make teleoperation impractical, input 

command shaping is the most current area of research and has provided dramatic 

improvements in system vibration damping. A feed-forward command preshaping 

technique developed by Singer and Seering successfully improved system performance of 

the Space Shuttle Remote Manipulator in simulations at Draper Laboratory [24]. This 

method is more applicable to teleoperation than the notch filter scheme. However, 

significant delay times often result from utilization of this technique as well. An optimized 

input shaping technique developed by Magee and Book has been demonstrated to reduce 

vibration in RALF by 60% while also reducing the delay times to 1/3 of those required by 

Singer and Seering's technique [12]. The optimized command shaping technique provides 

the capability of reducing the filter delay times in exchange for increased system vibration 

amplitude. 
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Inertial damping techniques have been demonstrated by David Cannon in recent 

experiments using a device named SAME attached to the tip of a long, flexible, beam 

oriented both horizontally and vertically in a gravitational field [4] [3]. In both cases tip 

vibration was significantly reduced and external disturbances were quickly nullified. 

1.3.2 Adaptive Control for Vibration Reduction 

Utilization of system identification techniques for adaptive control of flexible 

structures has only recently been demonstrated by researchers such as Tzes and Yurkovich 

[11]; Milford and Asokanthan [13]; and Yang, Yang, and Kudva [31]. Only in the last few 

years were these adaptive techniques for minimization of manipulator end-point vibration 

extended to include multi-degree-of-freedom manipulators, though these testbeds were 

operated in a horizontal orientation, perpendicular to the force of gravity. Khorrami, Jain, 

and Tzes demonstrated the TTFE, or time-varying transfer function estimation, algorithm 

on a manipulator with two flexible links and rotational joints in an adaptive control loop in 

1993 [9]. However, all previous experimental work that applied adaptive input shaping or 

filtering techniques to a two degree-of-freedom robotic device did so for predetermined 

joint slews rather than continuous operation. In addition the nonlinear effects of a 

gravitational field were always eliminated by hardware and experiment design. The work 

of this thesis distinguishes itself by applying adaptive input filtenng techniques to a two 

degree-of-freedom device operating in a gravitational field under continuous control and 

experiencing configuration-dependent variations in modal characteristics. 
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The work by Khorrami, et al., in 1995, most closely resembles the emphasis of this 

thesis and is discussed here in more detail. The Singer and Seering method of input 

preshaping was utilized for inputs to a nonlinear controller with a standard PD inner loop. 

The nonlinear controller compensated for the first order Coriolis and centripetal terms in 

the rigid body dynamics of the two link testbed. For the input shaping algorithm, the 

amplitude of the first system input pulse was computed based on a combination of the 

commanded input and the predetermined damping of the system. No on-line identification 

of the damping ratio was implemented as this parameter changed little with the addition of 

a payload. The delay time and amplitude of the second impulse were determined by the 

payload-dependent first natural frequency of the device. This quantity was calculated 

during the delay between application of the first pulse and the second by computing a 2048 

FFT on a limited sample set of the system response padded with zeros. The sample 

duration was inadequate during the interim between application of the first two pulses to 

resolve the first fundamental frequency at 0.8 Hz, but sufficient for computing the second 

mode at 8.8 Hz. An estimate of the first mode was then calculated based upon prior 

knowledge of the variation of these modes with changing payload. 

In this way, both the delay time and the filter coefficients of the Singer and Seering 

filter were adapted in real time in response to a discrete change in payload. This method 

reduced maximum tip acceleration by 41% after a 60° slew of both joints for a discrete 

fundamental resonant frequency change greater than 80% [9]. Similar reductions in 

residua] tip deflection oscillation amplitude were reported. However, experiments in 

continuous automated and/or teleoperated control were not performed by Khorammi et al. 
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and the proposed scheme does not account for the overlapping pulse trains that would 

result from such an implementation. 

The Optimal Arbitrary Time-delay Filtering method developed by Magee and Book 

has been implemented in real-time continuous teleoperation experiments and was therefore 

chosen as the control method for experiments presented in this thesis. For the experiments 

performed for this research, continuous, automated trajectories, the time-delay values of the 

filter remained fixed during each experiment to ensure applicability to teleoperation tasks. 

Because of the more ambitious goals of this research to apply the adaptive input filtering 

techniques to the practical situation of continuous control in a gravitational field, 

improvements in tip vibration reduction beyond those experienced by Khorammi et al. are 

not expected. 
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CHAPTER II 

FREQUENCY DOMAIN SYSTEM IDENTIFICATION 

2.1 Introduction 

This chapter first poses the problem of identifying a linear system from a history of 

its inputs and outputs. Section 2.2 then provides a justification for the transfer function 

representation of the testbed utilized for the experimental work of this research. Finally, 

Section 2.3 presents several traditional system identification algorithms and proposes 

modifications for the work of this research. 

2.1.1 Problem Statement 

System identification is the attempt to determine the general linear and/or nonlinear 

effects of inputs on a system from empirical data. The system might be physical, such as a 

mechanical device or an electrical circuit, or might represent input-output relationships that 

relate less directly to physical phenomena such as economic and social group dynamics. In 

controls engineering this is often formulated as the impulse response function of a linear or 

nonlinear transfer function representing a physical system. The goal of system 

identification is to predict future outputs of a system from a history of past inputs and 

outputs of the system. This then provides the means to design an effective controller to 

drive the system to the desired states. Extensive literature is widely available on the subject 
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of system identification. This research will concentrate on those techniques most 

applicable for real-time control of robotic devices. 

System identification is subdivided into several categories. One division is between 

parametric and nonparametric methods. As it's name suggests, a parametric method 

attempts to determine the value of a finite number of numerical values or parameters, 

possibly related to physical characteristics of the system, that accurately determine the 

response of the system to inputs. Nonparametric methods allow the more general modeling 

of system characteristics as a difference equation with an infinite number of terms. Often 

further analysis is required to glean useful information from this data. 

In addition, system identification schemes are often categorized according to the 

system type they are designed to identify: linear or nonlinear, and time variant or invariant. 

A linear system is one who's input-outpuf relationship obeys the superposition principle. A 

nonlinear system is one for which the system parameters depend upon the configuration of 

the device. In other words, the differential equation relating inputs to outputs contains 

nonlinear terms. If the nonlinearities of a system do not dominate its response, such a 

system is often approximated by a linear model due to the decreased complexity of the 

mathematics involved and the extensive body of previous work on the subject. In addition 

to nonlinearities, the time varying nature of some systems can be overcome by utilizing 

adaptive versions of traditional system identification algorithms [20]. Thus, in order to 

implement real-time control of a nonlinear system it is often necessary to implement 

adaptive control which itself utilizes adaptive system identification. 
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The robotic device being considered for identification, RALF, exhibits nonlinear 

and time-varying system characteristics. Linearization about an operating point can be 

accomplished to simplify identification and control design. However, the time-varying 

nature of RALF cannot be avoided. In addition, in order to utilize infoiTnation from a 

system identification algorithm to update the coefficients of an input shaping filter, system 

parameters must be made available to the controller. Thus, the system identification 

schemes considered in this research provide parametric models of linear, time-varying 

systems. 

2.2 Dynamic Model of Testbed 

The first step in system identification is to determine a system model. Because 

modeling of the dynamics of RALF is not the core research area of this thesis, a simplified, 

assumed modes, modal damping model was employed. A general equation of motion for 

the multi-degree of freedom time-variant flexible structure such as RALF is given by [22] 

M(f)q(f) + D(0q(0 + K(f)q(r) = E(r)f (/), (2-1) 

where q(t) represents a vector of the general modal coordinates and M, D, K, and E 

represent the mass, damping, stiffness, and input influence matrices of the structure being 

considered. Coriolis, and centrifugal effects are assumed to be lumped into the damping 

matrix D. Assumption of time-invariance produces 
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Mq(0 + Dq(/) + Kq(r) = Ef (?). (2-2) 

2.2.1 State Space Representation 

State space representations are generally desired for controller implementation. 

One can combine the modal coordinates in a vector q. This vector and its first derivative 

are then combined to produce the state vector x. The available inputs to f(t) can be mapped 

by the input matrix B from an input vector u. Lastly, the measurable states are mapped by 

the output matrix C to produce 

x = Ax + Bu 

y = Cx 

An alternative discrete representation is given by 

x[k + l] = Ax[k] + hu[k] 

y[k] = Cx[k] 

(2-3) 

(2-4) 

where k is the discrete time index. 

2.2.2 Transfer Function Representation 

Accurate modeling of all of the dynamics of the system represented in the state-

space model are not necessarily required in order to implement effective control. The 

system pole locations are the most critical information for minimization of vibration. In 
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particular the arbitrary time-delay filtering method developed by Book and Magee only 

requires the modal frequencies and damping ratios of system resonances to successfully 

filter out those frequency components. Such a requirement lends itself to the transfer 

function approach, where any linear system can be represented by a combination of 

frequency response functions. The denominators of these transfer functions determine the 

pole locations and thus the modal characteristics of the system. Any state space model can 

be converted to a transfer function representation. The transfer function of the state space 

model shown in Equations (2-3) and (2-4) can be found to be [26] 

H(j) = C ( 5 l - A ) " , B , (2-5) 

where H(,s) is the transfer function obtained from the state-space system model, and s is the 

complex frequency variable. Thus, it can be easily seen that the determinant of the (sI-A) 

term in the transfer function given by Equation (2-5) determines its poles. It is also obvious 

that this determinant will result in a polynomial in s, the complex frequency variable. This 

polynomial in s can then be represented as a product of second order polynomials in s such 

that 

N 

det(sl - A) = Y\ (^2 + 2£cors + cor
2), (2-6) 
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where £r, and tor represent the damping ratio and modal frequency of the r^ vibrational 

mode of the system. 

Further examination of Equation (2-6) shows that the individual poles dominate the 

frequency response in the regions around their damped natural frequencies. As long as 

these poles are not closely spaced, the transfer function can be assumed to consist of a 

single pole within that small region near a pole. As a result of these simplifications, the 

problem of system identification of a complex structure such as RALF' has been reduced to 

the more manageable task of identifying and tracking the r* pole or identifying the 

parameters of, 

Hr^ = ( 2 o r
 r T\ + hr (2-7) 

{s2+2^Q)rs + Q)r
2) v ; 

where ar is a scaling factor that depends upon the nature of the transfer function being 

identified, but not on frequency, and hr contains the residual response from other poles in 

the region, or from sensor noise. 

2.3 System Identification Algorithms 

Several system identification algorithms were considered for on-line adaptive 

control. Those most related to the final identification scheme utilized in this research are 

briefly discussed here. 
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2.3.1 Recursive Least Squares 

Recursive least squares (RLS) is a technique for fitting a polynomial of arbitrary 

degree to a continuously updated stream of data in the time domain. It is similar to 

standard least squares polynomial regression, except that it improves efficiency by not 

recalculating a fit for all previous data points, but rather only updates the new fit based 

upon the latest data point and the previous fit statistics. However, the relationship that is 

fitted to the data must not only be linear in the parameters being fitted, as in polynomial 

regression, but the relationships determined by those parameters must be linear as well. A 

typical example is an input-output difference equation where future results are simply 

linear combinations of previous inputs and outputs. Kalman filtering evolved from this 

technique and provides a method for optimally filtering noise from an input signal and also 

provides a means of identifying time-varying systems. 

