42,025 research outputs found

    Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach

    Get PDF
    In standard clinical within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian modeling. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to approximate the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows fine automatic tuning of spatial regularisation parameters. It follows a new algorithm that exhibits interesting properties compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery

    PEAR: PEriodic And fixed Rank separation for fast fMRI

    Full text link
    In functional MRI (fMRI), faster acquisition via undersampling of data can improve the spatial-temporal resolution trade-off and increase statistical robustness through increased degrees-of-freedom. High quality reconstruction of fMRI data from undersampled measurements requires proper modeling of the data. We present an fMRI reconstruction approach based on modeling the fMRI signal as a sum of periodic and fixed rank components, for improved reconstruction from undersampled measurements. We decompose the fMRI signal into a component which a has fixed rank and a component consisting of a sum of periodic signals which is sparse in the temporal Fourier domain. Data reconstruction is performed by solving a constrained problem that enforces a fixed, moderate rank on one of the components, and a limited number of temporal frequencies on the other. Our approach is coined PEAR - PEriodic And fixed Rank separation for fast fMRI. Experimental results include purely synthetic simulation, a simulation with real timecourses and retrospective undersampling of a real fMRI dataset. Evaluation was performed both quantitatively and visually versus ground truth, comparing PEAR to two additional recent methods for fMRI reconstruction from undersampled measurements. Results demonstrate PEAR's improvement in estimating the timecourses and activation maps versus the methods compared against at acceleration ratios of R=8,16 (for simulated data) and R=6.66,10 (for real data). PEAR results in reconstruction with higher fidelity than when using a fixed-rank based model or a conventional Low-rank+Sparse algorithm. We have shown that splitting the functional information between the components leads to better modeling of fMRI, over state-of-the-art methods

    Hand classification of fMRI ICA noise components

    Get PDF
    We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets

    Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI

    Get PDF
    Parallel MRI is a fast imaging technique that enables the acquisition of highly resolved images in space or/and in time. The performance of parallel imaging strongly depends on the reconstruction algorithm, which can proceed either in the original k-space (GRAPPA, SMASH) or in the image domain (SENSE-like methods). To improve the performance of the widely used SENSE algorithm, 2D- or slice-specific regularization in the wavelet domain has been deeply investigated. In this paper, we extend this approach using 3D-wavelet representations in order to handle all slices together and address reconstruction artifacts which propagate across adjacent slices. The gain induced by such extension (3D-Unconstrained Wavelet Regularized -SENSE: 3D-UWR-SENSE) is validated on anatomical image reconstruction where no temporal acquisition is considered. Another important extension accounts for temporal correlations that exist between successive scans in functional MRI (fMRI). In addition to the case of 2D+t acquisition schemes addressed by some other methods like kt-FOCUSS, our approach allows us to deal with 3D+t acquisition schemes which are widely used in neuroimaging. The resulting 3D-UWR-SENSE and 4D-UWR-SENSE reconstruction schemes are fully unsupervised in the sense that all regularization parameters are estimated in the maximum likelihood sense on a reference scan. The gain induced by such extensions is illustrated on both anatomical and functional image reconstruction, and also measured in terms of statistical sensitivity for the 4D-UWR-SENSE approach during a fast event-related fMRI protocol. Our 4D-UWR-SENSE algorithm outperforms the SENSE reconstruction at the subject and group levels (15 subjects) for different contrasts of interest (eg, motor or computation tasks) and using different parallel acceleration factors (R=2 and R=4) on 2x2x3mm3 EPI images.Comment: arXiv admin note: substantial text overlap with arXiv:1103.353

    A Bayesian Variable Selection Approach Yields Improved Detection of Brain Activation From Complex-Valued fMRI

    Get PDF
    Voxel functional magnetic resonance imaging (fMRI) time courses are complex-valued signals giving rise to magnitude and phase data. Nevertheless, most studies use only the magnitude signals and thus discard half of the data that could potentially contain important information. Methods that make use of complex-valued fMRI (CV-fMRI) data have been shown to lead to superior power in detecting active voxels when compared to magnitude-only methods, particularly for small signal-to-noise ratios (SNRs). We present a new Bayesian variable selection approach for detecting brain activation at the voxel level from CV-fMRI data. We develop models with complex-valued spike-and-slab priors on the activation parameters that are able to combine the magnitude and phase information. We present a complex-valued EM variable selection algorithm that leads to fast detection at the voxel level in CV-fMRI slices and also consider full posterior inference via Markov chain Monte Carlo (MCMC). Model performance is illustrated through extensive simulation studies, including the analysis of physically based simulated CV-fMRI slices. Finally, we use the complex-valued Bayesian approach to detect active voxels in human CV-fMRI from a healthy individual who performed unilateral finger tapping in a designed experiment. The proposed approach leads to improved detection of activation in the expected motor-related brain regions and produces fewer false positive results than other methods for CV-fMRI. Supplementary materials for this article are available online

    A group model for stable multi-subject ICA on fMRI datasets

    Get PDF
    Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract sets of mutually correlated brain regions without prior information on the time course of these regions. Some of these sets of regions, interpreted as functional networks, have recently been used to provide markers of brain diseases and open the road to paradigm-free population comparisons. Such group studies raise the question of modeling subject variability within ICA: how can the patterns representative of a group be modeled and estimated via ICA for reliable inter-group comparisons? In this paper, we propose a hierarchical model for patterns in multi-subject fMRI datasets, akin to mixed-effect group models used in linear-model-based analysis. We introduce an estimation procedure, CanICA (Canonical ICA), based on i) probabilistic dimension reduction of the individual data, ii) canonical correlation analysis to identify a data subspace common to the group iii) ICA-based pattern extraction. In addition, we introduce a procedure based on cross-validation to quantify the stability of ICA patterns at the level of the group. We compare our method with state-of-the-art multi-subject fMRI ICA methods and show that the features extracted using our procedure are more reproducible at the group level on two datasets of 12 healthy controls: a resting-state and a functional localizer study
    • …
    corecore