In addition the RLS algorithm has proved useful for reduction of error or variance 

in the frequency domain. It provides a means for smoothing data within a single frequency 

spectrum. In the hybrid time-frequency domain, the RLS algorithm has proven useful at 

reducing the variance of time-varying spectral information by operating on individual 

frequency bins separately through time. This implementation is a two data point, scalar 

version of the general RLS matrix operator on an arbitrary, finite ensemble of data points. 

This RLS implementation is the basis of the time:varying transfer function estimation, 

TTFE, procedure developed and implemented by Tzes and Yurkovich which was 

mentioned in Chapter I. As a result of the RLS algorithm's wide applicability to both time-

domain and frequency domain data, a complete derivation is provided in Appendix E). The 
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TTFE algorithm is discussed again briefly in the next section before presenting 

modifications to the algorithm that were employed for this research. 

2.3.2 TTFE 

Time varying transfer function estimation, or TTFE, was derived from empirical 

transfer function estimation, or ETFE, by Tzes and Yurkovich in 1990 as discussed 

previously in Chapter I. As its name implies, TTFE did not propose a new method for 

determining the parameters of a linear system, but rather provided a new method for 

constructing a transfer function from observed data. A simple maximum search was 

performed on predetermined ranges of the spectrum by Tzes and Yurkovich in 

experimental work in order to determine the modal frequency from the spectrum. The 

damping ratio was assumed to be constant. These same techniques were utilized in the 

work discussed for this research. However, frequency domain smoothing was 

implemented in the form of a piecewise linear regression smoother which is discussed in 

Section 2.4.1. In addition, damping ratio determination was accomplished off-line using 

the Full Width Half Maximum approach discussed in the following section. 

2.3.3 Full Width Half Maximum. FWHM 

The Full Width Half Maximum, or FWHM, technique is a traditional and widely 

utilized method for empirically determining the damping ratio of a system resonance from 

a transfer function estimate near a pole. Its accuracy is limited by the fact that it employs 

information from only two frequency bins within a discrete transfer function estimate. It's 
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precision is limited by the resolution of the transfer function estimate. In addition, the 

method is only applicable to lightly damped systems, £ < 0.1, due to neglect of higher order 

£ terms in the derivation of FWHM relationship, 

Aco 

where Aco is the measured half-power bandwidth, and con is the observed undamped 

natural frequency, and C, is the damping ratio or fraction of critical damping of the transfer 

function pole. A complete derivation of the relationship in Equation (2-8) is provided in 

Appendix B. As a result of the accuracy and precision limitations mentioned previously, 

the FWHM technique was only utilized for off-line analysis of spectra computed during 

various portions of an experimental trajectory. 

2.4 Modifications to TTFE 

2.4.1 Frequency Domain Smoothing 

Because simple global maximum searches were employed to determine the 

resonant frequencies of poles, it was deemed necessary to implement the frequency domain 

smoothing not implemented by Tzes and Yurkovich. Automatic order adjusting piecewise 

regression was first considered for this task but was later rejected due to its high 

computational cost. Appendix E provides simulation data from such an adaptive smoother. 
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Instead, a fixed width, fixed order, piecewise regression was utilized. Such a smoother can 

be reduced to a linear filter of length equal to the window width through off-line 

calculation of the Vandermonde matrices and off-line matrix inversion. Refer to the Mitra 

and Kaiser text for more details on this technique [14]. 

2.4.2 Hybrid Time-Frequency Domain Smoothing 

The second improvement suggested by Newland as well as Tzes and Yurkovich is 

the averaging of each frequency bin of the current spectra with those of previously acquired 

spectra. In order to retain the computational benefits of frequency domain system 

identification over time-domain RLS system identification techniques, it is important not to 

employ computationally complex algorithms in the frequency domain. The scalar, first 

order, RLS algorithm employed in the hybrid time-frequency domain by Tzes and 

Yurkovich, provides a tremendous computational advantage over a high order RLS time-

domain system estimate. A scalar RLS algorithm requires computations 0(mcp ), where p 

is the order of the filter. A large order filter, equivalent to an FFT data buffer length, is 

required for time domain identification with a wide dynamic range. However, the number 

of operations required for a scalar RLS implementation is only 0( 10mc+2ac+2ar) = 

O(40mr+26ar) for each frequency bin of required information, and can be performed 

selectively in the frequency region of interest. 

In order to reduce the computations and memory required for such averaging, 

smoothing in the hybrid time-frequency domain was accomplished using exponential 

averaging rather than the more complex recursive least squares method suggested by Tzes 
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and Yurkovich. An exponential moving average in the hybrid time-frequency domain is 

easily implemented in-place by using the following recursive relationship, 

Hl[k]*-{\-(x)H\k] + aHi[k-l] (2-9) 

where Hi[k] represents the latest complex valued empirical transfer function estimate at 

frequency bin i and time step k, while a is a forgetting factor between zero and one. Again, 

/ represents the batch size limited by the computational constraints of the computer 

hardware available. Typical values for a utilized for the experimental work of this thesis 

were between 0.05 and 0.2, while the batch size ranged between 20 and 50 data points for a 

200 Hz sampling rate. 

A brief comparison of the computational and storage requirements of RLS and 

exponential averaging is provided here to justify the selection of exponential averaging 

over RLS. As mentioned previously, the scalar RLS algorithm requires O(\0mc+2ac+2ar) 

= O(40mr+26ar) operations for each frequency bin. In comparison the exponential 

averaging method requires 0(4mc) = (9(16mr+8ar) operations for each complex frequency 

response value. Finally, the scalar RLS algorithm utilized by Tzes and Yurkovich requires 

storage of a covariance value for each frequency bin computed in addition to storage of the 

current spectrum bin being averaged. The exponential averaging method requires no 

additional storage beyond that required for the frequency response and can be 

accomplished in-place. 
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2.4.3 Multiple Input, Multiple Output Modification 

Previously discussed methods for estimating the transfer function of a single input, 

single output, or SISO system such as the ETFE or TTFE algorithms developed and 

demonstrated by Tzes and Yurkovich are not adequate for articulated manipulators with 

multiple degrees of freedom. One possible solution is to apply the multi-input/multi-output 

RLS algorithm provided in Appendix D to the vector of input and output frequency domain 

information. This provides continuously updated estimates of the transfer functions 

between all of the inputs and outputs. However, because the matrix RLS algorithm is 

considerably more complex than the scalar solution, a more efficient solution is sought. 

One possible solution is to derive analytic relationships determining the various 

transfer functions from the frequency domain input and output information prior to 

applying a scalar RLS filter to each of these estimates. A transfer function block diagram 

of a two input, two output system is provided in Figure 2.1. The approaches discussed here 

can be extended to apply to greater numbers of inputs and outputs. 
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Figure 2.1 Two Input, Two Output, Transfer Function Model 

U\ and Ui represent the frequency transform of the two inputs U](t) and u2(t). Y\ and Yi 

represent the frequency spectra of the two measured outputs y^t) and y2(t). N\ and N2 

represent the frequency components of the two unknown noise signals added to the true 

outputs of the system to produce the measured outputs. The V signals represent the 

uncorrupted, true outputs of the system. The Hij blocks show all the possible combinations 

of linear relationships between the two inputs and the two outputs that might be present in a 

given system. 

Interpretation of the block diagram produces 

Yx=Vn+Vn + N, HUXX+H2XX2 + N, 

Y2 = V2]+V22+N2 =H12X]+H22X2 + N2 

(2-10) 

(2-11) 

or, in matrix form, 
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Y = V + N = HX + N. (2-12) 

Thus we have only two equations and six unknowns. However, additional 

equations can be obtained by taking advantage of the fact that the input and output spectra 

are complex numbers and multiplying Equations (2-10) and (2-11) by the complex 

conjugates of the inputs to obtain 

UX =HllU
t
lUl+HnU

m
lU2+Um

iNl (2-13) 

V*2YX = HnUlU} + H21U'2U2 + U\N, (2-14) 

U\Y2 ^HnU\U,+H22U\U2 +U;N2 (2-15) 

U*2Y2 = HnU2U]+H22U2U2 +U2N2 (2-16) 

In addition, by taking the expected value of these equations the noise terms will 

approach zero, assuming that the noise signal is uncorrelated with either of the inputs and 

has zero mean. This is true for any random noise. In addition, the remaining terms of the 

equation can be rewritten in terms of power spectra. By converting to power spectrum 

notation, the importance of taking the expected value before solving for the transfer 

function estimates is emphasized. While the expectation of a sum is the sum of the 

expectations, the same is not true of the expectation of a product or quotient of random 

variables. The new equations are 

^ , , = # 1 , ^ 1 +#21^.2 (2-17) 
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P2y\ = HUP2\ + ^ 2 1 ^ 2 2 (2-18) 

Piv2 = HnPn +H22Pn (2 -19) 

P2 v2 = #12 ^21 + #22 *22 • (2-20) 

Nonetheless, our multiplication by the complex conjugates of the inputs has 

produced four equations that remain redundant. However, an identity of complex numbers 

will resolve this problem. After solving for the four unknown transfer functions, and using 

the commutative property of multiplication of complex numbers which gives P\2~Pi\ and 

P\2Pii=\P\2\2 we obtain, 

(2-21) 

(2-22) 

(2-23) 

(2-24) 
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It is important to note that the expectation value was taken on the individual power 

spectra and not on the empirical transfer function solution. Thus, if a time averaged 

transfer function estimate is desired, the averaging technique, e.g. an exponential smoother 

or RLS, must be performed on the individual power spectra before solving for the transfer 

function estimate. This means that the averaging algorithm will have to be performed 8 

times, increasing its proportion of the computational requirements of the entire transfer 
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function estimation algorithm and justifying the choice of a simple exponential smoother 

over RLS for the sake of computational efficiency. 

If it can be determined that the inputs are uncorrected with each other such that 

U*U2 = U*2U\ - 0, then the Equations (2-21) through (2-24) further simplify to, 

U,Y, 
llu " u;u, 

Hn 
U;Y2 

H2] 
uft 
U'2U2 

H22 
U2Y2 

" U2U2 

(2-25) 

(2-26) 

(2-27) 

(2-28) 

This simplification was not possible for the experimental work on RALF discussed in 

Chapter IV because the correlation coefficient was determined to range between 0.4 and 

0.9, for the tip and joint trajectories utilized, approaching perfect correlation in some cases. 

The question remains as to whether it is necessary to empirically measure and 

calculate all of the transfer functions shown in Figure 2.1. First, it must be determined if 

the computations required for such an analysis are prohibitive, or even comparable to the 

computations required to obtain the Fourier transforms of the input and output data in the 

first place. It is well understood that a fast Fourier transform of a time sequence requires a 

number of operations given by 
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N fAM 
\* j 

(2-29) 

where N is the number of time domain data points being transformed which is double the 

number of complex numbers produced by the FFT in frequency bins. 

The operations required for transfer function estimation by solving any one of 

Equations (2-21) through (2-24) for the entire frequency spectrum was determined to be 

N, v N, x 
&ETFE ^ y l 9 ^ + l«r +K +2rnr+2ar) = —(46mr +26ar +2dr). (2-30) 

It can be seen that this value will almost certainly exceed the requirements of the FTT for 

most practical values for N, the size of the time-domain data buffer. Thus, it would be 

computationally expensive to compute all four transfer functions present in a dual input-

output system. For the uncorrected inputs case, the number of operations reduces to 

^ZFE = y ( 2 m c + k O = y(l6m + 6a + 2J). (2-31) 

2.4.4 Summary of Modifications 

The proposed modifications to TTFE reduce the computations and memory 

required when applied to SISO systems. This is made possible by the reduction of hybrid 
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time-frequency domain smoothing computations while implementing frequency domain 

smoothing to compensate for any loss of variance reduction caused by this reduction. This 

technique is justified by Gardner who proved the equivalence of frequency domain 

smoothing and hybrid time-frequency averaging of continuous time-dependent Fourier 

transforms of infinite length [5]. In addition Gardner also asserts the approximate validity 

of this equivalence for discrete, finite length, Fourier transforms of a time varying system, 

making it applicable this research. Smoothing in the time-frequency domain reduces time 

resolution. Smoothing in the frequency domain degrades frequency resolution. Thus a 

proper balancing of the two considerations is required to maximize the variance reduction 

of the computed spectra while minimizing the lag time between system changes and the 

computed spectrum response. This balancing was accomplished by trial and error for the 

experiments discussed in Chapter IV. ~ In addition, the TTFE computation reductions 

proposed allow the application of the algorithm to dual input-output systems in on-line 

applications when compared to a direct implementation of TTFE. Without these 

modifications, the update rate of the TTFE identification scheme would be drastically 

reduced, hindering the performance of any adaptive control system. 
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CHAPTER III 

HARDWARE AND IMPLEMENTATION 

This chapter provides a brief description of the robotic device, RALF, utilized for 

the research of this thesis and depicted in Figure 3.1. Section 3.1 limits discussion to the 

mechanical hardware of RALF. Additional sections of this chapter describe the 

computational hardware and software utilized for control of RALF as well as the 

particulars of OATF implementation. 

3.1 RALF, Robot Arm, Large and Flexible 

Envisioned as a testbed for demonstration of elastic structure control technologies, 

RALF, consists of two ten foot aluminum links connected by rotational joints to each other 

and the base. Static deflection of the links by several millimeters is typical throughout 

RALF's semicircular workspace The links are both actuated by hydraulic cylinders. A 

parallel bar linkage is utilized to actuate the second link from a hydraulic cylinder attached 

to the base. 
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Figure 3.1 RALF, Robot Arm, Large and Flexible 
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3.1.1 Sensors 

The extension of the hydraulic actuators on RALF was measured through the use of 

Temposonics linear transducers, installed parallel to the stroke of each hydraulic cylinder. 

Calculation of joint angles was then possible through the use of the law of cosines applied 

to the triangles formed by the pins of the actuators and the links. After amplification and 

sampling the Temposonics transducers provided a resolution of 5x10" in. over a range of 

20 in. with standard deviations of 5.4xl0~3 in. and 4.6x103 in. for joint 1 and joint 2 

respectively. This indicates binary noise due to the 12 bit A/D resolution limit. When 

these extension measurements were converted to the joint angles, an average resolution of 

3.5x10"4 rad. and an average range of 1.38 rad. weie possible in a major portion of the 

workspace, though this resolution was severely degraded near singularities, e.g. the entire 

upper limit of RALF's workspace. 

For measurement of the link deflections several sensors were available, strain gages 

at the base of each link, accelerometers installed at the end-effector, and deflection gages 

installed on each link. Only deflection gage data was utilized for experimental work in this 

thesis because of the measurements' direct relationship to the quantities of interest for 

performing tip positioning tasks. The deflection gage systems consisted of an infrared, 

lateral-effect photodiode installed at the end of each link, and an infrared digital camera at 

the base of each link. The resulting measurements provide an estimate of the link 

deflection parallel to the plane of motion and perpendicular to orientation of the base of 

each link. After an amplification and anti-aliasing filter was installed the deflection gages 

provided resolutions of 2.8X10"4 in. and 2.7x10"4 in. and ranges of 1.15 in and 1.11 in. for 
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each link respectively. Background noise and link vibration at home position produced 

standard deviations of 2.1xl0"3 in. and 3.8X10"4 in. for the respective link deflection 

measurements. In the frequency domain, sensor data exhibited minimal high frequency roll 

off and a bandwidth greater than 2 kHz. 

3.1.2 Actuators 

Two Atlas hydraulic cylinders actuate each of the joints of RALF. The first 

actuator exerts a moment on the first link directly. A parallel bar mechanism transmits the 

force exerted by the second actuator to the second link, while locating the bulk of its mass 

near the base. Pressure to the cylinder pistons is regulated by a feedback loop controlling 

the valves. Because of the light weight construction of RALF and the 1000 psi operating 

pressure of the hydraulics, the time delay-between a voltage applied to the valve controller 

and steady state cylinder velocity is less than 20 ms. The end result is that the cylinder 

velocity can be controlled with a very small time constant, on the order of the sampling 

time of the controller implementations utilized for this research. The forward and inverse 

kinematic relationship between tip position and joint rotation is provided in Appendix A. 

3.2 Computation and Control 

This section provides a description of the computation hardware and software 

utilized for control of RALF through interaction with the sensors and actuators described in 

the previous section. The computational hardware and its performance capabilities is 

listed first in Section 3.2.1. A description of the techniques and structure of the software 
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utilized for this research is provided in Section 3.2.2, while Section 3.2.3 discusses the 

details of communication between these various software modules. 

3.2.1 Hardware 

Digital control of RALF is implemented on a Motorola MVME 177 CPU board 

with a 50 MHz MC68060 processor within a Motorola MVME 946 chassis. An additional 

Motorola MC68040 processor board, also installed in the MVME chassis, was utilized for 

preliminary testing of control and system identification algorithms. Both processors 

utilized the VxWorks, real-time, multitasking, operating system. Data input is obtained via 

two 12 bit, 16 channel, 200 kHz Acromag AVME 9325-5 analog to digital conversion 

boards within the same MVME chassis. Hydraulic valves are actuated using 2 Acromag 

AVME 947X Digital to analog conversion boards. 

In addition to the core control hardware, a Spectrum DBV-44 digital signal 

processing board is also located within the VME bus chassis. The RISC architecture of the 

single Texas Instruments TMS320-C40 chip located in one of the four available TLM-40 

sockets on the spectrum is optimized for computation of multiplications and additions. The 

chip is capable of 275 MOPS (integer operations), 50 MFLOPS (floating point operations), 

or 25 MIPS (instructions). For data and code storage, 384 Kbytes of RAM were installed 

in addition to the 2 Kbytes of on-chip RAM. Because of its RISC architecture the 

TMS320-C40 is ideally suited for filtering and FFT computation. Though the board is not 

directly connected to the A/D and D/A boards it can be accessed via the controlling CPU 

across the MVME bus. Routines supplied with the hardware were utilized for passing 
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large blocks of integers from memory on the CPU board directly to memory on the DSP 

board without the use of the high speed parallel ports on the DBV-44 board. 

3.2.2 Software 

The hardware architecture described in the previous section lended itself well to the 

division of computation loads between the CPU and DSP boards depicted in Figure 3.2. 

The Optimal Arbitrary Time Delay filtering developed by Magee and Book [12], and joint 

control were accomplished on the Motorola CPU board, while the system identification 

functions of transforming data into the frequency domain, computing and smoothing the 

empirical transfer function estimates, and gleaning pole parameters from the empirical 

transfer functions, were all performed on the DSP board. 
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Figure 3.2 Software Module Distribution and Interaction 

42 



In order to ensure the usability and modularity of code developed for this research, 

the majority of the algorithms and data storage performed on the CPU board were 

encapsulated in C-H- objects. In addition, it was possible to package in a single object all of 

the complex tasks and data required to initialize and communicate with the DSP board in 

real time. The task of interacting with the A/D and D/A boards was similarly simplified 

previously by David Cannon in the form of Sensor and Actuator objects. A diagram of the 

objects created for this research and their relationships to one another is summarized in 

Figure 3.3. 
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Figure 3.3 C++ Class Hierarchy and Interaction 

No C++ compiler was available for the TMS 320-C40 DSP chip. Even if it were 

possible to compile C++ code for the DSP board, the highly procedural nature of code 

usually implemented on RISC processors would not lend itself well to segmentation into 

C++ classes. In fact, greater efficiency is obtained if compiled C code can be avoided all 

together. This can be accomplished with minimal knowledge of assembly language 
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programming if the desired functions can be found among the vast library of available 

assembly language code available for the TMS320-C40 chip. For this research, only the 

core FFT algorithm was implemented utilizing public domain assembly language code 

optimized for the TMS320-C40 chip. All other identification and parameterization code 

was written in C and compiled using the Texas Instruments optimizing C compiler. 

A brief quantification of the performance advantages experienced when utilizing 

assembly language routines on the Spectrum DBV-44 DSP board is provided here. The 

first test runs were performed using traditional FFT C code taken from a public domain 

scientific computing package, Numerical Recipes in C [19]. For the MC68040 CPU board, 

the C code was compiled using a standard GNU C compiler. For the DSP board the code 

was compiled with the Texas Instruments optimizing C compiler set to level 2 

optimization. A third test run on the DSP board was performed using assembly language 

code incorporated into skeleton C code compiled using the TI compiler set at level 1 

optimization as required by the register utilization of the assembly language code. It can be 

seen from Figure 3.4 that the computation time was cut in half by incorporating the 

assembly language code rather than relying on compiled C code alone for computation of 

an FFT on the DSP board. The factor of ten that might be expected was not possible in part 

due to the high degree of optimization already accomplished with the TI compiler. Figure 

3.4 charts the speed with which the various processors and coding combinations were able 

to compute FFTs of length 1024 (210) to 16384 (214). It can be seen from this bar chart that 

the TMS320-C40 DSP chip can compute an FFT using C code in approximately a tenth of 
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the time required on the general purpose MC 68040 chip running identical code. Likewise, 

the assembly language routine was more than twice as fast as the C implementation. 
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Figure 3.4 Performance Comparison of Hardware and Software 

3.2.3 Handshaking and Buffering 

In order to be implemented for on-line adaptive control, the frequency analysis 

software must contain sufficient buffering and reliable handshaking procedures to ensure 

that a continuous and appropriately segmented stream of data is available to the FFT code. 

In addition, flexibility was designed into the software to allow the greatest range of future 

applications. 

Two examples of the flexibility of the handshaking system employed are listed 

here. First, the FFT width can be adjusted in real-time. This feature may become useful if 

it is necessary to expand and contract the FFT to accommodate peaks wandering to the 

edges of the Nyquist frequency range. However, because of the array storage techniques 
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that were employed in this work, the entire history buffer is zeroed each time the FFT width 

is changed, destroying any previously acquired data. A second feature of the software 

developed is that the number and size of the separate batches of time domain data being 

passed to the FFT can be adjusted in real-time, without disturbing the data buffered from 

previous batches. This capability can be used to maximize the computing power required 

of the combined CPU and DSP system. 

Figure 3.5 shows a diagram of the handshaking scheme utilized for data exchange 

between the DSP board and the controlling CPU board. Blocks of memory on the DSP 

board were reserved using assembly language section commands. These memory block 

addresses were then saved in a header file to be linked to any C++ code on the CPU board 

desiring interaction with the DSP board. The most important of these memory blocks is 

where the new batches of time-domain ~data are written to by the CPU board, hereafter 

referred to as the batch memory block. After initialization of the DSP board, data integrity 

was ensured by requiring the DSP board to flag the batch memory block with a value 

outside of the dynamic range of the data being passed. The DSP code then periodically 

checked that memory location until it was overwritten by new data. 
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Figure 3.5 DSP-CPU Handshaking Schematic 

Once new data was available for processing, it was transferred to a rolling buffer of 

data received previously. The assembly language FFT was then performed on the rolling 

memory block, which had been divided into appropriate sections for each input and output 

data record. This frequency domain information was then utilized to compute empirical 

transfer function estimates and determine the parameters of the poles of these transfer 

functions using the techniques discussed in Chapter n. 

Once the pole parameters were computed and passed to a predetermined memory 

location, the batch memory block was flagged again as being empty and a low level 

interrupt was sent to the CPU board to immediately notify it that the DSP board was ready 

for more data. The typical computation time observed for straightforward implementation 

of the ETFE approach and simple global maximum search for a two-input, two outpu:, four 

transfer function system was 100 ms. During this interim the CPU board was able to 

continue processing its feedback control loop as long as the batch size had been set large 
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enough to accommodate the computation time required on the DSP board. This is the main 

reason why iterative methods for parameter estimation on the DSP board were rejected. 

Their computation requirements are data dependent and could not be assured to be (ess than 

the time allowed for by the batch size. Once the CPU board had received the interrupt, and 

immediately before sending new data, it read the desired parameter estimates and utilized 

them to adjust the OATF filter coefficients, as required. 

3.3 Identification and OATF Filtering during Feedback Control 

A brief discussion of the particular implementation of the Optimal Arbitrary Time-

Delay Filter for adaptive filtering control of RALF is discussed here. 

3.3.1 Location of OATF Filter and Identifier in Feedback Control System 

A diagram of the proposed feedback loop employed for identification, filtering, and 

control of RALF is provided here. Dotted lines indicate modules and connections that 

were removed or added during various experiments for comparison. Diagonal arrows 

through the OATF filtering blocks emphasizes their adaptive nature. The adaptive OATF 

filter was only employed in either the outer location or the inner location indicated, and was 

not employed in both locations simultaneously as was done for some experimental work by 

Magee [11]. 
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Figure 3.6 Possible OATF and Identifier Locations in Feedback Control of RALF 

Comparing the feedforward configuration (the OATF in the outer location), with 

the feedback filtering configuration it can be seen that the feedforward configuration 

provides the advantage of not introducing time-delays within the feedback loop. This 

assures stability of the entire system provided the feedback loop is stable without the filter. 

In the feedback filtering configuration, the OATF filter may introduce instabilities not 

inherent to the unfiltered feedback loop. However, the feedback configuration has the 

advantage of filtering the signal fed to the actuators after all noise has been introduced into 

the signal. The feedforward configuration allows sensor noise, from the joint angle 

sensors, for example, to bypass the OATF and reach the feedback loop unfiltered. This 

noise problem proved to be a significant consideration in the simulation and experimental 

results of Chapter IV. 
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3.3.2 Discrete OATF Time-Delays 

The details of the OATF filtering object described in Section 3.2.2 are discussed 

here because of the approximations required for discrete implementation of the continuous-

time OATF equations. A single, OATF filter, normalized with for total gain of one, as 

developed by Magee and Book [11], is given by the impulse response 

, , N ^ ) -2cosK7; ) g -^8( f -7 ; ) + g-2^r-5(f-27;) 
/ ' - l 0 = l -2cos(co ,T 1 >-^ + . - 2 ^ ' 0-32) 

where cod and (On are the damped natural frequency and the undamped natural frequency of 

the pole being filtered and £ represents the damping ratio of that pole. The time delay, T\, 

is arbitrary and provides a means of trading increased response time for reduced residual 

vibration. The most robust value for vibration reduction and the value used by Singer and 

Seering is given by 

T>=±. (3-33) 

When implementing the filter in a discrete-time system, the filter coefficients must be 

computed from a realizable discrete approximation of the time delay rather than the exact 

time delay given by Equation (3-33). The z-domain transfer function version of the filter is 

then 
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where 7̂  is the sampling period, and «,- is an integer number of samples that approximates 

the delay time and is defined by 

n. = int 
Jsj 

(3-35) 

where the int() function truncates a real number into an integer. 

The importance of the proper discrete adaptation of the OATF filter given by 

Equation (3-34) can be seen in the following example. A three term filter for a system with 

a resonance at 51 Hz and a sampling rate of 500 Hz was designed improperly using 

Equations (3-32) and (3-33) directly. The resulting frequency response of the OATF filter 

is shown in Figure 3.7. Utilizing the correct integer multiple of samples for the time delay 

value results in the frequency response shown in Figure 3.8. The correct implementation 

always places at least one zero at the desired frequency, but higher frequency zeros will not 

necessarily be located at integer multiples of this frequency. 
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Direct computation of the filter coefficients from Equation (3-34) requires 

0(23mr + 2ar + 6tr) operations. However, taking advantage of several common terms 

and temporarily storing these values during evaluation, the number and complexity of the 

computations can be reduced by more than 60% to O(\0m r+ 2ar + 2tr). These operations 

are required each time a new modal frequency is identified and is utilized to modify the 

filter coefficients. This slight computational improvement, utilized for the C++ OATF 

object implementation, only became an issue because adaptation of the filter coefficients in 

real time was required. 

Once the filter coefficients have been computed, actua] implementation of the 

three-term, discrete OATF filter requires 0(N(3mr + 3ar)) operations per sample, where 

N is the number of filtered modes or poles. This is the same as for any three-term, time-

invariant, digital filter. The OATF filter class can filter any number of inputs to a device 

with any number of vibrational modes. The OATF object assumes that it is desirable to 

filter all of the resonant modes from all of the inputs to produce the filter outputs. This is 

the desired result for controlling any physical plant. 
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C H A P T E R IV 

RESULTS 

The primary motivation for this research into modal parameter identification in real 

time was to implement an adaptive input filtering algorithm for RALF. This chapter 

presents the results of several experiments and simulations intended to reveal the 

capabilities and limitations of utilizing the proposed identification algorithm in conjunction 

with the OATF filtering method in an adaptive control loop. 

4.1 DSP Implementation Verification 

Before utilizing parameter estimation algorithms in an adaptive filtering control 

loop, it was necessary to first verify the transfer function estimation algorithm implemented 

on the DSP board. The results of two such tests are presented here. The first test validated 

the implementation of the identification algorithm, and the second verified the algonthm 

itself. 

4.1.1 TFE Implementation Verification 

First, verification of the C code on the DSP board was accomplished by duplicating 

FFT, PSD and TFE computation code with an off-line version in the form of a Matlab 

function. This was intended to verify all complex algebra performed on the DSP board but 

not to verify the algorithm's effectiveness. This test produced virtually identical transfer 
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function estimates from both the DSP board and the Matlab function except for rounding 

error differences in the low level background noise spectrum. Figure 4.1 plots these two 

spectra at an arbitrary time during the experiment described in Section 4.2.2. 
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Figure 4.1 DSP Transfer Function Estimation Code Verification 

4.1.2 Algorithm Verification 

A second test was performed to verify the validity of the TTFE algorithm itself. 

Actual sensor and actuator data from the experimental trajectory were processed by both 

the DSP board and the commercially available Matlab spectral analysis function named 
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SPA(). SPA() utilizes the correlation matrix between inputs and outputs to determine 

transfer function estimates between those inputs and outputs. This method is a time-

domain, least squares system identification technique and is considerably more 

computationally complex than the FFT-based system identification technique utilized for 

on-line identification in this research. In addition, SPA() subtracts out an estimated noise 

spectrum from its computed transfer functions. SPA() was intended for analysis of time-

invariant systems and thus an approximation of the time-varying transfer function was 

accomplished by applying the SPA() function to limited ensembles of data evenly spaced in 

the time-domain record. These ensembles were aligned so that the transfer functions 

computed would correspond as closely as possible with those downloaded from the DSP 

board. Figure 4.2 compares the transfer functions estimated by the SPA() Matlab function 

and those computed on-line on the DSP board. As in Figure 4.1 a slight gain difference in 

the noise region is clearly visible, but the overall shape and location of the poles appears 

consistent. One noticeable difference is the greater degree of smoothing present in the DSP 

transfer function estimate. The transfer function estimation method ust 1 for this research 

required less than 150 ms to calculate on the DSP board while the Matlab SPA() function 

required 10 minutes on a 486-66 MHz PC. 

57 



102 
H11 at t=40 s, DSP Calculation 

102 
; 1 1 1 I ; 

M
ag

ni
tu

de
 

o 
o 

1/ \f\/^/Y^^ 
I I 

m ' 1 
1 — 1 _1 — 1 

0 20 40 60 80 

Matlab SPA() Calculation 

100 

10" 
0 20 40 60 

Frequency (Hz) 
80 100 

Figure 4.2 DSP Transfer Function Estimate Verification 

4.2 Experimental Performance Comparison of Adaptive vs. Fixed OATF Filtering 

Several experiments were performed to compare the performance of the fixed 

OATF filtering method with the adaptive OATF method developed for this research. 

Several features were common to all experiments and are discussed here. First, the desired 

tip trajectory is shown in Figure 4.3. The outer curved border indicates the workspace of 

RALF. The tip speed for all experiments was set to either 5 in/sec or 4 in/s as indicated, 

and the loop trajectory was performed in a counter clockwise direction. The trajectory was 

intended to simulated a weld or seam testing process. It was designed with right angles to 

58 



ensure vibration excitation. The squares in the trajectory each have a side of length 5 in. 

This results in an excitation with a period of 1 s for the 5 in/s tip speed used for most 

experiments. The pauses at either end of the first section of the trajectory were intended to 

allow vibration to settle before beginning each section. 

Desired Tip Trajectory (Forward Kinematics) 
260 r 

140-

sec. pause 

sec. pause 

Figure 4.3 Desired Tip Trajectory 

In all cases the sampling rate for both control and identification was 200 Hz. No 

down sampling was performed to allow control at a faster rate than identification. The FFT 

size chosen for all identification experiments was 2048. This sample rate and buffer length 
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provided a frequency resolution of .09766 Hz while not seriously hindering the 

identification of the time-varying parameters changing at a rate less than 5% a sec. The 

trade off between resolution and system tracking that FFT length selection provides is 

discussed in more detail by Oppenheim and Schafer [17] as well as Giordano and Hsu [6]. 

For the PI controller, proportional feedback gains from the angle error to the 

hydraulic actuator valve voltages of 7500 and 6250 mV/rad were selected for joint 1 and 

joint 2 respectively. Integral gains of 5000 and 4166 mV/rad-s were chosen. The integrator 

was implemented as a straight summer windowed exponentially with a forgetting factor of 

0.0001, determined empirically to prevent the integral term from saturating the actuators. 

In addition, an integral threshold value of .04 radians was implemented to prevent integral 

summing during large error signals, though this threshold was never exceeded during the 

automated trajectory used for the results in this chapter. When transfer function 

information was downloaded from the DSP board, it was captured at regular intervals of 

1000 samples (5 s) or 1200 samples (6 s) depending on the memory and computation 

requirements of the particular controller implementation. 

4.2.1 Performance Evaluation Criteria 

For comparison of the performance of the various filtering techniques two criteria 

were established. The first is the root mean square link tip velocity to be denoted RMS 

velocity. The second is the root mean square link tip acceleration and will be referred to as 

RMS acceleration. Both values were calculated by filtering the deflection measurements 

with customized linear differentiators. The velocity was calculated as the slope of a 
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piecewise linear regression with a window width of 10 samples, far less than the period of 

the expected oscillations. This smoothing differentiator provides greater than 20dB of 

attenuation for signal frequencies above 40 Hz when compared to a straight backward 

difference differentiator. The acceleration was computed as the second derivative of a 40 

point piecewise quadratic regression. This provides more than 50 dB of attenuation above 

20 Hz when compared to a backward difference approach. The root mean square, or 

standard deviation, of the velocity and acceleration signals was then computed as a cost 

function. Both the acceleration and the velocity signal exhibited the zero mean , zero drift 

characteristics desired. 

Computation of an RMS link deflection value was problematic, requiring a 

piecewise detrending operation due to the considerable static deflection variation in both 

links. This detrending operation would have produced variable results dependent upon 

window alignment with static deflection profile features. As a result, it was not computed 

as a performance evaluator. 

4.2.2 PI Controller 

As a base-line for comparison of controller implementations the deflection 

measurements for a test run through the desired trajectory using a PI controller is provided 

in Figure 4.4. 
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Figure 4.4 Link Deflection Under PI Control 

Figure 4.5 shows a spectrogram of the PI control experiment from the transfer 

function estimates downloaded from the DSP board every 5 seconds. The transfer function 

labeling notation is the same as that used in Chapter 2, e.g. Ht2 denotes the transfer 

function from the first input to the second output. Htot was constructed by combining all 

four transfer function estimates in a linear, unweighted average. 

One interesting feature in Figure 4.5 is the split in the resonant peaks that occurs 

when RALF approaches a kinematic singularity and resembles the dynamic situation of an 

inverted double pendulum. This poses difficulty for any peak tracking algorithm. It can be 
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seen that the transfer function estimate heavily favors the higher frequency pole. To 

overcome this difficulty, in experimental work a logarithmic weighting function was 

utilized to favor lower frequencies during the global maximum search. This was deemed 

necessary because the low frequency pole is the one most likely to be excited by most 

practical trajectories including the ones considered here. Another interesting feature in 

Figure 4.5 is the delay between the system configuration change and corresponding 

changes in the estimated transfer function. Comparing Figure 4.4 and Figure 4.5 it can be 

seen that link 2 reaches it's minimum deflection several seconds before the spectrogram 

shows the maximum separation in the identified poles. 
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Figure 4.5 Spectrogram of PI Control Experiment 

The Matlab function SPECGRAM() was utilized to produce Figure 4.6 and is 

provided for comparison with Figure 4.5. However, this Matlab function does not 

compensate for input power spectra as the ETFE and TTFE methods do. Thus the low 

frequency data is quite cluttered because of the large amount of low frequency excitation. 

Nonetheless, the spHtting of the system poles at the apex of the trajectory is evident in this 

spectrogram, and it provides further confirmation of the delayed nature of the frequency 

information in Figure 4.5 when the two are compared. 
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Figure 4.6 Matlab Spectrogram of Link 2 Deflection Data 

4.2.3 Performance Comparison for Various Trajectories and Payloads 

A battery of experiments was performed to determine whether the adaptive filtering 

technique could improve upon the performance of a fixed frequency OATF filtering 

technique. Five experiments were performed for two different trajectories and two 

payloads for a total of 20 test runs. The two trajectories were identical except of the 

commanded tip speed, either 4 in/s or 5 in/s. The payload that was removed and attached 

consisted of a steel plate weighing 15.65 lb. The five PI control experiments in each group 
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compared various filtering situations: a) unfiltered control; b) properly tuned fixed OATF 

filtering, c) properly tuned OATF filtering whose resonant frequency was allowed to adapt 

to changing system resonances; d) an improperly tuned fixed OATF filter; and e) an 

improperly tuned, fixed OATF filter that was allowed to adapt to the identified system 

resonance. The improperly tuned OATF was set to filter an arbitrarily chosen 10 Hz 

resonance. In all cases, the damping ratio of the OATF filter was fixed at .09, a value 

estimated by using the off-line FWHM approach on spectra acquired during an unfiltered 

trajectory run. 

Initial results showed a significant reduction in RMS link velocity and acceleration 

when comparing a fixed, improperly tuned OATF filter to one allowed to adapt. However, 

as a weld began to separate in the base of the testbed, the observed improvement 

deteriorated. Only those results which were repeatable on the testbed as it now exists are 

presented here. 

The values displayed in the left half of Table 4-1 are the RMS link deflection 

velocities and accelerations. Percentages are calculated based upon an arbitrarily chosen 

baseline experiment for easy comparison and are provided in the right half. From Table 4-

1 it can be seen that an adaptive OATF filter provides no significant reduction in link 

deflection velocity and acceleration over a fixed OATF filter. Even when the OATF filter 

is intentionally tuned to an invalid damped natural frequency, on-line adaptation of the 

coefficients of the filter to more effectively filter the lower frequency resonance, does not 

improve performance. These were troubling results because it is known that modifying the 

OATF filter coefficients without modifying the time-delay values can indeed reduce 
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vibration when the initial OATF filter is chosen to filter an improper frequency. 

Simulations follow which justify the poor performance of an adaptive OATF filter. 
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Table 4-1 RMS Velocity and Acceleration Over Entire Trajectory, Adaptive vs. Fixed 
OATF 

Experiment 1: Payload Attached, Tip Speed = 5 in/s, Average wni=3.6 Hz. 
Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 
(in/s) (in/s) (in/s2) (in/s2) % % % % 

a) Unfiltered 0.317 0.359 4.807 5.354 100.00 100.00 100.00 100.00 
b) Fixed OATF 0.175 0.244 2.555 3.576 55.28 67.99 53.15 66.78 
c) Adapt OATF 0.179 0.243 2.628 3.550 56.62 67.57 54.66 66.30 
d) Poor OATF 0.228 0.288 3.427 4.287 72.03 80.34 71.28 80.06 
e) Adapt Poor OATF 0.224 0.302 3.349 4.462 70.78 83.98 69.67 83.33 

Experiment 2: Payload Removed, Tip Speed = 5 in/s, Average wni=4.4 Hz. 
Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 
(in/s) (in/s) (in/s2) (in/s2) % % % % 

a) Unfiltered 0.262 0.273 3.833 3.573 82.67 76.15 79.73 66.73 
b) Fixed OATF 0.165 0.190 2.374 2.386 52.20 52.90 49.38 44.57 
c) Adapt OATF 0.169 0.197 2.407 2.468 53.28 54.81 50.08 46.08 
d) Poor OATF 0.192 0.200 2.822 2.608 60.74 55.56 58.71 48.70 
e) Adapt Poor OATF 0.210 0.216 3.109 2.854 66.44 60.13 64.68 53.30 

Experiment 3: Payload Attached, Tip Speed = 4 in/s, Average wni=3.9 Hz. 
Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 
(in/s) (in/s) (in/s2) (in/s2) % % % % 

a) Unfiltered 0.426 0.478 6.413 7.109 134.46 133.11 133.40 132.77 
b) Fixed OATF 0.184 0.254 2.552 3.580 57.96 70.69 53.08 66.86 
c) Adapt OATF 0.188 0.273 2.634 3.897 59.23 76.02 54.80 72.78 
d) Poor OATF 0.236 0.317 3.424 4.569 74.36 88.23 71.21 85.33 
e) Adapt Poor OATF 0.233 0.318 3.384 4.575 73.43 88.64 70.39 85.43 

Experiment 4: Payload Removed, Tip Speed = 4 in/s, Average wni =4.1 Hz. 
Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 
(in/s) (in/s) (in/s2) (in/s2) % % % 0/ /o 

a) Unfiltered 0.358 0.353 5.177 4.613 113.06 98.21 107.69 86.16 
b) Fixed OATF 0.214 0.236 2.965 2.918 67.46 65.73 61.67 54.50 
c) Adapt OATF 0.208 0.239 2.881 3.016 65.59 66.59 59.92 56.33 
d) Poor OATF 0.226 0.220 3.284 2.879 71.31 61.25 68.30 53.77 
e) Adapt Poor OATF 0.221 0.228 3.178 2.962 69.75 63.54 66.10 55.32 
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4.3 Simulation 

One possible reason for the lack of improvement between adaptive and fixed OATF 

filtering observed in the experimental work of the previous section was determined to be 

the low resolution of the Temposonics transducers used for feedback of the joint angles in 

the PI control loop. To evaluate this possibility Matlab Simulink simulations were 

performed. 

4.3.1 Model 

A simplified velocity feedback control model of RALF was assumed. This 

simplification is possible due to the fact that the lightweight structure of RALF is 

dramatically overpowered by the 1000 psi hydraulic cylinders. The actuators reach a steady 

state continuous velocity in less than 50-milliseconds after an actuation signal is applied. 

This is on the order of the sampling rate for the experiments performed. The sampling rate 

for the controller was identical to experimental work and an appropriate integration sample 

time was chosen for the simulation. 

The dynamics of the link elasticity were modeled as a single degree of freedom, 

second order, mass-spring-damper system. Approximations of the damping ratio and 

natural frequency were taken from experimental observations of RALF. For the 

simulations the link deflection transfer function system was given poles to correspond with 

a 5 Hz resonance and a damping ratio of 0.09. The same angle trajectories used for 

automated control of RALF were input into the simulated controller. The first simulation 

group was run without any noise added to any of the signals. In the second simulation 
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group, a band-limited white noise signal with a power of 0.2% of the trajectory signal was 

added to the filtered trajectory. The standard deviation of the noise signal was 1.4-lxlCT4 

rad, less than half the average resolution of 3.5x10"4 rad. and standard deviation of 3.9x10"4 

rad. of provided by the Temposonic transducers, after sampling with 12 bit A/D board, 

used to measure RALF's joint angles. 

4.3.2 Results 

Table 4-2 provides simulation results in a similar format to the experimental results 

of Section 4.2.3. A bar chart of the deflection velocity values is provided in Figure 4.7. 

The noise free simulation shows that tuning an OATF filter can indeed have a significant 

effect on system performance. However, the second simulation results show how a small 

noise signal added to the filtered controller input drastically reduces not only the absolute 

vibration reduction of the filter, but also the relative differential between a well tuned 

OATF and a poorly tuned one. In addition, in the simulation the time delay values of the 

OATF filter were chosen as the most robust for the frequency being filtered. Such a luxury 

is not available to real-time adaptation. As a result, the third simulation employed a fixed 

delay time similar to the one used in experimental work, .05 s. Finally, a fourth simulation 

attempted to determine if reducing the damping ratio would increase the differential 

between the results for an OATF filter tuned to different frequencies. However, it was not 

expected to improve the performance over an OATF filter with a damping ratio matching 

the system. 
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Table 4-2 Simulation: Performance Differential Gained by Tuning OATF 

Simulation 1: Ideal Case, Noise Free Input 
RMS RMS Deflection RMS Deflection RMS Deflection 

Deflection 
Velocity 

Acceleration Velocity Acceleration 

(in/s) (in/s2) % % 
Unfiltered: 0.890 23.594 100.00 100.00 

Correct 5 Hz OATF 0.260 6.554 29.17 27.78 
10 Hz OATF 0.451 10.838 50.65 45.931 
50 Hz OATF 0.855 22.821 96.13 96.72 

Simulation 2: Noise Added to Filtered Controller Input 
RMS RMS Deflection RMS Deflection RMS Deflection | 

Deflection 
Velocity 

Acceleration Velocity Acceleration 

(in/s) (in/s2) % % 
Unfiltered: 1.252 26.552 140.66 112.53 

Correct 5 Hz OATF: 0.923 15.640 107.00 66.29 
10 Hz OATF: 0.994 16.724 111.74 70.88 
50 Hz OATF: 1.067 19.620 119.87 83.16 

Simulation 3: Noisy Inpul ., Time Delay Value Fixed at .05 s 
RMS RMS Deflection RMS Deflection RMS Deflection 

Deflection 
Velocity 

Acceleration Velocity Acceleration 

(in/s) (in/s2) % % 
Correct 5 Hz OATF: 0.952 14.450 103.75 61.24 

10 Hz OATF: 0.993 16.718 111.66 70.86 
50 Hz OATF: 1.218 25.776 136.91 109.25 

Simulation 4: Noisy Input, Fixed Time-Delay, Damping Ratio = 0.01 
RMS RMS Deflection RMS Deflection RMS Deflection 

Deflection 
Velocity 

Acceleration Velocity Acceleration 

(in/s) (in/s2) % % 
Correct 5 Hz OATF: 0.923 14.464 103.72 61.30 

10 Hz OATF: 0.992 16.654 111.53 70.58 
50 Hz OATF: 0.992 16.642 111.48 70.53 
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Figure 4.7 Simulation: Performance Differential Obtained by Tuning OATF 

The improved OATF performance for a smaller damping ratio when utilizing a 

time-delay not equal to the Singer and Seering (most robust) value, can be explained by 

looking at the frequency response plot of the OATF filter for the filters implemented in 

Simulations 2, 3 and 4. Figure 4.8 shows that an OATF filter tuned to filter a lower 

damping ratio pole actually attenuates a sinusoid more at the resonant frequency than an 

OATF filter with a damping ratio that matches the pole. 
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Figure 4.8 OATF Frequency Response for Reduced Damping Ratio 

To reaffirm that the noise to signaJ ratio was not excessive, a plot of the desired 

trajectory along with the filtered trajectory plus the added noise is provided in Figure 4.9. 
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Figure 4.9 Desired Trajectory and Filtered Trajectory Plus Noise 

4.4 Reduced Damping OATF Filtering Experiment 

In order to increase the differential between the performance of a well-tuned OATF 

and one filtering a frequency different from the system resonance, it is advantageous to 

decrease the damping ratios of both filters. This effectively narrows the zeros applied by 

the filters and makes filter performance more sensitive to the design frequency. This of 

course reduces the robustness of the filters to error in resonant frequency. Experiments 

similar to those presented in Section 4.2.3 were performed with a smaller damping ratio of 

0.01 used for the OATF filter. Figure 4.10 compares the deflection measurements of an 
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adaptive and nonadaptive OATF in the region near the singularity at the top of RALF's 

workspace. The unconnected points in the figure represent link deflections when the 

OATF filter was fixed at 10 Hz. The solid line shows deflection measurements during the 

adaptive filtering run. The results were encouraging, showing a greater than 30% reduction 

in deflection velocity of both links. This was consistent with simulations for low damping 

ratios. This confirms that the algorithm is indeed tracking and filtering the first 

fundamental resonance of the system. Nonetheless, when averaged over the entire 

trajectory, the RMS deflection velocity improvement reduces to 2%. This can be seen in 

Figure 4.11. In addition, a fixed OATF filter with an average value for the damping ratio 

and natural frequency still performs much better than an adaptive version with a lighter 

damping ratio. 
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Figure 4.10 Deflection Measurements During Adaptive Filtering Near Singularity 
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Figure 4.11 Deflection Measurements Over Entire Trajectory While Adaptive Filtering 
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CHAPTER V 

CONCLUSION 

This chapter will evaluate the results presented in the previous chapter. In addition 

the contributions of this research will be listed, and suggestions for future work are 

provided. 

5.1 Evaluation of Results 

5.1.1 Poor Adaptive C ATI" Performance 

The small differential between adaptive and fixed OATF filtering for many of the 

experiments and trajectories discussed in Chapter IV was traced to several causes. First the 

identifying algorithm employed produces lag times of between one and four seconds 

between system parameter changes and changes in the identified modes. Higher frequency 

transfer function features exhibited a shorter lag time than those at the lower end of the 

spectrum, while the lower frequency modes were the most critical to filter performance. 

Secondly, the presence of unfiltered modes necessarily reduces the effectiveness of 

any filter. In addition it reduces the differential between filters tuned to different 
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frequencies. Not only was the pole split ignored during the filtering of RALF's inputs, but 

the higher frequency poles that could not be identified at all were also ignored. 

In addition, simulation results pointed out the importance of noise when comparing 

the performance of various tunings of an OATF filter. Binary noise, such as that resulting 

from the low resolution of the VDTs utilized to calculate RALF's joint angles, imparts the 

maximum possible energy to a system for a given amplitude [30]. It was shown that 

allowing any significant noise to bypass the filter and influence the actuation signal reduced 

the performance of the OATF filter and drastically reduced the differential between an 

improperly tuned OATF and one designed precisely to match the resonance of the 

controlled system. This provided a limiting case for the performance expected in 

experimental results for implementation of the adaptive OATF filter. The ideal 

performance of an adaptive OATF filter would result from a filter that exactly tracked the 

changing system parameters without any delay. Such a filter cannot perform any better 

than a fixed filter properly tuned to the resonance of a time-invariant system. 

5.1.2 Possible Advantages of Adaptive OATF Filtering 

Nonetheless, for OATF filters designed for lower damping ratios it was found that 

some improvement in system performance over a fixed OATF filter was possible. This 

was only possible for an OATF filter mistuned by 100% or more. However, smaller 

damping ratios are expected to have the added benefit of better joint trajectory tracking, 

though no such comparison was attempted in this research. Thus, if trajectory tracking is 

of critical importance, and system parameter changes are large, further investigation into 
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adaptive OATF filtering with lowered damping ratios would be reasonable. If, however, 

reduced link vibration is the goal, then a fixed OATF filter can achieve greater performance 

for parameter changes less than 100%. 

In addition, if a robotic device must operate without human intervention for 

extended periods of time while its system parameters are expected to change drastically, it 

would be advisable to implement some sort of adaptation of the filter coefficients, and 

possibly even the time delays. However, to adapt the time delays during continuous 

operation would require investigation into the stability considerations that would result. 

5.2 Contributions of This Research 

A significant contribution of this research is the algorithm developed for online 

system identification. The algorithm and the results obtained from it and presented in this 

thesis may aid future researchers interested in similar problems. This thesis has revealed 

the limitations and capabilities of the various parameterization and transfer function 

estimation techniques investigated in Chapter II. This thesis also corrected typographical 

errors in published formulae used for system identification and clarified the origins of the 

techniques employed in TTFE. This body of knowledge may prove invaluable to future 

applications of online identification. 

In addition, the increased understanding of the limitations of adaptive OATF 

filtering techniques gained by implementing it in a situation where noise considerations 

were paramount should not be underestimated. By showing in both experimental and 

simulation results what an adaptive OATF filter is capable of, this thesis may prevent 
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future researchers from attempting similar implementations before fully investigating the 

theoretical limitations of such an idea. Inversely related to the decreased level of 

expectations for adaptive OATF filtering is the increased appreciation for the robustness 

inherent in fixed frequency OATF filtering. The dramatic reduction in link vibration 

achievable by implementation of an OATF filter with fixed coefficients and time-delays is 

not easily surpassed. Perhaps future researchers will now be more willing to apply OATF 

filtering to applications where precise, time-invariant linear system models are not 

available. 

Lastly, this research resulted in development of a vast library of C++ software 

developed for control, system identification, adaptive filtering, and real-time massive data 

buffering and storage. Because these modules were encapsulated in C++ objects, they will 

be more easily reused in future research projects. The extensive investment in additional 

software development time required to write and debug C++ code will pay off handsomely 

if the algorithms prove useful for other applications and researchers. 

5.3 Future Work 

The degree to which adaptive input filter performance depends upon noise free 

sensor feedback and how much it depends upon the delay between parametric changes and 

identification of those parameters should be investigated. One possibility would be to store 

the parametric information acquired during an initial pass through the workspace and then 

utilize that information at a later time to anticipate parameter changes with he filtering 
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algorithm. In addition, by improving sensor resolution significantly, this source of error 

could be reduced. In the case of RALF this would require upgrading an A/D board with 16 

or 20 bit resolution. 

Discontinuous parameter changes should also be implemented. This would allow 

more precise quantification of the delay time associated with any identification algorithm. 

It would also improve the system's applicability to the practical task of retrieving and 

releasing apayload. 

Furthermore, more effective and reliable techniques for tracking multiple poles 

should be implemented. This would require increasing the resolution of the transfer 

function identifier. In addition it would be necessary to implement a sophisticated 

algorithm to determine when an additional filter zero should be created or an existing one 

eliminated. Increased transfer function resolution might also permit the identification of a 

damping ratio and adjusting the damping ratios of the filters to more closely match the 

poles. 

5.4 Conclusion 

This thesis failed in its goal of producing a widely applicable adaptive filtering 

technique to improve upon existing techniques for multi-degree of freedom devices. 

However, the techniques illustrated may indeed prove useful in a variety of situations such 

as those described in Section 5.1.2. In addition, this research provides an invaluable first 

step along the branch of control research that attempts to overcome nonstationarity with 

adaptive technologies. 
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APPENDIX A 

KINEMATICS OF RALF 

A. 1.1 .Forward Kinematics 

The forward kinematics transformation for RALF was constructed by adhering to 

the Denavit-Hartenberg convention for robotic coordinates. Figure A. 1 defines the joint 

angles and link dimensions. Additional angles and dimensions are shown for utilization in 

other references to the same device. Table A-l lists the Denavit-Hartenberg parameters 

used to produce the transformation matrices for each link that were multiplied to produce 

the following total coordinate transformation from base to tip, 

cos(0i+62) - s i n ^ + e j 0 ^ cosCej + fl;, cos(6,+62)~ 

sin(9 I+92) cosCOj+e^ 0 alsin(Q1) + a2sin(d1+Q2) 

o o i o • {AA] 

0 0 0 1 

Table A-1 Denavit-Hartenberg Parameters for RALF 
Link ai «* df % 
1 ax =y]bl

2 +b2
2 =Vl202+5.752 in. 0 0 e, 

2 a2 - 120 in. 0 0 e2 

Tl = 
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Figure A. 1 Kinematics Diagram of RALF 

A. 1.2.Inverse Kinematics 

Inverse kinematics is the problem of determining the joint angles that will produce 

the desired tip position for a rigid mechanical device. Because of the simple, planar 

kinematics of RALF, a geometric analytical solution to the inverse kinematics problem 

was possible. This method, of course does not take into account link deflection and 

serves only as a first approximation. Equation (A.2) is derived directly from the diagram. 

Equations (A.3) and (A.4) result from the law of cosines applied to the interior triangle 

formed by ai, a2 and b3. 

el=x-$m2(ytip.xtiP)-y (A.2) 
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7 9 9 
fifi +an -b-u-i -r u i — 6*-J 

cos( ;r-e 2) = ] 2 2 
20^2 

7 = cos 
^ l 2 + ( ^ 2 + ^ / > 2 ) - ^ 2 2 

2aiJ(xtip2 + yup2) 

(A.3) 

(A.4) 

These equations are then solved for 6i and 62 in terms of xtiP, ytiP and known 

dimensions while only considering the elbow-up posture. This is the only pair of 

solutions available within the joint limits of RALF. The first joint is capable of angles 

between 60° and 100° due to the stoke limit of the first hydraulic actuator. Similarly, 

solutions for the second joint are limited to angles between 10° and 120°. 

6\ = n-&tan2(ytip,xtip)-co$ 

( „ 2 

2 2 2 2 
a\ + (xtip +ytip )~a2 

\a^{. 2a\^(xtip2 + yttP
2) 

Oo = 7T-COS" 

2 2 2 A 
ax +a2 -xtip -ytip 

2ala2 

(A5) 

(A 6) 

However, if the ^s are the joint variables of interest, the variables being controlled, they 

can be easily calculated as 

• 1 = e i ~ 5 (A.7) 

and 

<(>2 =8 2 +8 
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where 

8—I?" (A.9) 
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APPENDIX B 

FULL WIDTH HALF MAXIMUM DERIVATION 

This appendix is provided to justify the Full Width Half Maximum, or FWHM, 

approach and to characterize its accuracy The FWHM, or bandwidth technique, is 

generally applicable to lightly damped poles and has been widely employed in 

experimental work as far back as 1954. The bandwidth of a resonance peak, or the 

frequency separation between half power points, is measured from a power spectral 

density plot, which is equivalent to the square of the displacement frequency response 

plot. The damping ratio is then computed as 

Aco 

where Aw is the measured bandwidth, and CD„ is the measured undamped natural 

frequency. The natural frequency is generally approximated to be equal to the damped 

natural frequency which can be found from the displacement magnitude frequency 

response as the frequency of its maximum. An assumption of light damping, or £ < 0.1, is 

required by this simplification as well as the discarding of higher order £ terms that was 
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required to obtain Equation (B.l) in the first place. The reason for this requirement is 

shown below. 

A power spectral density function is equal to the square of the magnitude 

response function. For a proportionally damped, second order system, the power 

spectrum of the displacement response to a forcing input is given by 

P(r) = W = ( 1 _ r 2 ) " + 4 C V . (B.2) 

where a is a constant gain that depends upon the particulars of the system being modeled 

but is assumed not to depend on frequency in the following derivation. For a mass-

spring-damper system, a would be equal to the inverse of the square of the mass. The 

damping ratio is given by £. The normalized frequency r represents the ratio of the 

CO 

frequency being considered, co, to the natural frequency, co„, or r - — . The maximum 
w„ 

of the power spectrum occurs at the damped natural frequency which gives r = yjl-l,2 . 

The maximum power is then easily found by substitution into Equation (B.2) which gives 

a 
max Ay2 Q/"* ' 

(B.3) 
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To find the bandwidth, the half power points must first be located. Half of the 

maximum power given in Equation (B.3) can be equated to the power spectrum to give 

half max o->w)2
+4(;vta,Inj=8C2-6(r (R4) 

Solving for rMfln„ gives 

•U™ = Vl-2C2±W8-4C2 . (B.5) 

The normalized bandwidth is merely the difference between the two solutions for the half 

power points given in Equation (B.5). Subtracting these two solutions gives a normalized 

bandwidth of 

Ar = TJl-2C+Cyl%-4C -^-IC-Z^W• (B.6) 

Simplification produces 

Ar = ^2-4£2-2Vl-8f2+6fV (B.7) 
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After squaring Equation (B.7) twice and using the quadratic formula to solve for £\ the 

damping ratio solution is given by 

C = ^2-Ar2 - 4 p - 2 ^ / l - 8 p + 6p2 , (B.8) 

where 

p = —(2Ar2 + 4 ± V6Ar4+8Ar2+16f. (B.9) 
1 r\ \ ' 16 

Examining Equation (B.7) further, the simplifications required to obtain the 

approximation given in Equation (B.l) become obvious. Consider the 

term in this equation. For £ < 0.1, the addition and subtraction of powers of £ has little 

effect on the value of this term and the term can be assumed to be one. For £ = 0.1, the 

proposed worst case, this term would equal .9595 and the error in this term produced by 

assuming it equal to one is 4%. By allowing this assumption the bandwidth formula 

simplifies to 

Ar = yJ2-4C - 2 = 2 f . (B.10) 

Returning to traditional notation from the normalized frequency notation gives 
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Ao) 
CO, 

2C (B.l 1) 

Solving for £ produces the Equation (B.l). A plot of the percent error between the exact 

value of the damping ratio given by Equation (B.8) and the approximation given by 

Equation (B.l) is given in Figure B.l. From the plot it can be seen that utilizing Equation 

(B.l) introduces less than 1% error for £ < 0.1. In addition, the error in this 

approximation decreases logarithmically for decreasing damping ratio. 
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APPENDIX C 

VARIABLE RESIDUE METHOD OF POLE PARAMETERIZATION 

On method considered for pole parameterization from empirical transfer functions 

was the Variable Residue Method recently developed by Lin, Lim and Liew in 1995. 

Because of it's timeliness, a brief summary of the method, and justification for its 

rejection for on-line system identification is given here. The method relies upon the fact 

that a Nyquist plot of the frequency response near a pole approximates a circle tangent to 

and below the real axis. Three adjacent frequency bins denoted by the subscripts a, b, c, 

in this region around the r*1 mode are selected and the matrix relationship in Equation (C-

12) is solved to produce the estimated complex eigenvalue, A*, and the complex gain or 

modal constant, denoted by Cr. 

Aba(coc
2 -coa

2)-Acu(co,2 -G)fl
2) AcaAfca(coc

2 -co,2) X 
C. Afca(o)c

2 - c o , 2 ) - Acb(cofc
2 -coa

2) A c A > c
2 -co.2). 

A c A f l w f l
2 ( to c

2 - av ) 

AcAflcofc
2(coc

2 

(C-12) 

The eigenvalue, Â  can then be used to determine the modal frequency and modal 

damping ratios according to Equations (C-13) and (C-14). Furthermore, multiple 
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estimates of the modal parameters can be computed and averaged from other triplets of 

neighboring frequency bins near the targeted mode. It is this averaging, either weighted 

or unweighted, that improves the robustness of the algorithm over methods that simply 

search for a local maximum in the data and utilize FWHM for damping ratio estimation. 

W rL # =V R e (^) (C-13) 

i MK) 
l m = m

f c O) 
r 

An additioial benefit of VRM is the ability to characterize and quantify the 

nonlinearity of a system by comparing the modal parameters estimated by multiple triplets 

of the frequency spectra values near a resonant peak. With the VRM algorithm the 

correlation of the modal parameters with the associated vibration amplitude, the height of 

the frequency response function at that location, can be easily computed for multiple 

frequency response function triplets near the resonant peak. 

The validity of the VRM algorithm in a low-noise environment was verified in the 

simulations shown in Figure C.l through Figure C.3. The frequency response of a single 

degree of freedom system with modal damping was generated analytically and utilized as 

input to the VRM algorithm implemented in Matlab. As can be seen in Figure C.2 and 

Figure C.3, for low noise levels (SNR = 10000), the estimated modal parameters can be 
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estimated accurately when parameters are computed by averaging within the flat region 

surrounding the pole under consideration. 
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When more common noise levels of 0.1-10% of the signal were simulated as in 

Figure C.4, the VRM algorithm was less successful. The assertion by Lin, Lim, and Liew, 

that the VRM algorithm is practical for experimental application is contradicted by 

simulation results presented here. 

Figure C.4 Simulated Frequency Response for Two Serially Linked Second Order 
Systems 

After considering both the benefits and the limitations of VRM, for experimental 

work VRM was not utilized to estimate modal parameters in real time. This is due to the 

fact that in noisy environments, VRM estimates of natural frequency are only as accurate 

as the initial estimate of the peak. However, utilizing VRM for damping ratio 

computations did provide an order of magnitude estimate and improved robustness over 

standard FWHM methods. In Figure C.5 it can be seen that the slope of the natural 
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frequency estimate graph is not at all flat in the regions near the two poles, and in fact its 

slope relative to the frequency of the utilized transfer function bins is generally equal to 

one. However, in Figure C.6, the damping ratio estimates near a pole do show some 

consistency though they do exhibit a large variance. 
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APPENDIX D 

RECURSIVE LEAST SQUARES 

The recursive-least-squares, or RLS, algorithm is extremely useful for both signal 

estimation and system identification. Employed directly as a system identification 

algorithm in the time domain, RLS allows the solution to a time evolving matrix equation 

by utilizing previous solution information recursively to reduce the computational load 

from 0(N2) for direct solution methods to O(A0 for RLS, where N is the order of the 

linear model employed. Without this reduction in computational requirements, real-time 

system identification would not be possible for moderately complex linear models. In 

addition, RLS has found many uses as a signal estimation algorithm. Tzes and Yurkovich 

used a first order, SISO RLS algorithm to reduce the variance in a transfer function 

estimate in the "hybrid time-frequency domain." 

Because of the usefulness of RLS, and because derivations available in most texts 

are often unnecessarily complex, application-specific, and incomplete, the general RLS 

solution is derived here. In addition, it's applicability to real-time system identification in 

the time domain and it's specialization to the Tzes and Yurkovich application for 

frequency domain system identification are explored. A comparison of the computation 

requirements of these methods is provided. In addition, a generalization of the Tzes and 
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Yurkovich method to MIMO system models is shown to evolve directly from the general 

RLS solution. 

The recursive-least-squares adaptive filter has coefficients that weight the 

previous inputs and outputs to produce the current outputs according to 

d* =Wkx t +eA (D.l) 

The vector ek contains the Gaussian distributed, uncorrelated, random noise signals at 

time step k. The vector d̂  lists the desired filter outputs, or, in the system identification 

role, the observed outputs of a physical plant. For q outputs this gives 

dt = 
dm 

dq[k] 

(D.2) 

When utilizing the RLS algorithm for system identification, q would be equal to the 

number of measured plant outputs. Likewise, x̂  is a vector of N previous filter inputs 

for each of the p separate inputs, which are generally the same as the inputs to a physical 

plant, often denoted u[k] in control theory. Its structure is defined by 
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XjLfcJ 

x„ = 

xD[k] 

x^k-N + l] 

u[k] 

u[k-N + l 

(D.3) 

xp[k-N + \] 

In this formulation the RLS model is a finite impulse response filter. All that is required 

to implement an infinite impulse response filter is to add additional rows to the subvectors 

of xk to contain the filtered outputs d\,...dn that should be fed back into the filter. The 

resulting input vector would then be 

x, = 

xmW 

dm 

dn[k) 

Ut*--N + \\ 

xjk- -N + l] 

dx[k- -N + \] 

_d„[k--N + l]_ 

(D.4) 
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The dimensionp is then determined by p- m + n. Wk is the linear system model being 

identified or the time varying weighting for filtering and signal estimation. The structure 

of the weighting matrix is given by 

w4 = 

W, xoW ••• vvI?0[/c] 

WNP,I,N-IW 

WpxoW ••' wq,P,oik] 

WNp-p+l,l,N-\\-k] '" W jip-p+i # ,N-ilk] 

™Np,q,N-lW 

(D.5) 

The idea of least-squares estimation is to minimize the error between the desired 

(or observed) system output and the predicted system output over all of the observed 

inputs and outputs. The RLS algorithm assumes a square of the norm of the error signal 

as a cost function. This minimization is formulated as 

1 
mm 
w* k + 

-Xkn-W/X, 
m-n 

(D.6) 

However, when the system being identified is non-stationary it is preferable to weight 

current data more heavily that past data. This can be accomplished by windowing the 

cost function in time. For exponential windowing the rninimization problem becomes 
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1 k 

min—-XK - W/xm| V - , (D.7) 
Wt /c + l ^ o " " 

where a is a convergence factor that implements a trade-off between tracking of a time-

varying system and the steady-state error of the model. The convergence factor, or as 

Tzes and Yurkovich refer to it, the forgetting factor, must have a value between zero and 

one to ensure convergence, such that 

0 < o < l . (D.8) 

The solution to this minimization problem can be found by equating the norm of 

the error to zero over all m and solving this over-determined system of equations by 

minimizing of the norm of the error with respect to Wk. Taking its partial derivative with 

respect to Wk and setting it equal to zero gives 

jlrilk-W/xjV-*=0, (D.9) 
O YV/k m=0 

or 

i a f c " m ^4rK- w ^ T ^) T K- w ^ T x - ) = 0 - (D.IO) 

Carrying out the multiplication gives 
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icck-'-^-{dJdm-dJWk
1xm-xJWtdm+xJWtWt

Txm) = 0, (D.n) 
m=o & V* k 

and evaluating the partial derivative leaves 

i « ' - " ( - 2 x m
T d „ + 2 W t

T x „ T x J = 0. (D.12) 

Moving terms containing the unknown Wk to the left and canceling common factors 

produces 

t a ' - W t
T x m

T x „ = t a ' - x „ T d „ . (D.13) 
m=0 m=0 

After transposing, this equation becomes 

t a ' - " x „ T x ; W t = t « ^ d „ T x m . (D.14) 

Finally, solving for Wk gives 

W . J t a ^ V x J t a ' - " d m
T x „ , (D.15) 

Vm=0 J m=0 

To produce a concise recursive formula for the solution of the weighting matrix, 

the covariance matrix and the cross-covariance matrix are defined as 

k 

P ^ S v . V " " . (D.16) 
m=0 

and 
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R^XM/os'"". (D.17) 

respectively. Because both the covariance matrix and the cross covariance matrix are 

sums over the time step index, the recursive relationships for each can be easily derived as 

P* = « P , _ 1 + x , x / , (D.18) 

and 

R* = a R , . 1 + x f c d / . (D.19) 

As a result, it becomes possible to substitute Equations (D.18) and (D.19) into the 

minimization solution for Wk to produce a recursive solution. However, it is also 

desirable to avoid the inversion calculation of the covariance matrix. The matrix 

inversion lemma can be used to avoid the inversion of the sum in Equation (D.18). 

Nonetheless, working from first principles, and substituting the definitions from Equation 

(D.16) and (D.17) into the solution for Wk in Equation (D.15) gives 

W* = Pf'R* • (D.20) 

Utilizing the recursive relationship in Equation (D.19) gives 

W ^ P ^ o R ^ + M * 1 ) - (D.21) 
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Solving Equation (D.20) for R^, and substituting the result into Equation (D.21) 

produces 

W^P^WH+M;). (D.22) 

In order to eliminate Pfc term and utilize the previous calculation of the weighting 

matrix Equation (D.18) can be solved for P^, and the result substituted into Equation 

(D.22) to produce 

W t = P t 
- i 

1 ^ " X A W^+x.d, 

Wi^W^+PAtdZ-xXi). 

(D.23) 

(D.24) 

The remaining P^ i term is eliminated using Equation (D.18), producing 

W, = Wfc_, +(cxPfc_1 + x A
T ) ~ ' x , ( d / - x / W ^ ) , (D.25) 

Distributing the inversion of a sum to produce a sum of inverses, and then factoring out 

Pt_j ' to produce a scalar denominator gives 
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P^-'x, dJ-x/W,^ 
W, = Wfc_, + k \ k - T, . (D.26) 

(a + x tP,. , x, ) 

All that remains is to develop a recursive solution for Pk_{
 1. Interestingly, this 

inverse does not actually exist until the time index k has exceeded the number of columns 

in the matrix. Nonetheless, because Pfc_j is positive definite, the matrix inversion lemma 

can be applied to Equation (D.18). This can also be shown by the algebraic techniques 

used to obtain Equation (D.26) from Equation (D.25). The recursive solution is then 

-i P _1 

Pk-
l=(aPk_1+xkxk

jy = n ' \ T- (D.27) 
U " t "- r <: - l XkXk 

Equations (D.26) and (D.27) can be used to implement the RLS algorithm 

directly. However more sophisticated implementations can reduce the number of 

operations required and improve the numerical stability of the algorithm by updating the 

diagonalization or the QR factorization of the inverted matrices rather than the inverses 

themselves. This is the technique used in Kalman filtering. Without such techniques, the 

iteration should not continue for more than 100,000 cycles. Compounding numerical 

inaccuracies will render the computations of the weighting matrix and the covariance 

matrix invalid beyond this number of recursions. 
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However, numerical accuracy concerns do not affect SISO, first order filters. For 

this simplified case, all matrices that must be inverted become scalars. When such an RLS 

filter is applied to a data set of frequency-domain information evolving in time, the Tzes 

and Yurkovich solution results. The RLS algorithm, as implemented directly by 

Equations (D.26) and (D.27) for p=\, q=l, and N=\, can be simplified using scalar 

algebra to produce 

Pk-\xk ( , \ 
w* = w*-i +7 2 \\d* -xkw*-ih (D.28) 

(a + xk Pk_x) 
- i 

-i Pk-\ 

Pk = 7 -i — • (D.29) 
a + A-i xk 

This form is identical to that utilized by Tzes and Yurkovich in published works except 

for typographical errors in the formulas that were published. 
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APPENDIX E 

ADAPTIVE PIECEWISE POLYNOMIAL REGRESSION 

One possible implementation of the frequency domain smoothing suggested by 

Tzes and Yurkovich is boxcar filter on the frequency domain data, or a first order 

piecewise polynomial regression. These methods are very successful at reducing the 

variance in the frequency domain data. However, such a smoothing filter will often 

flatten desired features such as resonant peaks in the frequency domain resulting in biased 

damping ration estimates. Figure E. 1 shows an example of this effect on a simple time-

domain chirp signal. The input for the simulation was a sinusoid of increasing frequency 

with 10% pseudo-random noise. An improvement was evident when the same signal was 

processed by an automatic order adjusting piecewise polynomial curve fit. The improved 

results are shown in Figure E.2. The adaptive smoothing algorithm retains the linear 

regression's strong rejection of noise in the flat region, while tracking the underlying 

noise-free signal much more closely at the sharper peaks in the high frequency region. 

The underlying signal is depicted with a dashed line that does not deviate significantly 

from the smoothed noise signal except in the flat region. The window width in both cases 

was fixed at 17 bins, or 8 bins to either side of the point being smoothed. This 
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corresponds to a Al = 8 for all i in Tzes and Yurkovich's frequency domain smoothing 

equation. 

Fixed Order Piecewise Regression of Simulated Noisy 
Sinusoidal Chirp Siqnal 
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Figure E. 1 Example of Peak Flattening Caused by Fixed Order Piecewise 

Linear Regression 
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Figure E.2 Variable Order Piece wise Polynomial Regression 
Example 

In spite of it's noise rejection benefits, automatic order adjusting piecewise 

polynomial regression was not used online in experimental work due to its high 

computational cost. The least squares fitting process produces a system of linear 

equations must be solved for each frequency bin. In addition, the matrix equations are 

often badly scaled, if the data within a window varies over a large dynamic range, as is the 

case near a resonance peak in the magnitude of a frequency spectrum or transfer function. 

When a fixed order, fixed window width, regression is used, most of the computation can 
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be performed off-line using Vandermonde matrices, reducing the on-line computations to 

those required for any arbitrary linear filter. 
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